
ORIGINAL ARTICLE

A scalable architecture for 3D map navigation on mobile devices

José M. Noguera • Rafael J. Segura •

Carlos J. Ogáyar • Robert Joan-Arinyo

Received: 23 February 2012 / Accepted: 31 July 2012 / Published online: 2 September 2012

� Springer-Verlag London Limited 2012

Abstract Mobile devices such as smart phones or tablets

are rapidly increasing their graphics and networking

capabilities. However, real-time visualization of 3D maps

is still a challenging task to accomplish on such limited

devices. In this paper, we describe the principles involved

in the design and development of a scalable client–server

architecture for delivering 3D maps over wireless networks

to mobile devices. We have developed a hybrid adaptive

streaming and rendering method that distributes the 3D

map rendering task between the mobile clients and a

remote server. This architecture provides support for effi-

cient delivery of 3D contents to mobile clients according to

their capabilities. As a proof of concept, we have imple-

mented a prototype and carried out exhaustive experiments

considering different scenarios and hundreds of concurrent

connected clients. The analysis of the server workload and

the mobile clients performance show that our architecture

achieves a great scalability and performance even when

using low-end hardware.

Keywords Mobile computing � 3D graphics �
Terrain rendering � Mobile map

1 Introduction

Interactive visualization of maps on mobile devices plays

an important role in a number of graphics applications

including mobile guides, personal navigation, and access to

location-based services. According to [25], textual inter-

faces on mobile guides are being abandoned, and today, 2D

maps are the most common approach to providing data to

users.

But despite their usefulness, 2D mobile maps pose some

drawbacks. Since they provide an abstract, two-dimen-

sional representation of a 3D environment, they require

cognitive resources and topological reasoning in order to

read the mobile map and to relate it to the environment that

surrounds the user [38]. In contrast, 3D maps combined

with actual imagery (aerial/satellite) provide a directly

recognizable visualization of the surrounding environment

that is easier and faster to understand [39]. These 3D rep-

resentations permit real-time fly-throughs and immersive

first-person views of a realistic virtual representation of the

geographical area where the user is physically located, as

illustrated in Fig. 1.

For all these reasons, the development of new tech-

niques that bring together location-aware ubiquitous devi-

ces and visualization of interactive 3D maps is interesting.

The availability of such techniques would allow new

interesting and exciting ways to deliver 3D contents in

user-centric pervasive environments.

However, there exist severe technical and technological

limitations that have precluded the widespread adoption of

3D maps on ubiquitous devices. Computational resources

J. M. Noguera (&) � R. J. Segura � C. J. Ogáyar

Escuela Politécnica Superior, University of Jaén,

Campus Las Lagunillas, Edificio A3, 23071 Jaén, Spain

e-mail: jnoguera@ujaen.es

R. J. Segura

e-mail: rsegura@ujaen.es

C. J. Ogáyar

e-mail: cogayar@ujaen.es

R. Joan-Arinyo

Escola Tècnica Superior d’Enginyeria Industrial Barcelona,

Universitat Politècnica de Catalunya, Diagonal 647,

808028 Barcelona, Spain

e-mail: robert@lsi.upc.edu

123

Pers Ubiquit Comput (2013) 17:1487–1502

DOI 10.1007/s00779-012-0598-y

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41769731?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

in these devices are sparse, both main memory and sec-

ondary storage are limited, wireless networks are slow, and

displays are small. In general, their computational power is

an order of magnitude smaller than the hardware com-

monly used in today’s desktop PCs. As a result, 3D visu-

alization of large maps is still very complex to achieve on

these devices.

These difficulties have forced the rebirth of research on

distributed rendering techniques. Much research has been

performed recently in the area of distributed rendering on

mobile devices, see Sect. 2. Server-based solutions are

based on an indirect rendering, where the 3D geometry is

rendered in a dedicated rendering server, and the resulting

images are then transmitted to the user. These techniques,

although akin to very thin devices, require a powerful

server and easily lead to network congestion. On the con-

trary, client-based techniques charge the entire rendering

task to the mobile client, and the server acts as a simple file

server. Therefore, a powerful client is required in order to

handle large and detailed scenes at interactive rates.

Clearly, it would be interesting to design a hybridization

scheme that takes advantage of both client and server-

based rendering approaches, in order to overcome their

individual drawbacks. In [36], we introduced a hybrid

terrain rendering approach that provides tools for enhanc-

ing both the quality and the interactivity when rendering

large 3D maps on mobile devices using low-bandwidth

wireless networks. The clients are in charge of rendering

the terrain close to the viewer, whereas the terrain in the

background is portrayed as panoramic 2D images, rendered

on demand by a remote server.

The main contribution of this paper is a detailed

description of a novel client–server architecture that expands

the hybrid approach formalized in [36] in order to support

multi-client environments. Whereas in [36] each client

required a dedicated server, the architecture proposed in this

paper is capable of providing service to hundreds of concur-

rent and heterogeneous mobile clients using commodity

hardware on both sides, clients and server. Figure 2 outlines

the proposed architecture. This paper also provides an

extensive evaluation of the hybrid rendering approach when it

is deployed in an actual multi-client environment.

The architecture proposed in this paper can serve as a

solid basis for the development of useful mobile 3D map-

based applications, such as location-based services, 3D

tourist guides [35], mobile games, and collaborative virtual

environments.

The rest of the paper is organized as follows: Sect. 2

provides a necessary background on 3D graphics on mobile

devices. Section 3 summarizes the principles of the hybrid

rendering approach used in this paper. Section 4 presents a

general overview of the proposed architecture, while Sects.

5, 6, and 7 describe its three main components. Section 8

presents and discusses experimental results. Section 9

provides a user study that completes our evaluation.

Finally, Sect. 10 summarizes results of our research and

gives a vision of future work.

Fig. 1 An example of the proposed solution running on an iPhone.

Top photograph author: Wenceslao Castillo

Server Client
Mobile Device

User
Cellular
Network

2D & 3D
Terrain Data

GPS Satellite

Terrain Data

Location

Lo
ca

tio
n

Interaction
TerrainData

Location

Fig. 2 General framework of the proposed architecture

1488 Pers Ubiquit Comput (2013) 17:1487–1502

123

2 Background

This section reviews the state of the art in the field of

rendering generic tridimensional scenes on mobile devices.

Special attention is paid to networked solutions. Interactive

navigation through complex 3D worlds requires the ability

to render the scene at an acceptable number of frames per

second while keeping image quality as high as possible.

Through the years, different techniques have been pro-

posed to achieve this goal.

Local rendering methods assume that the 3D scene

completely fits the device’s memory, and thus, there is no

need to hold any connection with remote servers. These

kinds of methods are usually employed in mobile video

games. Games have been the main driving force for the

huge performance boost experienced by mobile graphics

processing units (GPUs) in recent years [1, 10], and some

advanced real-time rendering engines have recently arisen,

for example, [14, 51].

In the scientific literature, however, most proposed local

approaches for mobile devices seek to find more efficient

strategies for rendering scenes than direct visualization, for

example, by means of point-based [13, 17] or illustrative

rendering techniques [20]. However, because of the

growing inclusion of GPUs in today’s mobile devices, most

of these techniques are becoming unnecessary, as simple

direct visualization techniques are preferred. Also, the

ubiquity of mobile devices has encouraged many

researchers and commercial companies to develop appli-

cations of three dimensional navigation across indoor [49],

urban [3, 8, 46], and open environments [32, 53]. All these

applications require the scene to be preinstalled in local

memory.

Local rendering techniques are simpler to implement,

and the user’s experience is not reduced by network

congestion or signal fades. But due to the small size of the

device memory, the size and complexity of the scene

become limited. Therefore, local rendering methods con-

fine users to small virtual environments, which is a serious

drawback, especially on navigation applications.

However, and because mobile devices are usually con-

nected to a network, the use of rendering techniques in

which large 3D scenes are stored in a remote server

becomes a viable solution to overcome this storage limi-

tation. In general, methods for rendering 3D scenes in

client–server environments can be classified into three

major categories, according to where the rendering takes

place [33]: (a) server-side rendering methods, (b) client-

side rendering methods, and (c) hybrid rendering methods.

