
Border Algorithms for Computing

Hasse Diagrams of Arbitrary Lattices�

José L. Balcázar and Cristina Tı̂rnăucă

Departamento de Matemáticas, Estad́ıstica y Computación
Universidad de Cantabria

Santander, Spain
{joseluis.balcazar,cristina.tirnauca}@unican.es

Abstract. The Border algorithm and the iPred algorithm find the Hasse
diagrams of FCA lattices. We show that they can be generalized to ar-
bitrary lattices. In the case of iPred, this requires the identification of a
join-semilattice homomorphism into a distributive lattice.

Keywords: Lattices, Hasse diagrams, border algorithms.

1 Introduction

Lattices are mathematical structures with many applications in computer sci-
ence; among these, we are interested in fields like data mining, machine learning,
or knowledge discovery in databases. One well-established use of lattice theory is
in formal concept analysis (FCA) [8], where the concept lattice with its diagram
graph allows the visualization and summarization of data in a more concise repre-
sentation. In the Data Mining community, the same mathematical notions (often
under additional “frequency” constraints that bound from below the size of the
support set) are studied under the banner of Closed-Set Mining (see e.g. [21]).

In these applications, each dataset consists of transactions, also called objects,
each of which, besides having received a unique identifier, consists of a set of
items or attributes taken from a previously agreed finite set. A concept is a pair
formed by a set of transactions —the extent set or support set of the concept—
and a set of attributes —the intent set of the concept— defined as the set
of all those attributes that are shared by all the transactions present in the
extent. Some data analysis processes are based on the family of all intents (the
“closures” stemming from the dataset); but others require to determine also their
order relation, which is a finite lattice, in the form of a line graph (the Hasse
diagram).

Existing algorithms can be divided into three main types: the ones that only
generate the set of concepts, the ones that first generate the set of concepts
� This work has been partially supported by project FORMALISM (TIN2007-

66523) of Programa Nacional de Investigación, Ministerio de Ciencia e Innovación
(MICINN), Spain, by the Juan de la Cierva contract JCI-2009-04626 of the same
ministry, and by the Pascal-2 Network of the European Union.

P. Valtchev and R. Jäschke (Eds.): ICFCA 2011, LNAI 6628, pp. 49–64, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41766685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

50 J.L. Balcázar and C. T̂ırnăucă

and then construct the Hasse diagram, and the ones that construct the diagram
while computing the lattice elements (see [21], and also [9,12] and the references
therein). The goal is to obtain the concept lattice in linear time in the number
of concepts because this number is, most of the times, already exponential in
the number of attributes, making the task of getting polynomial algorithms in
the size of the input rather impossible.

One widespread use of concepts or closures is the generation of implications
or of partial implications (also called association rules). Several data mining al-
gorithms aim at processing large datasets in time linear in the size of the closure
space, and explore closed sets individually; these solutions tend to drown the
user under a deluge of partial implications. More sophisticated works attempt
at providing selected “bases” of partial implications; the early proposal in [13]
requires to compute immediate predecessors, that is, the Hasse diagram. Alterna-
tive proposals such as the Essential Rules of [1] or the equivalent Representative
Rules of [11] (of which a detailed discussion with new characterizations and an
alternative basis proposal appears in [6]) require to process predecessors of closed
sets obeying tightly certain support inequalities; these algorithms also benefit
from the Hasse diagram, as the slow alternatives are blind repeated traversal of
the closed sets in time quadratic in the size of the closure space, or storage of
all predecessors of each closed set, which soon becomes large enough to impose
a considerable penalty on the running times.

The problem of constructing the Hasse diagram of an arbitrary finite lattice is
less studied. One algorithm that has a better worst case complexity than various
previous works is described in [16]. From our “arbitrary lattices” perspective,
its main drawback is that it requires the availability of a basis from which each
element of the lattice can be derived. In the absence of such a subset, one may
still use this algorithm (at a greater computational cost) to output the Dedekind-
MacNeille completion [7] of the given lattice, which in our case is isomorphic to
the lattice itself. The algorithm is also easily adaptable to concept lattices, where
indeed a basis is available immediately from the dataset transactions.

We consider of interest to have available further, faster algorithms for arbi-
trary finite lattices; we have two reasons for this aim. First, many (although not
all) algorithms constructing Hasse diagrams traverse concepts in layers defined
by the size of the intents; our explorations about association rules sometimes
require to follow different orderings, so that a more abstract approach is helpful;
second, we keep in mind the application area corresponding to certain variants
of implications and database dependencies that are characterized by lattices of
equivalence relations, so that we are interested in laying a strong foundation
that gives us a clear picture of the applicability requirements for each algorithm
constructing Hasse diagrams in lattices other than powerset sublattices.

Of course, we expect that FCA-oriented algorithms could be a good source
of inspiration for the design of algorithms applicable in the general case. An
example that such an extension can be done is the algorithm in [20] (see Section
3 for more details), whose highest-level description matches the general case
of arbitrary lattices; nevertheless, the actual implementation described in [20]

Border Algorithms for Computing Hasse Diagrams of Arbitrary Lattices 51

works strictly for formal concept lattices, so that further implementations and
complexity analyses are not readily available for arbitrary finite lattices.

