
J Intell Robot Syst (2012) 67:155–181
DOI 10.1007/s10846-011-9648-3

Flight Plan Specification and Management
for Unmanned Aircraft Systems

Eduard Santamaria · Enric Pastor · Cristina Barrado ·
Xavier Prats · Pablo Royo · Marc Perez

Received: 8 June 2011 / Accepted: 30 November 2011 / Published online: 17 December 2011
© Springer Science+Business Media B.V. 2011

Abstract This paper presents a new concept for
specifying Unmanned Aircraft Systems (UAS)
flight operations that aims at improving the

Area Navigation (RNAV) is a method of Instrument
Flight Rules (IFR) navigation that allows an aircraft
to follow any course within a network of navigation
beacons, rather than navigating directly to and from
the beacons.

E. Santamaria (B) · E. Pastor · C. Barrado ·
P. Royo · M. Perez
Department of Computer Architecture, Universitat
Politècnica de Catalunya - BarcelonaTech (UPC),
Esteve Terradas, 7, 08860, Castelldefels, Spain
e-mail: esantama@ac.upc.edu

E. Pastor
e-mail: enric@ac.upc.edu

C. Barrado
e-mail: cristina@ac.upc.edu

P. Royo
e-mail: proyo@ac.upc.edu

M. Perez
e-mail: mpbatlle@ac.upc.edu

X. Prats
Escola d’Enginyeria de Telecomunicació i
Aeroespacial de Castelldefels - EETAC, Universitat
Politècnica de Catalunya - BarcelonaTech (UPC),
Esteve Terradas, 5, 08860, Castelldefels, Spain
e-mail: xavier.prats@upc.edu

waypoint based approach, found in most autopi-
lot systems, by providing higher level fligh plan
specification primitives. The proposed method
borrows the leg and path terminator concepts
used in Area Navigation1 (RNAV). Several
RNAV leg types are adopted and extended with
new ones for a better adaptation to UAS require-
ments. Extensions include the addition of control
constructs that enable repetitive and conditional
behavior, and also parametric legs that can be
used to generate complex paths from a reduced
number of parameters. The paper also covers the
design and implementation of a software compo-
nent that manages execution of the flight plan.
To take advantage of current off-the-shelf flight
control systems the constructs included in the
flight plan are translated to waypoint navigation
commands. In this way, the advanced capabilities
provided by the flight plan specification language
are implemented as a new layer on top of existing
technologies. The benefits and the feasibility of
the proposed approach for UAS flight plan man-
agement are demonstrated by means of a simu-
lated mission that performs the flight inspection
of Radio Navigation Aids.

Keywords Unmanned aircraft systems (UAS) ·
Flight plan specification · Flight plan
management

156 J Intell Robot Syst (2012) 67:155–181

1 Introduction

Unmanned Aircraft Systems (UAS) are rapidly
gaining attention due to the increasing potential
of their applications in the civil domain. UAS
can provide great value performing environmen-
tal applications, during emergency situations, as
monitoring and surveillance tools, and operat-
ing as communication relays, among other uses.
In general, they are specially well suited for
the so-called D-cube operations (Dirty, Dull or
Dangerous).

With no human pilot being on-board, the flight
control system that guides the UAS during the
mission becomes one of several critical compo-
nents of the system. In their survey of autopilots
for small fixed-wing UAS, Chao et al. describe the
main features of a typical off-the-shelf autopilot
[9]. The paper presents the details of a number
of autopilots and identifies waypoint based nav-
igation as a common capability provided by all
of them. In waypoint navigation, to specify the
aircraft’s trajectory, the user introduces a list of
waypoints, defined in terms of their latitude and
longitude coordinates. These waypoints are then
flied in sequence by the aircraft. Supported ca-
pabilities vary between autopilots. Features that
may be available are autonomous take-off and
landing, loiter and rally modes, a failsafe mode
for contingencies, or the capacity to change way-
points in flight, among others. Some autopilots
even provide some kind of language to specify
the aircraft’s behavior in a way that resembles a
computer program.

For a future integration of UAS into shared
airspace, other users must be taken into account.
The reuse of concepts that are already familiar
to airspace stakeholders will facilitate this inte-
gration. In commercial aviation, a specification
method to encode Area Navigation (RNAV) pro-
cedures [12] has been in use for a long time.
RNAV procedures are composed of a series of
smaller parts called legs. Yet, to translate RNAV
procedures into a code suitable for navigation
systems the industry has developed the “Path and
Termination” concept. Path Terminators provide
the means to translate the text and the routes
depicted on the charts into code readable by the
aircraft’s Flight Management System. A Path Ter-

minator defines a specific flight path (e.g., head-
ing, course, track, etc.) and a specific type of
termination for each leg (e.g., the path terminates
at an altitude, distance, fix, etc.). Our system takes
this concept and brings it to the UAS domain by
providing a subset of the legs available in RNAV.

In this article we present our work on flight
plan specification and management for UAS. One
goal of our research is to provide a flight plan
specification mechanism that can be used across
multiple autopilots, thus avoiding lock-in to a
single solution and allowing its use on different
platforms. The proposed flight plan specification
and execution mechanisms also add capabilities to
systems that lack some features, e.g., they allow
to specify ground track around corners, provide
support for specifying repetitive and conditional
behavior, and overcome the limitations on the
number of waypoints in the flight plan. Parametric
legs, an extension that enables the specification
of complex trajectories, for instance a lawnmower
pattern, using a reduced number of parameters,
facilitate the construction of the flight plan. Para-
metric legs also simplify the process of making
changes, since the need to change a possibly quite
large list waypoints, one at a time, is eliminated.
This is specially valuable when changes need to
be made during mission time. A very important
aspect of the proposal, that will be key for en-
abling airspace integration, is its ability to include
emergency routes and contingency reactions as
part of the flight plan.

Another distinct characteristic of our flight plan
specification language is the use of concepts in-
spired by current practices in commercial avia-
tion. However, since civil UAS missions, which
typically involve observation and monitoring of
specific areas, can greatly differ from point-to-
point transportation missions of commercial air-
craft, extensions such as the ability to specify
repetitive and conditional behavior have been
added. We believe that the result is a very capable
system that takes into account airspace integration
issues, and that can be deployed in a wide range of
scenarios.

The rest of this paper is organized as follows. In
Section 2 an overview of related work is provided.
Section 3 outlines the UAS architecture that ac-
commodates the FPM, the VAS and the other

J Intell Robot Syst (2012) 67:155–181 157

UAS services that may be present during a mis-
sion. Section 4 presents the main elements of the
proposed language for flight plan specification.
Section 5 explains how the Flight Plan Manager
operates and the way in which waypoint gener-
ation takes place. Afterwards, the results of a
simulated mission performed using prototype im-
plementations of the proposed technologies are
provided. Finally, Section 7 presents some conclu-
sions and future work.

2 Related Work

Electronics were introduced in flight control un-
der the fly-by-wire concept in 1050s. They evolved
into Flight Control Systems (FCS), a set of au-
tomatic control algorithms, in a close-loop struc-
ture, to facilitate interaction of the pilot with
the flight surfaces such as ailerons, elevators and
rudders. Today, most commercial aircraft are
also equipped with Flight Management Systems
(FMS) which, by means of a FCS, provide auto-
matic navigation functionalities [3]. FMS are large
software components (up to one million lines of
code) devoted to increasing safety and optimizing
routing to save fuel. The challenge for the FMS is
to compute a safe and optimum path, and direct
the aircraft, via the FCS, to stay on the designed
path under constantly changing wind direction
and/or speed.

Seven manufacturers (CMC Electronics, GE
Aviation, Thales, Honeywell, Rockwell Collins,
Universal Avionics, Garmin) provide over 90% of
the civil FMS in service today [15], mainly in com-
mercial aviation. Commercial aviation includes
passenger and cargo flights operating on regularly
scheduled routes. Standard performance-based
public RNAV instrument procedures (RNP) de-
scribe the path options available for these aircraft
routes. The procedures, published in Aeronautical
Information Publications (AIPs) by state agen-
cies, are stored in the FMS as navigation databases
using the ARINC Navigation Systems Database
Specification 424 [2]. ARINC 424 is an indus-
try standard for airborne navigation system data
bases and flight plan preparation.

Among other functionalities, the FMS accesses
the pre-programmed routes, identifies the next

waypoint, calculates the aircraft position and pro-
vides inputs to the FCS to fly it. In conjunction
with the Aircraft Communication Addressing and
Reporting System (ACARS), the flight plan of an
aircraft can be updated even while in service. In
a near future, FMS will increase their function-
alities with 4D trajectories, time based trajecto-
ries, required time of arrival, etc. In this domain
we find proposals on new formal languages to
encode the future aircraft trajectories. The Air-
craft Intent Description Language [18] (AIDL)
aims at enabling inter-operation among future
ATM automation components and will include
4-D profiles when the required air and ground
infrastructure exists. However, the semantic con-
tent of the language, with instructions such as hold
bearing or throttle up, is very poor.

Unmanned civil aviation is evolving in the same
direction that commercial aviation did before. Au-
topilots are being first developed at the control
level, like FCS, and then extended to incorpo-
rate navigation functionalities, like FMS. An im-
portant difference between commercial manned
aviation and unmanned civil aviation lies in the
types of missions that will be performed. While
commercial aviation is mainly concerned about
carrying people and/or goods from one place to
another one, in most cases, UAS will be used as
sensing platforms that require a more complex
behavior.

