
SETTLING-TIME IMPROVEMENT IN GLOBAL 
CONVERGENCE LAGRANGIAN NETWORKS 

Acho L. 
Centro de Investigación y Desarrollo de Tecnología Digital del IPN (CITEDI-IPN) 

CITEDI-IPN, 2498 Roll Dr. #757, Otay Mesa, San Diego CA, 92154, USA 
leonardo@citedi.mx 

Keywords: Lagrangian Networks, Global Convergence, Convex Optimization, Lyapunov Theory. 

Abstract: In this brief, a modification of Lagrangian networks given in (Xia Y., 2003) is presented. This modification 
improves the settling time of the convergence of Lagrangian networks to a stationary point; which is the 
optimal solution to the nonlinear convex programming problem with linear equality constraints. This is 
important because, in many real-time applications where Lagrangian networks are used to find an optimal 
solution, such as in signal and image processing, this settling time is interpreted as the processing time. 
Simulation results applied to a quadratic optimization problem show that settling time is improved from 
about to 2000 to 20 seconds. Lyapunov theory was used to obtain our main result. 

1 INTRODUCTION 

Roughly speaking, a Lagrangian network is a 
dynamical system used to find the optimal solution 
to a nonlinear convex programming problem with 
linear equality constraints (for more details, see (Xia 
Y., 2003)). This dynamical system has simple 
structure and its complexity for implementation is 
low (Xia Y., 2003). Global convergence of a 
Lagrangian network has been analyzed in (Xia Y., 
2003)  and stated that it has not been studied before 
(Xia Y., 2003). So, the convergence (in time) of the 
solution of the Lagrangian networks to an 
equilibrium point (or stationary point), which, under 
some conditions, corresponds to the unique optimal 
solution to the nonlinear convex programming 
problem, is an important issue. In this short paper, 
we present how to modify it to improve the settling 
time convergence. Engineering applications in real-
time of Lagrangian networks, and important 
references about it, are cited in (Xia Y., 2003). We 
developed simulation experiments applied to a 
quadratic optimization problem to show that the 
settling time could be improved from about to 2000 
to 20 seconds. Lyapunov theory is employed to 
prove our main result. 

2 CONVEX OPTIMIZATION 
PROBLEM USING 
LAGRANGIAN NETWORKS 

Consider the following non-linear convex 
programming problem with equality constraints (Xia 
Y., 2003): 
 

Minimize  f(x)    subject to  Ax=b       (1) 
 
where f(x) is a smooth and strictly convex function, 

nmRA ×∈ , and . Remember that a 
functional  is strictly convex function in 

mRb∈
RRf n →:

nRX ⊂  if, for all x,y ∈ X  and 10 <<α , we have 
that  for all yx ≠ : 
 

).()1()())1(( yfxfyxf αααα −+<−+    (2)  
 
Consider the next Lagrangian function: 
 

)()(),( bAxyxfyxL T −−= ,                    (3) 
 
where is referred as the Lagrangian 

multiplier.  is a solution to (1) if and only if there 
exists  such that ( , ) satisfies the 

mRy∈
∗x

mRy ∈* ∗x ∗y
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following Lagrangian conditions (see (Xia Y., 
2003)): 
 

0)(),( =−∇=∇ yAxfyxL T
x , 

 
0),( =−=∇ bAxyxLy , 

 
where is the gradient of  f(x) and ( , ) 
is one stationary point of (3). Consider the next 
(dynamic) Lagrangian network (Xia Y., 2003): 

)(xf∇ ∗x ∗y
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The above dynamic is said to be global convergent 
if, for any given initial points, all trajectories 
converge to an equilibrium point. 
 
Theorem 1 (Xia Y., 2003): Assume that is 
positive definite. Then, the Lagrangian network (4) 
is stable in the Lyapunov sense and is globally 
convergent to an equilibrium point of (4), which 
corresponds to a unique optimal solution of (1). 

