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Abstract The dynamics associated with the impact of the crutch with the ground is an im-
portant topic of research, since this is known to be the main cause of mechanical energy
loss during swing-through gait. In this work, a multibody system representing a subject
walking with crutches is used to investigate the behavior of two different contact models,
impulsive and continuous, used for impact analysis. In the impulsive (discrete) approach,
the impact interval is considered to be negligible and, therefore, the system configuration
is constant. The postimpact state is directly obtained from the preimpact one through alge-
braic equations. In the continuous approach, the stiffness and dissipation characteristics of
the contact surfaces are modeled through nonlinear springs and dampers. The equations of
motion are integrated during the impact time interval to obtain the postimpact state, which,
in principle, can differ from that obtained by means of the impulsive approach. Although
both approaches have been widely used in the field of biomechanics, we have not found any
comparative study in the existing literature justifying the model chosen for impact analy-
sis. In this work, we present detailed numerical results and discussions to investigate several
dynamic and energetic features associated with crutch impact. Based on the results, we com-
pare the implications of using one contact model or the other.
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1 Introduction

Crutch walking is a common type of gait among injured people, elderly people, sport-injured
people, and even paraplegics. In their follow-up study of paraplegic individuals, Jaspers et
al. [1] highlighted the psychological and physiological importance that paraplegics give to
being able to stand and walk by themselves, something which can be achieved by means of
crutch walking.

Crutch locomotion is much more demanding than normal walking. Different studies have
shown that crutch walking is particularly demanding for the upper-body muscles which are
not suited for such efforts [2–4]. Noreau et al. [2] found that the preferred speed and ca-
dence in crutch walking are roughly 50% slower than in normal walking. Furthermore, the
metabolic energy consumption (or metabolic cost) in crutch walking has been reported to
be much higher than that of normal walking [5, 6]. Shoup et al. [7] measured joint displace-
ments in the sagittal and frontal planes during crutch walking and compared their results
with existing experimental data based on normal walking, and concluded that crutch design
should try to minimize the vertical motion of the body and the impact associated to the
crutch tip planting, as high contact forces on the crutch tip are transmitted to the upper limb
joints causing damage. The excess effort associated with crutch walking may also lead to
upper-limb joint degeneration [8], or even injuries in the nervous system like bilateral ulnar
neuropraxia [9].

Both the high energy demand and the health risk associated with crutch walking have
led scientists to develop dynamic analyses to better understand this type of locomotion.
Model-based approaches have been widely used to study normal human walking, and have
provided useful insight regarding the mechanical principles underlying human locomotion
[10–12]. In [13], a model-based approach was presented to analyze the static stability of
crutch-supported paraplegic standing for different values of hip-joint stiffness and crutch-
to-feet distance. Nevertheless, as far as we know, little research has been done on model-
based studies of the dynamics of the different phases of swing-through gait, that is, the first
double support, the single support of crutches (and body swing-through), the second double
support and the single support of legs. This is the most common type of gait for patients
with low-thoracic or lumbar paraplegia [2].

This work proposes an anthropometric-based four-segmental model of the human body
to analyze the impact of the crutch tip with the ground at the end of the single support
of legs, and explores the two usual main approaches used to deal with impact problems:
impulsive and continuous models [14, 15]. The use of one approach or the other depends
on the purpose of the study. Surprisingly, no comparison has been found between the two
approaches when applied to biomechanical systems. The aim of this paper is to fill this gap
for the above mentioned crutch walking system.

In both methods, the beginning of contact is identified from geometric information, that
is, when the crutch tip reaches the floor level at the end of crutch swing. As the crutch stays
in contact with the ground after impact, the impact end corresponds to the compression end
(i.e., the time when the crutch reaches zero normal velocity). A single-point contact model is
accurate enough to study crutch tip contact. Thus, it is a suitable example to compare contact
approaches. Other types of contact interactions appearing in biomechanical studies are more
difficult to model accurately due to the complexity of the surfaces in contact and the diffi-
culty in the identification of the mechanical characteristics of materials. Some examples for
that are the foot-ground contact in human gait [16–18], the bone-to-bone contact at human
body joints [19–21], or the contact between the lower limb and an external orthosis [22].

Impulsive formulations have been widely used for the analysis of passive dynamic walk-
ers [23, 24] and bipedal systems [26, 27], and also to understand the physical principles of
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human walking [11, 25] or running [28]. This methodology assumes that the contact inter-
action is instantaneous (compared to the time scale of the finite motion of the system) and,
therefore, the system configuration is constant during the impact interval. In this case, the
solution to the forward dynamics is achieved simply by solving a set of algebraic equations.
Thus, only pre- and postimpact information is used in principle. This approach is very help-
ful to obtain performance indicators of the impact such as the mechanical energy loss or the
magnitude of contact impulses [29, 30].

In continuous approaches, the duration of the contact transition is not considered instan-
taneous and so the configuration may change during the impact interaction. When contact
is detected, contact forces are added to the differential equations of motion. This analysis
requires a constitutive model explicitly representing the contact forces during impact as a
function of the system state [31, 32]. An advantage of using continuous contact forces is
that their time evolution can be traced during the impact interval, and thus an estimation
of the maximum force occurring during the impact can be obtained. This is important in
biomechanics because, as mentioned before, contact forces are transmitted to joints and are
responsible for fatigue and joint damage. Compared to impulsive models, however, the use
of continuous formulations results in a high computational cost since it requires the integra-
tion of the equations of motion. Moreover, a very small time step is needed due to the fast
variation of forces and velocities within the impact interval. Another drawback is that such
models require a characterization of both the geometry and the material properties of the
bodies in contact in order to obtain suitable stiffness and damping parameters.