UAS research encompasses topics that range
from intelligent behavior to low level stabilization
and control algorithms, going through payload
operation and data processing. In every practical
application there is a need to specify the behavior
of the UAS, either in a formal way or in a more
interactive manner.

Some projects that deal with artificial intel-
ligence problems are the ProCoSA project, the
work of Caveney et al., and the work of Miller
et al.

In ProCoSA [4], the mission evolves according
to a set of Petri nets [23] that describe the behavior
of the aircraft. A program called “Petri Player”
runs the Petri nets and manages operation of the
planning, guidance and data subsystems and their
communications. This system aims at achieving
a high level of autonomy. On-board computing
resources are responsible for flight planning and

158 J Intell Robot Syst (2012) 67:155–181

re-planning. In ProCoSA the flight plan is em-
bedded within the Petri net specification, which
identifies the different flight phases, e.g., navigate
to mission area, but does not reflect actual tra-
jectories, which are created in real-time. The sys-
tem supports several trajectory patterns for aerial
observation.

The goal of Caveney’s work [8] is to define ap-
plications for multi-agent collaborative control of
fixed-wing unmanned aerial vehicles. The applica-
tions are described through three basic behaviors:
Traveling, Watching, and Tracking. These three
behaviors are constructed using two primitive ac-
tions: going somewhere, and holding at a partic-
ular location. The system is built in two layers: a
Collaboration layer, and a Trajectory Generation
layer. These layers are respectively responsible for
assigning behaviors and computing the nominal
path. Miller et al. [22] follow a similar approach.
Their system also features on-board path planning
and operates in three different modes: FlightPath,
Investigate and Standby. Both systems feed the
autopilot with automatically generated waypoints
that define the desired maneuvers. Caveney and
Miller implement their systems using the Piccolo
[10] autopilot from Cloud Cap Technology. A
flight plan of the Piccolo autopilot is made of
linked lists of waypoints up to a maximum of
100. Each waypoint encodes latitude, longitude,
altitude, and the index of the next waypoint. Dif-
ferent options allow waypoints to be marked as
pre-turn (to avoid overshoot), as an orbit way-
point, as slope for constant rate climb or descend,
and can have associate actions like lights, chute
and drop.

Another group of projects could be character-
ized as research works whose focus is to build
an observation platform for data acquisition and
processing. Many of these projects use a COTS
autopilot as part of their prototype platforms, and
the system relies on the capabilities of the au-
topilot to define the desired route. In [5], Bendea
et al. describe a low cost UAV for post-disaster
assessment. The system uses the MicroPilot au-
topilot [21], which features a a script language
that can be used to describe the flight plan in
a way that resembles a computer program. The
available navigation commands in MicroPilot are
climb, waitClimb, flyTo, fromTo, turn and cir-

cle. Operations for performing calculations are
also available, e.g., add, sub, div and mult. The
script language has a mechanism for defining pat-
terns and also features commands, such as repeat,
skipEqual, skipNotEqual, and others, to control
the flight. Other works, such as the ones presented
in [35] and [11] provide additional examples, this
time making use of the Kestrel autopilot [29] by
Procerus Technologies. With the Kestrel autopi-
lot, three types of commands are used for specify-
ing the flight plan: Waypoint, Loiter and Goto. A
group of flight commands defines a route, which is
always ended with a Goto command that tells the
UAS which waypoint to jump to in order to restart
the route. Execution of a new route is commanded
by the UAS operator by selecting an item on the
new route. The ground control station facilitates
the definition of rectangular search areas by auto-
matically generating the waypoints that cover an
area specified by the user, either before takeoff or
during flight.

Other research, like Mcmanus’ work [20], fo-
cuses on automatic path planning. In the cited
article a mission planning system, which takes
into account airspace integration concerns, is
presented. Given the mission objectives and sit-
uational awareness information, the flight path
planner computes a list of waypoints to be flown
by a COTS autopilot. Interesting aspects of the
system are its ability to execute collision avoid-
ance maneuvers, and its support for a number
of commands for instructing the aircraft to circle,
perform a holding pattern, an eight figure or a grid
search. Similarly to our approach, this commands
are translated to sequences of waypoints. How-
ever, the concept of a flight plan as a document
in electronic format which could be transmitted to
other stakeholders is not present.

Finally, the Paparazzi Project [7] represents an
effort where a flight plan specification language
is available. The language supports commands for
requesting the system to keep a certain altitude, a
given heading, go to a given waypoint and circle
around a waypoint, among others. All these flight
plan elements are grouped in blocks. Constructs
to repeat parts of the plan and to directly go to
and fly a specific part of it are also provided.

Although both the Paparazzi specification lan-
guage and the one presented in this paper are

J Intell Robot Syst (2012) 67:155–181 159

based on XML [6], there are several important
differences between them. The Paparazzi solution
targets μUAS and tries to take full advantage
of a particular autopilot, which is intended for
very small systems and has very limited process-
ing capabilities. Its specification language contains
constructions that resemble the C programming
language, with which it is highly integrated. Fi-
nally, all the contents of the flight plan are com-
piled into a binary program. This binary program
is then transmitted to the autopilot for its execu-
tion during the UAS flight. This approach limits
the capabilities for making changes to the flight
plan during the mission to only moving existing
waypoints to new locations or to skip or go di-
rectly to a flight plan block.

As conclusion, we believe that the history of
FMS provides insights on how the capabilities of
current UAS autopilots will evolve. Also, FMS
are the systems governing the flight of many air-
craft flying today. Therefore, from an airspace
integration point of view, it seems reasonable to
try to describe UAS flight plans using primitives
already used and well known. However, since
UAS missions differ from those of commercial
aviation, some extensions/adaptations need to be
done. With regard to research projects in the
field of UAS, their goals and approaches greatly
vary. We believe that there is value in those ap-
proaches that try to build highly intelligent and
autonomous systems, but in order to be able to
share airspace with other users, UAS systems
need to be more predictable. At the other end,
systems that rely on the capabilities of current
COTS autopilots lack features and the whole sys-
tem is dependent on a very specific product. While
some autopilots exhibit more advanced capabili-
ties, these are either expressed as pilot commands,
as autopilot modes or as embedded program in-
structions, and are not fully integrated in a self-
contained flight plan specification. A common
functionality of all autopilots is the capability to
fly a predefined sequence of waypoints. Taking
advantage of this common capability, our sys-
tem implements a flight management service that
dynamically translates high level primitives, as the
ones found in our flight plan specification lan-
guage, into a sequence of waypoints that can be
handled by virtually any autopilot.

3 System Architecture

The main elements of our architecture that are
involved in the execution of the flight plan are
the Flight Plan Manager (FPM), the Virtual Au-
topilot System (VAS), and the COTS autopilot
(see Fig. 1). We refer to the FPM, the VAS, and
other software components as services. A doc-
ument containing the flight plan specification is
submitted to the FPM. The FPM processes the leg
based flight plan description and generates way-
point commands that are sent to the VAS. During
flight, the FPM can receive flight plan updates and
other commands to adapt UAS operation to the
mission needs. The role of the VAS is to operate
as an intermediate service that isolates the FPM
from the particularities of each autopilot solution.
To this end, the VAS provides a standardized
interface for the FPM to interact with. It is also
responsible for extracting telemetry data from the
flight control system and making these data avail-
able to other services in a compatible way.

The flight management services presented in
this paper are part of a wider set of services
organized following the architecture proposed by
Pastor et al. in [26]. This architecture conceives a
UAS as a distributed system, where a number of
software components use a common communica-
tions infrastructure to exchange information and
collaborate. Each computational node can run
one or more services. Communication between
services follows a publish/subscribe model and is
managed by a middleware layer [19]. There is a
collection of services that have been identified as

Fig. 1 Elements involved in the execution of the flight plan

160 J Intell Robot Syst (2012) 67:155–181

necessary to perform a wide range of missions.
These services are standardized by what is called
the UAS System Abstraction Layer (USAL) [31].

The USAL concept can be compared to the
way operating systems handle device drivers.
Computers have hardware devices used for in-
put/output operations, each one having its own
particularities. The operating system offers an ab-
straction layer to access such devices in a uniform
way. In a similar fashion, the USAL publishes
an Application Programming Interface (API) that
provides end-users with a standardized way to
access hardware elements. The USAL makes use
of the communication primitives provided by the
underlying service-oriented middleware layer.

Another goal of the USAL is to provide a set
of components that can be reused across different
missions. The available services will cover an im-
portant part of the generic functionalities present
in many missions. Therefore, in many cases, to
adapt the system to a new mission it should be
enough to reconfigure the services deployed onto
the UAS.

3.1 USAL Services

In Fig. 2 the set of services that we envision as
forming part of the UAS are shown. These ser-
vices can be organized in four categories: Flight,
Awareness, Mission and Payload services.

– Flight Services: This is arguably the most im-
portant category, since the success of the mis-

sion and its safety depend, to a great extent,
on the system’s ability to follow the intended
flight path. The system relies on the installed
autopilot for low level flight control, but there
are a number of services that add capabilities
on top of that. One such service is the Vir-
tual Autopilot System (VAS), that manages
all interactions with the autopilot. The VAS
provides waypoint navigation capabilities and
a number of telemetry flows regarding the
UAS position, attitude, autopilot status, etc.
It also isolates the autopilot from the rest
of the system, thus avoiding dependence on
a particular autopilot solution. The waypoint
navigation primitives of the VAS are used by
the Flight Plan Manager in order to govern the
UAS flight. Other services included in this cat-
egory, such as the Electrical Manager, the En-
gine Manager and the Contingency Manager,
help to improve safety and reliability.