The different client–server visualization strategies pro-

posed in the literature will be reviewed and discussed

below.

2.1 Server-side rendering

In this category, a dedicated remote rendering server is in

charge of performing the geometry rendering task and

streaming the resulting video stream of images to a client

over a network. The client is only responsible for dis-

playing such prerendered images. Therefore, these methods

become quite appropriate for rendering geometrically

complex models in thin devices with low computing or

storage capacity. However, as mobile devices are becom-

ing less computing-bounded, we expect that these

approaches will progressively be discarded in favor of

client-side and hybrid methods. These methods also present

the following drawbacks:

1. Interactivity In order to achieve an interactive rate, these

techniques stream a massive volume of images to the

client, which can easily result in a congested network

and a loss of real-time interaction with the model.

2. Scalability A powerful server with graphics capabili-

ties is required. An increment in the number of

concurrent clients can easily increase the response

times. Also, the 3D rendering capabilities of modern

mobile devices are wasted.

3. Image quality This usually suffers because of the lossy

compression algorithms used to reduce the traffic.

The issue concerning sending images through a network

and the problems related to it have been studied by many

researchers, and numerous proposals can be found in the

literature:

Some authors [5, 9, 54] proposed image-based remote

rendering techniques. The server provides the client with a

series of images (key frames and their associated z-buffer)

and the client is in charge of calculating the intermediate

frames using a warping technique. The problem with these

techniques is to determine the situation of the camera in

order to avoid artifacts, such as holes.

Aranha et al. [2], Jeong and Kaufman [24], and Imag-

eVIS3D [23] proposed remote visualization systems in

which the server generates a sequence of images by using

ray-tracing; these images are compressed and sent to the

client’s device for its visualization. In 2007, Jeong claimed

to achieve a speed of five frames per second using an IEEE

802.11b local area network on a PDA. Similarly, Hilde-

brandt et al. [19] employed a rendering server to project

massive 3D cities onto extended cube maps, which are

transmitted and visualized by thin mobile clients.

Instead of sending static images, Lamberti et al. [27, 42]

and Wen et al. [52] presented remote visualization systems

in which MPEG video streams are sent through the net-

work. In [27] (2007), the authors claimed to achieve the

remote visualization on a PDA with 30 frames per second

Pers Ubiquit Comput (2013) 17:1487–1502 1489

123

using an eight-computer cluster running a software called

Chromium [21].

Boukerche et al. [6] and Pazzi et al. [43] have presented

alternative methods for image-based approaches by using

scheduling mechanisms and partial streaming of images.

However, these approaches severely limit the viewer’s

movement and do not perform well in dynamic scenes.

2.2 Client-side rendering

In this category, 3D rendering tasks are delegated to the

client and the server only provides geometric data to the

client, which is responsible for rendering it locally. These

methods do not involve any rendering on the part of the

server, and consequently, they do not require a server with

graphics capabilities. They also reduce the streaming load.

However, clients must provide the computational power

required to render good quality images. These methods are

well suited to applications for which real-time interaction is

paramount to viewing the model, assuming that the mobile

client has the ability to store and render the corresponding

data.

Lluch et al. [30] presented a client–server system for the

visualization of multiresolution 3D models on mobile cli-

ents. The main problem is the considerable latency expe-

rienced when the user interacts with the model and it needs

to be redrawn. In [37], Nurminen describes a complete

client–server solution for virtual browsing in urban envi-

ronments through mobile devices. NaviGenie [34], on the

other hand, is a commercial application that provides

procedurally generated cities for urban 3D navigation.

Terrain rendering is an application that usually benefits

from a client-side rendering paradigm. Digital 3D terrain

representations (usually in the order of gigabytes or tera-

bytes) easily exceed the storage capacity of any desktop

computer. This fact has caused several out-of-core ren-

dering techniques for PCs to be developed, see [41] for a

detailed study. Yet, the interactive visualization of large 3D

terrains on mobile devices is still an unexplored field in the

scientific literature.

Pouderoux and Marvie [44] presented in 2005 one of the

first attempts at rendering large 3D maps on mobile devi-

ces. Their proposal consisted of a very simple paging

approach based on a grid of tiles that managed to render a

scene of 3,744 triangles at 7 frames per second using an

USB 2.0 network. More recently, Suárez et al. [50] pre-

sented Glob3, an open-source framework for rendering

virtual globes on mobile devices and WebGL compliant

browsers. However, Google Earth [16] is still the best-

known commercial application that provides 3D maps on

mobile devices. Google’s approach to achieving interactive

frame rates consists of using low geometry terrain models

and focusing on providing high-quality textures.

2.3 Hybrid rendering

Hybrid methods aim at distributing the calculation between

the server and the client in order to improve the

performance.

Some authors [12, 18, 45] have proposed client–server

hybrid techniques that perform an expressive visualization

of the scene. The server carries out image processing

techniques on the 3D models in order to extract simple

primitives in run-time, such as lines or silhouettes. The use

of these primitives, instead of actual geometry or textures,

allows for a reduction of the bandwidth needed for its

transmission to the client, while increasing the visualiza-

tion speed. We should bear in mind that these techniques

show monochromatic and/or nonphotorealistic images,

which makes scene comprehension difficult for the user.

There exist other kinds of hybrid methods whose goal is

to partition the scene into parts that are rendered on a

server and parts that are downloaded and rendered on the

client. Such methods have the advantage that they reduce

the geometric complexity of the scene rendered by the

mobile client by replacing parts of it with images. How-

ever, determining whether a part of a scene should be

rendered on the server or on the client is not a trivial task

[33].

Noguera et al. [36] presented a client–server hybrid

rendering technique following this scheme. This work

focussed on navigating large terrains using mobile devices.

This approach distributes the 3D rendering workload

between a client and a server and manages to achieve an

interactive frame rate using a single Nokia N95 smart

phone connected to a server via cellular networks.

3 The hybrid terrain rendering approach

For the sake of completeness, we briefly recall our hybrid

rendering approach [36] here. This approach distributes the

3D rendering workload between a mobile client, usually

with very limited resources, and a remote server, generally

featuring high-end hardware and software resources. The

server stores the complete dataset and is responsible for

providing the client with small chunks of 3D terrain close

to the user’s position and also for rendering and sending the

client impostors for the terrain in the background. The

client is in charge of rendering the map close to the user’s

position, displaying the impostor that replaces the distant

terrain and requesting from the server updates of the data

when the user moves.

In Computer Graphics, the term impostor refers to a 2D

image that is used instead of actual 3D geometry. Since

images are faster to render, this technique aims at

improving the rendering performance on the mobile device.

1490 Pers Ubiquit Comput (2013) 17:1487–1502

123

3.1 Terrain representation

Since available CPU and memory resources in mobile

devices are limited, adaptively streaming and rendering

large-scale terrains on mobile devices requires the use of

specifically adapted algorithms and data structures.

In Geographic Information Systems (GISs), 3D terrains

are commonly represented by Digital Elevation Models

(DEMs) [11, 31]. Although there exist several types of

them, in this paper, we are mostly interested in rasterized

DEMs, also known as height maps. A height map is a two-

dimensional grid of regularly spaced sample points, each

one representing an elevation value. Realism is further

enhanced by adding photo textures, consisting of actual

aerial/satellite imagery.

We organize the height map according to two different

levels. The first level subdivides the complete terrain

height map into a regular grid of equal size tiles, each tile

covering a squared area of the height map. The second

level consists of a set of restricted quadtrees [40, 47], each

quadtree associated with one terrain tile, see Fig. 3. Tex-

tures associated with the terrain are also structured

according to a grid of quadtrees defined as before. Fig-

ure 5a shows the part of the scene that is rendered locally

by the mobile device.

This structure is suitable for progressive data transmis-

sion [28, 40] over wireless links. It is also optimized for

fast rendering on mobile GPUs using indexed triangle

strips, [36].