The energy loss, and the magnitude of the contact impulses and the postimpact velocities
will be used as indicators to compare the performance of both contact formulations using
the same preimpact states. We will analyze how the impact configuration and the model
dynamic parameters influence the performance of the two contact models. These results can
be interesting for crutch-use teaching in rehabilitation or for crutch design.

2 Dynamic model of the subject with crutches

We consider a patient with an injury at the lumbar region of the spinal cord who is able
to perform a swing-through gait using crutches and knee-ankle-foot orthoses (KAFO). We
assume that the patient has no motor control at the knee and ankle joints due to the injury.
Therefore, the orthoses lock his knees to avoid flexion during leg support and constrain
ankle plantar flexion to avoid foot drop. As a consequence, the patient’s lower limb can be
modeled as a single body segment.

The planar model of the subject with the crutches is shown in Fig. 1. It is composed of
four segments (leg, torso, upper arm, and forearm plus crutch) linked by revolute joints
modeling the hip, shoulder and elbow joints. Although there are two legs, two upper
arms, and two forearms in the model, the segments will be named in singular through-
out the text. We use a set of n = 6 independent generalized coordinates that form vector
q = [q1 q2 q3 q4 q5 q6]T , defined in Fig. 1. The first two correspond to the Cartesian coor-
dinates of the foot P , the third one is the absolute orientation of the leg, and the remaining
three correspond to the relative joint angles.

We assume that each segment is a rigid body and that the forearm and the crutch form
a single segment. The length, the mass, the center of mass and the moment of inertia about
it are respectively denoted by li , mi , Gi , and Ii , i = 1,2,3,4 (1-leg, 2-torso, 3-upper arm,
4-forearm plus crutch). Parameter ai is the distance of Gi to the proximal joint (Fig. 1).
The anthropometric data, summarized in Table 1, have been obtained according to [33] and
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Fig. 1 Four-segmental model of
the subject with crutches in the
sagittal plane

Table 1 Anthropometric
parameters of the model Leg Torso Upper arm Forearm and crutch

mi (kg) 22.54 40.46 3.92 4.28

Ii (kg·m2) 2.07 2.66 0.044 0.433

li (m) 0.93 0.51 0.33 1.25

ai (m) 0.42 0.34 0.14 0.33

assuming a total mass of 70 kg and a total height of 1.75 m. The two crutches have a mass
of 1.2 kg and are 1 m long. We consider that the passive KAFO has a negligible weight as
compared to leg’s weight.

The starting point for the dynamics formulation (in both approaches) is the Lagrangian
formalism

M(q)q̈ + c(q, q̇) = fA + fC, (1)

where M is the n × n mass or inertia matrix, c represents the n × 1 array that contains
inertial terms depending on position and velocities, and fA and fC stand for the n × 1 arrays
of generalized applied and contact forces, respectively. In this case, vector fA is related to the
net joint torques (at the hip, shoulder and elbow), and vector fC is related to the contact forces
(normal and tangential) that can appear at the foot P or the crutch tip Q. The formulations
for both impulsive and continuous contact modeling are outlined in the subsequent sections.

3 Impulsive contact model

The impulsive model considers the impact interval to be very short in the characteristic time
scale of the finite motion of the system, and the interaction is treated as a discrete event
occurring during the continuous motion of the system. The configuration q is assumed to be
constant during the “instantaneous” interaction, whereas velocities experience finite changes
and accelerations reach infinite values. This latter fact is the reason for dealing with contact
force impulses rather than with contact forces, and for using in principle the integrated form
of the equations of motion, which are algebraic equations.

The main drawback in impulsive approaches is the detection of the collision end [34].
Neither the final state nor the final values of the impulses are in general known beforehand,
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and an “end-of-collision criterion” has to be defined. Usually it is done through restitution
coefficients (kinematic, kinetic or energetic) [15, 35] whose values vary within the interval
(0,1). The kinematic and kinetic restitution coefficients may be in general energetically
inconsistent whenever friction is not neglected and have to be used cautiously [34, 36].

The application example studied in this paper is that of a single-point impact with the
ground in swing-through crutch gait. The study will be restricted to the sagittal plane, and
so planar motion will be assumed from now on. In this particular case, as a new constraint
is established on the crutch after impact (it has to remain in contact with the ground), the
final normal velocity for the impact point Q has to be zero. This partial knowledge of the
final state (as nothing is assumed regarding the final tangential velocity of Q) will allow
in some cases the all-algebraic study of the collision without need of an energy dissipation
assumption.

