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Definition of the viral targets of protective HIV-1-specific T cell responses 
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ABSTRACT   

Background: The efficacy of the CTL component of a future HIV-1 vaccine will depend on the 

induction of responses with the most potent antiviral activity and broad HLA class I restriction. 

However, current HIV vaccine designs are largely based on viral sequence alignments only, not 

incorporating experimental data on T cell function and specificity.  

Methods: Here, 950 untreated HIV-1 clade B or -C infected individuals were tested for responses 

to sets of 410 overlapping peptides (OLP) spanning the entire HIV-1 proteome. For each OLP, a 

“protective ratio” (PR) was calculated as the ratio of median viral loads (VL) between OLP non-

responders and responders.  

Results: For both clades, there was a negative relationship between the PR and the entropy of the 

OLP sequence. There was also a significant additive effect of multiple responses to beneficial 

OLP. Responses to beneficial OLP were of significantly higher functional avidity than responses 

to non-beneficial OLP.  They also had superior in-vitro antiviral activities and, importantly, were 

at least as predictive of individuals’ viral loads than their HLA class I genotypes.  

Conclusions: The data thus identify immunogen sequence candidates for HIV and provide an 

approach for T cell immunogen design applicable to other viral infections.  

 

Keywords: HIV specific CTL, clade B, clade C, HLA, vaccine immunogen design, functional 

avidity, epitope, entropy, immune correlate.    
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BACKGROUND 

HIV-1 infection induces strong and broadly directed HLA class I restricted T cell responses for 

which specific epitopes and restricting HLA class I alleles have been associated with relative in 

vivo viral control [1]. The bulk of the anti-viral CTL response appears to be disproportionately 

HLA-B restricted, but the relative contribution of targeted viral regions and restricting HLA 

molecules on the effectiveness of these responses remains unclear [2-5].  In addition, the impact 

of HIV-1 sequence diversity on the effectiveness of virus-specific T cell immunity in vivo is 

unclear, as functional constraints of escape variants, codon-usage at individual protein positions, 

T cell receptor (TCR) plasticity and functional avidity and cross-reactivity potential may all 

contribute to the overall antiviral activity of a specific T cell response [6-13]. Of note, T cell 

responses to Gag have most consistently been associated with reduced viral loads in both clade B 

and clade C infected cohorts [14-16]; however, the specific regions in Gag responsible for this 

effective control remain poorly defined.  In addition, it is unclear whether the relative benefit of 

Gag is due to any other specific characteristic of this protein, such as rapid antigen-

representation upon infection, protein expression levels, amino acid composition and/or 

inherently greater processability and immunogenicity, particularly in the context of selected 

HLA class I alleles [17, 18]. Thus, concerns remain that a purely Gag-based vaccine might 

mainly benefit those people with a particular HLA genotype and will not take advantage of 

potentially beneficial targets outside of Gag [4, 16, 17, 19].  In addition, CTL escape and viral 

fitness studies have focused largely on Gag-derived epitopes presented in the context of 

protective HLA class I alleles such as HLA-B27 and –B57 [7, 20, 21], yielding results that may 

not be generalizable to the genetically diverse majority of the human population. Furthermore, 

many studies have focused on immunodominant targets only, despite some studies in HIV-1 and 
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SIV infection demonstrating a crucial contribution of sub-dominant responses to targets outside 

of Gag to the effective in-vivo viral control [4, 22]. Thus, the current view on what may 

constitute a protective cellular immune response to HIV-1 is likely biased towards a 

immunodominant responses and those restricted by frequent HLA class I alleles and HLA alleles 

associated with superior disease outcome.  

 

To overcome these potential limitations, the design of an effective and broadly applicable 

HIV-1 vaccine should to be based on information gained through comprehensive analyses that 

extend across large portions of the population’s HLA class I heterogeneity. Here we focus on 

three cohorts totaling more than 950 untreated, chronically HIV-1 infected individuals with clade 

B and C infections, from which responses to certain regions of the viral genome and specific T 

cell response patterns emerge as correlates of viral control. Importantly, the analyses identify 

functional properties unique to these responses and control for the impact of HLA class I alleles 

known to be associated with superior control of HIV-1 infection, thus providing vaccine 

immunogen sequence candidates with potential usefulness in a broadly applicable HIV-1 

vaccine. 
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METHODS 

 

Cohorts: A HIV clade B infected cohort of 223 chronically infected, treatment naïve individuals 

was recruited and tested at IMPACTA in Lima, Peru. The majority (78%) of enrollees were male 

and all recruited individuals considered themselves to be of a mixed Amerindian ethnicity [14]. 

