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Abstract Recently developed techniques allow the anal-

ysis of surface EMG in multiple locations over the skin

surface (high-density surface electromyography,

HDsEMG). The detected signal includes information from

a greater proportion of the muscle of interest than con-

ventional clinical EMG. However, recording with many

electrodes simultaneously often implies bad-contacts,

which introduce large power-line interference in the cor-

responding channels, and short-circuits that cause near-

zero single differential signals when using gel. Such signals

are called ‘outliers’ in data mining. In this work, outlier

detection (focusing on bad contacts) is discussed for

monopolar HDsEMG signals and a new method is pro-

posed to identify ‘bad’ channels. The overall performance

of this method was tested using the agreement rate against

three experts’ opinions. Three other outlier detection

methods were used for comparison. The training and test

sets for such methods were selected from HDsEMG signals

recorded in Triceps and Biceps Brachii in the upper arm

and Brachioradialis, Anconeus, and Pronator Teres in the

forearm. The sensitivity and specificity of this algorithm

were, respectively, 96.9 ± 6.2 and 96.4 ± 2.5 in percent in

the test set (signals registered with twenty 2D electrode

arrays corresponding to a total of 2322 channels), showing

that this method is promising.

Keywords Detection theory � Feature extraction �
Logistic regression � Multichannel surface

electromyography � Multivariate outlier detection �
Robust statistics

Abbreviations

CC Correlation coefficient

CPV Cumulative percentage variance

EMG Electromyography

EP Error probability

HDsEMG High-density surface electromyographic

signals

KDE Kernel density estimator

kNN k-Nearest neighbors

LDOF Local distance-based outlier factor

LOF Local outlier factor

MAD Median absolute deviation

MCD Minimum covariance determinant estimator

MSD Mahalanobis squared distance

MVIC Maximum voluntary isometric contraction

OCA Overall classification accuracy

PC Principal component

PCA Principal component analysis

PDE Partial differential equation

PLOF Probabilistic local outlier factor

RMS Root mean square

SD (sd) Standard deviation
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1 Introduction

Some data derived from measurements may be inconsistent

with others and can be viewed as outliers. Outliers affect

statistical estimators. They skew the location and scale

estimators (e.g., mean and covariance matrix) toward them.

In the case of multiple outliers, the analysis might suggest

that one or more outliers are in fact good cases (false nega-

tives) and one or more good cases are outliers (false posi-

tives) [4].

Outlier detection is a primary step in many data mining

applications associated with data quality assurance. Visual

inspection of scatter plots is the most common approach to

outlier detection [44]. There is a large literature on the

detection of outliers mostly on the univariate case. Barnett

and Lewis [3], Davies and Gather [14] and Hawkins [28]

provide extensive reviews.

Outlier detection approaches can also be classified as

distribution-based (Z-score and Grubb’s test [24]), depth-

based [9], clustering-based [15], distance-based [25, 37, 47,

50, 51], or density-based such as LOF [7], PLOF [33], and

LDOF [61]. Robust statistics was also used to identify

univariate outliers such as the Boxplot approach [56] and

its variations [42]. The bivariate versions were also intro-

duced in the literature as Bagplot, a Bivariate generaliza-

tion of the univariate Boxplot [52], Relplot (Robust Elliptic

Plot) and Quelplot (Quarter Elliptic Plot) [21]. Fuzzy

expert-based methods were also used to detect outliers by

combining different outlier detection methods [9].

Recording HDsEMG signals implies using several

channels. During recording with many channels, it is likely

to observe some low-quality signals due to poor skin–

electrode contact, small electrode displacements during

signal recording (movement artefacts), power-line inter-

ference, especially in monopolar recording, variations of

electrode–skin impedance over time (e.g., due to inter-

mittent or loose contacts) and loose connectors (Fig. 1 as

an example). Examining the electrode–skin impedance

prior to signal recording is not always practical and this

impedance changes even in 1-s intervals [20]. In addition

to examining the quality of the signal during recording, it is

very important to identify ‘‘bad’’ channels, prior to off-line

signal processing. Manual identification of outliers is time-

consuming and depends on the expertise of the operators

[34]. Thus, there is a need to design and implement auto-

matic outlier detection systems for HDsEMG recordings.