The contribution of the present paper supports the same idea: we show how
two existing algorithms that build the Hasse diagrams of a concept lattice can
be adapted to work for arbitrary lattices. Both algorithms have in common the
notion of border, which we (re-)define and formalize in Section 3, after presenting
some preliminary notions about lattice theory in Section 2; our approach has the
specific interest that the notion of border is given just in terms of the ordering
relation, and not in terms of a set of elements already processed as in previous
references ([5,14,20]); yet, the notions are equivalent. We state and prove prop-
erties of borders and describe the Generalized Border Algorithm; whereas the
algorithm reads, in high level, exactly as in previous references, its validation is
new, as previous ones depended on the lattice being an FCA lattice. In Section
4 we introduce the Generalized iPred Algorithm, exporting the iPred algorithm
of FCA lattices [5] to arbitrary lattices, after arguing its correctness. This task
is far from trivial and is our major contribution, since the existing rendering and
validation of the iPred algorithm relies again extensively on the fact that it is
being applied to an FCA lattice, and even performs operations on difference sets
that may not belong to the closure space. Concluding remarks and future work
ideas are presented in Section 5.

2 Preliminaries

We develop all our work in terms of lattices and semilattices; see [7] as main
source. All our structures are finite. A lattice is a partially ordered set in which
every nonempty subset has a meet (greatest lower bound) and a join (lowest
upper bound). If only one of these two operations is guaranteed to be available a
priori, we speak of a join-semilattice or a meet-semilattice as convenient. Top and
bottom elements are denoted � and ⊥, respectively. Lower case letters, possibly
with primes, and taken usually from the end of the latin alphabet denote lattice
elements: x, y′. Note that Galois connections are not explicitly present in this
paper, so that the “prime” notation does not refer to the operations of Galois
connections.

Finite semilattices can be extended into lattices by addition of at most one
further element [7]; for instance, if (L,≤,∨) is a join-semilattice with bottom
element ⊥, one can define a meet operation as follows:

∧
X =

∨{y ∣
∣ ∀x ∈ X,y ≤

x}; the element ⊥ ensures that this set is nonempty. Thus, if the join-semilattice
lacks a bottom element, it suffices to add an “artificial” one to obtain a lattice.
A dual process is obviously possible in meet-semilattices.

Given two join-semilattices (S,∨) and (T,∨), a homomorphism is a function
f : S → T such that f(x∨ y) = f(x)∨ f(y). Hence f is just a homomorphism of
the two semigroups associated with the two semilattices. If S and T both include
a bottom element ⊥, then f should also be a monoid homomorphism, i.e. we
additionally require that f(⊥) = ⊥. Homomorphisms of meet-semilattices and
of lattices are defined similarly. It is easy to check that x ≤ y ⇒ f(x) ≤ f(y) for

52 J.L. Balcázar and C. T̂ırnăucă

�

1 2 3

⊥

(a)

�

1 2

4

3

⊥

(b)

Fig. 1. Two join-semilattices converted into lattices

any homomorphism f ; the converse implication, thus the equivalence x ≤ y ⇔
f(x) ≤ f(y), is also true for injective f but not guaranteed in general.

We must point out here a simple but crucial fact that plays a role in our
later developments: given a homomorphism f between two join-semilattices S
and T , if we extend both into lattices as just indicated, then f is not necessarily
a lattice homomorphism; for instance, there could be elements of T that do not
belong to the image set of f , and they may become meets of subsets of T in a
way that prevents them to be the image of the corresponding meet of S. For one
specific example, see Figure 1: consider the two join-semilattices defined by the
solid lines, where the numbering defines an injective homomorphism from the
join-semilattice in (a) to the join-semilattice in (b). Both lack a bottom element.
Upon adding it, as indicated by the broken lines, in lattice (a) the meets of 1
and 2 and of 1 and 3 coincide, but the meets of their corresponding images in
(b) do not; for this reason, the homomorphism cannot be extended to the whole
lattices.

However, the following does hold:

Lemma 1. Consider two join-semilattices S and T , and let f : S → T be a
homomorphism. After extending both semilattices into lattices, f(

∧
Y) ≤ ∧

f(Y)
for all Y ⊆ S.

This is immediate to see by considering that
∧

Y ≤ y for all y ∈ Y , hence
f(

∧
Y) ≤ f(y) for all such y, and the claimed inequality follows.

We employ x < y as the usual shorthand: x ≤ y and x �= y. We denote as
x ≺ y the fact that x is an immediate predecessor of y in L, that is, x < y and,
for all z, x < z ≤ y implies z = y (equivalently, x ≤ z < y implies x = z).

We focus on algorithms that have access to an underlying finite lattice L of
size |L| = n, with ordering denoted ≤; abusing language slightly, we denote by
L as well its carrier set. The width w(L) of the lattice L is the maximum size
of an antichain (a subset of L formed by pairwise incomparable elements). The
lattice is assumed to be available for our algorithms in the form of an abstract

Border Algorithms for Computing Hasse Diagrams of Arbitrary Lattices 53

data type offering an iterator that traverses all the elements of the carrier set,
together with the operations of testing for the ordering (given x, y ∈ L, find out
whether x ≤ y) and computing the meet x ∧ y and join x ∨ y of x, y ∈ L; also
the constants � ∈ L and ⊥ ∈ L are assumed available.