The cohort had a median viral load 37,237 copies/ml (range <50->750,000) and a median CD4 

count of 385 cell/ul (range170-1151). A second clade B infected cohort was established at the 

HIV-1 outpatient clinic “Lluita contra la SIDA” at Hospital Germans Trias i Pujol in Badalona 

(Barcelona, Spain) consisting of 48 treatment-naïve subjects with viral loads below 10,000 and 

CD4 cell counts >350 cells/mm3 (“controllers”, n=24) or above 50,000 copies/ml and CD4 cell 

counts <350 cells/mm3 (“non-controllers”, n=24). The HIV-1 clade C infected cohort has been 

described in the past and consisted of 631 treatment naïve South African with a median viral load 

of 37,900 copies/ml (range <50 - >750,000) and a median CD4 count of 393 cells/ul (range 1-

1378) [16]. An additional 78 from a recently published cohort in Boston were included in the 

analyses of functional avidities [23-29].  HLA typing was performed as previously described 

using SSP-PCR[30]. For Hepitope and FASS analyses, 4digit typing was used for the Lima 

cohort and 2-digit typing for the Durban cohort. Protocols were approved in Lima by the 

IMPACTA Human Research Committee, in Durban by the Ethical Committee of the Nelson R. 

Mandela School of Medicine at the University of KwaZulu-Natal and in Barcelona by the 

Human Research Committee at Hospital Germans Trias i Pujol. All subjects provided written 

informed consent.  
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Peptide test set and ELISpot assay:  Previously described peptide sets matching HLA-clade B 

and C consensus sequences were used in all experiments for which the OLP-specific entropies 

have been calculated in the past, based on available sequence datasets [31-33] and 

(http://www.hiv.lanl.gov/content/immunology/hlatem/index.html). The peptides were clade-

specific sets of adapted 18mers, overlapping by 11 residues designed using the PeptGen tool 

available at the Los Alamos HIV database 

(http://www.hiv.lanl.gov/content/sequence/PEPTGEN/peptgen.html). The individual OLP in the 

peptide sets for clade B and clade C had all the same starting and ending position relative to the 

source protein and follow the same numbering across the entire viral proteome for both clades. 

Peripheral blood mononuclear cells (PBMCs) were separated from whole blood by density 

centrifugation and used directly to test for CD8+ T cell responses in vitro. IFN- ELISpot assays 

were performed as described previously, using Mabtech antibodies (Mabtech, Stockholm, 

Sweden) and a matrix format that allowed simultaneous testing of all 410 overlapping (OLP) 

peptides in the respective test set [14]. Thresholds for positive responses were defined as: 

exceeding 5 spots (50 SFC/106) per well and exceeding the mean of negative wells plus 3 

standard deviation or three times the mean of negative wells, whichever was higher.  Stimulation 

with PHA was used as a positive control in all ELISpot assays.  

 

Definition of functional avidity: Responses targeting 18mer OLP in HIV-1 Gag p24 were 

assessed for their functional avidity using OLP-specific sets of 10mer peptides overlapping by 9 

residues that span the 18mer peptide sequence. Functional avidity was defined as the peptide 

concentration needed to elicit half maximal response rates in the ELISpot assay and was 

calculated as a sigmoidal dose response curve fit using GraphPad Prism software [13]. 
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In vitro viral replication inhibition assay:  A double mutant virus containing a Nef M20A and 

Integrase G140S/Q148H Raltegravir (integrase inhibitor) resistance mutations was tested for 

replication in CD4 T cells in the presence or absence of autologous T cell lines targeting 

protective or non-protective OLP. Use of the Raltegravir-resistant virus allows to prevent 

potential replication of autologous virus in the inhibition assays [28], excludes potential negative 

impacts on antigen processing or CTL functions attributed to protease inhibitors [34] and avoids 

overlap between the resistance mutations sites (i.e. G140S/Q148H) and location of beneficial and 

non-beneficial OLP sequences. In brief, the p83-10 plasmid containing mutations for a 

methionine to alanine substitution at position 20 of the Nef protein and the p83-2 plasmid 

engineered to contain the G140S and Q148H mutations in the integrase were combined to 

produce a virus that is replication competent, highly resistant to Raltegravir and does not 

downregulate HLA class I in infected cells [35, 36]. Although not entirely physiological, this 

approach was chosen to potentially increase the signal in the in vitro inhibition assay, even when 

responses were restricted by Nef-sensitive HLA class I alleles. Plasmids were co-transfected into 

MT4 cells and virus was harvested after 7 days [35, 37, 38]. Autologous CD4 cells were 

enriched by magnetic beads isolation (Miltenyi) and expanded for 3 days using a bi-specific anti-