– Mission services: Mission services are those
responsible for the actual execution of the
mission. The Mission Manager orchestrates
operation of flight and mission related services
in order to achieve the mission goals. The
Mission Manager listens to system events and
responds in a purely reactive fashion. Services
that store and analyze sensed data are also
found in this category. Planning services also
fall into this category.

– Payload services: Services that handle opera-
tion of sensors and actuators belong to this
category. There are many kinds of sensors

Fig. 2 General view of
USAL architecture

J Intell Robot Syst (2012) 67:155–181 161

that we may need to consider: GPS, IMU,
anemometers, visual, infra-red and radiomet-
ric cameras, chemical and temperature sen-
sors, radars, etc.

– Awareness services: This category includes
those services that gather information about
the environment the UAS is operating in.
These services are critical for a successful inte-
gration of UAS into shared airspace. Aware-
ness services handle interaction with coop-
erative aircraft through transponders, TCAS
or data-link systems and try to detect non-
cooperative aircraft through visual or other
kinds of sensors. Services in this category will
also take control and command emergency
maneuvers in critical situations where an im-
mediate response is required.

Although the USAL is composed of a large set
of services, not all of them need to be present
at all times. Only those required for a given
configuration/mission should be present and/or
activated in the UAS.

In this article we focus on the Flight Plan Man-
ager service. The Flight Plan Manager is a service
designed to provide flight management functions
that go beyond following a predefined sequence of
waypoints. The FPM offers structured flight-plan
phases with built-in emergency alternatives, leg
based navigation and constructs to enable forking,
repetition and generation of complex trajectories.
The supported ability to specify alternative pro-
cedures for contingency and emergency situations

will be key for enabling airspace integration and,
consequently, it is a very important aspect of the
proposal. However, a detailed description of the
concept is beyond the scope of this article. A
more thorough explanation of the contingency
and emergency reaction concept can be found
in [27].

Next section describes the main elements of the
flight plan specification language used to describe
the flight plans that the FPM executes.

4 Flight Plan Specification Language

The flight plan specification language provides the
mechanism to describe the flight path that the
unmanned aircraft should follow. One of the core
concepts the flight plan specification language
builds on is the notion of leg, which is already
used in commercial aviation for the specification
of Area Navigation (RNAV) procedures [12].
RNAV legs are specified using Path Terminators,
which define a specific flight path and a specific
type of termination for each leg. Our system takes
this concept and brings it to the UAS domain. A
subset of the legs available in RNAV are imple-
mented and extended with new constructs for a
better adaptation to UAS needs.

4.1 Flight Plan Document Structure

As shown in Fig. 3, the proposed specification
language organizes the UAS flight into stages,

Fig. 3 Flight plan structure

162 J Intell Robot Syst (2012) 67:155–181

each one representing a different flight phase.
A stage contains a number of legs that specify
the flight path during the execution of the stage.
Since support for emergency flight plans is also
provided, the specification document may con-
tain more than one flight plan: The main flight
plan will describe the whole mission under normal
circumstances, and emergency ones will indicate
alternatives to be flown when some contingency
occurs. All of them are organized in the same
way, the main difference being that the emer-
gency plans will not require some initial stages.
Other information that can be specified during
the construction of the flight plan are locale data,
indicating which units are being used, and fixes,
which represent specific locations with a name
associated to them.

An XML document, whose upper level ele-
ments are shown in Listing 1, is used to store the
flight plan related data.

Listing 1 XML flight plan document structure

The elements that can be found within the main
flight plan are shown in Listing 2. Stages are the
largest building blocks used in the flight plan. The
most important element contained inside a stage
is its list of legs. Each leg indicates how to reach
a given waypoint. A waypoint consists of a geo-
graphical position defined in terms of latitude/-
longitude coordinates, that can be accompanied
by target values for the altitude and speed of the
aircraft at that waypoint. Therefore, changes of
speed and altitude are specified at a waypoint
level. The way in which the target speed/altitude
is reached is controlled by the installed autopi-
lot. However, the translation process from legs
to waypoints may require the addition of extra
waypoints, and speed and altitude values will need
to be set for them. The details on how these values
are assigned is discussed in Section 5.2, which
deals with the waypoint generation process.

A stage can be entered from different points
and, depending on the choices made during its
execution, can finish at different locations. The
initial and final legs of the stage are respectively
found in the initialLegs and f inalLegs elements.
Optionally, emergency plans can be indicated at
the flight plan, stage or leg level. Emergency flight
plans found deeper in the document hierarchy will
have higher priority. A partial flight plan follows
the same structure as the main flight plan but con-
tains only those stages necessary to fly from the
current position to the landing runway of choice.

Listing 2 XML description of main flight plan

Following sections provide more details about
each of these elements. A more thorough de-
scription of the flight plan specification language,
together with the details on how it is processed
and executed, can be found in [32].

4.2 Stages

A stage groups together legs that seek a common
purpose. During its total flight, the aircraft can
perform different types of stages. The available
stage types are listed in Table 1.

Every stage, except for the first and last stages,
has a single predecessor and a single successor. A
stage may have more than one final leg. For in-
stance, a take-off stage may end at different points
depending on the selected take-off runway. Also,
a stage may have more than one initial leg as could
be the case for departure procedures that start
at different positions depending on the executed
take-off operation. There will be a one-to-one
correspondence between the final legs of a given

J Intell Robot Syst (2012) 67:155–181 163

Table 1 Stage types

Taxi Ground operations to go to/move away
from the active runway.

TakeOff Take-off run and initial climb phases.
Departure Specific legs joining the take-off with the

starting point of the EnRoute stage.
EnRoute Cruise to a destination area.
Mission Series of legs that will be flown during

main mission operations.
Arrival Specific legs transitioning from the

EnRoute stage to the Approach stage.
Approach Lateral and vertical specific maneuver to

place the aircraft in a safe position and
altitude to land at the active runway.

Land Landing operation.

stage and the initial legs of the next one. Thus pro-
viding a seamless transition between stages. There
are constructs that enable the flight plan designer
to provide this one-to-one correspondence.

4.3 Legs

A leg specifies the flight path to get to a given way-
point. Most legs contain a destination waypoint
and a reference to the next leg. Only intersection
legs, which mark decision points, are allowed to
specify more than one next leg.

There are four different kinds of legs:

– Basic legs: Specify leg primitives such as ‘Di-
rect to a Fix’, ‘Track to a Fix’, etc.

– Iterative legs: Allow for specifying repetitive
sequences.

– Intersection legs: Provide a junction point
for converging trajectories, or a forking point
where a decision on what leg to fly next can be
made.

– Parametric legs: Are used to specify complex
trajectories from a reduced number of input
parameters. As an example consider a scan-
ning pattern, given its geometry and a few
additional parameters, an algorithm can auto-
matically generate the desired trajectory.

Intersection legs differ from the rest in that they
may be reached from more than one predecessor
and may lead to more than one successor. All legs
have an optional parameter indicating what emer-

gency flight plans are candidates to be carried out
when an emergency occurs.

A brief description of the available leg types
follows. Sample code showing how some of them
are encoded using the XML based specification
language can be found in Listings 4 and 5.

4.3.1 Basic Legs

This section describes the basic legs available to
the flight plan designer. They are referred to
as basic legs to differentiate them from control
structures like iterative or intersection legs and
parametric legs. All of them are based on already
existing ones in RNAV. Its original name is pre-
served.

Figure 4 illustrates the available basic legs. A
brief description of each one follows:

– Initial Fix (IF): Determines an initial point. It
is used in conjunction with another leg type
(e.g. TF) to define a desired track.

– Track to a Fix (TF): Corresponds to the great
circle track over ground joining two way-

(a) Initial Fix

(e) Holding Pattern

(b) Track to a Fix

(c) Direct to a Fix (d) Radius to a Fix

Fig. 4 Basic leg types available

164 J Intell Robot Syst (2012) 67:155–181

points. The initial position is the destination
waypoint of the previous leg.

– Direct to a Fix (DF): Is a path described by
an aircraft’s track from an initial area direct
to the next waypoint, i.e., fly directly to the
destination waypoint whatever the current po-
sition is.

– Radius to a Fix (RF): Is defined as a con-
stant radius circular path around a defined
turn center that terminates at a waypoint. It
is characterized by its turn center and turn
direction.

– Holding to a Fix (HF): An HF is used to define
a holding pattern path. The leg terminates
when the hold waypoint is crossed after a
given number of iterations or when a given
condition is no longer satisfied (regardless of
the number of iterations). The shape of the
holding pattern is determined by a number of
parameters that specify the distance between
the two turn centers, the turn diameter, the
angle that its sides form with respect to North,
and a turn direction. Setting the distance be-
tween turn centers to 0 results in an orbit
pattern.

4.3.2 Iterative Legs

A complex trajectory may involve iteration, thus
the inclusion of iterative legs. An iterative leg
has a single entry (i.e., its body can be entered
from a single leg), a single exit, and includes a
list with the legs that form its body. An iterative
leg also includes an upper bound indicating the
number of repetitions and, optionally, a condition
that controls its termination.

The structure of an iterative leg is shown in
Fig. 5. An inbound arrow indicates the point
where the iterative leg execution starts. Each time

Fig. 5 Iterative leg

Fig. 6 Intersection legs

the final leg (the one that leads to the exit point)
is executed, a counter is incremented. When a
given count is reached, or a specified condition no
longer holds, the leg will be abandoned proceed-
ing to the next one.