The algorithms we consider are to perform the task of constructing explicitly
the Hasse diagram (also known as the reflexive and transitive reduction) of the
given lattice: H(L) = {(x, y)

∣
∣ x ≺ y}. By projecting the Hasse diagram along

the first or the second component we find our crucial ingredients: the well-known
upper and lower covers.

Definition 1. The upper cover of x ∈ L is uc(x) = {y ∣
∣ x ≺ y}. The lower

cover of y ∈ L is lc(y) = {x ∣
∣ x ≺ y}.

The following immediate fact is stated separately just for purposes of easy later
reference:

Proposition 1. If x < y then there is z ∈ uc(x) such that x ≺ z ≤ y; and there
is z′ ∈ lc(y) such that x ≤ z′ ≺ y.

We will use as well yet another easy technicality:

Lemma 2. If x1 ≺ y and x2 ≺ y, with x1 �= x2 then x1 ∨ x2 = y.

Proof. Since y ≥ x1 and y ≥ x2 we have y ≥ x1 ∨ x2. Then, x1 �= x2 implies
that they are mutually incomparable, since otherwise the smallest is not an
immediate predecessor of y; this implies that y ≥ x1∨x2 > x1, whence y = x1∨x2

as x1 ≺ y. ��

3 The Border Algorithm in Lattices

The algorithms we are considering here have in common the fact that they
traverse the lattice and explicitly maintain a subset of the elements seen so far:
those that still might be used to identify new Hasse edges. This subset is known
as the “border” and, as it evolves during the traversal, actually each element
x ∈ L “gets its own border” associated as the algorithm reaches it. The border
associated to an element may be potentially used to construct new edges touching
it (although these edges may not touch the border elements themselves): more
precisely, operations on the border for x will result in uc(x), hence in the Hasse
edges of the form (x, z).

In previous references the border is defined in terms of the elements already
processed, and its properties are mixed with those of the algorithm that uses
it. Instead, we study axiomatically the properties of the notion of “border” on
itself, always as a function of the element for which the border will be considered
as a source of Hasse edges, in a manner that is independent of the fact that
one is traversing the lattice. This allows us to clarify which abstract properties
are necessary for border-based algorithms, so that we can generalize them to
arbitrary lattices, traversed in flexible ways. Our key definition is, therefore:

54 J.L. Balcázar and C. T̂ırnăucă

Definition 2. Given x ∈ L and B ⊆ L, B is a border for x if the following
properties hold:

1. ∀y ∈ B (y �≤ x);
2. ∀z (x ≺ z ⇒ ∃y ∈ B (y ≤ z)).

That is, x is never above an element of a border, but each upper cover of x
is; this last condition is equivalent to: all elements strictly above x are greater
than or equal to some element of the border. Since x ≤ (x∨ y) always holds and
x = (x ∨ y) if and only if y ≤ x, we get:

Lemma 3. Let B be a border for x. Then ∀y ∈ B (x < x ∨ y).

All our borders will fulfill an extra “antichain” condition; the only use to be
made of this fact is to bound the size of every border by the width of the lattice.

Definition 3. A border B is proper if every two different elements of B are
mutually incomparable.

The key property of borders, that shows how to extract Hasse edges from them,
is the following:

Theorem 1. Let B be a border for x0. For all x1 with x0 < x1, the following
are equivalent:

1. x1 ∈ uc(x0) (that is, x0 ≺ x1);
2. there is y ∈ B such that x1 = (x0∨y) and, for all z ∈ B, if (x0∨z) ≤ (x0∨y)

then (x0 ∨ z) = (x0 ∨ y).

Proof. Given x0 ≺ x1, we can apply the second condition in the definition of
border for x0: ∃y ∈ B (y ≤ x1). Using Lemma 3, x0 < (x0 ∨ y) ≤ x1, implying
(x0 ∨ y) = x1 since x0 ≺ x1. Additionally, assuming (x0 ∨ z) ≤ (x0 ∨ y) for some
z ∈ B leads likewise to x0 < (x0 ∨ z) ≤ (x0 ∨ y) = x1 and the same property
applies to obtain (x0 ∨ z) = (x0 ∨ y) = x1.

Conversely, again Lemma 3 gives x0 < (x0 ∨ y) = x1. By Proposition 1,
there is z0 ∈ uc(x0) with x0 ≺ z0 ≤ (x0 ∨ y) = x1. We apply the second
condition of borders to x0 ≺ z0 to obtain z1 ∈ B with z1 ≤ z0, whence (x0 ∨
z1) ≤ z0 ≤ (x0 ∨ y) = x1, allowing us to apply the hypothesis of this direction:
(x0 ∨ z1) ≤ (x0 ∨ y) with z1 ∈ B implies (x0 ∨ z1) = (x0 ∨ y) and, therefore,
(x0 ∨ z1) = z0 = (x0 ∨ y) = x1. That is, x1 = z0 ∈ uc(x0). ��

Therefore, given an arbitrary element x0 of the lattice, any candidate for being
an element of its upper cover has to be obtainable as a join between x0 and a
border element (x1 = x0∨y for some y ∈ B). Moreover, among these candidates,
only those that are minimals represent immediate successors: they come from
those y where (x0 ∨ z) ≤ (x0 ∨ y) implies (x0 ∨ z) = (x0 ∨ y), for all z ∈ B.