CD3/8 antibody and IL-2 containing medium (50 IU r-IL2) before infecting them at 

multiplicities of infection (MOI) between 0.01 and 1. Effector cells were obtained by stimulating 

PBMC with either beneficial or non-beneficial OLP for 12 days before isolating specific OLP-

reactive cells by IFN- capture assay according to manufacturers’ instructions (Miltenyi, 

Bergisch Gladbach, Germany). The effector T cells were analyzed by flow cytometry for the 

specificity to their respective targets after capture assay and quantified to adjust effector-to-target 
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ratios. Since the NL4-3 backbone sequence differed in several positions in beneficial and non-

beneficial OLP, the epitope specificity was predicted based on the HLA class I genotype of the 

tested individual and responses confirmed to efficiently recognize variant sequences in the NL4-

3 backbone sequence. Culture supernatant was harvested and replaced by Raltegravir containing 

medium 0.05µg/ml after 72 h.  Levels of Gagp24 in the culture supernatant were determined by 

ELISA as described [39].  

 

Statistical Analyses: Statistical analyses were performed using Prism Version 5 and R Statistical 

Language [40]. Results are presented as median values unless otherwise stated.  Tests included 

ANOVA, non-parametric Mann-Whitney test (two-tailed) and Spearman rank test.  The 

significance of differences in viral load distribution between OLP-responders and OLP-non-

responders was assessed by a two-sided Student’s T Test with multiple tests addressed using, 

instead of a Bonferroni correction, a q-value approach to compensate for multiple comparisons 

[39]. The multivariate analysis was based on a novel multivariate combined regression method 

known as FASS, a forward selection method combined with all-subsets regression [41-43]. 
Briefly, the FASS approach works by iteratively performing the following procedure:  Let 'V' be 

the set of all variables and 'M' be the set of variables included in a model. In the first step, those 

variables that are not already in the model are divided into equal-sized blocks of variables (the 

last block may have less than 'g' variables). Then, for each block of variables, 'm' is a new 

estimated and evaluated model using the Bayesian Information Criterion (BIC). The best model 

'm' according to its BIC is retained and the procedure starts all over again until in one step or 

more the model is not improved. 
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RESULTS 

 

HIV-1-specific T cell responses targeting conserved regions are associated with lower viral 

loads:  In a first analysis, HIV-1-specific T cell responses were assessed in a cohort of 223 HIV-

1 clade B infected individuals recruited in Lima, Peru using IFNg ELISpot assays and a 

previously described set of 410 clade B overlapping peptides (OLP) [14, 31]. For each OLP, a 

protective ratio (PR) was calculated as the ratio of the median viral loads between OLP non-

responders and OLP responders, such that OLP with PR>1 were reflective of OLP 

predominantly targeted by individuals with reduced viral loads. OLP-specific PR were a) 

compared between OLP spanning the different viral proteins and b) correlated with the viral 

sequence heterogeneity in the region covered by the OLP. The data showed highest median PR 

values for OLP spanning the Gag protein sequence, whereas Nef, Env and Tat had the lowest 

median PR values (Figure 1A, p < 0.0001, ANOVA). A protein-subunit-breakdown of PR values 

showed the p15 subunit of Gag and RT in Pol to score less favorable than the remainder of the 

respective proteins (Figure 1B, p=0.0032 and p=0.0025, respectively). While these data confirm 

the association between HIV-1 Gag-specific responses and lower viral loads, it is important to 

note that all proteins contained OLP with PR>1, suggesting that some beneficial responses can 

be located outside of Gag; data that has not emerged from any of the previous studies linking 

Gag responses to relative viral control. At the same time, all proteins contained OLP with PR<1, 

indicating that proteins considered overall beneficial may contain non-beneficial regions as well. 

In addition, when the OLP-specific PR was compared to the sequence entropy of the region 

spanned by the individual OLP, a significant negative correlation between PR and entropy was 

observed (p=0.0028, r=-0.15; Figure 1C). Although rarely targeted OLP may have introduced 
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statistically less robust data points in this comparison and caused a wide scatter of data points, 

the results show a relative absence of OLP with high entropy and high PR values, suggesting that 

responses to more variable regions are less effective in mediating in vivo viral control.   

 

To assess whether the above observations would also hold true outside of clade B infection, 

the same analyses were conducted in a cohort of 631 clade C HIV-1 infected subjects enrolled in 

Durban, South Africa and tested for responses against a clade C consensus OLP sequence as 

described previously [33]. As in clade B infection, the OLP specific PR values were highest for 

OLP spanning Gag without any significant differences between the Gag and Pol protein subunits 

(Figure 1D and 1E). As in the clade B cohort, the PR values were negatively correlated with the 

OLP-specific entropy (p=0.0323, Figure 1F), confirming the findings in the clade B cohort and 

further pointing towards the importance of targeting conserved segments of the viral proteome 

for effective in vivo viral control. 