Two automatic methods were proposed recently: [23,

39]. The first approach is a bivariate extension of Boxplot,

using two-dimensional features defined by the SD of the

signal in short and long epochs for each channel. The

second approach is based on an expert-based Fuzzy system,

and requires tuning membership functions on a training set

using particle swarm optimization. It is necessary to set

some thresholds empirically or based on tuning on training

sets in both methods.

The objectives of this work are: (a) to extract HDsEMG

features according to experts’ knowledge to differentiate

between ‘‘good’’ and ‘‘bad’’ channels (focusing on bad-

contacts), (b) to validate feature extraction and reduction

procedures statistically, and (c) to test a novel data-

dependent method to estimate the cut-off threshold of ou-

tlierness factor against three other methods on the training

and test sets. Detecting outliers is important for obtaining

reliable EMG amplitude maps by substituting them using

2-D interpolation techniques. The proposed procedure is

fully automatic, does not require any tuning step or human

expert’s interpretation and can also identify localized

muscular activity. Preliminary results were presented

recently [40].

2 Methods

2.1 Training and test set databases

Five muscles were included in the experiment: Biceps and

Triceps in the upper arm and Anconeus, Brachioradialis,

and Pronator Teres in the forearm. The experimental pro-

tocol consisted of isometric flexion, extension, supination

and pronation at 10, 30, and 50% of the Maximal Volun-

tary Contraction held for 10 s. These contractions were

controlled by means of a mechanical brace designed to

measure isometric torques in the four directions of move-

ment. The forearm was restrained with straps applied at the

wrist. Subjects were previously trained to maintain the

hand and fingers at rest during signal recording. Twelve

healthy male volunteers (age, 28.3 ± 5.5 years; height:

177.8 ± 6.0 cm; weight: 75.7 ± 8.7 kg) participated in the

experiment. Subjects included in the study did not have any

history of neuromuscular disorders or pain or regular

training of the upper limb. All subjects gave informed

consent to the experimental procedure. The area of place-

ment of the electrodes was shaved and cleaned with abra-

sive paste. Subjects sat in front of the mechanical brace

with the back straight, the elbow joint flexed at 45�,

shoulder abducted at 90� (arm parallel to sagittal plane),

and forearm rotated 90� (midway between supination and

pronation).

Monopolar HDsEMG signals were recorded using three

2D electrode arrays with contacts equally spaced by

10 mm in rows (y in the proximal–distal direction) and
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columns (x in the medial–lateral direction) and made of

silver plated eyelets of 5 mm in diameter with the reference

electrode connected to the shoulder of the subject’s domi-

nant side. Array 1 (forearm) was located 2 cm below the

elbow crease with columns of electrodes (at least 4) cov-

ering the anconeus, pronator teres, and brachioradialis that

were previously drawn over the surface of the skin [32].

Arrays 2 and 3 (Biceps and Triceps) consisted of 8 9 15

electrodes while Array 1 had 6 rows of electrodes and a

variable number of columns (between 17 and 19) depending

on the dimensions of the limb of the subject for a total of

*350 channels. Signals were recorded simultaneously by

three amplifiers (EMG-USB-128 channels, sampling fre-

quency of 2048 Hz, programmable gains of 100, 200, 500,

1000, 2000, 5000, and 10000, third-order active high-pass

Butterworth filter (-3 dB cut-off frequency of 3 Hz; -

18 dB/octave slope) and eighth-order switched-capacitor

Bessel filter (-3 dB cut-off frequency of 710 Hz; -48 dB/

octave slope); LISiN-OT Bioelettronica with synchronized

sampling). Power-line interference was reduced by using a

Driven Right Leg (DRL) circuit (with the DRL IN and DRL

OUT connected to clavicle and wrist of the subject’s

dominant side, respectively). Contraction order was ran-

domized and a rest period of 2 min was imposed between

consecutive contractions. A signal ‘‘set’’ was obtained from

each array during each contraction.

Two databases were randomly selected from the 432

recorded signal sets (recorded from 12 subjects, in four

contraction types (flexion, extension, supination, and pro-

nation), at three force levels (10, 30, and 50%), and three

locations (biceps, triceps or forearm)). One database had 19

signal sets (training) and the other one consisted of 20

signal sets (test).