The velocity of the colliding point can be related to the generalized velocities through
the 2 × n Jacobian matrix A: v(Q) = A(q)q̇. At impact configuration, the Jacobian matrix
can be decomposed into two 1 ×n arrays specific for the normal and tangential components
of v(Q)

v(Q) =
{

vn(Q)

vt (Q)

}
=

[
An

At

]
q̇. (2)

The components vn and vt are positive when their direction is that of the positive y and x

axis, respectively (Fig. 1). Denoting by t− and t+ the time instants just before and just after
impact, respectively, the collision end condition can be written as

v+
n (Q) = Anq̇+ = 0, (3)

which represents the new constraint condition of the system at postimpact time t+. The im-
pulsive approach used in this work starts with the general equations of motion, see (1). In our
case, the only impulsive forces are the ground contact forces (both normal and tangential)
at point Q. The inertial terms in c and the joint torques in fA are essentially nonimpulsive.
Thus, (1) becomes

Mdq̇ = AT
n dPn + AT

t dPt ≡ AT

{
dPn

dPt

}
, (4)

where dPn and dPt are the differential normal and tangential contact impulses at Q. The
total final impulses P +

n and P +
t can be obtained as

P +
n =

∫ +

−
dPn =

∫ +

−
Fn(Q)dt, P +

t =
∫ +

−
dPt =

∫ +

−
Ft(Q)dt, (5)

where Fn and Ft are the normal and tangential contact forces at Q, respectively. The total
normal impulse P +

n can never be negative (as Fn is always a repulsive force), whereas P +
t

can have any sign (as dPt = Ft dt can be either positive or negative, according to the same
sign criterion defined for vt ).

3.1 All-algebraic method

From (4), the postimpact velocities q̇+ can be obtained formally from the preimpact ones
q̇− as

q̇+ = q̇− + M−1AT

{
P +

n

P +
t

}
. (6)
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Table 2 Different vt (Q) evolutions during impact in planar motion

Initial condition μ < μc μ ≥ μc

v−
t (Q) = 0 Immediate permanent sliding Permanent sticking

v−
t (Q) �= 0 Permanent sliding or sliding

reversion
Permanent sliding or partial sliding
(sliding-sticking)

Combining this expression with (3) yields

0 = Anq̇− + (
AnM−1AT

){
P +

n

P +
t

}
. (7)

This equation does not allow the calculation of the final impulses P +
n and P +

t , directly from
the initial state q̇−, as AnM−1AT is not invertible. Therefore, there is no general all-algebraic
method giving the final state q̇+ from the initial one q̇−.

In planar motion, the end condition given by (3) can correspond to 4 different vt (Q)

evolutions during the impact, according to the value of the friction coefficient μ and that
of v−

t (Q). They are summarized in Table 2. For a rigorous justification, see [36, 37]. The
critical value of the friction coefficient μc is given by

μc =
∣∣∣∣AtM−1AT

n

AtM−1AT
t

∣∣∣∣, (8)

and is configuration-dependent.

3.1.1 Permanent sticking and partial sliding

For the case of nonsliding end condition, regardless the sliding or nonsliding intermediate
situations, the final state is given by

v+(Q) =
{

v+
n (Q)

v+
t (Q)

}
= Aq̇+ = 0. (9)

This equation together with (7) yields
{

P +
n

P +
t

}
= −(

AM−1AT
)−1

Aq̇−. (10)

The final velocities are then calculated by substituting back these final impulses into (6)

q̇+ = [
I − M−1AT

(
AM−1AT

)−1
A

]
q̇−. (11)

Using the projectors associated with the space of constrained and admissible motions, Hc

and Ha , respectively, defined in [29, 38]

Hc = M−1AT
(
AM−1AT

)−1
A, (12)

Ha = I − Hc = I − M−1AT
(
AM−1AT

)−1
A, (13)

equation (11) can be expressed as

q̇+ = (I − Hc)q̇− = Haq̇−. (14)
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The knowledge of the final state allows the calculation of the total change in kinetic energy
but not that of the work associated to the normal and tangential impulses separately. How-
ever, this work (W+

n and W+
t ) can be calculated through the following integrals over the

collision interval:

W+
n =

∫ +

−
vn(Q)dPn = An

∫ +

−
q̇dPn

= An

∫ +

−

[
q̇− + M−1

(
AT

n Pn + AT
t Pt

)]
dPn

= Anq̇−P +
n + (

AnM−1AT
n

)∫ +

−
Pn dPn + (

AnM−1AT
t

)∫ +

−
Pt dPn, (15)

W+
t =

∫ +

−
vt (Q)dPt = At

∫ +

−
q̇dPt

= At

∫ +

−

[
q̇− + M−1

(
AT

n Pn + AT
t Pt

)]
dPt

= At q̇−P +
t + (

AtM−1AT
n

)∫ +

−
Pn dPt + (

AtM−1AT
t

)∫ +

−
Pt dPt . (16)

Though the total value of the integrals containing just Pn or just Pt can be obtained from the
final impulses P +

n and P +
t , the other ones require the knowledge of the evolution of one of

them as a function of the other.
For the case of permanent sticking (which is more restrictive than just the nonsliding end

condition), vt (Q) = 0 throughout the whole collision, and so At dq̇ = 0. This leads to

dPt = −(
AtM−1AT

t

)−1
AtM−1AT

n dPn. (17)

Substituting (17) back into (15) and (16) yields

W+
n = −1

2
AnM−1

[
AT

n − AT
t

(
AtM−1AT

t

)−1(
AtM−1AT

n

)](
P +

n

)2
, (18)

which equals the change in kinetic energy (energy loss) during impact (as the work related
to the tangential impulse is obviously zero).