 

Identification of individual beneficial OLP sequences in clade B and C infection:  In order to 

identify individual OLP that were significantly more frequently targeted in individuals with 

relative viral control and to compare the beneficial OLP in clade B and C infection, the viral load 

distribution in OLP-responders and non-responders was analyzed individually for each OLP.  

For the clade B cohort in Peru, the analyses yielded 43 OLP sequences for which the median 

viral load differed between the two groups with an uncorrected p-value of <0.05.  Of these 43 

OLP, 26 were OLP with a PR >1 (referred to as “beneficial” OLP), and 17 OLP with a PR <1 

(“non-beneficial” OLP, Table 1). The distribution of OLP with PR>1 among viral proteins was 

biased towards Gag and Pol, while Env produced exclusively OLP with PR<1 (Figure 2A).   
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The same analyses were repeated for the clade C cohort in Durban, which due to its larger size 

allowed to apply more stringent statistical criteria to identify beneficial and non-beneficial OLP. 

To compensate for multiple statistical comparisons, we employed a previously described false-

discovery rate approach [39], resulting in the identification of 33 clade C OLP with q-values of 

<0.2 (i.e. OLP with significantly different viral load distributions between OLP-responders and 

non-responders with a false positive discovery rate (q-value) of 20%). The 33 OLP identified 

were comprised of 22 beneficial OLP and 11 non-beneficial OLP, with the beneficial OLP being 

again located in Gag, Pol and Vif, similar to what was seen in the clade B cohort (Figure 2B).  

 

In both cohorts, the total breadth and magnitude of responses did not correlate with viral loads as 

reported for parts of these cohorts in the past [14, 16]. The OLP with significant differences in 

median viral loads (43 OLP in clade B and 33 OLP in clade C, Tables 1 and 2, respectively, i.e. 

“scoring OLP”), were more often targeted in their respective cohort than OLP that did not score 

with a significant difference in viral loads (p=0.0015 Lima; p<0.0001 Durban). However, 

beneficial and non-beneficial OLP were equally frequently targeted in either cohort. Also, there 

was no difference in the median magnitude of the OLP-specific responses, regardless whether it 

was a beneficial, non-beneficial or not-scoring OLP (all p>0.7, data not shown). Finally, there 

was no correlation between the number of total OLP responses (against all 410 OLP) and the 

magnitude of responses to beneficial OLP in either cohort, indicating that the strength of 

beneficial OLP responses was not diminished by other responses to the rest of the viral 

proteome. 
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In the clade B cohort, the 26 beneficial and 17 non-beneficial OLP showed a significant 

difference in their median entropy (p=0.0327, Figure 2C), in line with the overall negative 

association between higher PR and lower sequence entropy seen in the comprehensive screening 

including the entire 410 OLP set (Figure 1C). While this comparison was not significant in clade 

C infection, a detailed look at Gag showed that beneficial Gag clade C OLP had a lower entropy 

values than the rest of the Gag OLP, suggesting that targeting of the most conserved regions 

even in Gag provided particular benefits for viral control (Figure 2D, p=0.0172). These 

beneficial OLP were also more frequently targeted (median of 36 responders) compared to the 

rest of Gag OLP (median 12 responders, p=0.0099), likely reflecting the high epitope density in 

these regions [33, 44].   

 

Finally, the two cohorts showed a partial overlap in the targeted beneficial and non-beneficial 

OLP, despite the vastly different HLA genetics in these two populations [4, 31, 45, 46]. As Gag 

was enriched in beneficial OLP scattered throughout the entire protein sequence, we used the 

available reverse transcriptase (RT) protein structure to assess whether beneficial responses were 

targeting structurally related regions of the protein, even though the linear position of beneficial 

OLP did not precisely match between the two clades. Indeed, superimposing the locations of 

beneficial OLP in the RT protein indicates that in both clades, beneficial OLP fell in structurally 

related domains of the RT protein (Figure 2E and 2F). This suggests that despite differences in 

response patterns between ethnicities and clades, viruses from both clades may be vulnerable to 

responses targeting the same structural regions of at least some of their viral proteins.  
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Increased breadth of responses against beneficial OLP is associated with decreasing viral 

loads, independent of Gag-specificity or the presence of protective HLA class I alleles: To 

assess whether individuals targeting more than one beneficial OLP profit from a greater breadth 

of responses to these targets, subjects in both cohorts were stratified by the number of responses 

to beneficial OLP and their viral loads compared. In both cohorts, negative correlations between 

the number of responses to beneficial OLP and viral loads were observed (p<0.0001, r=-0.33 for 