The training set was used to tune parameters (e.g., cut-

off thresholds) of three other methods used for comparison

(i.e., M1–M3). Note that the proposed method (M0) does

not require tuning and its only fixed parameter, the number

of nearest neighbors, was estimated theoretically (see Sect.

4.1 for details).

The number of bad channels identified by three experts

(see Sect. 2.4.1 for information on combining experts

opinions) was 4.05 ± 2.74 [0, 13] and 5.40 ± 3.98 [0, 16]

in the training and test sets, respectively (mean ± SD)

[min, max]. The number of ‘‘bad’’ channels in the 20 test

sets was 6, 4, 7, 16, 2, 3, 12, 3, 9, 10, 7, 6, 1, 3, 4, 5, 2, 2, 6,

and 0 out of 120 channels.

The minimum number of required signal sets in the

training and test set databases were calculated using

G*Power version 3.1.2 [17, 18]. It was required to have at

least 18 signal sets for the analysis in either training or test

set to preserve the statistical power of 99% at the signifi-

cance level of 0.01 with the effect size of 1.3 (large effect

size [10] based on the assumption made in Sect. 4.1).

2.2 Feature extraction

Experts use different strategies when identifying ‘‘bad’’

channels, one of them, is the identification of those that are

not similar to ‘‘good’’ channels, considering that ‘‘good

channels’’ usually present similar waveforms. As a

Fig. 1 Selected 250-ms

monopolar HDsEMG signal

epochs distributed in six rows

(R1,…, R6) and three columns

(C1, C2, C5) including ‘‘bad’’

channels from subject 1,

Brachial Biceps Matrix (IED of

10 mm in both directions),

elbow flexion at 10% MVIC

(part of the training set no. 3).

According to experts’ opinion,

R1C1 (CH1), R3C2 (CH9),

R6C2 (CH12), and R5C5

(CH29) are ‘‘bad’’ channels.

Although, it is possible to

increase the SNR of some of

them (e.g., CH9) by filtering,

other channels require

reconstruction using 2-D

interpolation using their nearest

neighbors
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similarity measure, we may introduce the first feature

Fa for channel i as Fa ið Þ ¼ median CC xi; xj

� ��� ��;
�

j ¼
1. . .n; i 6¼ jg; where n is the total number of recorded

channels in the corresponding array, xi are the temporal

samples of channel i in a 250 ms epoch and CC xi; xj

� �
is the

cross-correlation coefficient between waveforms xi and xj.

The second bivariate spectral feature, SF = [Fb, Fc], is

defined for each channel i in the frequency domain. First,

the temporal samples of channel i in a 1 s epoch are used to

calculate the power spectrum with 1 Hz resolution, Pk; k ¼
1; 2; . . .; 500 (the DC component was excessively removed

to satisfy one of the signal stationarity conditions [6]. High-

baseline fluctuations appear in the low-frequency range

(B12 Hz) while power-line interferences (with their har-

monics) create isolated peaks in the spectrum. An automatic

outlier detection method in the frequency domain [1] was

used to identify the interferences at Pk [ 12. This method is

based on the Hampel identifier [27] with two outputs. The

first output is the total power of the interference peaks (po)

and the second is the reconstructed power spectrum (~pk) of

the signal after removing identified interferences. Now, the

components of SF are defined as: Fb ¼ ðpl=ptÞ, and Fc ¼
ðpo=ptÞ where pl ¼

P12
k¼1 pk, pt ¼

P500
k¼1 ~pk. Although 1 s

epochs satisfy the stationarity condition required to calcu-

late the power spectral density [30], spectral leakage [43]

may enable us to use shorter epochs, e.g., 500 ms. Since the

epoch length is not the same for Fa and SF features, the

same SF feature is used for four consecutive values of the Fa

features. The outlier detection is performed in each 250-ms

non-overlapping epochs and if any of the four epochs is

marked as an outlier, the corresponding recorded channel is

regarded as a ‘‘bad’’ channel for that 1 s epoch.