3.2 Panoramas

In our approach, view-dependent impostors are used to

portray the terrain located far from the viewer, rendered by

the server on demand and streamed to the client. These

impostors consist of two-dimensional synthetic images that

simulate a wide view of a physical terrain placed in the

background far from the viewer. These impostors are called

panoramic impostors, or simply panoramas [7].

In order to visualize a panorama, it is first projected on

the inner six faces of a cube centered at the viewer, see

Fig. 4. Panoramic images projected onto a cube are usually

referred to as a skybox [48] or environment map [4]. The

resulting image is composed by the client by merging the

terrain and the panorama as illustrated in Fig. 5b.

Figure 5b, c compare the same scene rendered, respec-

tively, by our hybrid method and a pure client-side method

(Google Earth for iOS [16]). Clearly, to achieve a good

enough viewing distance without incurring loss of inter-

activity, the latter method must use a coarsened represen-

tation of the terrain at middle and large distances, resulting

in a flat horizon that lacks distinctive details.

The panorama, rendered on demand by the remote ser-

ver, and the close-range geometry, rendered locally by the

client, should be correctly matched in order to avoid visible

discontinuities and artifacts. Therefore, we split the terrain

into nearby terrain and panorama as follows: Let the view

volume [15] in the client be limited by the front and back

clipping planes placed, respectively, at zfrontc and zbackc

distance from the viewing point. Similarly, let the view

volume in the server be limited by the clipping planes

placed at distances zfronts and zbacks. Then, we require that

zfronts = zbackc, that is, the front and back culling planes

in the server and client respectively, are coincident. See

Fig. 6. Clearly, the client renders the close terrain whereas

the distant terrain is culled. On the contrary, the server only

uses the distant terrain to render the panorama.

As long as the viewer does not move, the panorama

remains valid. Under a perspective projection, a small

movement of the viewer causes a small displacement of the

projection of distant parts of the scene. Given this large

temporal coincidence, it is wasteful to update the panorama

for every small movement of the client. Nonetheless, if the

viewer moves and the panorama is not properly updated,
Fig. 3 Restricted quadtree triangulated mesh, used by the mobile

client to render locally the nearby 3D terrain

Fig. 4 A panorama, generated by the server on demand

Pers Ubiquit Comput (2013) 17:1487–1502 1491

123

the displayed image is no longer correct. In [36], a criteria

for assessing the error committed when the viewpoint

varies but the panorama is not updated is defined. This

approach is based on estimating the error after each user

movement and updating the panorama whenever this error

exceeds a predefined threshold.

4 The framework

This section introduces a novel software architecture for

the hybrid rendering approach able to allow a variable

number of clients to be connected simultaneously to the

server. The higher the number of clients that can be served,

the better the system’s scalability.

The architecture developed is illustrated in Fig. 7. This

architecture allows location-aware interactive rendering of

open 3D virtual environments on mobile devices. Specifi-

cally, it consists of three software components:

• The Main Server runs in the server and is in charge of

handling all the requests of the clients.

• The Panorama Server also runs in the server and

provides compressed panoramas on request, which are

streamed to the client.

• The Client Application runs in the mobile devices. It

manages the user interface and displays the map.

Since each component has been designed as an inde-

pendent application, the system works even if no Panorama

Server is present. In this case, the system behaves like a

standard client-side rendering architecture.

A typical scenario of user interaction might as be as

follows. Once a user launches the mobile client application

on his mobile device, a network connection to the Main

Server is established. This connection remains open until

the application is closed. Then, the user’s current location

is obtained via GPS and provided to the Main Server. In

return, an interactive 3D map is progressively streamed to

the client based on this geographical position. The user can

then roam freely across the 3D environment, exploring any

area of his/her interest. New parts of the 3D map are

requested and downloaded from the Main Server as nee-

ded. Periodically, the mobile application also assesses the

error of the current panorama as mentioned in Sect. 3.2

Whenever this error exceeds a predefined threshold value, a

new updated panorama is requested and downloaded from

the server.

Fig. 5 a Nearby terrain rendered by the client at 60 frames per second (iPhone 3GS). b Synthesis of the previous image and the panorama. c The

same scene on Google Earth 6.1.0 (Jan. 2012) running on the same device

Fig. 6 Splitting the view volume as terrain to be rendered by the

client and panorama. The hatched area is the view volume rendered

by the client. The gray area is the view volume rendered by the server

1492 Pers Ubiquit Comput (2013) 17:1487–1502

123

In the following sections, we describe in detail each

component of our system and how they interrelate.

5 Main Server architecture

For the Main Server, we propose a multi-threaded archi-

tecture as illustrated in Fig. 7. The data flow is managed by

a master thread that listens to a network socket, waiting for

incoming clients. When a client connects to the server, a

new Server Instance is created with an associated network

socket and a connection is established with the client. The

Server Instance stays alive until the connection is closed or

the server application dies. Therefore, multiple clients can

be connected to the server at the same time with one

dedicated Server Instance per client.

The Server Instance has also been designed following a

multithreaded paradigm, in which communication and

processing are performed in different threads. See Fig. 7.

The first thread deals with network transmission, while the

second drives the internal logic of the server.

Due to the fact that cellular networks usually suffer from

low bandwidth and high latencies, we use a simple binary

request–response protocol built over TCP/IP to efficiently

communicate the client devices and the server. A client

request can query either a quadtree node or a panorama

from the server. The server then issues a response message,

which provides the requested data to the client:

• Quadtree node requests When the client needs to

download terrain data, it sends a quadtree node request

to the server. In response, the Server Instance retrieves

the height values and the associated texture from a

terrain database and sends them back to the client. The

sequence diagram in Fig. 8 illustrates these steps.

• Panorama requests These requests receive a slightly

different treatment. Once the request reaches the Server

Instance, it is passed to the Panorama Server, which

will in turn return a new panorama according to the

current client’s geographic position. See sequence

diagram in Fig. 9.

6 Panorama Server architecture

The Panorama Server is responsible for rendering and

encoding all the panoramas that are requested by the

multiple Server Instances. Figure 9 shows the sequential

diagram corresponding to the panorama generation pro-

cess. In brief, this process can be described as follows.

Incoming panorama requests are handled by a first-in first-

out scheduling system. A panorama is then built by the

Panorama Renderer module, see Fig. 7, by projecting

the distant terrain on a frame buffer. Once it is synthesized,

the resulting raw images are compressed by the Panorama

Encoder module using any standard image compression

algorithm. The encoded panorama is then delivered to the

Server Instance that requested it and finally sent to the

mobile client through a wireless link. In following sub-

sections, the two modules that compose the Panorama

Server will be described in greater detail.

Server Instance

Data
Decoder

Requests
Generator

Visualization
Module

Database
Updater

FrameBufferLocal
Database

re
d

ne
R

daer
h

T
kr

o
wte

N
daer

h
T

Mobile Client

Data
Encoder

Requests
Queue

Server
Module

kr
o

wte
N

daer
h

T

revre
S

daer
h

T

Terrain
Database

Master Thread

Panorama Server

Render
Module

FrameBuffer
Object

Panorama Renderer

Panorama
Server Module

Panorama
Encoder

Fig. 7 Architecture for the hybrid, client–server-based rendering system

User Mobile Application Main Server Instance

Request terrain data

Return terrain data

Show 3D map

Terrain Database

Read terrain data

Terrain data Load

Movement

Fig. 8 Sequence diagram of processing a quadtree node request

Pers Ubiquit Comput (2013) 17:1487–1502 1493

123

6.1 The Panorama Renderer

As stated in Sect. 3, the hybrid rendering approach splits

the rendering workload between the mobile devices and the

remote server. The Panorama Renderer is responsible for

carrying out the rendering workload of the server.