4.3.3 Intersection Legs

Intersection legs are used in situations where
there is more than one possible path to follow and
a decision needs to be made (see Fig. 6). This leg
type contains a list with the different alternatives
and a condition for picking one of them. Intersec-
tion legs are also used to explicitly indicate where
two or more different paths meet.

Together with parametric and iterative legs,
intersection legs provide a powerful means for
adapting the flight as best suited to the ongoing
mission circumstances.

4.3.4 Parametric Legs

Parametric legs permit complex trajectories to be
automatically generated from a reduced number
of input parameters. If the actual values of these
parameters change, the resulting trajectory will be
dynamically recomputed. In this way, the aircraft
trajectory can be modified depending on the evo-
lution of mission variables. Parametric legs pro-
vide an increased level of adaptation to changes
that occur during mission time. Possible patterns
that could be obtained using parametric legs are
shown in Fig. 7. While (a) and (b) could be used to
explore a given area, (c) could be used as a pattern
for inspecting a more specific point.

With the use of parametric legs two goals are
achieved. First, complex trajectories can be gener-
ated with no need to specify a possibly quite long
list of legs. Second, the UAS path can dynamically
adapt to the mission requirements.

J Intell Robot Syst (2012) 67:155–181 165

Fig. 7 Different flight
patterns: basic scan (a),
complex scan (b) and
eight pattern (c)

(a) (b) (c)

4.4 Conditions

There are several points in the flight plan where
conditions can be found: namely in holding pat-
terns, iterative legs and intersection legs. The con-
dition of an intersection leg specifies which path
to follow, whereas for the holding pattern and
the iterative leg the condition specifies when the
aircraft should leave the current leg and proceed
to the next one.

Conditions are represented in the flight plan
as an identifier with an associated integer value.
Each leg that depends on a condition contains a
condition identifier. The path selection that the
condition governs is determined by the value as-
signed to the condition. This value can be pro-
vided by a UAS operator or by one of the UAS
services. When the value associated to a condition
changes, waypoints are dynamically recomputed
to reflect the new choice.

4.5 Flight Plan Updates

The flight plan described using the proposed
specification language can be modified by means
of flight plan updates. A flight plan update con-

sists of an XML message with a syntax that
closely resembles the one used in the flight plan
specification language.

Listing 3 Example of simple update message

The purpose of the updates is to enable the
flight plan to be modified during the execution
of the mission. The simplest modification consists
of changing an attribute of a given leg, e.g., the
coordinates of its destination waypoint. In this
case, the update message would contain the in-
formation required to identify the leg and the
new values for its destination waypoint (see List-
ing 3). Figure 8 illustrates the changes resulting
from such an update. A more aggressive approach
may involve restructuring the flight plan with the
addition of new legs and the removal of existing

Fig. 8 Example legs
before (a) and after (b)
an update

(a) (b)

166 J Intell Robot Syst (2012) 67:155–181

ones. All updates should refer to forthcoming legs,
updating the leg that is under execution is not
allowed.

5 Flight Plan Management

The previous section described the language used
for specifying flight plans. This section presents
the Flight Plan Manager (FPM), which is the ser-
vice responsible for their processing and execu-
tion. It forms part of a wider set of services that,
together, provide the UAS with all its capabilities.
The FPM collaborates with some of those services
to perform the execution of the flight plan.

The FPM can be seen as a translator of legs
to waypoints. This translation process enables leg
based navigation on systems that only support
waypoint navigation. From the VAS or autopilot
perspective, the FPM can be seen as a provider
of waypoints to fly to. From a mission related
perspective, the FPM is the service that the UAS
operator talks to in order to control the flight
progress and make it adapt to the mission needs.
There are multiple possibilities of interaction with
the FPM, the primary ones being setting condition

values, sending updates to flight plan elements
and triggering execution of emergency plans.

5.1 FPM Service Capabilities

The main responsibility of the FPM is generating
the waypoints that will make the aircraft follow
the flight path described using our flight plan
specification language. As an example, in Fig. 9,
the waypoints that would be generated for execut-
ing a scanning pattern are shown. This maneuver
appears in the flight plan as a single parametric
leg (see Listing 4). The values of dim1 and dim2
together with angle determine the geometry of the
area that needs to be scanned. The dest parameter
indicates the destination waypoint of the maneu-
ver, which serves as a reference to place the area
on the map. The vertex opposite to the parametric
leg’s destination is the starting point of the scan-
ning pattern. If this vertex does not coincide with
the destination of the previous leg, the aircraft
will perform a DF from the destination of the
previous leg to the starting point of the parametric
leg. The separation parameter indicates separation
between passes across the area. This value should

Fig. 9 Generated
waypoints for a scanning
pattern

J Intell Robot Syst (2012) 67:155–181 167

be set taking into account both the capabilities of
embarked sensors and aircraft performances.

Listing 4 XML description of a parametric leg

When processing the parametric leg, the FPM
computes all the waypoints necessary to execute
a series of TF legs connected by RF legs. The
detail of a constant radius turning maneuver is
shown in Fig. 10. As explained in Section 5.2,
with the assumption that the underlying autopilot
only supports waypoint navigation, RF legs are
approximated by a sequence of waypoints. The
use of parametric legs eliminates the need for hav-

Fig. 10 Detail of a constant radius turning maneuver from
Fig. 9

ing to manually introduce each waypoint of the
scanning pattern. Moreover, if the area of interest
changes, all the waypoints can be automatically
recomputed.

The basic requests that must be handled by the
FPM are:

– Receive and initiate execution of a flight plan.
– Assign new values to conditions that govern

selection between alternative routes.
– Receive and process updates to the initial

flight plan.
– Trigger execution of an emergency plan.

Additional functions provide more control over
the aircraft maneuvers and the state of the FPM:

– Skip the leg under execution, i.e., immediately
start execution of the next leg.

– Jump directly to a leg located further in the
flight path, therefore ignoring some interme-
diate legs (in later sections we refer to this
function as the Goto command).

– Pause flight plan execution while performing
a holding pattern.

– Switch to a standby state, which is going to
happen when the UAS is under manual con-
trol or controlled by another UAS service.

– Resume operation after a pause, or once con-
trol is regained.

Together with the navigation commands sent to
the VAS, the FPM also generates several informa-
tion flows that can be exploited by other services.
This data includes the position of the aircraft in
flight plan terms, i.e., what is the current stage,
the current leg, and other leg-related information
such as current iteration of an iterative leg. It also
periodically publishes what emergency plans are
available, which may depend on the stage or leg
being flown, and their estimated duration. Finally,
information relative to the current operating state
of the service is also provided.

Figure 11 depicts a simplified diagram with the
main messages interchanged between the Ground
Station (GS), the FPM and the VAS. UAS opera-
tion starts by uploading the flight plan definition
to the Flight Plan Manager (UploadFlightPlan).
Validation that the flight plan is collision free and
feasible according to performances is done before
upload. The FPM will parse the flight plan and

168 J Intell Robot Syst (2012) 67:155–181

Fig. 11 Simplified
diagram of navigation
messages between FPM
and VAS

:FPM :VAS:GS

check that it is syntactically correct and that it
complies with a number of constraints, e.g., that
stages come in valid order. After confirmation
that the flight plan has been received (UploadF-
PAck), the Flight Plan Manager can be started
(FPStart). At this point, the FPM starts gener-
ating waypoints which are progressively sent to
the VAS (NewWp). Only a limited number of
waypoints is transferred at a time from the FPM
to the VAS. This waypoint window is used to
ensure that the specified number of waypoints is
always available to the VAS. Limiting the number
of waypoints also helps keeping communications
cost penalties low when old waypoints need to
be discarded and replaced by new ones. Such
situation may occur due to changes in the flight
plan. The initial set of waypoints is immediately
transferred, then additional waypoints are sent as

the old ones get flown. Each time a waypoint is
flown, the VAS generates an event (CurrentWp)
to inform the FMS and other services. At the same
time, the FPM informs other services of those
legs and stages that are being flown (CurrentLeg
and CurrentStage). Waypoint navigation will only
start after the VAS switches to the Navigation
state (ChangeVasState). The waypoint generation
process keeps going until the landing phase, which
is directly implemented by the VAS.

5.2 Waypoint Generation

The flight plan submitted to the FPM is parsed
and translated to a tree-like internal representa-
tion. A flight plan has a number of stages that,
in turn, contain one or more legs each. These legs

J Intell Robot Syst (2012) 67:155–181 169

can take different forms depending on its type, but
all of them (except iterative and intersection legs)
have a destination waypoint.

Flight plan objects are organized forming a tree
structure whose root node represents the com-
plete plan (see Fig. 12). Stages are located at the
second level with legs following. At this point,
some degree of recursion may be found due to
iterative legs, whose children legs form the body
of the iterative structure. This representation is
traversed and waypoints are generated for the
encountered legs.

The FPM implements a producer-consumer
model. A waypoint generator object has the role
of the producer and stores waypoints in a queue.
A controller object, responsible for handling in-
teractions of the FPM with other services, acts as
the consumer. It follows the consumer role when
it takes waypoints from the queue of generated
waypoints and sends them to the VAS.

These two objects operate in a decoupled man-
ner: the producer continually generates waypoints
ahead of time until the end of the flight plan
is reached. The controller uses a configurable
window size to retrieve generated waypoints and
send them to the VAS. Each time a reached
notification is received, a new waypoint is taken
from the queue and forwarded to the VAS. In this
way the VAS always holds a minimum number of
waypoints to fly to.