The pair-wise correlations between features Fa, Fb, and

Fc in a 1 s epoch of the training data sets were analyzed to

check the possibility of feature reduction. Since none of the

paired features in the training datasets passed one-sample

Kolmogorov–Smirnov normality test [11], non-parametric

Spearman’s rho [13] was used to calculate the correlation

between features. Significantly correlated features, 2-tailed

significant level of 0.05 (95% confidence intervals) and

CCj j[ 0:4 [49] in the training data set are shown in

Table 1. Multiple logistic regression [35] was used to

analyze the possibility of reducing the number of features.

First, Z-scores [45] were used to identify possible outliers.

Z-scores with an absolute value greater than 2.5 were

labeled as potential outliers [3]. The result of this outlier

detection approach was compared with that of experts’

opinions resulting in a binary value of 1 for agreement and

0 for disagreement. Multiple logistic regressions enabled us

to identify dominant features (2-tailed significant level of

0.05) in the model as listed in Table 1. Dominant features

are distributed in different sets indicating that no feature

can be generally omitted from the analysis. The number of

dominant features in some of the training data sets is more

than one, indicating that univariate outlier detection

methods are not suitable for our application. Robust PCA

based on Projection Pursuit [12, 55, 58] was also used to

identify PC’s of Fa, Fb, and Fc features covering the CPV

[38] of 95%. The number of PC’s is also shown in Table 1

as the minimum number of features to use. 2-D represen-

tation of the first two uncorrelated features in training set

no. 3 is shown in Fig. 2 indicating the compact represen-

tation of ‘‘bad’’ channels using the recommended number

of PC’s (to cover CPV of 95%) in Table 1. Since the

training set was chosen randomly and was verified by the

Runs test at the 5% significance level [29], it is possible to

generalize the following results to the whole data set:

1. All of the proposed features, i.e., Fa, Fb, Fc must be

considered. After uncorrelating them using Projection

Pursuit, which is robust to outliers, those transformed

features covering the CPV of 95% are used.

2. Univariate Outlier detection methods are not appro-

priate for our application since the number of dominant

features is more than one in most cases.

2.3 Outlier detection

LDOF [61] was used to identify outliers. LDOF requires

the number of nearest samples as input. We used 24

neighbors for this classifier (refer to Sect. 4.1 for the dis-

cussion about selecting the number of neighbors). This

method reports the degree of outlierness of an object

instead of a binary decision, requiring a cutoff value. A

data-driven threshold based on adaptive kernel density

estimation [59] was used as the cutoff threshold.

2.3.1 Classifier

Multidimensional uncorrelated features (PC’s covering

CPV of 95%) were used as an input to the LDOF method.

Suppose that k, the number of nearest samples, is 24 (see

Sect. 4.1), g is the feature and Np is a set including kNN of

the measured feature gp, then LDOF for each object gp is

calculated using Eq. 1:

�dgp
:¼ 1

k

X

gi2Np

dist gi; gp

� �
; �Dgp

¼ 1

k k � 1ð Þ
X

gi;gi0 2Np;i6¼i0

dist gi; gi0ð Þ; LDOFk gp

� �
¼

�dgp

�Dgp

ð1Þ

where dist gi; gi0ð Þ � 0 is a distance measure between

objects gi and gi0 , �dgp
is kNN distance of gp, i.e., the

average of the distances from gp to all objects in Np and
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�Dgp
is kNN inner distance of gp, i.e., the average of the

distances among objects in Np. LDOF captures the degree

to which object gp deviates from its neighbors. The squared

Euclidean distance kk2
� �

was used for distance measure.

The output of this classifier is the degree of outlier-ness

of objects in scattered datasets. The output of this classifier

for the training sets no. 3 and 9 is shown in Fig. 3a and b,

respectively.

2.3.2 Accurate classification boundary

Calculating the distribution of LDOF values, it is possible

to isolate the bulk of the data. Since the distribution of the

data is not known, it is necessary to use non-parametric

density estimation methods. Among them, KDE was used

since it does not present drawbacks existing in histograms,

such as high sensitivity to the number of bins and dis-

continuities [59].