)(2 xf∇

 
The proof of this theorem was based on Lyapunov 
theory to conclude that Lagrangian system (4) is 
stable in the Lyapunov sense; which means that all 
trajectories are bounded. After that, the proof is 
continued by proving that x(t) converges to an 
stationary point. Finally, it was proved that this 
stationary point is the unique optimal solution to (1). 
This last part is straightforward to prove (see, (Xia 
Y., 2003)). The main contribution in developing 
proof for Theorem 1 is the use of Lyapunov theory. 
To facilitate further comments, below we present the 
stability proof given in (Xia Y., 2003) but we 
present a different way for the convergence of x(t) to 
a stationary point by invoking the  Barbalat’s 
lemma. 
 
Consider the  following Lyapunov function: 
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where u=[x,y]T,  
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and  is a stationary point of the 
Lagrangian function. The time derivative of the 
Lyapunov function along the trajectories of the 
Lagrangian network (4) yields (Xia Y., 2003): 

Tyxu ],[ ∗∗∗ =
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This proves stability in the Lyapunov sense of the 
Lagrangian network (4). Observe that 

; so, (6) means that xyAxf T &−=−∇ ))((
 

xxfxuV T &&& )()( 2∇−≤ .                                     (7)  
 
From (7), we conclude that all signals are bounded; 
i.e., ∞∈ Lyx, , and in consequence, from (4), we 

have that ∞∈ Lyx &&, .  Integration of (7) yields: 
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which implies that 
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and because is positive definite, then )(2 xf∇

2Lx∈& . Observe that, 
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and because ∞∈ Lyx, , then . Invoking the 
well-known Barbalat’s lemma (see (Krstic, 1995), 
Corollary A.7), we conclude that as 

∞∈ Lx&&

0)( →tx& ∞→t . 
This implies that x(t) converges to an stationary 
point, and in consequence, y(t) converges to an 
stationary point too. This concludes the proof. ♥ 
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We will use the above procedure in proving our 
main result. 
 
Consider the next modified Lagrangian system: 
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where nnRK ×∈  is symmetric and positive definite 
such that IK > . Next is our main result. 
 
Theorem 2: Assume that is positive 
definite. Then, the Lagrangian network (8) is stable 
in the Lyapunov sense and is globally convergent to 
an equilibrium point of (8), which corresponds to a 
unique optimal solution of (1). 

)(2 xf∇

 
Proof: The proof is too similar to the proof given for 
Theorem 1 but using Kf(x) instead of f(x) every 
where. In this sense, and using the same Lyapunov 
function (5), we can verify that: 
 

xxfKxuV T &&& )()( 2∇−≤ .                              (9)   
 
Observe that . Following the 
same lines used to prove Theorem 1 and invoking 
the Barbalat’s lemma, it is easy to verify that 

as 

xyAxfK T &−=−∇ ))((

0)( →tx& ∞→t , meaning that x(t) tends to an 
stationary point, so y(t) does too. From (9), we can 
appreciate that the time derivative of the Lypunov 
function becomes more negative than (7) for K>I. 
This increases the speed of convergence. Proof 
completed. ♥ 
 
To give a numerical example, the next quadratic 
optimization problem is worked out (Xia Y,, 2003): 
 
Minimize, 
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where its optimal solution is  (Xia 
Y., 2003). Simulation results are shown in Figures 
one and two. For Theorem 2, we used 
K=diag{100,100}. From these Figures, we can 
appreciate an improvement in the settling time. In all 
numerical experiments we employed 

)1,1(),( 21 −=∗∗ xx

 
 , TTxxx ]11[)]0()0([)0( 21 ==
 
and  
 

[ ] [ ]TTyyyy 111)0()0()0()0( 321 == . 

3 CONCLUSIONS 

We presented a slightly modification to Lagrangian 
networks to solve nonlinear convex programming 
problem with linear equality constraints. This 
modification was able to improve notoriously the 
settling time. 
 

 
Figure 1: Simulation results using Theorem 1 
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Figure 2: Simulation results using Theorem 2 
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