In order to support the different types of re-
quests, each generated waypoint has some extra
information associated to it that enables the FPM

to tell which leg this waypoint belongs to, the
iteration it was generated in, etc. This control data
is used to resume waypoint generation at the right
place when a change in the flight plan invalidates
waypoints that have already been generated.

Figure 13 illustrates how the waypoint genera-
tion process takes place. The initial step is taking
the first leg for which we want to generate way-
points. Structural representation of the flight plan
is kept apart from waypoint generation classes fol-
lowing a separation of concerns principle, there-
fore the taken leg knows nothing about what way-
points will come out of it. The next step is then
obtaining an object that knows how to generate
waypoints for that leg. This generator object is
selected taking two elements into account: (1)
what type of leg are we handling and (2) what
type of autopilot are we targeting. Now the actual
generation of waypoints can take place. As seen in
Fig. 13b, some parameters are required to perform
this computation:

– Initial position is the position of the aircraft at
the beginning of current_leg.

– Heading is the entry path angle the aircraft is
following when reaching the initial position.

– Speed & Altitude are the estimated values the
initial position is reached at.

– Aircraft parameters are the aircraft’s bank an-
gle and a correction factor to account for the
transition time required to reach the bank
angle.

Fig. 12 Flight plan
execution

170 J Intell Robot Syst (2012) 67:155–181

Fig. 13 Waypoint
generation process (a)
and inputs/outputs of
Compute Waypoints
step (b)

Get First Leg

Get Next Leg

Get WP Generator Object

Compute Waypoints

Add WPs to Queue

(a)

(b)

As a result of the computation, a list of way-
points is obtained together with the predicted
heading at the last waypoint. The list of waypoints
is added to the waypoint queue and the new head-
ing is used in the computation of the next leg.

Although not yet considered in the current im-
plementation of the FPM, other parameters, such
as wind speed and direction, should also be taken
into account. The inclusion of wind effects is a
very important requirement for the system to be
able to operate in the field, otherwise the actual
trajectory of the aircraft could greatly differ from
the planned one. Previous work exists that ad-
dresses the waypoint generation problem taking
wind into account, see for example [25] and [13].
We believe that the internal design of the FPM is
flexible enough to allow the addition of estimated
wind data as an additional parameter during the
waypoint computation process. Techniques as the
ones described in the previously referenced pa-
pers could be used to determine the placement
of the generated waypoints in a way that the
effects of wind are compensated and the desired
trajectory is achieved. Up to now, our research

efforts have been focused on the development
of the flight management concept, the proposed
flight plan specification language and the software
architecture of the system. The inclusion of wind
data into the waypoint generation algorithms is
part of our future work.

Our flight plan specification language and way-
point generation process emphasize lateral navi-
gation. The way in which vertical navigation takes
places will depend on the underlying UAS au-
topilot. During the waypoint generation process,
when multiple waypoints are generated from a
given leg, and the initial altitude differs from the
altitude at the destination, altitude of interme-
diate waypoints will linearly be increased or de-
creased according to the distance along the track
between each pair of consecutive waypoints. The
idea behind this approach is to obtain a smooth
climb/descent profile. However, depending on the
autopilot capabilities, one could actually get a
suboptimal step by step climb/descent. Therefore,
this simple approach is not completely satisfactory
and should be revised in future versions. A similar
problem is encountered with regard to changes of

J Intell Robot Syst (2012) 67:155–181 171

speed. The approach taken in this case has been
to set the speed of intermediate waypoints to the
same value indicated in the destination waypoint
of the leg under consideration.

The system supports five types of basic legs: Ini-
tial Fix, Track to a Fix, Direct to a Fix, Radius to a
Fix and holding patterns. In some cases, waypoint
generation is trivial, as an example, generating
waypoints for an Initial Fix is accomplished by
just adding the fix to the queue of generated way-
points. In other cases, waypoint generation is far
more complex. Waypoint generation for a holding
pattern takes into account that different entry pro-
cedures [17] may need to be executed depending
on the direction the aircraft comes from.

Another aspect that adds complexity to the
generation process is that, while waypoint based
navigation is a common denominator of the vast
majority of UAS autopilots, there can be varia-
tions with regard to their capabilities to capture
and hold to a given track or to perform both fly-
by and fly-over waypoints. An example illustrat-

ing how these restrictions can be overcome with
smart waypoint generation techniques, that take
into account the system capabilities, is shown in
Fig. 14. As a direct benefit from keeping structural
leg data and waypoint computation separated in
different classes, we are able to pick the genera-
tion algorithm that best suits each situation.

In Fig. 14a, we see what should be the required
trajectory for performing a Track to a Fix having
a fly-over waypoint as the initial aircraft posi-
tion. Once the starting waypoint has been over-
flown, the aircraft turns right in order to intercept
the track. Figure 14b and c respectively illustrate
how this same trajectory can be obtained with an
autopilot system that only supports Direct to a
Fix navigation and with one that only implements
a fly-by. In both cases, additional waypoints are
strategically added and others removed so that
the intended trajectory is achieved. In Fig. 14b,
an extra waypoint is added so that the aircraft is
forced to turn twice in order to reach the destina-
tion. In Fig. 14c, the two fly-over waypoints at the

Fig. 14 Waypoint
generation depending on
autopilot capabilities

(a) Fly-Over followed by Track to a Fix (FO+TF).

(b) FO+TF with a Fly-Over/Direct to a Fix capable system.

(c) FO+TF with a Fly-By/Track to a Fix capable system.

172 J Intell Robot Syst (2012) 67:155–181

beginning and the end of the trajectory are re-
placed by two fly-by ones at different positions.
The details on how to carry out the actual com-
putations for these and other cases can be found
in [28].

The replacement of the first waypoint in
Fig. 14c can actually be seen as taking the desti-
nation of the previous leg and moving it further
along the leg’s course. Therefore, the final way-
point of a given leg may actually depend on what
happens in the next leg. To handle this situation,
the generation process for a given leg is performed
in two steps:

1. Generate waypoints for the current leg re-
gardless of what happens next.

2. Every time a new leg is added to the waypoint
list, check if the destination of the previous
one needs to be corrected.

To implement execution of RF legs on an au-
topilot with no support for this type of turn, the
system will approximate the turning maneuver
with a sequence of waypoints (see examples on
Figs. 9 and 10). If the autopilot supports fly-over
waypoints, the generated waypoints will be placed
at regular intervals on the desired path. If the
system makes use of fly-by waypoints, the gen-
erated waypoints will be slightly displaced from
the desired trajectory. The distance between con-
secutive waypoints is directly proportional to the
aircraft’s turning radius which, in turn, depends
on the aircraft’s speed and its bank angle, the
latter value being a constant that characterizes the
aircraft.

Holding patterns are generated by concate-
nation of TF and RF legs and, in that respect,
are very similar to the way parametric legs are
generated.

Iterative and Intersection legs represent control
constructs that, by themselves, do not determine a
trajectory. The former groups together a number
of legs that may be executed several times, while
the latter can be used to select between alternative
paths.

Dealing with iterative legs implies that the way-
point queues will contain waypoints coming from
different instantiations of a single leg. Moreover,
iterative legs can be nested so that two given
waypoints may have been created for the same

iteration of an outer leg but different iterations
of an inner one and vice versa. For this reason,
all waypoints are tagged with context data. This
enables the FPM to determine what iterations
a given waypoint, and its corresponding leg in-
stantiation, belong to. Therefore, each enqueued
waypoint contains all data directly related to the
waypoint, such as parent leg, latitude, longitude,
etc. plus a stack of integers. Each time a new itera-
tive leg is entered an integer value of zero is added
on top of the stack. This value is incremented
at each iteration and popped out when no more
iterations are left.

Keeping account of the context information is
crucial due to the iterative nature of the waypoint
generation algorithm. Flight plan legs are taken
one at a time and knowing what leg are we gener-
ating waypoints for does not suffice. It is manda-
tory to know what exact iterations of enclosing
iterative legs have already been processed and
which are the current ones, otherwise, we would
not be able to tell when waypoint generation for
a given iterative leg has finished. To leave a trace
of the presence of the iterative leg in the waypoint
queue, a fake waypoint is added. Fake waypoints
are not sent to the autopilot.

When an intersection leg is found only way-
points belonging to the selected path are gener-
ated. Should the value of its governing condition
change, all waypoints found in the FPM’s queues
from that point onwards will be discarded and
new waypoints will be generated starting at the
intersection.

Each time an intersection leg is found, a fake
waypoint is added to the waypoint queue. In this
way, when its condition changes it can easily be
found. We take advantage of the control infor-
mation associated to each waypoint to be able to
properly restart the generation process.

6 Simulation Results

During the development of the flight plan
specification language and the FPM service many
different tests have been performed, but there are
two main simulated mission scenarios that have
been developed with a high level of detail. The
first one, is the Radio Navigation Aid (navaid)

J Intell Robot Syst (2012) 67:155–181 173

flight inspection mission, whose results are pre-
sented in this section. The other one, is a hot spot
detection mission, where the unmanned aircraft
performs a scanning pattern over a supposedly
burned area and reacts when a potential hot spot
is detected (see [33] for further details).

The use of UAS for performing flight inspec-
tions of navaids has been proposed by Ramírez et
al. in [30]. This section presents the experimental
results that have been obtained in a simulation en-
vironment based on FlightGear Flight Simulator
[1]. Some additional details about the experiment
can be found in [34].