If x1; x2; . . .; xn are i.i.d. (independent and identically

distributed) samples of a random variable with probability

density function f, such as LDOF values, then the kernel

density approximation of its probability density function

(KDE) is calculated using Eq. 2.

f̂h xð Þ ¼ 1

nh

Xn

i¼1

K
x� xi

h

� �
ð2Þ

where K is a kernel function (e.g., normal, triangular), h is

a smoothing parameter (bandwidth), and n is the number of

samples. The performance of KDE, in representing the

probability density function of x, is dependent on the

choice of the kernel function and bandwidth. In our case,

the Epanechnikov kernel function was chosen defined in

Eq. 3.

K uð Þ ¼ 3

4
1� u2
� �

I uj j � 1f g uð Þ ð3Þ

where IA uð Þ is the indicator function defined as 1 if u 2 A

and 0 elsewhere. This Kernel function was used since it has

the highest efficiency (=1) among others because it mini-

mizes asymptotic mean integrated squared error (AMISE)

which is one of the performance measures of KDE [54].

Instead of using a fixed bandwidth, as in the first gen-

eration methods mentioned in [31], an adaptive data-driven

bandwidth was chosen because it is necessary to adapt the

bandwidth to the local density. An adaptive KDE adapts to

the sparseness of the data by using a broader kernel over

observations located in regions of low density (varying the

bandwidth inversely with the density) [57]. Following the

‘‘Solve-the-Equation Plug-In-Approach’’ (second genera-

tion methods [31]) to calculate the adaptive KDE, it is first

required to estimate a pilot density (~f ) and bandwidth (~h).

Table 1 The correlation analysis of the features in the training data set. AB, BC, and AC stand for significant correlation (2-tailed significant

level of 0.05 and CCj j[ 0:4) between (Fa, Fb), (Fb, Fc), and (Fa, Fc)

Output Training set

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Significantly correlated features AB

AC

– BC BC AB

BC

AC

BC AC AC

BC

AB – – – AB – AB AB

BC

AC

– – AB

Dominant features Fa Fa

Fb

Fa Fa

Fc

NA – – – Fa Fb NA Fa Fc – – Fb

Fc

– Fa

Fb

Fa

Fc

Number of PC’s 1 3 2 2 1 2 3 2 3 2 2 2 3 2 2 3 3 3 3

Dominant features were identified using Logistic regression (2-tailed significant level of 0.05). NA stands for not available, where there was

100% agreement between the multivariate Grubb’s test and that of expert’s opinion, resulting in no regression error to analyze. Number of

principal components (PC’s) covering the cumulative percentage variance (CPV) [38] of 95% is also shown as the minimum number of features

to use

Fig. 2 2-D representation of the first two PC’s in training set no. 3,

elbow flexion at 10% MVIC, whose corresponding HDsEMG signals

are shown in Fig. 1. Four outliers identified by the experts (recording

channels no. 1, 9, 12, and 29) are marked with arrows. According to

the number of PC’s proposed in Table 1, these two first components

are compact features
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Using Epanechnikov kernel function and following ‘‘The

Rules of Thumb’’ [54], it is possible to estimate ~f and ~h.

This density estimation is oversmoothed and therefore

suitable for the next tuning step based on the local density.

The adaptive KDE is given by f
_

adp xð Þ and defined as fol-

lows [57]:

f
_

adpðxÞ ¼
Xn

i¼1

1

n~hki

K
x� xi

~hki

� 	
ð4Þ

where xi’s are the data points (LDOF values), K is the

Epanechnikov kernel function, n is the number of data

points, and ki’s (local bandwidth factors) are defined as

ki ¼ k xið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G=~f xið Þ

q
. G is the geometric mean over all i

of the pilot density estimate ~f xið Þ. In this approach, h

controls the overall degree of smoothing while the ki values

stretch or shrink the sample point’s bandwidth to adapt to

the density of the data (see Fig. 3c, d).

The first local minimum of the KDE was used as the

margin of the bulk of the data whose LDOF value was used

as the cutoff point for the classifier. Since kernel smoothing

is used, the first valley of f
_

adp LDOFk gp

� �� �
can be iden-

tified as the first local minimum instead of using other

complicated automatic valley-detection approaches [36].

The proposed threshold detection method is indeed the 1-d

interpretation of the histogram-based image segmentation

[53] that has been extensively used in machine learning.