Border Algorithms for Computing Hasse Diagrams of Arbitrary Lattices 55

3.1 Advancing Borders

There is a naturally intuitive operation on borders; if we have a border B for x,
and we use it to compute the upper cover of x, then we do not need B as such
anymore; to update it, seeing that we no longer need to forbid the membership of
x, it is natural to consider adding x to the border. If we had a proper border, and
we wished to preserve the antichain property, the elements to be removed would
be exactly the upper cover just computed, as these are, as we argue below, the
only elements comparable to x that could be in a proper border. (All elements
other than x are mutually incomparable, as the border was proper to start with.)

Definition 4. Given x ∈ L and a border B for x, the standard step for B and
x is B ∪ {x} − uc(x).

Note that this is not to say that uc(x) ⊆ B; elements of uc(x) may or may
not appear in B. We will apply the standard step always when B is a border
for x, but let us point out that the definition would be also valid without this
constraint, as it consists of just some set-theoretic operations.

Proposition 2. Let B be a proper border for x. Then the standard step for B
and x is also an antichain.

Proof. Elements of the standard step different from x and from all elements of
uc(x) were already in the previous proper border and are, therefore, mutually
incomparable. None of them is below x, by the first border property. If y > x
for some y ∈ B, then y ≥ z � x for some z ∈ B, and the antichain property of
B tells us that y = z so that it gets removed with uc(x). ��
However, we are left with the problem that we have now a candidate border but
we lack the lattice element for which it is intended to be a border. In [14] and [5],
the algorithm moves on to an intent set of the same cardinality as x, whenever
possible, and to as small as possible a larger intent set if all intents of the same
cardinality are exhausted. In [20] it is shown that, for their variant of the Border
algorithm, it suffices to follow a (reversed) linear embedding of the lattice. Here
we follow this more flexible approach, which is easier now that we have stated
the necessary properties of borders with no reference to the order of traversal:
there is no need of considering intent sets and their cardinalities.

Both lattices and their Hasse diagrams can be seen as directed acyclic graphs,
by orienting the inequalities in either direction; here we choose to visualize edges
(x, y) as corresponding to x ≤ y. A linear embedding corresponds to the well-
known operation of topological sort of directed acyclic graphs, which we will
employ for lattices in a “reversed” way:

Definition 5. A reverse topological sort of L is a total ordering x1, . . . , xn of L
such that xi ≤ xj always implies j ≤ i.

All our development could be performed with a standard topological sort, not
reversed, that is, a linear embedding of the lattice’s partial order. However,

56 J.L. Balcázar and C. T̂ırnăucă

as it is customary in FCA to guide the visualization through the comparison
of extents, the algorithms we build on were developed with a sort of “built-in
reversal” that we inherit through reversing the topological sort (see the similar
discussion in Section 2.1 of [5]). A reversed topological sort must start with �,
hence the initialization is easy:

Proposition 3. B = ∅ is a border for � ∈ L.

Proof. Both conditions in the definition of border become vacuously true: the
first one as B = ∅ and the second one as the top element has no upper covers. ��
Theorem 2. Let x1, . . . , xn be a reverse topological sort of L. Starting with
B1 = ∅, define inductively Bk+1 as the standard step for Bk and xk. Then, for
each k, Bk is a border for xk.

For clarity, we factor off the proof of the following inductive technical fact, where
we use the same notation as in the previous statement.

Lemma 4. Bk ⊆ {x1, . . . , xk−1} and, for all xj with j < k, there is y ∈ Bk

with y ≤ xj.

Proof. For k = 1, the statements are vacuously true. Assume it true for k,
and consider Bk+1 = Bk ∪ {xk} − uc(xk), the standard step for Bk and xk.
The first statement is clearly true. For the second, xk is itself in Bk+1 and, for
the rest, inductively, there is y ∈ Bk with y ≤ xj . We consider two cases; if
y /∈ uc(xk), then the same y remains in Bk+1; otherwise, xk ≺ y ≤ xj , and xk is
the corresponding new y in Bk+1. ��
Proof (of Theorem 2). Again by induction on k; we see that the basis is Propo-
sition 3. Assuming that Bk is a border for xk, we consider Bk+1 = Bk ∪ {xk} −
uc(xk). Applying the lemma, Bk+1 ⊆ {x1, . . . , xk}, which ensures immediately
that ∀y ∈ Bk+1 (y �≤ xk+1) by the property of the reverse topological sort, and
the first condition of borders follows. For the second, pick any z ∈ uc(xk+1);
by the condition of reverse topological sort, z, being a strictly larger element
than xk+1, must appear earlier than it, so that z = xj with j < k + 1. Then,
again the lemma tells us immediately that there is y ∈ Bk+1 with y ≤ xj = z,
as we need to complete the proof. ��

3.2 The Generalized Border Algorithm

The algorithm we end up validating through our theorems has almost the same
high-level description as the rendering in [5]; the most conspicuous differences
are: first, that a reverse topological sort is used to initialize the traversal of the
lattice; and, second, that the “reversed lattice” model in [5] has the consequence
that their set-theoretic intersection in computing candidates becomes a lattice
join in our generalization. Another minor difference is that Proposition 3 spares
us the separate handling of the first element of the lattice.