Lima; p<0.0001, r=0.-25 for Durban; data not shown), suggesting that there is a cumulative 

benefit of responses to these particularly effective targets. Similarly, when individuals in the 

clade C cohort were grouped based on mounting 1-2, 3-4 or five and more beneficial OLP 

responses, a gradual reduction in median viral loads was seen. This reduction was close to 20-

fold when 5 or more of the 22 beneficial OLP were targeted (median viral load 5,210 copies/ml) 

compared to individuals without a response (98,800 copies/ml, Figure 3A). Importantly, this 

observation was not driven only by individuals expressing HLA class I alleles associated with 

relative control of viral replication (including HLA-B27, -B57, -B*5801, -B63 and -B81) as their 

exclusion still showed a strong association between increased breadth of responses to beneficial 

OLP and a gradual suppression of viremia (Fig 3B). This was further supported when translating 

the clade B data from Peru to a second clade B infected cohort in Barcelona, Spain where HIV-1 

controllers also mounted a significantly greater proportion of their responses to the beneficial 

Peruvian OLP compared to the HIV-1 non-controllers (61% vs. 29%, p=0.0011; Figure 3C); this 

despite the fact that the Barcelona cohort was genetically different and excluded individuals 

expressing HLA-B27, -B57, -B58 and B63. Thus, despite the frequent targeting of Gag and the 

inclusion of individuals expressing HLA alleles such as HLA-B*5701 and –B*5801 in the two 

larger clade B and C cohorts, the present data identify regions of the viral genome that serve as 
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the targets of an effective host T cell response, largely independent of the presence of HLA 

alleles known to influence HIV-1 viral replication.  

 

 

PR-values are mediated by individuals with broad HLA heterogeneity: To further assess the 

contribution of specific HLA class I alleles on the PR of individual OLP, the statistically 

significant OLP in the clade C cohort were further analyzed. In a first step, median viral loads in 

the OLP-responder and non-responder groups were compared after excluding individuals with 

specific HLA class I alleles. If the statistical significance of the comparison was lost, the 

excluded HLA class I allele was assumed to have significantly contributed to the initially 

observed elevated or reduced PR value and to restrict a potential CTL epitope in that OLP.  In a 

second step, a “Hepitope” analyses (http://www.hiv.lanl.gov/content/immunology/hepitopes) 

was conducted to identify HLA class I alleles overrepresented in the OLP responder group; 

providing an alternative approach to identify specific epitopes that may contribute to relative 

viral control. Together, the two strategies permit to estimate the HLA diversity in the OLP 

responders and to identify the most likely alleles that restrict the epitope-specific responses to the 

OLP. Both are important measures when determining the relative usefulness of a selected 

beneficial OLP in a potential immunogen sequence as it should provide broad HLA coverage. 

The data from these analyses are summarized for beneficial and non-beneficial OLP in Table 3A 

and 3B, respectively. The results demonstrate that with a few exceptions, for each OLP, several 

HLA alleles appeared to be mediating the observed effects as their removal caused the statistical 

significance to be lost.  However, for the most frequent HLA class I alleles, the loss of 

significance may be due to a reduction in sample size rather than the actual allele, since the 
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exclusion of many allele carriers could reduce the number of OLP responders (and non-

responders) sufficiently to lose statistical power.  The “Hepitope” analysis controlled for this 

effect and confirmed the obtained results, strongly indicating that responses to beneficial OLP 

were mediated by responder populations with heterogeneous HLA allele distributions.  

 

Effects of T cell specificity on in vivo viral load are at least as strong as those associated 

with host HLA genetics: To assess whether specific response patterns and/or HLA 

combinations could be identified that mediated synergistic or superior control of viral infection 

in clades B and C, multivariate combined regression analysis was conducted on either OLP only, 

HLA only or the combination of OLP and HLA variables [41-43]. The OLP-only analysis for 

Lima identified 7 OLP of which 4 were associated with lower median viral loads and 3 with 

increases in viral loads, respectively (Table 4). Targeting at least one of these beneficial clade B 

OLP was associated with significantly reduced viral loads (median 11,079 copies/ml) compared 

to the subjects who did not target any of these four OLP (median 52,178 copies/ml; p<0.0001, 

Figure 4A).  As seen in the univariate analysis (Figure 2C), the four beneficial OLP emerging 

from the Lima FASS analysis were more conserved than the rest of the OLP (median entropy 