The construction of a cubic panorama is straightforward

[6]. Each face of the cube covers 90 degrees of view both

horizontally and vertically, see Fig. 4. The panorama is

built by the Panorama Renderer by placing the camera

referred to the viewer’s geographical coordinates in the

mobile client and making use of the terrain nearby. Then,

six orthogonal images are rendered. Finally, the resulting

images allocated in the frame buffer are copied from video

memory to main memory and placed in a queue waiting for

their turn to be encoded by the Panorama Encoder module.

The ubiquitous and multi-client nature of our solution

raises an unprecedented challenge that must be addressed.

Most 3D terrain rendering techniques employ frame-to-

frame coherence to avoid complex re-meshing and re-

transmission of the terrain to the graphics hardware [41].

However, the rendering task performed by the server to

generate panoramas does not present this coherence. Given

the multi-client nature of our solution, subsequent requests

of panoramas are likely to belong to different users, who

might be navigating over different geographical areas far

from each other. Therefore, standard terrain rendering

approaches do not apply here.

To the best of our knowledge, the issue of rendering 3D

terrains from different viewpoints in every frame has not

been yet addressed in the literature. Thus, we must define a

new data structure that should be capable of:

• Computing the terrain triangulation in a fast way,

regardless of the viewer position in the last rendered

frame.

• Sharing terrain data used for rendering panoramas

requested by different clients, avoiding data redundancy.

We will describe our solution below, which successfully

overcomes the aforementioned problems. First, the com-

plete height and texture maps are partitioned into a regular

grid of squared size tiles. Second, the height and the texture

maps of the area covered by each tile are stored, respec-

tively, as a grayscale and a color texture. Next, these tex-

tures are uploaded to the GPU’s texture memory.

However, since current terrain datasets often exceed the

capacity of a typical GPU’s memory, we cannot assume

that the complete set of tiles will fit in the server’s GPU

memory. Therefore, we employ a texture memory manager

that always maintains in GPU memory the tiles needed for

rendering the panorama according to the locations provided

by the clients. That is, in order to render a panorama from a

given viewpoint, the texture memory manager uploads to

the GPU the textures corresponding to the tiles centered at

the viewpoint, see Fig. 10a. Cached tiles can be re-used to

render panoramas for additional clients without incurring

extra costs, see Fig. 10b. When the GPU memory is full,

User Mobile Application

Movement

Main Server Instance Panorama Renderer Terrain Database

New panorama request

New panorama request

Return panorama

Show panorama

Panorama Encoder

Load terrain textures

Terrain textures

Raw panorama images

Encoded panorama

Render

Load

Encode images

Fig. 9 Sequence diagram of processing a panorama request

A

B

C

(a) (b) (c)

Preserved tile Loaded tile Deleted tileCurrent window

Fig. 10 LRU paging scheme used in the server to allocate terrain

tiles in GPU memory. In the example, a GPU memory limit of 16 tiles

is assumed

1494 Pers Ubiquit Comput (2013) 17:1487–1502

123

unused tiles are discarded according to a least recently used

(LRU) replacement algorithm, as depicted in Fig. 10c.

Moreover, we can expect that most panorama requests

will come from users physically located in densely popu-

lated areas, for example, urban areas or motorways. Thus,

tiles will likely be reused, drastically reducing the number

of disk accesses and data transfers.

Once the set of tiles that are visible from the current

viewpoint are available in GPU memory, we build on the

fly a restricted quadtree hierarchy similar to [29] for each

selected tile. These structures are used by the GPU to draw

the panorama.

6.2 The Panorama Encoder

The Panorama Encoder module is fed with the raw pan-

oramas generated by the Panorama Renderer. Here, these

panoramas are encoded in a compressed format suitable for

both network transmission and fast decoding by mobile cli-

ents. In our implementation, we use the JPEG format. In order

to reduce the overall encoding time, multiple instances of this

module can be run in parallel on different threads.

7 Client-side architecture

In our architecture, users should install and run a dedicated

application on their mobile devices. In our implementation,

the client application has been developed as a plain C??

native program using the industry-standard 3D graphics

library OpenGL ES [26]. Figures 1 and 11 show some

snapshots of this application.

7.1 Interface

As our goal was to provide an immersive experience to the

user, our application tries to match the virtual view offered

on the screen with the user’s current view in the physical

world, see Fig. 1. This is accomplished by obtaining the

user’s geographical position and the view direction from,

respectively, the mobile built-in GPS receiver and the

electronic compass.

The values obtained from these sensors automatically

drive the user’s viewpoint in the virtual world. This auto-

matic movement scheme reduces and simplifies the user

interaction required to use the system. However, an unre-

stricted maneuvering mode following the flying metaphor

[39] is also provided, allowing users to freely locate areas

of their interest. In this mode, users explicitly control the

navigation around their geographical space by using the

device’s keyboard or touch screen [22].

7.2 Client architecture

The client-side application has been designed as a modular

application as depicted in Fig. 7. The Local Database

stores the scene, the Visualization Module manages the

user interface and renders the scene, and the Database

Updater Module processes the 3D map and panoramas

provided by the server. Also, to reduce the CPU load in the

main thread, networking tasks are moved to a second

thread that manages the communication with the server and

which, in parallel, decodes JPEG textures and panoramas.

These elements will be described below.

The client Local Database, unlike its server’s counter-

part, resides in the main memory of the client. It serves as a

temporal repository where those components of the scene

needed for rendering are stored. The Local Database main-

tains a very small subset of the complete terrain dataset,

consisting of a small grid of incomplete quadtrees centered on

the viewer and the panorama currently being displayed.

The information stored in the Local Database is used by

the Visualization Module to render the scene according to

the current viewer position. This module also handles the

user interaction.

Finally, the Database Updater Module of the client takes

care of updating the Local Database dynamically, accord-

ing to the current needs of the application. This module is

in charge of the following tasks:

1. It determines whether new terrain data should be

downloaded from the server, issuing a request if

needed. It also discards unneeded parts of the terrain.Fig. 11 Some snapshots on an iPhone

Pers Ubiquit Comput (2013) 17:1487–1502 1495

123

2. It assesses the error of the current panorama, see Sect.

3.2, and requests a new one whenever it must be

updated.

3. It adds to the Local Database the information coming

from the server.

4. It constructs a triangulated mesh that approximates the

3D terrain according to the current view and the

quadtree data structure, see [36]. The level of detail is

computed based on the distance to the viewpoint.

8 Performance evaluation

In order to evaluate the effectiveness of the proposed

architecture, we have implemented a prototype and carried

out an exhaustive analysis of its performance and scala-

bility. The aim is to prove that the proposed architecture

allows for highly interactive visualization of photorealistic

3D maps on mobile devices connected through low-band-

width wireless networks.

In Sect. 1, we affirmed that the proposed architecture

does not require any expensive hardware on the server side.

Therefore, we ran our experiments on an ordinary desktop

PC equipped with an Intel Core-2 Duo CPU, 4 GB system

memory, an NVIDIA GeForce 8800 GPU, and a com-

modity S-ATA hard disk. In our tests, both the Main Server

and the Panorama Server components were run in the same

computer.

We used in our experiments the Puget Sound terrain,1 a

typical dataset used in terrain rendering benchmarking. It is

made up of 16,536 9 16,536 elevation samples with a

horizontal resolution of 10 m and a vertical resolution of

0.1 m. The texture map included 16,536 9 16,536 pixels,

with a resolution of 10 m per pixel.

Section 8.1 studies the performance and interactivity of

the client, as well as the impact of the network on the

navigation. Section 8.2 focuses on studying the general

performance of the server. Finally, Sect. 8.3 analyzes the

scalability of the architecture.

8.1 Client performance

Our experiments were carried out on an Apple iPhone 3GS

mobile phone connected to the server through two popular

real-world cellular networks: UMTS (Universal Mobile

Telecommunication System) and GPRS (General Packet

Radio Service). These networks are usually known as 3G

and 2G, respectively. While 3G provides better bandwidth

and latencies, 2G is usually the only available network in

large rural areas.

To study the performance of the mobile device, we

connected it to the server and simulated an user navigating

across the virtual environment. The simulation consisted of

performing a rectilinear flyover at a constant speed of

150 km/h and a constant height of 200 m over the terrain.