6.1 Navaids Flight Inspection Mission

The current Air Transportation System relies on
the use of navaids to provide the capability to
fly, in a safe manner, even with unfavorable vis-
ibility conditions. These navaids are subject to
inspections that verify the adequacy of the radio-
frequency emission with reference to a standard.
While some of these inspections could be con-
ducted on the ground, others require a set of in-
flight measurements.

The flight inspection is performed in coordi-
nation with the Air Navigation Service Providers
(ANSPs), who provide navigation services with
the inspected navaid. In large airports, where re-
stricting traffic is extremely expensive, the flight
inspection aircrafts are inserted in normal air
traffic. A requirement for the flight inspection is

to minimize the impact on the rest of airspace
users. In a conventional inspection platform, this
requirement can be satisfied thanks to the op-
erational agility provided by a human pilot. The
UAS flight inspection platform needs to provide
an equivalent level of operational agility.

During the flight inspection of a navaid, differ-
ent measurements of the signal must be taken fol-
lowing procedures as detailed in ICAO doc 8071
[16]. The acquisition of the physical magnitudes
is performed flying specific trajectories, such as
an orbit around the navaid, a straight line over
the facility, etc. The overall set of trajectories and
measurements for a specific VOR navaid is shown
in Fig. 15. This figure illustrates the complexity
of the simulated flight inspection mission whose
results are given in the following sections. This
mission corresponds to a real facility located at
Huesca, Spain.

6.2 Inspection Procedures

This section presents the specific procedures for
the periodic flight inspection of the VOR/DME
located at Huesca, Spain. VOR/DME refers to
a combined radio navigation station for aircraft,
which consists of two beacons, placed together:
a VHF Omnidirectional Range (VOR) and a
Distance Measuring Equipment (DME). A VOR
indicates the magnetic bearing from the station
to the aircraft (the radial). A DME indicates the
distance from the beacon to the aircraft.

Fig. 15 VOR navaid at
Huesca, Spain

174 J Intell Robot Syst (2012) 67:155–181

In order to fulfill the mission requirements the
system must be able to:

– Fly all procedures as well as or better than
conventional flight inspection systems.

– Repeat any procedure or part of it if the re-
sults are not satisfactory.

– Interrupt the pre-established flight plan.
– Continue the flight inspection procedures

where they were interrupted according to
efficiency issues.

In a traditional inspection mission aircraft nav-
igation is based on the inspected navaid while the
actual aircraft position is obtained using a pre-
cise positioning system. Note that our inspection
method inverts the terms and assumes satellite
based navigation for performing the inspection.
Therefore the intent is to fly the desired trajectory
using RNAV legs and compare the VOR readings
with the expected values.

Table 2 lists the procedures that have to be
flown in order to perform a periodic flight inspec-
tion of a VOR/DME navaid [14, 16, 24]. These
procedures are described in terms of three basic
legs: Direct to a Fix (DF), Track to a Fix (TF) and
Radius to a Fix (RF).

The procedure order is determined by two
factors. Two reference radials have to be flown
first because they test vital parameters. The other
procedures are ordered according to efficiency. A
brief description of each procedure follows.

1. Reference Radial Flight (VOR-REF-1, VOR-
REF-2): This procedure consists of flying a
VOR navaid radial at constant altitude. The
main objective of this procedure is comparing
vital parameters (such as magnetic deviation)
with the record of previous inspections. It is
flown twice because the VOR navaid has two
transmitters due to redundancy aspects. Both
of them transmit at the same band, hence, they
have to be tested separately.

2. Orbital Flight 360 Degrees (VOR-ORB-1,
VOR-ORB-2): This procedure is an orbital
flight with constant radius. The center of the
orbit is the navaid position. Its main objec-
tive is to determine if the signal coverage is
between the established limits. Other parame-
ters are also tested. Like the Reference Radial
Flight, this procedure also needs to be flown
twice.

3. Radial Flights (VOR-RAD) In order to ensure
the correct reception of VOR signal, all the

Table 2 Procedures for a periodic flight inspection

Procedure Start Finish Height Leg types

Reference radial flight 20 NM away Aid 1500 ft (AGLa) or TF
from aid minimum safe altitude

Orbital flight Anywhere in the aid Overlapping area Same as reference radial RF
centered orbit between 5–20 degrees

from the initial point
Terminal radial flight Published maximum Aid 100 ft below published TF

range altitude
En-route radial flight As published in Minimum altitude TF

the AIPb published in the AIP
or 1000 ft above minimum
obstacle clearance altitude

Approach As published in As published in the AIP As published in the AIP TF, RF
the AIP

SID,c STARd As published in As published in the AIP As published in the AIP TF, DF
the AIP

aAGL: above ground level
bAIP: aeronautical information publications
cSID: standard instrumental departure
dSTAR: standard terminal arrival route

J Intell Robot Syst (2012) 67:155–181 175

VOR radials that are used to define airways
shall be tested by flying them 100 ft below the
specified altitude (terminal radial) or at the
minimum secure altitude (en-route radial).

4. Approaches (VOR-APP) An Instrument Ap-
proach Procedure (IAP) is a type of air navi-
gation that allows pilots to land an aircraft in
reduced visibility or to reach visual conditions
permitting a visual landing. In order to ensure
the correct reception of VOR signal in these
procedures, periodic flight inspection includes
the flight of all approach procedures based in
the inspected navaid.

5. Standard Instrumental Departure (VOR-SID)
Standard Instrument Departure (SID) routes,
also known as Departure Procedures (DP) are
published flight procedures followed by air-
craft on an IFR flight plan immediately after
taking off from an airport.

6.3 Flight Plan Specification

This section describes how the previous proce-
dures are translated to our flight plan specification
language taking into account the requirements
of the mission. As explained in Section 4, the
flight plan is organized in a number of stages that
group together legs that belong to different flight
phases. In this section we focus on the Mission
stage, which is where the inspection procedures
are placed.

To encode the inspection procedures, we make
use of the legs available in the specification lan-
guage. For instance, a reference radial can be
encoded using two Track to a Fix legs: one for
placing the UAS at the beginning of the procedure
and another one for executing the procedure. For
the specification of orbital procedures, Radius to
a Fix legs are used. It is possible that the orbital
cannot be completed in a single pass. To limit
the extent that needs to be flown more than once
in case this happens each orbital is composed of
several consecutive Radius to a Fix legs. The XML
specification of the second radial followed by two
RF legs that describe part of the first orbital is
shown in Listing 5. A DF leg is used to connect
both procedures. In a similar fashion, the rest of
procedures can be specified combining and con-
necting the different available leg types. The result

is a sequence of legs that can be flown from start
to end to perform a complete execution of the
inspection mission.

Listing 5 Excerpt from the flight plan specification

Since the flight inspection requirements de-
mand supporting interruptions and restarts, some
additional legs need to be added to the flight plan.
In particular, an iterative leg is added to enable
repetition of the inspection legs. In addition to
that, an intersection leg provides an alternative
path that leads to the execution of a holding pat-
tern. This holding pattern is going to be flown
when the aircraft is requested to move away from
the area where it operates. The structure of the
resulting flight plan is shown in Fig. 16. With these
new legs, the UAS operator will be able to repeat
parts of the plan and switch between execution of

176 J Intell Robot Syst (2012) 67:155–181

Fig. 16 Flight plan organization

the inspection procedures and the holding pattern.
A Goto command, which is a function provided
by the FPM, can be used to directly jump to the
desired leg and proceed from there.

6.4 Results of the Simulation

In order to demonstrate the feasibility and
benefits of the proposed approach for UAS flight
management a simulation environment has been
set up. The aircraft behavior is simulated using the
FlightGear Flight Simulator [1], an open-source
project licensed under the GNU General Public
License. The simulation environment takes ad-
vantage of the VAS capability to isolate the un-
derlying autopilot from the rest of services. With
the VAS handling all interactions with Flight-
Gear, the FPM is completely unaware of the fact
that the flight is simulated. Google Earth� is used
for tracking the UAS flight and provide real time
visualization of the mission evolution.

Fig. 17 Beechcraft B1900D

For the purpose of the simulation, a Beechcraft
B1900D (see Fig. 17) has been used. This is one
of the aircraft available in FlightGear’s models
database and is commonly used in manned flight
inspection operations. Some of the simulation pa-
rameters are shown in Table 3. A typical bank
angle of 30 degrees has been considered for all
turning maneuvers. A roll factor of 14 seconds
accounts for the time it takes for the aircraft to
reach this bank angle at the considered cruise
speed. The simulation has been run without wind.

The first requirement we need to validate is
that the UAS is actually capable of performing
the inspection mission at the same level of perfor-
mance as a manned aircraft. The resulting flight
from a complete execution of the inspection pro-
cedures is displayed in Fig. 18. Labeled arrows
indicate what procedure different parts of the
flight belong to. This is a long flight plan and the
simulation confirms that it was well defined and
executed.

Following examples demonstrate the system’s
capability to successfully interrupt and resume the
flight inspection. Figure 19 illustrates how the sys-
tem responds to a situation where an Air Traffic
Controller (ATC) requests the UAS to move
away from the mission area until further notice.
The flight trajectory in Fig. 19 is numbered to indi-
cate the chronological order of the different steps
of the maneuver. Downward arrows mark some
relevant points. In “1” the UAS is initiating the
flight of the VOR-REF-1 procedure (Reference

Table 3 Aircraft and simulation parameters

Aircraft Beechcraft B1900D
Cruise speed 230 kt (425 km/h)
Bank angle 30◦
Roll factor 14 s
Wind No wind
Mission duration 1 h 30 m aprox.