Border Algorithms for Computing Hasse Diagrams of Arbitrary Lattices 57

RevTopSort(L);
B = ∅;
H = ∅;
for x in L, according to the sort do

candidates = {x ∨ y
∣
∣ y ∈ B};

cover = minimals(candidates);
for z in cover do add (x, z) to H ;
B = B ∪ {x} − cover;

end

Algorithm 1. The Generalized Border Algorithm

Theorem 2 and Proposition 3 tell us that the following invariant is maintained:
B is a border for x. Then, the Hasse edges are computed and added to H
according to Theorem 1, in two steps: first, we prepare the list of joins x∨y and,
then, we keep only the minimal elements in it. In essence, this process is the same
as described (in somewhat different renderings) in [5], [14] or [20]; however, while
the definition of border given in [20] (and recalled in [5]) leads, eventually, to the
same notion employed in this paper, further development of a general algorithm
that works outside the formal concept analysis framework is dropped off from
[20] on efficiency considerations. Moreover, the border algorithm described in
[14] works exclusively on the set of intents and assumes the elements are sorted
sizewise. The validations of the algorithms in these references rely very much,
at some points, on the fact that the lattice is a sublattice of a powerset and
contains formal concepts, explicitly operating set-theoretically on their intents.
Theorem 1 captures the essence of the notion of border and lifts the algorithm
to arbitrary lattices.

One additional difference comes from the fact that the cost of computing
the meet and join operations plays a role in the complexity analysis, but is
not available in the general case. If we assume that meet and join operations
take constant time, then the total running time of the algorithm (except for the
sort initialization, which takes O(|L| log |L|)) is bounded by O(|L|w(L)2). By
comparison with [20], one can see that one factor of the formula given in [20]
gets dropped under the constant time assumption for computing meet and join.
However, this assumption may be unreasonable in certain applications; the same
reference indicates that their FCA target case requires a considerable amount
of graph search for the same operations. Nevertheless, in absence of further
information about the specific lattice at hand, it is not possible to provide a
finer analysis.

We must point out that, in our implementation, we have employed a heapsort-
based version that keeps providing us the next element to handle by means of
an iterator, instead of completing the sorting step for the initialization.

4 Distributivity and the iPred Algorithm

In [5], an extra sophistication is introduced that, as demonstrated both formally
in the complexity analysis of the algorithm and also practically, leads to a faster

58 J.L. Balcázar and C. T̂ırnăucă

algorithm; namely, if some further information is maintained along, once the
candidates are available there is a constant-time test to pick those that are in
the cover, by employing the duality y ∈ uc(x) ⇔ x ∈ lc(y) ⇔ x ≺ y. Constant
time also suffices to maintain the additional information. This gives the iPred
algorithm. However, it seems that the unavoidable price is to work on formal
concepts, as the extra information is heavily set-theoretic (namely, a union of
set differences of previously found cover sets for the candidate under study).

Again we show that a fully abstract, lattice-theoretic interpretation exists,
and we show that the essential property that allows for the algorithm to work is
distributivity: be it due to a distributive L, or, as in fact happens in iPred, due
to the embedding of the lattice into a distributive lattice, in the same way as
concept lattices (possibly nondistributive) can be embedded in the distributive
powerset lattice.

We start treating the simplest case, of very limited usefulness in itself but good
as stepping stone towards the next theorem. The property where distributivity
can be applied later, if available, is as follows:

Proposition 4. Consider two comparable elements, x < z, from L; let Y ⊆
lc(z) be the set of lower covers of z that show up in the reverse topological sort
before x (it could be empty). Then, x ∈ lc(z) if and only if

∧
y∈Y (x ∨ y) ≥ z.

Proof. Applying Proposition 1, we know that there is some y ∈ lc(z) such that
x ≤ y ≺ z. Any such y, if different from x, must appear before x in the reverse
topological sort.

Suppose first that no lower covers of z appear before x, that is, Y = ∅.
Then, no such y different from x can exist; we have that both x = y ≺ z and∧

y∈Y (x ∨ y) = � ≥ z trivially hold.
In case Y is nonempty, assume first x ≺ z; we can apply Lemma 2: x ∨ y = z

for every y ∈ Y , hence
∧

y∈Y (x∨y) = z. To argue the converse, assume x /∈ lc(z)
and let x ≤ y′ ≺ z as before, where we know further that x �= y′: then y′ ∈ Y ,
so that

∧
y∈Y (x ∨ y) ≤ (x ∨ y′) = y′ < z. ��

This means that the test for minimality of Algorithm 1 can be replaced by
checking the indicated inequality; but it is unclear that we really save time, as
a number of joins have to be performed (between the current element x and all
the elements in the lower cover of the candidate z that appeared before x in
the reverse topological sort) and the meet of their results computed. However,
clearly, in distributive lattices the test can be rephrased in the following, more
convenient form:

Proposition 5. Assume L distributive. In the same conditions as in the previ-
ous proposition, x is in the lower cover of z if and only if x ∨ (

∧
y∈Y y) ≥ z.