The cut-off threshold selection procedures for the third and

ninth training sets are shown in Fig. 3.

2.4 Validation of the outlier detection method

2.4.1 Gold standard

Outliers were manually detected by three experts in the

training and test sets containing 19 and 20 signal sets (at

least 108 channels in each set). One second of the

HDsEMG signals in the plateau force region in each

dataset was analyzed. The ‘‘MODE’’ operator that is the

majority vote expressed as binary value 0 for good

channels and 1 for outliers was used to combine three

experts’ opinions to identify artifacts for each channel of

each set as the gold standard. Reliability of agreement

between experts was assessed using Fleiss’ Kappa index

[19] and scored 88.96 and 83.92% pointing to ‘‘almost

perfect agreement’’ for the training and test set,

respectively.

Fig. 3 The output of LDOF classifier for each channel using PC’s in

training set no. 3 whose signals and features were shown in Figs. 1

and 2 respectively, for elbow flexion at 10% MVIC (a), and training

set no. 9 recorded from subject 3, Forearm Matrix (IED of 10 mm in

both directions), for elbow flexion at 50% MVIC (b). Outliers

identified by the experts are marked with arrows while those

identified by the automatic outlier detection method are marked with

filled circle. Kernel density estimations of LDOF values (with

adaptive bandwidth and Epanechnikov Kernel function, see Sect.

2.3.2) for training sets no. 3 and 9 are shown in c and d, respectively.

The borderlines of the bulk of the LDOF values are marked with

arrows with the LDOF values of 3.8 and 2.58, respectively
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2.4.2 Performance indices

Three different performance measures were used to assess

the matching of the proposed outlier detection method in

each set with the ‘‘gold’’ standard. The first index was

OCA, the overall classification accuracy [16] as the per-

centage of agreement between the result of classifier and

that of expert’s opinion. The second and third indices were

the sensitivity (Se) and specificity (Sp) of the outlier

detection algorithm. Considering true positive (TP) and

true negative (TN) as the number of correctly identified

outliers and ‘‘good’’ channels respectively, false positive

(FP) as the number of ‘‘good’’ channels identified as out-

liers and false negative (FN) as the number of outliers

identified as ‘‘good’’ channels, it is possible to define our

performance indices as:

Se ¼ TP

TPþ FN
;OCA ¼ Acc ¼ TPþ TN

TPþ TNþ FNþ FP
;

and

Sp ¼ TN

TNþ FP

where Se, Sp, and Acc are sensitivity, specificity, and

accuracy as the capability of the outlier detection algorithm

to correctly identify outliers, preserve ‘‘good’’ channels and

the overall performance of the classifier. They provide a

compact representation of the performance of the method.

2.4.3 Comparison with other outlier detection methods

The performance of the proposed outlier detection method

(M0) was compared with that of three methods (M1–M3)

selected because of their superior performance in com-

parison with other approaches proposed in the review lit-

erature (e.g., [26]). These methods are listed below:

M1 PC’s were used to calculate probabilistic local outlier

factor (PLOF) [33] (number of nearest neighbors

k = 24) and the cut-off was estimated using Hampel

method [1, 60] with the coefficient of 5.2 [46]. PLOF

approach was selected because of its high perfor-

mance with respect to other density-based outlier

detection methods, e.g., LOF [7], kNN, and weighted

kNN [2].

M2 PC’s were used to calculate Robust Mahalanobis

distance using fast MCD method [51]. The robust

distances d2
i (for each channel i) were transformed to

new distances D2
i according to the following equa-

tion, D2
i ¼ v2

p;0:5
d2

i

median d2
ið Þ

where p is the degrees of

freedom, i.e., the number of PC’s. This transforma-

tion is aimed at matching the midpoints (medians) of

the theoretical v2 distribution with the empirical

distances [41]. Then, the cut-off point of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

p;0:975

q

was used for Di distances [50].

M3 Z-scores were used to identify possible outliers using

[Fa, Fb, Fc] features and cut-off point of 2.5 [3]. This

method was the only univariate outlier detection

method used in this study.