J Intell Robot Syst (2012) 67:155–181 177

Fig. 18 Flight path of
complete inspection

Radial Flight). At the ATC Interrupt Order arrow
an interruption is requested and the vehicle leaves
its trajectory to fly the agreed holding pattern
(step “2”). The position of this holding procedure
(Agreed HF arrow) can be planned with ATC
before the mission execution or decided in real

time sending a flight plan update to the FPM.
Once the ATC decides that the inspection mission
can continue, the UAS returns to the beginning of
the leg that was interrupted (step “3”) to perform
its execution and then proceed with the rest of the
flight (step “4”).

Fig. 19 ATC interruption

178 J Intell Robot Syst (2012) 67:155–181

Fig. 20 Leg repetition

Figure 20 displays a situation where a leg
needs to be repeated due to a deviation from the
planned trajectory. This trajectory error has been
manually induced for the purpose of the simula-
tion. As shown in the figure, initially the UAS is
flying to intercept VOR-ORB-1 procedure (step
“1”). It flies properly (step “2”) until a trajectory
error occurs (step “3”), hence measures are not
going to be correct. The leg has to be interrupted
and flown again. In step “4” we see how the
UAS interrupts normal mission execution an flies
back to a previous return point (step “5”). From

there on the flight continues as planned (steps “6”
and “7”).

Table 4 lists the legs that are used during the
mission stage of the navaid flight inspection. This
information is accompanied by the number of
waypoints generated by the Flight Plan Manager.
The quantity of waypoints per leg depends on
the nature of the leg, the capabilities of the au-
topilot and the type of the destination waypoint
(see [28] for further details). In the simulation it
is assumed that the autopilot is able to perform
fly-by waypoints followed by tracks to a fix. It

Table 4 Number of
waypoints for each leg of
the mission phase

Procedure Legs Waypoints

Reference radial flights TF × 2 6
Orbital flight RF × 8 354
Terminal radial flight TF 3
En-route radial flight Covered by reference radial flights 0
Approach TF × 3 + RF 25
SID TF × 2 + DF 5
Holding pattern TF × 2 + RF × 2 25
Transitions DF × 6 + TF × 5 22
Total TF × 13 + DF × 7 + RF × 9 440

J Intell Robot Syst (2012) 67:155–181 179

should be noted that each of the two orbital flights
around the navaid is broken up into four smaller
legs so that, if the mission is interrupted during
execution of an orbital, its continuation does not
imply having to repeat all the parts that were al-
ready flown. Another aspect worth noting is that,
although specified as a single leg in the flight plan,
the holding pattern is actually translated into two
tracks to a fix and two radius to a fix legs.

The benefits of the proposed approach are
more evident when a given leg results in a high
number of waypoints. A radius to a fix, a hold-
ing pattern and legs for performing lawnmower,
eight or other patterns, the latter ones not used in
the example mission, are clear examples of that.
In such cases it is much easier to use a higher
level abstraction, like the one provided by the
leg concept, than to specify all waypoints one at
a time. This benefit is more important when the
flight plan needs to be changed, which could even
happen during the execution of the mission. With
our system, moving a holding pattern from one
area to another can be achieved by changing the
position of its associated waypoint.

Besides the practical aspects of the waypoint
generation process, the use of the leg concept also
provides a way to specify the aircraft maneuvers
in a more meaningful way. A single waypoint
does not provide much information about its pur-
pose, while a leg, which defines a trajectory and
can be given a descriptive name, is much more
informative.

The goal of the system is not limited to fa-
cilitating the waypoint specification process. The
simulated flight inspection mission shows how
the inclusion of iterative and intersection legs,
coupled with the capabilities of the Flight Plan
Manager, provides a very flexible tool. During

the simulation, we have been able to repeat parts
of the flight and to respond to the hypothetical
requests from an ATC in continuous contact with
the UAS operator. We believe that many UAS
civil applications, e.g., natural disaster monitoring,
surveillance, and search and rescue operations,
among others, can benefit from these features

Another aspect worth noting is the ability to in-
clude emergency alternatives in the specification
of the flight plan. For a system that operates au-
tonomously, it is important to be able to specify
alternative routes to take the aircraft to a place
where a reasonably safe landing can be carried
out.

Some systems, e.g. the Paparazzi autopilot [7],
provide capabilities comparable to the ones pre-
sented in this article, but they are tied to a par-
ticular autopilot solution. In our case, we propose
a software layer that takes advantage of the way-
point navigation capabilities present in most au-
topilots, and extends them without requiring the
autopilot to be modified. As outlined in Section 2,
other significant differences relate to the general
concept and the targeted platforms.

7 Conclusion

In this article a new concept for the specification
of UAS flight plans has been presented. Flight
plans following such specification are processed
and executed by the Flight Plan Manager service.
To enable the service to operate with currently
available autopilot systems, flight plan primitives
are dynamically translated to waypoints. The ser-
vice also provides a number of flight management
functions with commands for setting condition

Fig. 21 Different levels
of usage provided by
flight plan manger

180 J Intell Robot Syst (2012) 67:155–181

results, skipping legs and modifying the flight plan
during the mission. The benefits of the proposed
approach for UAS flight plan management have
been demonstrated by means of a simulated mis-
sion consisting of the flight inspection of Radio
Navigation Aids.

We believe that the combination of the flight
plan language with the FPM, together with the
other services supporting the mission, provides a
highly flexible and capable platform that has the
potential to be applied in a wide range of civil
missions. Figure 21 outlines the main features of
the system with an emphasis on the degree of
flexibility they provide. At one end of the spec-
trum one may follow a very conservative approach
and define a very predictable flight path with basic
legs as the main construction unit. This can be
very convenient in situations where the aircraft
is operating in controlled airspace. At the other
end of the spectrum, a more aggressive approach,
perhaps with automated updates to the flight plan,
may be followed. This way of operating can be
very useful when performing a complex mission
in a situation where airspace segregation guar-
antees no conflicts with other airspace users. Of
course, both approaches can be applied to differ-
ent phases of a single mission.

At its current state of development, the Flight
Plan Manager should be seen as a proof of concept
prototype. Aspects that need to be addressed as
future work are a better model for vertical nav-
igation, validation of update messages to ensure
that the resulting flight plan can be performed
and is collision free, and the inclusion of wind
effects during the waypoint computation process.
We also aim at implementing an enhanced model
of the aircraft performance that could be used
to better predict the behavior of the UAS and
obtain Estimated Times of Arrival (ETA) for the
different flight phases. These enhancements will
enable operation of the UAS in a wider set of cir-
cumstances and provide valuable time estimations
to the parties involved in its operation.

Acknowledgements This work has been partially funded
by the Ministry of Science and Education of Spain under
contract CICYT TIN 2010-18989.

The work presented in this paper has been performed
with support from the Innovative Studies Programme of
the EUROCONTROL Experimental Centre.

References

1. Flightgear Flight Simulator: http://www.flightgear.org.
Last visited: May 2011

2. ARINC: Navigation system database. ARINC
specification 424, 15 edn. Aeronautical Radio Inc.,
Annapolis, Maryland, USA (2000)

3. Avery, D.: The evolution of flight management sys-
tems. In: IEEE Software, pp. 11–13. IEEE (2011)

4. Barbier, M., Chanthery, E.: Autonomous mission man-
agement for unmanned aerial vehicles. Aerosp. Sci.
Technol. 8(4), 359–368 (2004). doi:10.1016/j.ast.2004.01.
003. http://www.sciencedirect.com/science/article/B6VK2-
4C5VMN4-1/2/3d5501e35d8ee30a3bf95a256bb3734b

5. Bendea, H., Boccardo, P., Dequal, S., Tonolo, F.G.,
Marenchino, D., Piras, M.: Low cost uav for post-
disaster assessment. In: Proceedings of The XXI
Congress of the International Society for Photogram-
metry and Remote Sensing (2008)

6. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E.,
Yergeau, F., Cowan, J.: Extensible Markup Language
(XML) 1.1, 2nd edn. World Wide Web Consortium
(W3C) (2006). http://www.w3.org/TR/xml11/

7. Brisset, P., Drouin, A., Gorraz, M., Huard, P.S., Tyler,
J.: The paparazzi solution. MAV2006 (2006). http://
www.recherche.enac.fr/paparazzi/papers_2006/mav06_
paparazzi.pdf

8. Caveney, D., Sengupta, R.: Architecture and applica-
tion abstractions for multi-agent collaboration projects.
In: Proceedings of the 44th IEEE Conference on Deci-
sion and Control, and the European Control Confer-
ence (2005)

9. Chao, H., Cao, Y., Chen, Y.: Autopilots for small
fixed-wing unmanned air vehicles: a survey. In: Inter-
national Conference on Mechatronics and Automa-
tion (ICMA), pp. 3144–3149. IEEE, Harbin, China
(2007)

10. Cloud Cap Technology: Piccolo user’s guide v2.1.2
(2011). http://www.cloudcaptech.com/download/Piccolo/
User%20and%20Integration%20Guides/Version%202.
1.2/Piccolo%20User%27s%20Guide.pdf

11. Erdos, D., Watkins, S.: Uav autopilot integration and
testing. In: Region 5 Conference, 2008 IEEE, pp. 1–6,
(2008). doi:10.1109/TPSD.2008.4562731