0.0759 vs. 0.1649, p=0.0267) or the three non-beneficial OLP (0.0759 vs. 0.1228, p=0.0571, data 

not shown). In contrast to OLP-only FASS analysis, only one HLA allele (HLA-C04) emerged 

from the HLA-only multivariate analysis. The analysis for the combined variables (OLP and 

HLA) controlled for the potential bias in this result due to more OLP variables (n=389) than 

HLA (n=146) being included in the statistical tests; yet still identified more OLP variables (n=9) 

than HLA class I alleles (n=3).  In addition, the relative co-efficients of these associations were 

stronger for the OLP than the HLA variables, suggesting that T cell specificity influenced viral 
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loads to at least the same degree as host HLA class I genetics. Of note, the identified OLP and 

HLA variables did not reflect responses to known optimal CTL epitopes, as none of the OLP 

contained described epitope(s) restricted by any of the identified HLA alleles [44].  

 

Results from the clade C cohort in Durban confirmed the clade B findings in Lima as the 

FASS analyses identified 16 OLP but only 8 HLA variables that had an impact on the individual 

viral loads. As in Lima, the impact of OLP specificity was at least as strong than HLA genotype 

(trend for higher coefficients for OLP than HLA; data not shown, p>0.05). In addition, targeting 

at least one of the eight beneficial OLP in Durban was associated with strongly reduced viral 

loads (p<0.0001, Figure 4B). This effect was, as in the univariate analysis, additive for more than 

one response (p<0.0001, Figure 4C) and included OLP that were, aside from Gag, located in Pol 

and Vif.  Also, the combined (OLP and HLA) analysis suggests the effect of OLP specificity on 

viral loads to be at least as strong as HLA genetics as 8 OLP and 7 HLA variables were 

identified.  This especially since among the 7 HLA alleles, two (HLA-B57 and HLA-A74) are 

expressed in linkage disequilibrium [47], further reducing the number of HLA variables with a 

significant impact on viral loads.  

 

 

Responses to beneficial OLP are of higher functional avidity and suppress viral replication 

in vitro more effective than responses to non-beneficial OLP: Functional avidity and the 

ability to suppress in vitro viral replication have emerged as two potentially crucial parameters of 

an effective CTL response against HIV-1 [23-29]. To assess this potential functional 

characteristic of beneficial CTL populations, we determined the functional avidity of responses 
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to the four beneficial OLP located in Gag p24, a region that has been most consistently 

associated with eliciting relatively protective CTL responses. As 18mer peptides are suboptimal 

test peptides to determine functional avidity, 10mer overlapping peptide sets were synthesized to 

cover the four beneficial OLP and all detected responses were titrated. The SD50% was 

determined for a comparable numbers of responses detected in controllers (n= 21 responses) and 

non-controllers (n= 24 responses) and showed a statistically significant difference between the 

two groups (median 3,448 ng/ml vs. 25,924 ng/ml, p = 0.0051, Figure 5A).  This reduced avidity 

in HIV non-controllers to beneficial OLP could possibly explain why HIV-1 non-controllers did 

not control their in vivo viral replication despite targeting these regions in some instances and 

with responses of comparable magnitude as HIV controllers (278 SFC vs 305 SFC/106 PBMC, 

p= 0.55, data not shown).  

 

To more directly assess whether responses to beneficial OLP were of particularly high functional 

avidity, regardless of HIV controller status, we determined SD50% of responses to 17 optimal 

epitopes from beneficial, neutral and non-beneficial OLP (Figure 5B). Median epitope-specific 

SD50% were determined from an average of 7 titrations per epitope and compared to the OLP 

specific PR. A strongly significant, negative association between the PR and the SD50% was 

noted (p=0.002, r=-0.69), indicating that beneficial OLP are targeted by high-avidity responses. 

To control for inter-individual differences due to disease status and viral load, we identified 10 

individuals who targeted optimal epitopes in beneficial and non-beneficial OLP and determined 

their functional avidity. As in the cross-sectional analysis before, this matched comparisons 

showed in all cases a higher functional avidity for the epitopes located in the beneficial OLP 

compared to the responses targeting non-beneficial OLP (Figure 5C, p=0.0020). Lastly, to relate 
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the higher functional avidity to potential superior anti-viral effects in vivo, the ability to inhibit in 

vitro viral replication was assessed in three individuals who mounted robust responses against 

both beneficial and non-beneficial OLP.  The in vitro inhibition assay first developed by Yang et 

al [48], was modified so that the NL4-3 based test virus contained a single nucleotide mutation in 