3.1.2 Permanent sliding with constant direction

When point Q slides, the tangential differential impulse dPt has a direction opposite to the
sliding velocity of point Q. If Coulomb’s model is used to describe the friction phenomenon

dPt = −μσ dPn, (19)

where σ = sign[vt (Q)] indicates the sliding direction (σ = +1 if Q slides along the positive
x direction, and σ = −1 if it does along the negative one). Equation (4) becomes

Mdq̇ = (
AT

n − μAT
t σ

)
dPn. (20)

If the sliding direction is constant (as assumed in this case), vector (AT
n −μAT

t σ ) appearing
in the previous equation is also constant, and the integration is straightforward yielding

q̇+ = q̇− + M−1
(
AT

n − μAT
t σ

)
P +

n . (21)
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Using the condition given by (3) in (21), we obtain

P +
n = − An

AnM−1(AT
n − μAT

t σ )
q̇−, (22)

from which the final state can be calculated

q̇+ =
[

I − M−1(AT
n − μAT

t σ )An

AnM−1(AT
n − μAT

t σ )

]
q̇−. (23)

The relationship between Pn and Pt given by (19) yields the following results for the work
of the normal and tangential forces:

W+
n = Anq̇−P +

n + 1

2
AnM−1

(
AT

n − μAT
t σ

)
(P +

n )2

= −1

2
AnM−1

(
AT

n − μAT
t σ

)
(P +

n )2, (24)

W+
t = −μAt q̇−σP +

n − 1

2
μAtM−1

(
AT

n − μAT
t σ

)
σ(P +

n )2. (25)

3.1.3 Permanent sliding with reversion

The collision interval can be split into two subintervals: [t−, t+] = [σ sliding] +
[−σ sliding] = [t−, t i] + [t i , t+], where σ represents the initial sliding direction, that is,
σ = sign[v−

t (Q)]. The equations of motion for each subinterval can be integrated in a
straightforward way. For the first subinterval,

q̇i = q̇− + M−1
(
AT

n − μAT
t σ

)
P σ

n , At q̇i = 0, (26)

and for the second one

q̇+ = q̇i + M−1
(
AT

n + μAT
t σ

)
P −σ

n , Anq̇+ = 0, (27)

where P σ
n + P −σ

n = P +
n . The solution of these equations yields

P σ
n = −At q̇−

AtM−1(AT
n − μAT

t σ )
, (28)

P −σ
n = −1

AnM−1(AT
n + μAT

t σ )

[
An − AnM−1(AT

n − μAT
t σ )At

AtM−1(AT
n − μAT

t σ )

]
q̇−, (29)

and the postimpact velocities q̇+ result

q̇+ = q̇− + M−1
(
AT

n − μAT
t σ

)
P σ

n + M−1
(
AT

n + μAT
t σ

)
P −σ

n . (30)
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Knowing the values of the partial normal impulses P σ
n and P −σ

n allows the calculation of
the work associated with the normal and tangential impulses separately:

W+
n =

∫ i

−
vn(Q)dPn +

∫ +

i

vn(Q)dPn

= An

∫ i

−

[
q̇− + M−1

(
AT

n − μAT
t σ

)
Pn

]
dPn

+ An

∫ +

i

[
q̇i + M−1

(
AT

n + μAT
t σ

)
Pn

]
dPn

= An

(
q̇−P σ

n + q̇iP −σ
n

)

+ 1

2
AnM−1

[(
AT

n − μAT
t σ

)(
P σ

n

)2 + (
AT

n + μAT
t σ

)
(P −σ

n )2
]
, (31)

W+
t =

∫ i

−
vt (Q)dPt +

∫ +

i

vt (Q)dPt

= At

∫ i

−

[
q̇− + M−1

(
AT

n − μAT
t σ

)
Pn

]
dPt

+ At

∫ +

i

[
q̇i + M−1

(
AT

n + μAT
t σ

)
Pn

]
dPt

= −μAt

(
q̇−σP σ

n

)

− 1

2
μAtM−1

[(
AT

n − μAT
t σ

)
(P σ

n )2 − (
AT

n + μAT
t σ

)
(P −σ

n )2
]
σ. (32)

For the particular case σ = +1, equation (32) simplifies into

W+
t = −μAt

(
q̇−P σ

n

) − 1

2
μAtM−1

[(
AT

n − μAT
t

)(
P σ

n

)2 − (
AT

n + μAT
t

)
(P −σ

n )2
]
. (33)

If σ = −1, then

W+
t = +μAt

(
q̇−P σ

n

) + 1

2
μAtM−1

[(
AT

n + μAT
t

)
(P σ

n )2 − (
AT

n − μAT
t

)(
P −σ

n

)2]
. (34)

3.2 Integrative method

The analytical solutions presented above do not give any information about the time history
of normal and tangential forces at Q, the time history of their associated work Wn and Wt ,
and the evolution of v(Q) during the impact, as time is not a variable in that formulation.

However, the analyses presented in Sect. 3.1 suggest the possibility of using Pn as inde-
pendent variable to trace those evolutions for the two particular cases of permanent nonslid-
ing (sticking) and permanent sliding conditions. This may give more information to compare
with the results obtained with the continuous model.

Once the final value of the normal impulse P +
n has been obtained, a regular Pn differential

can be defined (for instance, dPn = P +
n /103) and the Pn-dependent evolution of the other

variables can be explored.
In order to compare the evolution of variables obtained with the two approaches, it will be

necessary to establish a suitable equivalence between the independent variables (Pn and t ),
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as in principle there is not a simple proportionality between the Pn scale in the impulsive
approach and the time scale in the continuous one.

4 Continuous contact model

The continuous contact models, also referred to as “compliant” or “penalty” models, take
into account the finite duration of the impact phase. These techniques relax the contact con-
straints and replace them with constitutive relations establishing an explicit representation
of the contact forces as a function of the system state. The associated generalized forces fC
appear on the right-hand side of (1). In this approach, the required model parameters, asso-
ciated with the geometry of the surfaces in contact and materials mechanical characteristics,
are not always easy to identify.