12. FAA: Aeronautical information manual, official guide
to basic flight information and ATC procedures. Fed-
eral Aviation Administration. U.S. Department of
Transportation (2008)

13. Farrell, S.M., Jacques, D.R.: Waypoint generation
based on sensor aimpoint. In: European Micro Air
Vehicle 2009 Conference (2009). http://www.emav09.
org/EMAV-final-papers/paper_58.pdf

http://www.flightgear.org
http://dx.doi.org/10.1016/j.ast.2004.01.003
http://dx.doi.org/10.1016/j.ast.2004.01.003
http://www.sciencedirect.com/science/article/B6VK2-4C5VMN4-1/2/3d5501e35d8ee30a3bf95a256bb3734b
http://www.sciencedirect.com/science/article/B6VK2-4C5VMN4-1/2/3d5501e35d8ee30a3bf95a256bb3734b
http://www.w3.org/TR/xml11/
http://www.recherche.enac.fr/paparazzi/papers_2006/mav06_paparazzi.pdf
http://www.recherche.enac.fr/paparazzi/papers_2006/mav06_paparazzi.pdf
http://www.recherche.enac.fr/paparazzi/papers_2006/mav06_paparazzi.pdf
http://www.cloudcaptech.com/download/Piccolo/User%20and%20Integration%20Guides/Version%202.1.2/Piccolo%20User%27s%20Guide.pdf
http://www.cloudcaptech.com/download/Piccolo/User%20and%20Integration%20Guides/Version%202.1.2/Piccolo%20User%27s%20Guide.pdf
http://www.cloudcaptech.com/download/Piccolo/User%20and%20Integration%20Guides/Version%202.1.2/Piccolo%20User%27s%20Guide.pdf
http://dx.doi.org/10.1109/TPSD.2008.4562731
http://www.emav09.org/EMAV-final-papers/paper_58.pdf
http://www.emav09.org/EMAV-final-papers/paper_58.pdf

J Intell Robot Syst (2012) 67:155–181 181

14. Federal Aviation Administration: U.S. Department
of Transportation: Aviation System Standards. Flight
Inspetion Operations Group. Flight Inspetion Hand-
book. TI 8200.52 (2007)

15. Herndon, A.A., Cramer, M., Sprong, K.: Analysis
of advanced flight management systems (fms), flight
management computer (fmc) field observations trials,
radius-to-fix path terminators. In: IEEE Digital Avion-
ics Systems Conference. IEEE (2008)

16. ICAO: Manual on Testing of Radio Navigation Aids,
doc. 8071, 4th edn. (2000)

17. ICAO: Procedures for Air Navigation Services - Air-
craft Operations (PANS-OPS), vol. I, , 5th edn. Flight
Procedures. International Civil Aviation Organisation,
Montreal, Canada (2006). Doc. 8168

18. Lopez-Leones, J., Vilaplana, M., Gallo, E., Navarro,
F., Querejeta, C.: The aircraft intent description lan-
guage: a key enabler for air-ground synchronization
in trajectory-based operations. In: Digital Avionics
Systems Conference, 2007. DASC ’07. IEEE/AIAA
26th, pp. 1.D.4–1–1.D.4–12, (2007). doi:10.1109/DASC.
2007.4391836

19. López, J., Royo, P., Barrado, C., Pastor, E.: Apply-
ing marea middleware to uas communications. In:
Proceedings of the AIAA Infotech@Aerospace
Conference and AIAA Unmanned Unlimited
Conference 2009. Seattle, Washington, USA
(2009)

20. Mcmanus, M.I.A., Clothier, M.R., Rodney, D., Walker,
A.: Highly autonomous UAV mission planning and
piloting for civilian airspace operations. In: AIAC-
11 Eleventh Australian International Aerospace
Congress, 2005 (2005)

21. MicroPilot: Mp2028 series autopilots. http://www.
micropilot.com/products-mp2028-autopilots.htm. Last
visited: May 2011

22. Miller, J.A., Minear, P.D., Niessner, A.F., Delullo,
A.M., Geiger, B.R., Long, L.N., Horn, J.F.: Intelli-
gent unmanned air vehicle flight systems. In: AIAA
InfoTech@Aerospace Conference (2005)

23. Murata, T.: Petri nets: properties, analysis and applica-
tions. Proc. IEEE 77(4), 541–580 (1989). doi:10.1109/
5.24143

24. NATO Research and Technology Organisation: Flight
testing of radio navigation systems (les Essais en vol
des systès de radionavigation) (2000)

25. Osborne, J., Rysdyk, R.: Waypoint guidance for small
uavs in wind. In: Proceedings of the IEEE Confer-
ence on Decision and Control, pp. 709–714. IEEE
(2006)

26. Pastor, E., López, J., Royo, P.: UAV payload and
mission control hardware/software architecture. IEEE
Aerosp. Electron. Syst. Mag. 22(6), 3–8 (2007). doi:10.
1109/MAES.2007.384074

27. Pastor, E., Royo, P., Santamaria, E., Prats, X.,
Barrado, C.: In-flight contingency management for
unmanned aerial vehicles. In: Proceedings of the
AIAA Unmanned...Unlimited Conference. AIAA,
Seattle, Washington, USA (2009). http://hdl.handle.
net/2117/6849

28. Prats, X., Santamaria, E., Delgado, L., Trillo, N.,
Pastor, E.: Enabling leg-based guidance on top of
waypoint-based autopilots for UAS. Aerosp. Sci. Tech-
nol. (2011). doi:10.1016/j.ast.2011.09.006. http://www.
sciencedirect.com/science/article/pii/S1270963811001477
Available online 24 Sept 2011, ISSN 1270-9638

29. Procerus Technologies: Kestrel user guide. Procerus
Technologies, version 2.0 edn. (2008). http://www.
procerusuav.com/Downloads/Manuals/Kestrel_User_
Guide.pdf

30. Ramírez, J., Barrado, C., Pastor, E.: A proposal for
using UAS in radio navigation aids flight inspection.
In: Proceedings of the 47th AIAA Aerospace Sciences
Meeting. AIAA, Orlando, Florida, USA (2009)

31. Royo, P., López, J., Pastor, E., Barrado, C.: Service
abstraction layer for UAV flexible application devel-
opment. In: Proceedings of the 46th AIAA Aerospace
Sciences Meeting and Exhibit. AIAA, Reno, Nevada,
USA (2008)

32. Santamaria, E.: Formal mission specification and ex-
ecution mechanisms for unmanned aircraft systems.
Ph.D. thesis, Technical University of Catalonia (UPC),
Castelldefels, Catalonia, Spain (2010)

33. Santamaria, E., Barrado, C., Pastor, E., Royo, P.,
Salami, E.: Reconfigurable automated behavior for
UAS applications. Aerosp. Sci. Technol. (2011).
doi:10.1016/j.ast.2011.09.005. http://www.sciencedirect.
com/science/article/pii/S1270963811001465. Available
online 24 Sept 2011, ISSN 1270-9638

34. Santamaria, E., Pérez-Batlle, M., Ramírez, J.,
Barrado, C., Pastor, E.: Mission formalism for
UAS based navaid flight inspections. In: Proceedings
of the 9th AIAA Aviation Technology, Integration,
and Operations (ATIO) Conference. AIAA, Hilton
Head, South Carolina, USA (2009)

35. Watts, A.C., Perry, J.H., Smith, S.E., Burgess, M.A.,
Wilkinson, B.E., Szantoi, Z., Ifju, P.G., Percival, H.F.:
Small unmanned aircraft systems for low-altitude aer-
ial surveys. J. Wildl. Manage. 74(7), 1614–1619 (2010).
doi:10.2193/2009-425

http://dx.doi.org/10.1109/DASC.2007.4391836
http://dx.doi.org/10.1109/DASC.2007.4391836
http://www.micropilot.com/products-mp2028-autopilots.htm
http://www.micropilot.com/products-mp2028-autopilots.htm
http://dx.doi.org/10.1109/5.24143
http://dx.doi.org/10.1109/5.24143
http://dx.doi.org/10.1109/MAES.2007.384074
http://dx.doi.org/10.1109/MAES.2007.384074
http://hdl.handle.net/2117/6849
http://hdl.handle.net/2117/6849
http://dx.doi.org/10.1016/j.ast.2011.09.006
http://www.sciencedirect.com/science/article/pii/S1270963811001477
http://www.sciencedirect.com/science/article/pii/S1270963811001477
http://www.procerusuav.com/Downloads/Manuals/Kestrel_User_Guide.pdf
http://www.procerusuav.com/Downloads/Manuals/Kestrel_User_Guide.pdf
http://www.procerusuav.com/Downloads/Manuals/Kestrel_User_Guide.pdf
http://dx.doi.org/10.1016/j.ast.2011.09.005
http://www.sciencedirect.com/science/article/pii/S1270963811001465
http://www.sciencedirect.com/science/article/pii/S1270963811001465
http://dx.doi.org/10.2193/2009-425

	Flight Plan Specification and Management for Unmanned Aircraft Systems
	Abstract
	Introduction
	Related Work
	System Architecture
	USAL Services

	Flight Plan Specification Language
	Flight Plan Document Structure
	Stages
	Legs
	Basic Legs
	Iterative Legs
	Intersection Legs
	Parametric Legs

	Conditions
	Flight Plan Updates

	Flight Plan Management
	FPM Service Capabilities
	Waypoint Generation

	Simulation Results
	Navaids Flight Inspection Mission
	Inspection Procedures
	Flight Plan Specification
	Results of the Simulation

	Conclusion
	References