This last version of the test is algorithmically useful: as we keep identifying ele-
ments Y = {y1, . . . , ym} of lc(z), we can maintain the value of y =

∧
i∈{1,...,m} yi;

then, we can test a candidate z by computing x ∨ y and comparing this value
to z. Afterwards, we update y to y ∧ x if x = ym+1 is indeed in the cover. This
may save the loop that tests for minimality at a small price.

Border Algorithms for Computing Hasse Diagrams of Arbitrary Lattices 59

However, unfortunately, if the lattice is not distributive, this faster test may
fail: given Y ⊆ lc(z), the cover elements found so far along the reverse topological
sort, it is always true that x is in the lower cover of z if x∨(

∧
y∈Y y) ≥ z, because

z ≤ x∨(
∧

y∈Y y) ≤ ∧
y∈Y (x∨y) and, then, one of the directions of Proposition 4

applies; but the converse does not hold in general. Again an example is furnished
by Figure 1(a), one of the basic, standard examples of a small nondistributive
lattice; assume that the traversal follows the natural ordering of the labels, and
consider what happens after seeing that 1 and 2 are indeed lower covers of z = �.
Upon considering x = 3, we have Y = {1, 2}, so that x∨ (

∧
Y) = x∨⊥ = x < z,

yet x is a lower cover of z and, in fact,
∧

y∈Y (x ∨ y) = (3 ∨ 1) ∧ (3 ∨ 2) = �.
Hence, the distributivity condition is necessary for the correctness of the faster
test.

4.1 The Generalized iPred Algorithm

The aim of this subsection is to show the main contribution of this paper: we can
spare the loop that tests candidates for minimality in an indirect way, whenever
a distributive lattice is available where we can embed L. However, we must
be careful in how the embedding is performed: the right tool is an injective
homomorphism of join-semilattices. Recall that, often, this will not be a lattice
morphism. Such an example is the identity morphism having as domain the
carrier set of a concept lattice L over the set of attributes X , and as range,
P(X) (see Section 5 for more details on this particular case).

Theorem 3. Let (L′,≤,∨) be a distributive join-semilattice and f : L → L′ an
injective homomorphism. Consider two comparable elements, x < z, from L; let
Y ⊆ lc(z) be the set of lower covers of z that show up in the reverse topological
sort before x.Then, x ≺ z if and only if f(x) ∨ (

∧
y∈Y f(y)) ≥ f(z).

Proof. If Y = ∅ we have x ≺ z as in Proposition 4; for this case,
∧

y∈Y f(y) = �
(of L′) and f(x) ∨ (

∧
y∈Y f(y)) = f(x) ∨� = � ≥ f(z).

For the case where Y �= ∅, assume first x ≺ z and apply Proposition 4: we have
that

∧
y∈Y (x ∨ y) ≥ z whence f(

∧
y∈Y (x ∨ y)) ≥ f(z). By Lemma 1, we obtain

f(z) ≤ f(
∧

y∈Y (x∨y)) ≤ ∧
y∈Y f(x∨y) =

∧
y∈Y (f(x)∨f(y)) = f(x)∨∧

y∈Y f(y),
where we have applied that f commutes with join and that L′ is distributive.

For the converse, arguing along the same lines as in Proposition 4, assume
x /∈ lc(z) and let x ≤ y′ ≺ z with x �= y′ so that y′ ∈ Y : necessarily

∧
y∈Y f(y) ≤

f(y′), so that f(x) ∨ (
∧

y∈Y f(y)) ≤ f(x) ∨ f(y′) = f(x ∨ y′) = f(y′) < f(z),
where the last step makes use of injectiveness. ��
The generalized iPred algorithm is based on this theorem, which proves it correct.
In it, the homomorphism f is assumed available, and table LC keeps, for each
z, the meet of the f(x)’s for all the lower covers x of z seen so far.

60 J.L. Balcázar and C. T̂ırnăucă

RevTopSort(L);
B = ∅;
H = ∅;
for x in L, according to the sort do

LC[x] = �;
candidates = {x ∨ y

∣
∣ y ∈ B};

for z in candidates do
if f(x) ∨ LC[z] ≥ f(z) then

add (x, z) to H ;
LC[z] = LC[z] ∧ f(x);
B = B − {z};

end
end
B = B ∪ {x};

end

Algorithm 2. The Generalized iPred Algorithm

In the Appendix below, we provide some example runs for further clarifica-
tion. Regarding the time complexity, again we lack information about the cost of
meets, joins, and comparisons in both lattices, and also about the cost of com-
puting the homomorphism. Assuming constant time for these operations, the
running time of the generalized iPred algorithm is O(|L|w(L)) (plus sorting):
the main loop (line 4-15) is repeated |L| times, and then for each of the at most
w(L) candidates, the algorithm checks if a certain condition is met (in constant
time) and updates the diagram and the border in the positive case.