4.1 Normal force model

The simplest continuous formulations for the normal force are the Maxwell and the Kelvin–
Voigt models [15, 39], where this force is represented through a series or parallel linear
spring-damper element, respectively. They have been widely used due to their simplicity.
However, nonlinearity is an essential feature of impact problems [41]. In this work, we use
a nonlinear Hunt–Crossley model to account for the nonlinear relationship between normal
contact force and indentation of the colliding point [40–44]. For the case of single-point
contact of spherical surfaces, Hunt and Crossley [40] propose the following expression for
the normal contact force Fn:

Fn = kn|δn| 3
2 + χ |δn| 3

2 δ̇n, (35)

where kn is the generalized normal stiffness according to Hertz theory [45] (depending on
the mechanical properties of the materials and the surfaces curvature), δn (>0) and δ̇n are the
normal indentation between bodies and its time derivative, and χ is the hysteresis damping
factor. In this paper, the contacts are modeled as sphere-to-plane. Thus, the generalized
stiffness kn can be calculated as [15, 45]

kn = 4E∗√Rs

3
, (36)

where Rs is the radius of the sphere and E∗ is the effective Young’s modulus, which can in
turn be calculated through

E∗ =
[

1 − ν2
s

Es

+ 1 − ν2
p

Ep

]−1

. (37)

Es and Ep stand for the Young’s modulus of the materials of the sphere and the plane,
and νs and νp stand for the Poisson’s ratio of the same materials.

4.2 Tangential force model

The tangential contact force Ft is described through the Coulomb dry friction model. The
tangential force is treated as an unknown of the problem when there is no relative tangential
velocity between the bodies in contact. In that case, the condition is that |Ft | ≤ μsFn, where
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μs is the static coefficient of friction. When that condition is broken or a relative tangential
velocity between the bodies in contact appears, the tangential force is formulated as

Ft = −μσFn, (38)

where μ is the dynamic coefficient of friction. For the sake of simplicity, in this study, we
assume μs = μ.

5 Results and discussion

The postimpact velocities of the foot and crutch contact points, as well as the normal and
tangential impulses and their associated work, have been obtained with both the impulsive
and the continuous approaches for a wide set of initial states and friction coefficients. These
results are a step further compared to the ones presented in a previous work [30], which
were obtained just with an impulsive approach assuming permanent nonsliding condition at
the impact point. The preimpact state (q−, q̇−) is defined according to kinematic studies of
subjects walking with crutches [2]. The absolute angle for the back leg, q−

3 , has been varied
between 3◦ and 21◦ with a step of 3◦. The other ones have been taken constant (q−

4 = 10◦,
q−

5 = 150◦) except for the last one, q−
6 , which has been adjusted systematically to guarantee

ground contact at the crutch tip. Figure 2 shows the seven chosen configurations. The whole
aspect of the system can be described as going from a rather upright configuration to one
with the body leaning forward.

Concerning preimpact velocities, kinematic studies show that relative angular velocities
associated with the hip, shoulder, and elbow joints are approximately zero before crutch tip
impact [2]. In this study, the preimpact angular velocity of the back leg q̇−

3 is taken equal
to 1 rad/s (though it may have other values depending on the subject specific pathology).
This angular velocity is related to an ankle rotation in the dorsiflexion direction. The pre-
impact angular velocities associated with the hip and elbow joints, q̇−

4 and q̇−
6 , are assumed

to be zero in all simulations. Finally, the shoulder joint angular velocity, q̇−
5 , has been varied

uniformly between −0.2 rad/s and +0.4 rad/s in order to obtain different initial tangential
velocities at the contact point Q. The minimum and maximum values for the normal and
tangential components of the colliding point preimpact velocity, v−(Q), are given on Fig. 2.
For the sake of conciseness, only a set of representative results will be presented.

The explored configurations lead to seven different values for the critical friction coef-
ficient, see (8), which are plotted in Fig. 3. This information is useful in order to choose
appropriate values covering all the different possibilities summarized in Table 2. We have
decided to work with μ = 1 (above all the critical values μc), μ = 0.5 (lower than all the
μc), and an intermediate value of μ = 0.75 (higher than the first five μc and lower than the
last two μc). These three values are indicated in Fig. 3 with dotted red lines.

The nominal parameters used in the normal force model are the following: Rs = 0.05 m,
Es = 0.1 · 109 Pa, νs = 0.5 for the crutch tip elastomeric material; and Ep = 30 · 109 Pa,
νp = 0.2 for the planar floor which is considered to be concrete. The hysteresis damping
factor χ is taken equal to 107 N s/m2.5. A sensitivity analysis to parameters kn, see (36), and
χ is presented in Sect. 5.5.

Besides the fact that the impulsive treatment is a “frozen time” one, the two approaches
differ essentially on the treatment of the normal forces, but not on that of the tangential ones.
While the latter are modeled as Coulomb’s dry friction phenomena (that is, proportional to
the normal reaction forces through the friction coefficient μ), the former are not modeled in
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Fig. 2 Initial states of the subject with crutches used in the simulations. The components of v(Q) are as
defined in (2): v(Q) = {vn(Q), vt (Q)}T (in m/s). (a) q̇5 = −0.2 rad/s, (b) q̇5 = 0, (c) q̇5 = +0.2 rad/s,
(d) q̇5 = +0.4 rad/s

the impulsive method (only their impulses are considered). In the continuous method, they
are modeled through (35). However, in both approaches, the collision end corresponds to
the same kinematic condition expressed in (3) (zero final normal velocity of the crutch tip).