Nef (M20A) that blocks the Nef-mediated down-regulation of HLA class I molecules as well as 

two mutations in the integrase gene that mediate Raltegravir-resistance to permit the suppression 

of potentially replicating autologous virus in the assay. Indeed, CTL specific for the beneficial 

OLP(s) were up to 2 logs more effective inhibiting viral replication than CTL targeting non-

beneficial OLP (Figure 5D), in line with recent data demonstrating different suppressive ability 

of HIV-1 specific CTL populations targeting Gag and Env-derived epitopes [24]. Although the in 

vitro inhibition assays were limited to few individuals with suitable response patterns, these data 

together with the results from the extensive titration assays in Figure 5B and 5C indicate that 

responses to beneficial OLP are of particularly high functional avidity and inhibit in vitro viral 

replication more effectively than responses to non-beneficial OLP.  Of note, higher avidity 

responses to beneficial OLP compared to non-beneficial OLP were seen in all 10 tested 

individuals, ruling out that inter-individual variability in viral loads, duration of infection and 

HIV disease status could have biased the analyses.  
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CONCLUSIONS 

Defining functional correlates of HIV-1 immune control is critical to the design of effective 

immunogens. T cell responses to specific HIV-1 proteins and protein-subunits have been 

associated before with relatively superior viral control in vivo[14, 16, 49], but evidence from 

recent clinical trials suggests that including maximal immunogen content into various vectors 

does not necessarily induce more effective CTL responses [50, 51]. In fact, it has been argued 

that the existence of potential “decoy” epitopes may divert an effective CTL response towards 

variable and possibly less effective targets in the viral genome [52]. Thus, the definition of a 

minimal yet sufficient immunogen sequence that can elicit CTL responses in a broad HLA 

context is urgently needed. Thereby, focusing vaccine responses on conserved regions could help 

induce responses towards mutationally constrained targets and provide the basis for protection 

from heterologous viral challenge.   

 

We present here the results of an extensive analysis that included more than 950 HIV-1 

infected individuals with diverse HLA genotypes, from three different continents and including 

clade B and C infections.  In both, the analysis in clade B in Lima and clade C in Durban, 

individual OLP were identified that are predominantly targeted by individuals with reduced or 

elevated viral loads, although the different size of the cohorts required different statistical 

approaches for their identification. In general, most of these OLP were among the more frequent 

targets in the HIV proteome, possibly due to both, the need for sizable responder groups to 

achieve statistical significance in the viral loads comparison as well as the high epitope density 

in these OLP. The identified OLP were frequently located in HIV-1 Gag and Pol, but rarely in 

the more variable proteins such as Env and Nef.  With one exception, Nef and Env featured only 
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non-beneficial OLP, thus arguing against their inclusion, at least as full proteins, in a CTL 

immunogen sequence [16].  In addition, in both cohorts, the Vif protein yielded few, yet 

exclusively beneficial OLP, which may warrant a renewed look at the inclusion of regulatory 

proteins in vaccine design [53, 54]. Also common to both clades, (and despite the wide scatter 

possibly due to the inclusion of less-frequently targeted OLP), an negative correlation between 

sequence entropy and PR was observed providing strong rationale for vaccine approaches that 

focus on conserved viral regions where T cell escape may be complicated by structural 

constrains [55]. This was particularly evident in the clade C cohort, where even within the 

relatively conserved Gag protein, a lower entropy was seen for the beneficial OLP compared to 

the remainder of the OLP spanning the protein. On the other hand, while beneficial and non-

beneficial OLP showed a significant difference in their median entropy in the clade B cohort, this 

comparison was not significant in the clade C cohort. It is possible that the immunogen 

sequence, designed in 2001, did not optimally cover the circulating viral population in Durban 

throughout the enrollment period (until 2006), leading to missed responses particularly in the 

more variable segments of the virus [32, 56]. The study may have thus failed to identify 

beneficial as well as non-beneficial OLP in the more variable genes of HIV. This should have 

preferentially affected highly variable OLP due to a more frequent mismatch between autologous 

viral sequence and in vitro test set in these regions.  However, even if scoring as beneficial OLP, 

such high-entropy OLP may from an immunogen-design point of view be of less interest as they 

would possible contribute only little to protection from heterologous viral challenge. It needs 

however also to be considered that the OLP-specific entropy values are based on variable 

numbers of sequences in the Los Alamos HIV database covering the different OLP, introducing 

potential further bias into these analyses, particularly for less covered proteins such as Vpu and 
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other viral protein products. Such differences between autologous viral sequences and in vitro 

test sets may also have impacted the assessment of functional avidities. These determinations 

included responses in the same individual towards epitopes located in beneficial and non-