The experiments were performed using both networks, 3G

and 2G. In both cases, the same trajectory was followed. To

avoid false results, the terrain boundaries were never

reached. The minimum viewing distance was 30 km, the

panoramas were placed 7.5 km away from the client, and

their resolution was 2562 pixels per skybox face. We used

the panorama updating criteria reported in [36] with a

maximum allowed error of 5% pixels. Each test lasted

300 s.

The goal of this experiment was to measure a set of

objective parameters during the flyovers. Figure 12a

compares the performance over time obtained when using

3G and 2G. The studied parameters are the evolution over

time of (from top to bottom): the amount of triangles

rendered in each frame, the frame rate, and the down-

loading measured in kB.

During the tests, the system was configured to maintain

a target rendering speed of 30 frames per second. As shown

in Fig. 12a, the tested device was able to render around 30k

triangles per frame while guaranteeing this frame rate. This

translates as a smooth navigation and a constant image

quality during the whole test. The upper plot in Fig. 12a

also shows that, at the beginning of the tests, the iPhone

required a longer time to achieve 30k triangles when the

2G network was used. But apart from that, the curves are

constant and almost coincident in both cases, 2G and 3G,

proving that our architecture is capable of providing a

smooth user experience regardless of the network used.

Another important practical consideration that was

investigated was the impact of the network reliability on

the performance and image quality. Apart from the low

bandwidth and high latencies, probably the largest problem

with cellular networks is their high level of unreliability.

Hence, developing fault tolerant networked applications

becomes an important issue.

In order to evaluate this, we repeated the previous tests

under the same conditions, but a network stall of 60 s was

simulated at second 100. Results are shown in Fig. 12b.

During this stall, no data were transmitted from or to the

server, see bottom diagram in Fig. 12b, precluding the

download of terrain and panorama updates. Since the local

database of the client stores the area close to the user, it

provides an effective tool to mitigate the impact of occa-

sional network failures. Consequently, during the network

stall, the application still provides a smooth navigation to

the user across the virtual environment.

As can be seen in the upper diagram of Fig. 12b, during

the stall, the number of triangles presented a logarithmic

1 Available at http://www.cc.gatech.edu/projects/large_models/ps.

html [accessed 28 May 2012].

1496 Pers Ubiquit Comput (2013) 17:1487–1502

123

http://www.cc.gatech.edu/projects/large_models/ps.html
http://www.cc.gatech.edu/projects/large_models/ps.html

decay. This stems from the fact that the user is moving

forward but no new terrain data can be fetched from the

server. Therefore, the terrain stored in the local database

gradually gets behind the viewer. This also explains the

frame rate increase. It was also impossible to update the

panorama used to portray distant terrain. At second 160,

the number of triangles used to render the scene had

dropped from 30k to 10k, which still offers adequate ren-

dering quality. As soon as the network link is restored at

second 160, the system rapidly updates the panorama and

streams the missing terrain, thus restoring the prior image

quality. Again, the test with 2G required a longer time to

achieve the quality provided by 3G.

Note that in this situation, server-side rendering tech-

niques described in Sect. 2.1 would cause the whole

application to stall for 60 s, probably causing the user to

give up the application.

8.2 Server performance

The server-side part of the architecture was also evaluated

with empirical studies. As explained in Sect. 4, the server

was composed of two components: the Main Server and the

Panorama Server. Since the performance of the Main

Server simply depends on the server’s hard disk speed, we

focus here on analyzing the Panorama Server.

We used the following methodology: we connected one

client to the server and performed a fly-over at a constant

height of 200 m over the terrain. We generated 100 pan-

oramas with different viewer positions and recorded sev-

eral measurements along the process. Table 1 shows the

average performance values yielded by the server during

the experiment. From left to right, Table 1 lists the reso-

lution of the panorama defined as the resolution of the

panorama skybox faces, the JPEG compression quality

used, the time needed by the Panorama Renderer module

(Sect. 6.1) to generate all the images in one panorama, the

time required by the Panorama Encoder module (Sect. 6.2)

to perform the JPEG encoding for one panorama, and the

compressed panorama size.

We observe from Table 1 that the time needed to render

and encode a panorama increases with the resolution.

However, the JPEG compression quality required does not

seem to have an effect on the processing time. It just affects

the size of the resulting panorama. On the other hand,

encoding time is always significantly longer than rendering

time. This suggests that the encoding phase is the most

expensive phase of the panorama generation process.

Differences become larger as the panorama resolution

increases.

 0

 10000

 20000

 30000

 40000
T

ria
ng

le
s

3G
2G

 0

 10

 20

 30

 40

 50

 60

 70

F
ra

m
es

/s
ec

3G
2G

 0

 400

 800

 1200

 0 60 120 180 240 300

D
ow

nl
oa

ds
 k

B

Time (seconds)

3G
2G

(a)

3G
2G

 0

 10000

 20000

 30000

 40000

T
ria

ng
le

s

3G
2G

 0

 10

 20

 30

 40

 50

 60

 70

F
ra

m
es

/s
ec

3G
2G

 0

 400

 800

 1200

 0 60 120 180 240 300

D
ow

nl
oa

ds
 k

B

Time (seconds)

(b)

Fig. 12 Client performance using UMTS (3G) versus GPRS (2G) when moving at 150 km/h. In b, a network stall of 60 s is introduced at second

100. Top number of triangles rendered. Middle frame rate achieved. Bottom data transferred (kiloBytes)

Table 1 Experimental values for different panorama resolutions and

JPEG encoding quality

Panorama

resolution

JPEG

quality

Rendering

time (s)

Encoding

time (s)

Panorama

size (kB)

2562 60 0.00544 0.00996 10.64

2562 80 0.00536 0.01076 12.48

5122 60 0.00952 0.02932 30.40

5122 80 0.00976 0.02972 35.80

1,0242 60 0.02528 0.11484 101.92

1,0242 80 0.02484 0.11528 118.76

Pers Ubiquit Comput (2013) 17:1487–1502 1497

123

In our tests, encoding time ranged between 0.00996 s

for the 2562 resolution and 60 JPEG quality scenario, and

0.11528 s, for 1,0242 resolution and 80 JPEG quality sce-

nario. The first scenario would allow an encoding rate of

100.40 panoramas per second, while the second would

allow an encoding rate of 8.67 panoramas per second.

These figures give us an approximate upper limit for the

number of clients per second that can be provided with

panoramas.

8.3 Scalability

In order to assess the scalability of our architecture, we

carried out a set of experiments with an increasing number

of connected clients. For each test, clients simultaneously

established a connection to the server and performed a

rectilinear flyover using the same conditions described in

Sect. 8.1. The starting point and the flight direction of each

client were random values. The navigation speed was also

a random value in the range, 100–150 km/h.

As shown in Fig. 13, mobile clients were simulated by

using a cluster of up to 32 PCs, each one running 8

instances of the client application. Each client was locally

rendering around 10k triangles. Note that, from the server

point of view, there is no practical difference between an

actual and a simulated mobile client.

For each test, we recorded a set of measures in the server

and in the clients. These results will be discussed below.

8.3.1 Scalability measured from the server side

In what follows, consider that in our experiments a panorama

response consisted of a message containing six JPEG textures

of a panorama at a given resolution. Similarly, a quadtree

node response contained four brother quadtree nodes, each

consisting of a 9 9 9 height map (2-bytes per height value)

and a 64 9 64 pixels JPEG texture. These messages were

generated by the server in response to, respectively, a pano-

rama request and a quadtree node request.

First, we studied the relation between the number of

connected mobile clients and the number of requests

received by the server. This relation can provide an idea of

the server workload under different scenarios. The diagram

in Fig. 14 depicts the average number of panorama and

quadtree node requests received per second by the server

for an increasing number of clients. The bars in this dia-

gram show that, as expected, the server workload is

directly linear with the number of clients.

Second, the average time required by the server to

compute responses to the client’s requests was measured.