Another difference between the two approaches comes from the treatment of the applied
forces in (1), which are related to net joint torques. It was said that in the impulsive approach
those forces do not play any role because they are essentially nonimpulsive. However, they
do have to be considered in a continuous simulation. Noreau et al. [2] presented torque
patterns at the hip, shoulder and elbow for nondisabled and paraplegic individuals along the
swing-through gait cycle. The crutch impact corresponds to the 100% of the cycle. From the
results and comments in [2], it can be concluded that hip torques are very low in paraplegic
subjects, due to the poor activation of hip muscles. Furthermore, the hip moment is very
close to zero at the instant of crutch impact. Regarding the upper limb joint torques, it is
clearly visible that the crutch stance phase is highly demanding for the involved muscles,
whereas the crutch swing involves less muscle activity. In fact, both shoulder and elbow
torques are approximately zero at crutch impact. For the mentioned reasons, all the joint
torques are assumed to be zero in the simulations.
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Fig. 3 Critical friction coefficient (μc) as a function of the leg absolute angle (q3)

Fig. 4 Postimpact velocities as a function of the leg absolute angle (q3) for μ = 0.5 and different initial
values of q̇5

5.1 Kinematic analysis

Figures 4, 5, and 6 correspond to the three different values of friction coefficients (μ = 0.5,
μ = 0.75, and μ = 1, respectively) used in the simulations. The plotted variables are the
postimpact values of the normal foot velocity, v+

n (P ), and the tangential crutch velocity,
v+

t (Q), as a function of coordinate q3. The curves correspond to different initial values of q̇5

(from −0.2 rad/s to +0.4 rad/s). These curves show that the two approaches yield very sim-
ilar kinematic results. Furthermore, the shape of the curves for different body configurations
is also very close.

Two particular features deserve a comment. First of all, it is clear that walking with
an upright configuration (low angle q−

3 ) facilitates the foot push-off because the normal
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Fig. 5 Postimpact velocities as a function of the leg absolute angle (q3) for μ = 0.75 and different initial
values of q̇5

Fig. 6 Postimpact velocities as a function of the leg absolute angle (q3) for μ = 1 and different initial values
of q̇5

postimpact velocity of the foot increases. Secondly, in all cases with μ = 0.75 the upright
configuration is also advisable in order to avoid sliding (Fig. 5). This is because for those
configurations the critical friction coefficient μc is lower, according to Fig. 3. The final val-
ues of the crutch tip tangential velocity are consistent with the expected behavior according
to the friction coefficient value:
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Fig. 7 Contact impulses (P+
n , P+

t ) as a function of the leg absolute angle (q3) for μ = 0.5 and different
initial values of q̇5

– For μ = 0.5, as this value lies under all the critical values shown in Fig. 3, sliding is guar-
anteed from the very beginning regardless the initial v−

t (Q) value. The sliding condition
vt (Q) �= 0 is kept all over the impact interval.

– For μ = 0.75, sticking is possible only for the configurations from q−
3 = 3◦ to q−

3 = 15◦.
Of course, sticking is not guaranteed as it depends on the initial tangential velocity of
the crutch tip. The higher the v−

t (Q) value, the later sticking will start. Eventually, for
really high values of v−

t (Q), sticking may not happen. In the cases depicted on Fig. 5, the
sticking state is reached in all simulations with q−

3 ≤ 15◦.
– For μ = 1, sticking is possible for all configurations, but it is not guaranteed for the same

aforementioned reasons. However, Fig. 6 shows that the sticking state is reached in all the
simulated cases.

Final values of v+
t (Q) are not enough to prove the constant sliding for μ = 0.5. The step-

by-step evolution within the collision process has to be explored. As the impulsive approach
is a “frozen-time” one, this evolution is explored as a function of the normal impulse. This
can also be done in the continuous approach, as the time-evolution of the normal impulse
Pn(t) is one of the results. This will be explored in Sect. 5.4.

5.2 Dynamic analysis

Figures 7, 8, and 9 show the postimpact values of the normal and tangential impulses devel-
oped at the crutch tip, P +

n and P +
t , as a function of q−

3 , and for the same μ and q̇−
5 values.

Again, the results obtained by means of the two approaches are really similar. It is important
to note that in the continuous approach the impulses are not directly obtained (as in the im-
pulsive one), but they can be calculated by numerical time integration of the contact forces
(Fn and Ft ) over the whole impact interval. A trapezoidal integration method was used for
this purpose.
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Fig. 8 Contact impulses (P+
n , P+

t ) as a function of the leg absolute angle (q3) for μ = 0.75 and different
initial values of q̇5

Fig. 9 Contact impulses (P+
n , P+

t ) as a function of the leg absolute angle (q3) for μ = 1 and different initial
values of q̇5

Comparison between v+
n (P ) (Figs. 4, 5, and 6) and P +

n (Figs. 7, 8, and 9) shows a clear
correlation between these postimpact values: the higher the normal impulse is, the higher
the normal foot velocities will be after impact.