3 Results

3.1 Performance against the gold standard

Overall performance indices of the proposed outlier

detection method (M0) and of three other implemented

approaches (M1–M3) are listed in Table 2 for the training

and test sets (suffix r and t are related with the training and

test sets, respectively, in the table). Se and Sp of methods

M0, M1, M2, and M3 are shown in Fig. 4 for each test set.

Figure 4 shows that M0 and M2 have much higher

sensitivity (Se) in comparison with M1 and M3. Although

Se index of M2 is slightly better than that of M0 (\3% in

average), its specificity (Sp) index is always much less than

M0 ([13% in average). Using Wilcoxon rank test [48] Se

was not significantly different between M0 and M2, but Sp

of M0 was significantly superior to M2 (at the significance

level of 0.05) indicating that M2 results in more false

positives (i.e., labels more good channels as outliers) in

comparison with M0. Since the number of ‘‘good’’ chan-

nels is usually much higher than ‘‘bad’’ channels, and

avoiding false negatives has more importance than recon-

structing few more false positives not to misinterpret the

data, we might conclude that M2 and, especially, M0 are

preferred among the methods studied.

3.2 EMG activity map

After identifying outliers in a 2-D array, it is possible to

reconstruct the average RMS activity map using 2-D

interpolation methods to replace the ‘‘bad’’ channel. This

procedure is shown in Fig. 5 (test set no. 7) before and after

identifying the outliers and correcting the image by inter-

polation using partial differential equation (PDE)-based

image inpainting method [5].

4 Discussion

4.1 Assumptions

We assume that the percentage of outlier channels (Pmax) is

not more than 25%, e.g., max. 27 ‘‘bad’’ channels in 108
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recorded channels. In our database, the maximal observed

percentage was 12%. The probability of having more than

11 outliers in the kNN set (k = 24, Pmax = 25%) is

0.72% = EP. When k is set to 48, EP decreases to 0.02%

but it decreases the localized-activity identification per-

formance of the method. Decreasing k to 8, on the other

Table 2 Overall performance indices (sensitivity (Se), specificity (Sp), and overall classification accuracy (OCA)) of the proposed outlier

detection method (M0) compared with three other implemented approaches (M1–M3) for the analyzed data sets (suffix r and t, respectively,

indicate the training and test set)

Performance (%) Outlier detection methods

M0 M1 M2 M3

Se_r 89.1 ± 15.7 85.2 ± 19.6 89.2 ± 15.2 81.8 ± 14.6

Sp_r 99.5 ± 0.7 95.9 ± 3.3 92.2 ± 3.9 97.2 ± 3.7

OCA_r 98.9 ± 1.1 91.2 ± 3.3 92.1 ± 3.9 93.9 ± 5.2

Se_t 96.9 ± 6.2 87.9 ± 29.3 99.1 ± 3.8 87.9 ± 15.0

[83.3, 100] [83.3, 100] [83.3, 100] [56.3, 100]

Sp_t 96.4 ± 2.5 96.8 ± 3.1 83.1 ± 6.4 99.2 ± 1.3

[90.1, 100] [81.8, 95.8] [69.2, 92.8] [95.0, 100]

OCA_t 91.9 ± 4.1 93.2 ± 4.2 72.9 ± 6.5 95.7 ± 1.5

[82.4, 98.3] [75.0, 95.8] [69.2, 90.4] [92.5, 98.3]

Performance measures (mean� sd, [min, max]) are listed in percent

Fig. 4 The performance

measures of the methods M0

(the proposed one), M1, M2,

and M3 for each test set shown

consecutively categorically in

the bar graph (Se, the

percentage of correctly

identified outliers, and Sp, the

percentage of correctly

identified ‘‘good’’ channels, in a
and b, respectively out of 20

sets). The definition of indices

used in signal detection theory:

true positive (TP), false

negative (FN), false positive

(FP), and true negative (TN) (c)

and the value of those indices of

the whole test set for the

methods analyzed in

mean� sd(median) format (d).

Since test set no. 20 did not

contain any outlier, and the

results of neither of the methods

had FN in this set, Se was not

defined for this set. Although

the Se index of M2 is slightly

better than M0 (\3% in

average), its Sp index is

significantly less than for M0 (at

the significance level of 0.05)
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hand, increases EP to 11.38% deteriorating the perfor-

mance of the algorithm. EP for our database (Pmax = 12%)

was 0.0006% which is acceptable.