The aim was to evaluate the impact of the server’s work-

load on its response times. The diagram in Fig. 15 shows

the average time in seconds needed by the server to gen-

erate a response to a quadtree node or panorama request for

an increasing number of clients. This last measure includes

loading the height and texture map from disk. Two alter-

native scenarios are compared. In the first, all clients

requested panoramas with a resolution of 2562 pixels per

skybox face, whereas in the second, all clients requested

5122 panoramas.

As can be clearly seen in Fig. 15, our measurement

shows that all the response generation curves are almost

horizontal, which proves that our architecture manages to
Fig. 13 Some PCs of the 32-node cluster used in our experiments.

Each node was simulating 8 mobile clients

0

10

20

30

40

50

60

8 16 32 64 128 256

Number of clients

Panoramas/sec

Nodes/sec

Fig. 14 Average number of requests received per second by the

server for an increasing number of clients

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

8 16 32 64 128 256

G
en

er
at

io
n

T
im

e
(s

)

Number of clients

256, Panorama
512, Panorama

256, Node
512, Node

Fig. 15 Average time in seconds needed by the server to generate a

response to a panorama or quadtree node request for an increasing

number of clients

1498 Pers Ubiquit Comput (2013) 17:1487–1502

123

provide a constant performance and response times

regardless of the number of connected clients. This is

achieved mainly due to the low rate of panorama requests

received by the server reported in Fig. 14. At automobile-

like speeds, a client only issues a panorama requests at

intervals of a few seconds, which can be easily managed by

a commodity PC acting as server, even for hundreds of

concurrent clients.

8.3.2 Scalability measured from the client side

Finally, we wished to demonstrate that increasing the

number of connected mobile clients to the same server does

not reduce the quality of the scene rendered by the clients.

Therefore, we measured the performance on the client side

for an increasing number of clients connected to the same

server. Here, we used the same conditions as in the pre-

vious test. Figure 16 illustrates the average values obtained

by all the clients. The left Y-axis shows the average number

of triangles rendered per frame whereas the right Y-axis

shows the average number of panoramas downloaded from

the server during the whole flyover by each client. The

panorama resolution used in this test was 5122.

In all cases, the sustained number of rendered triangles

per frame was about 10k triangles. The almost horizontal

curves in Fig. 16 indicate that our architecture manages to

provide a constant image quality and a constant navigating

experience regardless of the number of connected clients.

Up to 256 clients connected to the same server did not

decrease the quality of the scene rendered by each client.

The same rationale also applies to the number of panora-

mas streamed from the server.

9 User study

The assessment performed in the previous section was

mainly based on objective parameters, and the system

effectiveness was measured in terms of performance and

scalability. In this section, we follow a second approach,

and we have measured the subjective user satisfaction for

the system. This approach allows us to complete our

evaluation and to study subjective parameters such as

visual quality.

We recruited 22 subjects (14 males and 8 females) with

ages ranging from 22 to 44 years, averaging at 29. They

were all smart phone users. The study was carried out on an

Apple iPhone 3GS, and we used the same terrain dataset

described in the previous section. Users had to navigate the

3D map from their starting position to a specific location

(around 10 km) using the touch screen as input and at a

maximum speed of 400 km/h and a constant height of

200 m over the terrain. Evaluators performed this task two

times, each one using a different network connection (3G

and 2G) in random order. After finishing an experiment,

the Local Database of the mobile application was flushed,

that is, each experiment required downloading the 3D map

from scratch.

After completing both experiments, evaluators filled out

a usability questionnaire, one per network used. This

questionnaire contained seven predefined questions, which

were answered using a seven-point Likert scale where 1

means ‘‘strongly disagree’’ and 7 means ‘‘strongly agree’’.

The questionnaire is reproduced below.

Q1 Loading times are low.

Q2 The 3D map updates adequately as I move.

Q3 The application has a good performance and runs

smoothly.

Q4 I do not notice important changes nor discontinuities

in the distant terrain.

Q5 The application provides a good viewing distance.

Q6 The 3D map is realistic and very similar to the actual

world.

Q7 Overall, I’m satisfied with this system.

Figure 17 collects the subjective ratings obtained from

our usability test.

The purposes of Q1 and Q2 were to study the effect of

the network on the usability of the application. As expec-

ted, the system received a considerably better evaluation

 0

 5000

 10000

 15000

 20000

 25000

 30000

8 16 32 64 128 256
 0

 5

 10

 15

 20

 25

 30

T
ria

ng
le

s

P
an

or
am

as

Number of clients

Triangles
Panoramas

Fig. 16 Averaged client performance for an increasing number of

clients connected to the same server

0

1

2

3

4

5

6

7

Q1 Q2 Q3 Q4 Q5 Q6 Q7

3G 2G

Fig. 17 Usability questionnaire. Average replies to the questions

Pers Ubiquit Comput (2013) 17:1487–1502 1499

123

when the 3G network was used. In this case, loading times

were almost nonexistent, and map updates when users

moved around were difficult to notice. However, when the

2G network was used, the application needed a start-up

time of several seconds to provide sufficient visual quality,

as shown in Fig. 12. Nevertheless, evaluations were still

positive (above 4), which we consider a good result con-

sidering the extremely low performance of 2G networks.

The users’ evaluation also demonstrates that the per-

formance of the system is very high (Q3), regardless of the

network being used. This result confirms the objective

study performed in Sect. 8.1. The achieved frame rate of 30

fps translates to a fluid and consistent user experience.

Questions Q4, Q5, and Q6 are mainly related to visual

quality, which is difficult to evaluate with objective studies.

The purpose of Q4 was to check whether the panorama

provides enough quality to effectively replace actual

geometry for distant scenery. It also allowed us to deter-

mine whether transitions between consecutive panoramas

were easy to notice. The results were very positive, proving

that most evaluators did not notice anything unusual in the

distant mountains. In general, users’ attention was focused

on nearby parts of the scene, and subtle transitions between

consecutive panoramas usually went unnoticed. Only some

users were able to detect such transitions under certain sit-

uations, specifically after a fast vertical movement caused

by going down a steep mountain at high speed. Apart from

that, the 3D map was found to be very appealing by the

evaluators, who uniformly praised the high quality and fidelity

of the map when compared to the real world (Q5, Q6).

Finally, when the participants were requested to directly

evaluate the system (Q7), they gave a very favorable

evaluation even in the 2G network scenario. In conclusion,

although the number of evaluators was limited, this eval-

uation provided clear evidence that the proposed archi-

tecture delivers a pleasant user experience and good image

quality.

10 Summary and future work

Due to the limited computing resources and restricted

bandwidth available in current mobile device technologies,

designing systems for adaptive streaming and rendering of

large terrains over wireless networks for mobile devices is

a challenging task. In this paper, we have described a

complete and scalable client–server architecture that suc-

cessfully overcomes these limitations. The architecture is

based on a hybrid rendering technique that splits the ren-

dering workload between a remote server and the mobile

clients.

In order to assess scalability and performance robust-

ness, we carried out an exhaustive analysis of the client and

server performance with respect to different network sce-

narios and the number of simultaneously connected clients.

Contrarily to most server-based rendering approaches

found in the literature, our results show that a commodity

PC is capable of providing a smooth navigation to a large

number of concurrent clients.

Future work includes putting this technology into prac-

tice in order to develop applications such as context-based

mobile 3D guides and collaborative virtual environments.

We also plan to investigate effective ways to incorporate

additional data layers from GIS databases into our 3D

environment, for example, points of interest, roads,

cadastral maps and the like.

Acknowledgments This work has been partially supported by the

Consejerı́a de Innovación, Ciencia y Empresa of the Junta de And-

alucı́a and the European Union (via ERDF funds) through the

research project P07-TIC-02773.

References

1. Akenine-Möller T, Ström J (2008) Graphics processing units for

handhelds. Proc IEEE 96(5):779–789 doi:10.1109/JPROC.2008.