Concerning the tangential impulse, its value is negative in all cases regardless the initial
v−

t (Q) direction. It must be pointed out that both P +
n and P +

t increase in absolute value
for upright configurations (low value of q−

3 ), therefore, higher impulses at the crutch tip are
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Fig. 10 Work of the normal and tangential forces (W+
n , W+

t ) as a function of the leg absolute angle (q3) for
μ = 0.5 and different initial values of q̇5

developed for those body postures. It must be kept in mind that high contact forces acting on
the crutch tip are transmitted to upper limb joints and may cause their damage [8], or even
injuries in the nervous system [9].

5.3 Energy analysis

Figures 10, 11, and 12 show the work of the normal and tangential forces, W+
n and W+

t , as
function of q−

3 , and for the same μ and q̇−
5 values.

In the impulsive approach, the total of the work of these two force components equals
the kinetic energy change (which is obviously negative due to the impact loss):

�T = T + − T − = W+
n + W+

t . (39)

In the continuous approach, however, (39) is not rigorously true (because the configura-
tion is allowed to change and the potential energy may vary) but it represents a very good
estimation of the kinetic energy loss. Mechanical work balances are interesting to assess
the energy loss associated to the crutch impact. Though a lower loss implies (in principle)
a lower metabolic cost, this cannot be taken as the good criterion to choose the “best” per-
formance: for example, when sliding, a high energy loss is advisable in order to evolve to a
sticking phase.

Comparison between P +
n (Figs. 7, 8, and 9) and W+

n (Figs. 10, 11, and 12) shows a clear
correlation between these postimpact values: the higher the normal impulse is, the higher
the absolute value of its work |W+

n | becomes.
The |W+

n | value is in general larger than that of |W+
t |. For a same μ value, the different

initial velocities do not play a significant role, whereas the configuration does have an effect:
changing from the upright configuration to the leaning one may imply a reduction in the
magnitude of the normal work of more than 50%.
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Fig. 11 Work of the normal and tangential forces (W+
n , W+

t ) as a function of the leg absolute angle (q3) for
μ = 0.75 and different initial values of q̇5

Fig. 12 Work of the normal and tangential forces (W+
n , W+

t ) as a function of the leg absolute angle (q3) for
μ = 1 and different initial values of q̇5

The work of the tangential force, W+
t , is zero for nonsliding cases (though P +

t �= 0 for
those cases), and the energy loss is only due to the work associated with the normal im-
pulse. As seen in Figs. 10, 11, and 12, when sliding occurs the work of the tangential force
increases in magnitude when increasing the leaning posture, but its value is always well be-
low that of the normal one. The only exception to that tendency corresponds to the lowest
friction coefficient (μ = 0.5).
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Fig. 13 Evolution of vn(P ), vt (Q), Pt , Wn, Wt as a function of the normal impulse Pn . Case: μ = 0.5,
q̇−

5 = 0, q−
3 = 21◦ (Immediate sliding)

5.4 Evolution of variables as function of the normal impulse Pn

Figures 13 to 17 show the evolution, as a function of the normal impulse Pn, of the kine-
matic, dynamic and energy quantities explored in the previous subsections (vn(P ), vt (Q),
Pt , Wn, Wt ). Only the results for two values of the friction coefficient μ (μ = 0.5, 0.75) are
shown. The initial values for q3 have been varied between 3◦ and 21◦, and between −0.2
rad/s and +0.4 rad/s for the initial q̇5.

The results obtained with the two approaches are extremely close for the case μ = 0.5.
For μ = 0.75, there are only nonnegligible discrepancies in the final normal foot velocity
vn(P ) values. They are systematically higher (up to 10%) in the impulsive approach than in
the continuous one.

Other interesting features deserve a comment. Figures 13 and 14 were obtained with
the same friction coefficient (μ = 0.5) and initial configuration (q3 = 21◦). In both cases,
we are below the critical value (μ < μc). Thus, crutch sliding is guaranteed from the very
beginning, even if its initial tangential velocity v−

t (Q) is zero (as is the case in Fig. 13).
In Fig. 14, v−

t (Q) < 0 but an instantaneous nonsliding condition is reached shortly after.
However, it cannot be maintained and sliding restarts immediately in the opposite direction
(in other words, there is sliding reversion).

Figures 15, 16, and 17 correspond to μ = 0.75. In Fig. 15, the initial configuration is
q3 = 12◦, and so the friction value is clearly above the critical one (μ > μc). In that case, if
the sticking state is attained (vt (Q) = 0), it will be maintained until the impact end. This is
precisely the case shown in Fig. 15: though the initial tangential velocity for the crutch tip
is v−

t (Q) < 0, the sliding phase is followed by a sticking one.
In the other two cases (Figs. 16 and 17), the initial configuration is such that the friction

coefficient lies slightly above and slightly below the critical value, respectively. In both cases
the crutch is not sliding initially. In Fig. 16, the sticking state is kept all over the impact,
whereas immediate sliding appears in Fig. 17, as expected.
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Fig. 14 Evolution of vn(P ), vt (Q), Pt , Wn, Wt as a function of the normal impulse Pn . Case: μ = 0.5,
q̇−

5 = 0.4 rad/s, q−
3 = 21◦ (Sliding reversion)

Fig. 15 Evolution of vn(P ), vt (Q), Pt , Wn , Wt as a function of the normal impulse Pn. Case: μ = 0.75,
q̇−

5 = −0.2 rad/s, q−
3 = 12◦ (Sliding-sticking)