4.2 Other outlier detection methods

Although our method and M2 have similar Se value, our

method always preserves more ‘good’ channels than

method M2 (significantly higher Sp value). In addition, M2

has the computational complexity of O n3ð Þ (n as the

number of recorded channels). The proposed method, M0,

has the computational complexity of O n log nð Þð Þ which is

more efficient. In practice, analyzing the whole test sets

(2322 signals) took 4.6 and 35.5 s for the methods M0 and

M2, respectively, on a dual core Intel� CPU processor

(1.83 GHz) with 2.99 GB of RAM using Matlab� 7

program. Considering the accuracy and efficiency, our

proposed method is the most promising approach among

others analyzed. Although method M3, the only univariate

method used in this study, had lower Se range than M0 and

M2 as expected from Sect. 2.2, it can identify extreme-case

outliers in each feature dimension. The method M3 has

higher false negatives than M0 and cannot identify outliers

similar to ‘‘good’’ channels. Since it is easy to implement

and has the computational complexity of O(n), it can be a

suitable choice for pre-processing or on-line implementa-

tion as a substitution of Boxplot method.

4.3 Final considerations

Results showed that this method is reliable to identify

outliers and preserve ‘‘good’’ channels better than the other

Fig. 5 The output of LDOF classifier for each channel using three

PC’s in test set no. 7 recorded from subject no. 13, Forearm Matrix

(IED of 10 mm in both directions), elbow flexion at 10% MVIC (a).

Outliers identified by the experts are marked with arrows while those

identified by the automatic outlier detection method are marked with

filled circle. KDE of LDOF values is shown in b. The first local

minimum (0.65) was used as the threshold to detect outliers.

Interpolated monopolar amplitude map (RMS) computed for 60-ms

epoch before (c) and after (d) outlier detection and removal

procedure. The x-axis and y-axis are, respectively, array columns

and rows (IED of 10 mm in both directions). The original frame had

‘‘bad’’ channels (R1C1 (CH1), R3C2 (CH9), R5C3 (CH17), R4C5

(CH28), R4C7 (CH40), R6C8 (CH48), R5C9 (CH53), R3C11

(CH63), R3C12 (CH69), R6C16 (CH96), R3C18 (CH105), and

R6C18 (CH108)) that were identified by our proposed outlier

detection method and interpolated afterwards. The image histograms

were equalized for contrast enhancement and magnified for clarity

[22]. Thus, each activity map has its own grayscale color bar in mV.

Five ‘‘good’’ channels were also labeled as outliers because the

estimated threshold was not perfect, which are R1C10 (CH55),

R6C10 (CH60), R2C11 (CH62), R4C11 (CH64), and R4C12 (CH70).

They were also reconstructed using neighboring channels. The

original activity of the muscles beyond the forearm matrix, were

disclosed after image inpainting

Med Biol Eng Comput (2012) 50:79–89 87

123



methods. However, there are some considerations: (1) the

electrode–skin impedance was not measured. This mea-

surement might be valuable when analyzing impedance

change in the recorded signal. However, our approach can be

used even if it is not possible to measure this quantity during

recording, (2) the method, was designed for HDsEMG signal

and the input features might not be suitable for other bio-

potential signals specially those whose practical bandwidth

includes very low frequencies (\2 Hz), (3) in case of dif-

ferent electrodes (e.g., dry electrodes that have more bad-

contacts) and muscles (e.g., small muscles), Pmax has to be

estimated based on the pilot study to estimate the number of

kNN’s in Sect. 4.1. Although other amplifiers were not used

in our experiment, different high-pass filtering cannot com-

pletely attenuate movement artefacts and does not affect the

proposed data-driven cut-off threshold estimation method.

Moreover, our proposed method does not require tuning to

depend on the particular data. However, the low-frequency

feature extraction must be evaluated and possibly adapted for

other amplifiers, and (4) raw (unfiltered) monopolar

HDsEMG signals were analyzed. Higher order spatial fil-

tering might have a different outcome.
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