If meets and joins do not take constant time, there is little to say at this level
of generality; however, for the particular case of the original iPred, which only
works for lattices of formal concepts, see [5]: in the running time analysis there,
one extra factor appears since the meet operation (corresponding to a set union
plus a closure operation) is not guaranteed to work in constant time.

5 Conclusions and Future Work

We have provided a formal framework for the task of computing Hasse diagrams
of arbitrary lattices through the notion of “border associated with a lattice
element”. Although the concept of border itself is not new, our approach provides
a different, more “axiomatic” point of view that facilitates considerably the
application of this notion to algorithms that construct Hasse diagrams outside
the formal concept analysis world.

While Algorithm 1 is a clear, straightforward generalization of the Border
algorithm of [20,5] (although the correctness proof is far less straightforward),
we consider that we should explain further in what sense the iPred algorithm
comes out as a particular case of Algorithm 2. In fact, the iPred algorithm uses
set-theoretic operations and, therefore, is operating with sets that do not belong
to the closure space: effectively, it has moved out of the concept lattice into the

Border Algorithms for Computing Hasse Diagrams of Arbitrary Lattices 61

(distributive) powerset lattice. Starting from a concept lattice (L,≤,∨,∧) on a
set X of attributes, we can define:

– x ≤ y ⇔ x ⊇ y
– x ∨ y := x ∩ y
– x ∧ y :=

∨{z ∈ L ∣
∣ z ≤ x, z ≤ y} =

⋂{z ∈ L ∣
∣ z ⊇ x, z ⊇ y}

– � := ∅,⊥ := X

Thus, L is a join-subsemilattice of the (reversed) powerset on X , and we can
define f : L → P(X) as the identity function: it is injective, and it is a join-
homomorphism since L, being a concept lattice, is closed under set-theoretic
intersection. Therefore, Theorem 3 can be translated to: x ∈ lc(z) if and only if
x ∩ (

⋃
y∈Y y) ⊆ z, where Y is the set of lower covers of z already found; this is

fully equivalent to the condition behind algorithm iPred of [5] (see Proposition
1 on page 169 in [5]). Additionally, iPred works on one specific topological sort,
where all intents of the same cardinality appear together; our generalization
shows that this is not necessary: any linear embedding suffices.

A further application we have in mind refers to various forms of implica-
tion known as multivalued dependency clauses [17,18]; in [2,3,4], these clauses
are shown to be related to partition lattices in a similar way as implications
are related to concept lattices through the Guigues-Duquenne basis ([8,10]); fur-
ther, certain database dependencies (the degenerate multivalued dependencies of
[17,18]) are related to these clauses in the same way as functional dependencies
correspond to implications. Data Mining algorithms that extract multivalued
dependencies do exist [19] but we believe that alternative ones can be designed
using Hasse diagrams of the corresponding partition lattices or related structures
like split set lattices [2]. The task is not immediate, as functional and degen-
erate multivalued dependencies are of the so-called “equality-generating” sort
but full-fledged multivalued dependencies are of the so-called “tuple-generating”
sort, and their connection to lattices is more sophisticated (see [2]); but we still
hope that further work along this lattice-theoretic approach to Hasse diagrams
would allow us to create a novel application to multivalued dependency mining.

Appendix: Examples

We exemplify here some runs of iPred, for the sake of clarity. First we see how
it operates on the lattice in Figure 1(a), denoted L here, using as f the injective
homomorphism into the distributive lattice of Figure 1(b) provided by the labels.
The run is reported in Table 1, where we can see that we identify the respective
upper covers of each of the lattice elements in turn. The linear order is assumed
to be (�, 1, 2, 3,⊥). Only the last loop has more than one candidate, in fact
three. The snapshots of the values of B, H , and LC reported in each row (except
the initialization) are taken at the end of the corresponding loop, so that each
reported value of B is a border for the next row. In the Hasse edges H , thin
lines represent edges that are yet to be found, and thick lines represent the edges

62 J.L. Balcázar and C. T̂ırnăucă

Table 1. Example run of the iPred algorithm using the lattices in Figure 1

L B H cand LC[�] LC[1] LC[2] LC[3] LC[⊥]

init ∅
� {�} ∅ �
1 {1} {�} 1 �
2 {1, 2} {�} 4 � �
3 {1, 2, 3} {�} ⊥ � � �
⊥ ∅ {1, 2, 3} ⊥ ⊥ ⊥ ⊥ �

�

1 2

34

⊥

Fig. 2. A distributive lattice

Table 2. Example run of the iPred algorithm on the lattice in Figure 2

L B H cand LC[�] LC[1] LC[2] LC[3] LC[4] LC[⊥]

init ∅
� {�} ∅ �
1 {1} {�} 1 �
2 {1, 2} {�} 4 � �
3 {1, 3} {�, 2} 4 � 3 �
4 {3, 4} {1, 2} 4 4 ⊥ � �
⊥ ∅ {3, 4} 4 ⊥ ⊥ ⊥ ⊥ �

found so far. Recall that the values of LC are actually elements of the distributive
lattice of Figure 1(b), and not from L.

All along the run we can see that LC[z] indeed maintains the meet of the set
of predecessors found so far for f(z) in the distributive embedding lattice; of
course, this meet is � whenever the set is empty.