917719

2. Aranha M, Dubla P, Debattista K, Bashford-Rogers T, Chalmers

A (2007) A physically-based client–server rendering solution for

mobile devices. In: MUM ’07: proceedings of the 6th international

conference on mobile and ubiquitous multimedia. ACM, New York,

NY, USA, pp 149–154. doi:10.1145/1329469.1329489

3. Arikawa M, Konomi S, Ohnishi K (2007) Navitime: supporting

pedestrian navigation in the real world. Pervasive Comput IEEE

6(3):21–29. doi:10.1109/MPRV.2007.61

4. Blinn JF, Newell ME (1976) Texture and reflection in computer

generated images. Commun ACM 19(10):542–547. doi:10.1145/

360349.360353

5. Bouatouch K, Point G, Thomas G (2005) A client–server

Approach to image-based rendering on mobile terminals.

Research report RR-5447, INRIA. http://hal.inria.fr/inria-000001

27/en/

6. Boukerche A, Jarrar R, Pazzi R (2009) A novel interactive

streaming protocol for image-based 3D virtual environment

navigation. In: IEEE international conference on communica-

tions, 2009. ICC ’09, pp 1–6. doi:10.1109/ICC.2009.5198649

7. Boukerche A, Jarrar R, Pazzi RW (2008) An efficient protocol for

remote virtual environment exploration on wireless mobile

devices. In: WMuNeP ’08: proceedings of the 4th ACM work-

shop on Wireless multimedia networking and performance

modeling. ACM, New York, USA, pp 45–52. doi:10.1145/1454

573.1454584

8. Burigat S, Chittaro L (2005) Location-aware visualization of

vrml models in gps-based mobile guides. In: Web3D ’05: pro-

ceedings of the tenth international conference on 3D Web tech-

nology. ACM, New York, NY, USA, pp 57–64. doi:10.1145/

1050491.1050499

9. Chang CF, Ger SH (2002) Enhancing 3d graphics on mobile

devices by image-based rendering. In: PCM ’02: proceedings of

the third IEEE Pacific Rim conference on multimedia. Springer,

London, UK, pp 1105–1111

10. Chehimi F, Coulton P, Edwards R (2008) Evolution of 3D mobile

games development. Pers Ubiquit Comput 12:19–25. doi:

10.1007/s00779-006-0129-9

1500 Pers Ubiquit Comput (2013) 17:1487–1502

123

http://dx.doi.org/10.1109/JPROC.2008.917719
http://dx.doi.org/10.1109/JPROC.2008.917719
http://dx.doi.org/10.1145/1329469.1329489
http://dx.doi.org/10.1109/MPRV.2007.61
http://dx.doi.org/10.1145/360349.360353
http://dx.doi.org/10.1145/360349.360353
http://hal.inria.fr/inria-00000127/en/
http://hal.inria.fr/inria-00000127/en/
http://dx.doi.org/10.1109/ICC.2009.5198649
http://dx.doi.org/10.1145/1454573.1454584
http://dx.doi.org/10.1145/1454573.1454584
http://dx.doi.org/10.1145/1050491.1050499
http://dx.doi.org/10.1145/1050491.1050499
http://dx.doi.org/10.1007/s00779-006-0129-9

11. Demers M (2008) Fundamentals of geographic information sys-

tems. Wiley, London

12. Diepstraten J, Gorke M, Ertl T (2004) Remote line rendering for

mobile devices. In: CGI ’04: proceedings of the computer

graphics international. IEEE Comput Soc, Washington, DC,

USA, pp 454–461. doi:10.1109/CGI.2004.86

13. Duguet F, Drettakis G (2004) Flexible point-based rendering on

mobile devices. IEEE Comput Graph Appl 24(4):57–63. doi:

10.1109/MCG.2004.5

14. Epic Games, Inc. (2012) Unreal engine. http://udk.com/mobile.

Accessed 14 June 2012

15. Foley J, van Dam A, Feiner S, Hughes J (1990) Computer

graphics: principles and practice, 2nd edn. Addison-Wesley

Longman, Boston

16. Google (2012) Google Earth for mobile devices. http://www.

google.com/mobile/earth/. Accessed 14 June 2012

17. He Z, Liang X (2007) A multiresolution object space point-based

rendering approach for mobile devices. In: AFRIGRAPH ’07:

proceedings of the 5th international conference on computer

graphics, virtual reality, visualisation and interaction in Africa.

ACM, New York, NY, USA, pp 7–13. doi:10.1145/1294685.

1294687

18. Hekmatzada D, Meseth J, Klein R (2002) Non-photorealistic

rendering of complex 3d models on mobile devices. In: 8th

annual conference of the international association for mathe-

matical geology, vol 2. Alfred-Wegener-Stiftung, pp 93–98

19. Hildebrandt D, Klimke J, Hagedorn B, Döllner J (2011) Service-

oriented interactive 3d visualization of massive 3d city models on

thin clients. In: Proceedings of the 2nd international conference

on computing for geospatial research and applications, COM.Geo

’11. ACM, New York, NY, USA, p 6:1. doi:10.1145/1999320.

1999326

20. Huang J, Bue B, Pattath A, Ebert DS, Thomas KM (2007)

Interactive illustrative rendering on mobile devices. IEEE Com-

put Graph Appl 27:48–56. doi:10.1109/MCG.2007.63

21. Humphreys G, Houston M, Ng R, Frank R, Ahern S, Kirchner

PD, Klosowski JT (2002) Chromium: a stream-processing

framework for interactive rendering on clusters. ACM Trans

Graph 21(3):693–702. doi:10.1145/566654.566639

22. Hürst W, Helder M (2011) Mobile 3D graphics and virtual reality

interaction. In: Proceedings of the 8th international conference on

advances in computer entertainment technology, ACE ’11. ACM,

New York, NY, USA, pp 28:1–28:8. doi:10.1145/2071423.

2071458

23. ImageVis3D: ImageVis3D: A real-time volume rendering tool for

large data. Scientific computing and imaging institute (SCI).

http://www.imagevis3d.org (2011). URL http://www.imagevis3d.

org. Accessed 20 Feb 2012

24. Jeong S, Kaufman AE (2007) Interactive wireless virtual colonos-

copy. Vis Comput 23(8):545–557. doi:10.1007/s00371-007-0117-8

25. Kenteris M, Gavalas D, Economou D (2011) Electronic mobile

guides: a survey. Pers Ubiquit Comput 15:97–111. doi:10.1007/

s00779-010-0295-7

26. Khronos Group (2010) OpenGL ES—The standard for embedded

accelerated 3D graphics. http://www.khronos.org/. Accessed 24

Mar 2010

27. Lamberti F, Sanna A (2007) A streaming-based solution for remote

visualization of 3D graphics on mobile devices. IEEE Trans Vis

Comput Graph 13(2):247–260. doi:10.1109/TVCG.2007.29

28. Lerbour R, Marvie JE, Gautron P (2009) Adaptive streaming and

rendering of large terrains: a generic solution. In: 17th WSCG

international conference on computer graphics, visualization and

computer vision

29. Livny Y, Kogan Z, El-Sana J (2009) Seamless patches for GPU-

based terrain rendering. Vis Comput 25(3):197–208. doi:

10.1007/s00371-008-0214-3

30. Lluch J, Gaitán R, Escrivá M, Camahort E (2006) Multiresolution

3d rendering on mobile devices. In: Alexandrov V, van Albada G,

Sloot P, Dongarra J (eds) Computational science—ICCS 2006.

Lecture notes in computer science, vol 3992. Springer, Berlin,

pp 287–294

31. Longley PA, Goodchild MF, Maguire DJ, Rhind DW (2005)

Geographic information systems and science. Wiley, London

32. Luley P, Perko R, Weinzerl J, Paletta L, Almer A (2012) Mobile

augmented reality for tourists marft. In: Gartner G, Ortag F (eds)

Advances in location-based services, lecture notes in geoinfor-

mation and cartography. Springer, Berlin, pp 21–36. doi:

10.1007/978-3-642-24198-7_2

33. Martin IM (2000) Adaptive rendering of 3D models over net-

works using multiple modalities. Tech Rep RC 21722, IBM T.J.