5.5 Sensitivity of the continuous approach to parameters kn and χ

Different values of the continuous model parameters kn and χ result in different time evolu-
tion of the kinematics and dynamics during the impact interval. For instance, low values of
kn increase the impact duration and reduce the peak values of the contact forces. However,
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Fig. 16 Evolution of vn(P ), vt (Q), Pt , Wn , Wt as a function of the normal impulse Pn. Case: μ = 0.75,
q̇−

5 = 0, q−
3 = 15◦ (Permanent sticking)

Fig. 17 Evolution of vn(P ), vt (Q), Pt , Wn , Wt as a function of the normal impulse Pn. Case: μ = 0.75,
q̇−

5 = 0, q−
3 = 18◦ (Immediate sliding)

the impact end condition v+
n (Q) = 0 highly determines the final state (q+, q̇+) and the total

contact impulses (P +
n , P +

t ) after collision. Thus, one expects that the sensitivity of those
results to changes in kn and χ is low. It is advisable, though, to check such assumption.

For this purpose, we have chosen one of the examples studied above (μ = 0.75, q̇−
5 =

−0.2 rad/s, q−
3 = 12◦) as reference case and have proceeded to perturb kn and χ and compare
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Fig. 18 Evolution of the degrees-of-freedom (q̇) as a function of time for different values of the stiffness
parameter kn

the time evolution and final values of the degrees of freedom q̇ and the contact forces Fn

and Ft . This reference case is particularly interesting as it shows a sliding-sticking transition
within the impact interval (because for the considered body pose μ > μc). The stiffness and
damping parameter values used in this sensitivity study are: (kn/3, kn/2, kn, 2kn, 3kn) and
(χ/5, χ/2, χ , 2χ , 5χ ) where kn and χ are the nominal parameters used in the previous
simulations.

Figures 18 and 19 show the evolution of the six degrees-of-freedom q̇i for the kn and χ

sets, respectively. As expected, the lower the stiffness and the damping are, the longer the
impact duration is. As for the final values of the velocities, the differences are only visible
for q̇1 and q̇2. This is logical as they correspond to the components of the swing foot P ,
which is the farthest point in the kinematic chain from the constrained point Q.

Figures 20 and 21 show the evolution of the contact forces Fn and Ft for the same kn and
χ sets, respectively. The sudden change in Ft corresponds to the sliding-sticking transition,
which happens of course independently of the parameter values. The final force values are
sensitive to the changes in parameters. Particularly, to that of kn. However, the total impulses
(which is the area under these curves) are very similar as shown in Table 3. Finally, note that
the peak force values increase dramatically when increasing the stiffness, but remain similar
when the damping is modified. This feature is important in crutch walking, as high contact
forces are transmitted to the upper limb joints and may cause damage.

6 Conclusions

In this work, we have presented two different approaches (impulsive and continuous) for
the forward dynamics analysis of single-point impact in multibody biomechanical systems.
In the first one, the impact condition is established through impulsive bilateral constraints
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Fig. 19 Evolution of the degrees-of-freedom (q̇) as a function of time for different values of the damping
parameter χ

Fig. 20 Evolution of the contact forces (Fn, Ft ) as a function of time for different values of the stiffness
parameter kn

and the integrated version of the equations of motion over the impact interval is used. In
the second approach, a compliant continuous model is used to define an explicit relationship
between the normal contact force and the system state. This model depends on the material
properties and the geometry of the bodies in contact. Both approaches assume the Coulomb
dry friction model in the tangential direction.

The two approaches yield practically the same results concerning not only the final state,
normal and tangential impulses and associated work, but also the Pn-evolution of those
variables. Therefore, choosing one or the other will not affect significantly the result of the
analysis.

The impulsive approach is advantageous from a calculation point of view as it is all-
algebraic. Moreover, it allows the calculation of the critical value of the friction coefficient,
thus giving information of the safest system configurations beforehand. We believe that this
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Fig. 21 Evolution of the contact forces (Fn, Ft ) as a function of time for different values of the damping
parameter χ

Table 3 Total impulses of the
contact forces for different values
of the contact model parameters

kn χ P+
n P+

t

kn χ 14.409 N s −9.899 N s

kn/3 χ 14.476 N s −9.927 N s

kn/2 χ 14.461 N s −9.922 N s

2kn χ 14.353 N s −9.868 N s

3kn χ 14.241 N s −9.797 N s

kn χ/5 14.428 N s −9.908 N s

kn χ/2 14.394 N s −9.886 N s

kn 2χ 14.343 N s −9.858 N s

kn 5χ 14.331 N s −9.851 N s

concept can have a potential application in the field of biomechanics. The main drawback of
this approach is that no information on the real contact forces can be obtained. On the other
hand, the continuous model allows obtaining the value of the ground contact forces, which
is relevant for joint damage assessment since those contact forces are transmitted to body
joints. From the computational point of view, this approach makes continuity possible in
the global methodology to simulate crutch walking (and walking in general), as the problem
is always stated through differential equations. An impulsive approach would lead to two
different strategies when studying the percussive (or impact) phase and the nonpercussive
one.

The results obtained through simulations covering a sufficiently wide set of parameters,
configurations and states show that the safest way to crutch walk is attained when keeping
an “upright” configuration. From the analyses, it is clear that as the critical friction value μc

increases when the body leans forward, the most upright configuration is advisable in order
to avoid crutch sliding. Furthermore, this configuration leads to higher normal velocity for
the foot, thus allowing for a quicker and easier swing phase.
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