Let us compare with the run on the distributive lattice in Figure 2, where the
homomorphism f is now the identity. Observe that the only different Hasse edge

Border Algorithms for Computing Hasse Diagrams of Arbitrary Lattices 63

is the one above 3 which now goes to 2 instead of going to �. Again the linear
sort follows the order of the labels.

Due to the similarity among the Hasse diagrams, the run of generalized iPred
on this lattice starts exactly like the one already given, up to the point where
node 3 is being processed. At that point, 2 is candidate and will indeed create
an edge, but 1 leads to candidate 1∨3 = � for which the test fails, as LC[�] = 4
at that point, and 3 ∨ 4 = 2 < �. Hence, this candidate has no effect. After
this, the visits to 4 and ⊥ complete the Hasse diagram with their corresponding
upper covers.

References

1. Aggarwal, C.C., Yu, P.S.: A new approach to online generation of association rules.
IEEE Transactions on Knowledge and Data Engineering 13(4), 527–540 (2001)

2. Baixeries, J.: Lattice Characterization of Armstrong and Symmetric Dependencies.
Ph.D. thesis, Universitat Politècnica de Catalunya (2007)

3. Baixeries, J.: A formal context for symmetric dependencies. In: Medina and Obied-
kov [15], pp. 90–105

4. Baixeries, J., Balcázar, J.L.: Unified characterization of symmetric dependencies
with lattices. In: Ganter, B., Kwuida, L. (eds.) Contributions to the 4th Inter-
national Conference on Formal Concept Analysis (ICFCA). Verlag Allgemeine
Wissensch (2006)

5. Baixeries, J., Szathmary, L., Valtchev, P., Godin, R.: Yet a faster algorithm for
building the Hasse diagram of a concept lattice. In: Ferré, S., Rudolph, S. (eds.)
ICFCA 2009. LNCS, vol. 5548, pp. 162–177. Springer, Heidelberg (2009)

6. Balcázar, J.L.: Redundancy, deduction schemes, and minimum-size bases for asso-
ciation rules. Logical Methods in Computer Science 6(2:3), 1–33 (2010)

7. Davey, B., Priestley, H.: Introduction to Lattices and Orders, 2nd edn. Cambridge
University Press, Cambridge (1991)

8. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg (1999)

9. Godin, R., Missaoui, R., Alaoui, H.: Incremental concept formation algorithms
based on Galois (concept) lattices. Computational Intelligence 11, 246–267 (1995)

10. Guigues, J., Duquenne, V.: Familles minimales d’implications informatives résul-
tant d’un tableau de données binaires. Mathématiques et Sciences Humaines 95,
5–18 (1986)

11. Kryszkiewicz, M.: Representative association rules. In:Wu,X., Ramamohanarao, K.,
Korb, K.B. (eds.) PAKDD 1998. LNCS (LNAI), vol. 1394, pp. 198–209. Springer,
Heidelberg (1998)

12. Kuznetsov, S.O., Obiedkov, S.A.: Algorithms for the construction of concept lat-
tices and their diagram graphs. In: Raedt, L.D., Siebes, A. (eds.) PKDD 2001.
LNCS (LNAI), vol. 2168, pp. 289–300. Springer, Heidelberg (2001)

13. Luxenburger, M.: Implications partielles dans un contexte. Mathématiques et Sci-
ences Humaines 29, 35–55 (1991)

14. Martin, B., Eklund, P.W.: From concepts to concept lattice: A border algorithm
for making covers explicit. In: Medina and Obiedkov [15], pp. 78–89

15. Medina, R., Obiedkov, S. (eds.): ICFCA 2008. LNCS (LNAI), vol. 4933. Springer,
Heidelberg (2008)

64 J.L. Balcázar and C. T̂ırnăucă

16. Nourine, L., Raynaud, O.: A fast algorithm for building lattices. Information
Processing Letters 71(5-6), 199–204 (1999)

17. Sagiv, Y., Delobel, C., Parker Jr., D.S., Fagin, R.: An equivalence between rela-
tional database dependencies and a fragment of propositional logic. Journal of the
ACM 28(3), 435–453 (1981)

18. Sagiv, Y., Delobel, C., Parker Jr., D.S., Fagin, R.: Correction to “An equivalence
between relational database dependencies and a fragment of propositional logic”.
Journal of the ACM 34(4), 1016–1018 (1987)

19. Savnik, I., Flach, P.A.: Discovery of multivalued dependencies from relations. In-
telligent Data Analysis 4(3-4), 195–211 (2000)

20. Valtchev, P., Missaoui, R., Lebrun, P.: A fast algorithm for building the Hasse
diagram of a Galois lattice. In: Leroux, P. (ed.) Publications du LaCIM,
pp. 293–306 (2000)

21. Zaki, M.J., Hsiao, C.J.: Efficient algorithms for mining closed itemsets and their
lattice structure. IEEE Transactions on Knowledge and Data Engineering 17(4),
462–478 (2005)

	Border Algorithms for Computing Hasse Diagrams of Arbitrary Lattices
	Introduction
	Preliminaries
	The Border Algorithm in Lattices
	Advancing Borders
	The Generalized Border Algorithm

	Distributivity and the iPred Algorithm
	The Generalized iPred Algorithm

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