Watson Research Center

34. NaviGenie (2012) NaviGenie 2.0. http://www.navigenie.com/.

Accessed 14 June 2012

35. Noguera JM, Barranco M, Segura RJ, Martı́nez L (2012) A

mobile 3D-GIS hybrid recommender system for tourism. Inf Sci

215(0):37–52. doi:10.1016/j.ins.2012.05.010

36. Noguera JM, Segura RJ, Ogáyar CJ, Joan-Arinyo R (2011)

Navigating large terrains using commodity mobile devices.

Comput Geosci 37(9):1218–1233. doi:10.1016/j.cageo.2010.08.

007

37. Nurminen A (2008) Mobile 3d city maps. IEEE Comput Graph

Appl 28:20–31. doi:10.1109/MCG.2008.75

38. Nurminen A, Oulasvirta A (2008) Designing interactions for

navigation in 3d mobile maps. In: Meng L, Zipf A, Winter S (eds)

Map-based mobile services. Lecture notes in geoinformation and

cartography. Springer, Berlin, pp 198–227

39. Oulasvirta A, Estlander S, Nurminen A (2009) Embodied inter-

action with a 3D versus 2D mobile map. Pers Ubiquit Comput

13:303–320. doi:10.1007/s00779-008-0209-0

40. Pajarola R (1998) Large scale terrain visualization using the

restricted quadtree triangulation. In: VIS ’98: proceedings of the

conference on visualization ’98. IEEE Computer Society Press,

Los Alamitos, CA, USA, pp 19–26

41. Pajarola R, Gobbetti E (2007) Survey of semi-regular multires-

olution models for interactive terrain rendering. Vis Comput

23(8):583–605. doi:10.1007/s00371-007-0163-2

42. Paravati G, Sanna A, Lamberti F, Ciminiera L (2011) An open

and scalable architecture for delivering 3D shared visualization

services to heterogeneous devices. Concurr Comput Pract Exp

23(11):1179–1195. doi:10.1002/cpe.1695

43. Pazzi R, Boukerche A, Huang T (2008) Implementation, mea-

surement, and analysis of an image-based virtual environment

streaming protocol for wireless mobile devices. Instrum Meas

IEEE Trans 57(9):1894–1907. doi:10.1109/TIM.2008.919901

44. Pouderoux J, Marvie J (2005) Adaptive streaming and rendering

of large terrains using strip masks. In: GRAPHITE ’05: pro-

ceedings of the 3rd international conference on computer

graphics and interactive techniques in Australasia and South East

Asia. ACM, New York, USA, pp 299–306. doi:10.1145/1101389.

1101452

45. Quillet JC, Thomas G, Granier X, Guitton P, Marvie JE (2006)

Using expressive rendering for remote visualization of large city

models. In: Web3D ’06: proceedings of the eleventh international

conference on 3D web technology. ACM, New York, NY, USA,

pp. 27–35. doi:10.1145/1122591.1122595

46. Rakkolainen I, Vainio T (2001) A 3d city info for mobile users.

Comput Graph 25(4):619–625. doi:10.1016/S0097-8493(01)

00090-5. (Intelligent interactive assistance and mobile multi-

media computing)

47. Samet HJ (1989) Design and analysis of spatial data structures:

quadtrees, octrees, and other hierarchical methods. Addison–

Wesley, Redding

Pers Ubiquit Comput (2013) 17:1487–1502 1501

123

http://dx.doi.org/10.1109/CGI.2004.86
http://dx.doi.org/10.1109/MCG.2004.5
http://udk.com/mobile
http://www.google.com/mobile/earth/
http://www.google.com/mobile/earth/
http://dx.doi.org/10.1145/1294685.1294687
http://dx.doi.org/10.1145/1294685.1294687
http://dx.doi.org/10.1145/1999320.1999326
http://dx.doi.org/10.1145/1999320.1999326
http://dx.doi.org/10.1109/MCG.2007.63
http://dx.doi.org/10.1145/566654.566639
http://dx.doi.org/10.1145/2071423.2071458
http://dx.doi.org/10.1145/2071423.2071458
http://www.imagevis3d.org
http://www.imagevis3d.org.
http://www.imagevis3d.org.
http://dx.doi.org/10.1007/s00371-007-0117-8
http://dx.doi.org/10.1007/s00779-010-0295-7
http://dx.doi.org/10.1007/s00779-010-0295-7
http://www.khronos.org/
http://dx.doi.org/10.1109/TVCG.2007.29
http://dx.doi.org/10.1007/s00371-008-0214-3
http://dx.doi.org/10.1007/978-3-642-24198-7_2
http://www.navigenie.com/
http://dx.doi.org/10.1016/j.ins.2012.05.010
http://dx.doi.org/10.1016/j.cageo.2010.08.007
http://dx.doi.org/10.1016/j.cageo.2010.08.007
http://dx.doi.org/10.1109/MCG.2008.75
http://dx.doi.org/10.1007/s00779-008-0209-0
http://dx.doi.org/10.1007/s00371-007-0163-2
http://dx.doi.org/10.1002/cpe.1695
http://dx.doi.org/10.1109/TIM.2008.919901
http://dx.doi.org/10.1145/1101389.1101452
http://dx.doi.org/10.1145/1101389.1101452
http://dx.doi.org/10.1145/1122591.1122595
http://dx.doi.org/10.1016/S0097-8493(01)00090-5
http://dx.doi.org/10.1016/S0097-8493(01)00090-5

48. Shankel J (2001) Game programming gems 2. Charles River

Media Inc., Rockland

49. Silva WB, Rodrigues MAF (2009) A lightweight 3D visualization

and navigation system on handheld devices. In: SAC ’09: pro-

ceedings of the 2009 ACM symposium on applied Computing.

ACM, New York, NY, USA, pp 162–166. doi:10.1145/1529282.

1529318

50. Suárez JP, Trujillo A, de la Calle M, Gómez DD, Santana JM

(2012) An open source virtual globe framework for iOS, Android

and WebGL compliant browser. In: Proceedings of the 3rd

international conference on computing for geospatial research

and applications, COM.Geo ’12. ACM, New York, NY, USA

51. Unity Technologies (2012) Unity. http://unity3d.com/. Accessed

14 June 2012

52. Wen J, Wu Y, Wang F (2009) An approach for navigation in 3D

models on mobile devices. In: CMRT09: city models, roads and

traffic. Paris, France, pp 109–114

53. Wen J, Zhu B, Wang F (2008) Real-time rendering of large

terrain on mobile device. In: The international archives of the

photogrammetry, remote sensing and spatial information sci-

ences, vol XXXVII. Part B5. Beijing, pp 693–697

54. Yoo W, Shi S, Jeon W, Nahrstedt K, Campbell R (2010) Real-

time parallel remote rendering for mobile devices using graphics

processing units. In: 2010 IEEE international conference on

multimedia and Expo (ICME), pp 902–907. doi:10.1109/ICME.

2010.5583022

1502 Pers Ubiquit Comput (2013) 17:1487–1502

123

http://dx.doi.org/10.1145/1529282.1529318
http://dx.doi.org/10.1145/1529282.1529318
http://unity3d.com/
http://dx.doi.org/10.1109/ICME.2010.5583022
http://dx.doi.org/10.1109/ICME.2010.5583022

	A scalable architecture for 3D map navigation on mobile devices
	Abstract
	Introduction
	Background
	Server-side rendering
	Client-side rendering
	Hybrid rendering

	The hybrid terrain rendering approach
	Terrain representation
	Panoramas

	The framework
	Main Server architecture
	Panorama Server architecture
	The Panorama Renderer
	The Panorama Encoder

	Client-side architecture
	Interface
	Client architecture

	Performance evaluation
	Client performance
	Server performance
	Scalability
	Scalability measured from the server side
	Scalability measured from the client side

	User study
	Summary and future work
	Acknowledgments
	References