beneficial OLP; with the former overall being more conserved. Thus, the higher functional 

avidity towards epitopes located in beneficial OLP could be biased by the higher chance that 

these epitopes matched the autologous viral sequence compared to epitopes located in non-

beneficial OLP and which may thus have induced a more robust, avid response. Apart from 

covering autologous sequences, future studies will ideally also include comparable analyses in 

individuals identified and tested in acute infection that go on to control the infection at 

undetectable levels of viral replication (i.e. elite-controllers) so that the selective early emergence 

of responses to beneficial OLP could be linked to relative control of viral replication in chronic 

infection. As is, the identified beneficial responses may be particularly important to maintain low 

viral replication in chronic stages of infection, which in theory could be different (for instance 

due to more accelerated intra-individual viral evolution in variable genes) from responses 

determining viral set point during acute infection. However, the existing HLA bias in such 

cohorts and the small number of responses identified during earliest stages of infection may 

make such analyses a formidable undertaking that will require large numbers of individuals to be 

tested longitudinally.  

 

A broadly applicable T cell immunogen sequence should include T cell targets restricted by a 

wide array of HLA class I alleles. Although broad representation of HLA-B alleles may be 

particularly important in this regard, emerging data on the effects HLA-C alleles in these cohorts 

may warrant a broad HLA-C representation as well [2, 47, 57]. In the present study, the 26 
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beneficial OLP from Lima and the 22 beneficial OLP from Durban covered 26 described, 

optimally defined CTL epitopes restricted by 20 different HLA alleles for the clade B cohort and 

33 epitopes presented by 34 alleles for the clade C cohort, respectively [44].  As this is likely to 

be an underestimate of the true diversity in HLA restriction (Table 2 and ref [58]), it is 

reasonable to predict that the inclusion of identified beneficial OLP, or even a subset thereof, 

could evoke potential responses in a widely diverse HLA context. This could also provide the 

basis for the induction of poly-specific T cell responses with increased breath, which the present 

data clearly associates with progressively lower viral loads and which emerge as a potentially 

important parameter from several recent vaccine studies showing superior protection from SIV 

challenge in animals with a broad vaccine induced responses to Gag p17 [59, 60].  

 

Recent studies have suggested a global adaptation of HIV-1 to its various host ethnicities [4, 

46].  The consequence of such adaptation has led in some cases to the elimination of protective 

CTL targets, causing a profound absence of responses to these epitopes and detrimentally 

changing the association between HLA allele and HIV-1 disease outcome [4]. It is thus not 

surprising that the two main cohorts tested here yielded only partially overlapping sets of 

beneficial OLP as the impact of host genetics and viral evolution in the studied populations 

cannot readily be overcome.  In fact, given studies by Frahm et al [4], the past and current 

adaptation of HIV-1 to common HLA class I alleles will likely still call for somewhat population 

tailored vaccine approaches, especially if the immunogen sequences should be kept short to 

avoid regions of potentially reduced immunological value [52].  Such approaches will also profit 

from more extensive structural analyses that may identify specific domains of viral proteins that 

are or are not enriched in valuable T cell targets; of which the latter could possibly be ignored for 
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the design of T cell immunogen sequences. Additional analyses in other genetically unrelated 

cohorts of HIV-1 infected individuals and studies in SIV infection may further help to guide such 

selective immunogen design and to understand the factors defining the effectiveness of different 

epitopes in mediating relative HIV-1 control. Of note, the beneficial OLP identified here, 24 in 

clade B and 22 in clade C infection matched other immunogen design based on conserved 

elements in some parts as well, i.e. of the 14 conserved elements proposed by Hanke et al, eight 

(57%) overlapped at least partly with beneficial OLP identified here [61]. Similarly, among the 

highly conserved elements proposed by Rolland et al [52], 35% (5/14) were covered by our 

beneficial OLP in clade B infection. These differences possibly emerge because the present 

analysis is based on functional T cell data rather than viral sequence alignments, which may not 

take into consideration epitope density and processing preferences of certain regions. 

Nevertheless, the partial overlap with these other immunogen design support the focus on 

conserved regions and offers the opportunity for alternative or combined vaccine approach that 

elicit responses to regions where the virus is and possibly remains vulnerable [4, 46, 55, 62].  

 

Finally, we used the extensive data set available to approach the question of relative effects of 

host genetics (i.e. HLA) and CTL specificity on HIV-1 control. While the two factors cannot be 

entirely disentangled, our data suggest that CTL specificity has an at least equal if not stronger 

effect on viral control than HLA class I allele expression. These findings are also in line with 

data by Mothe et al [63] showing that targeting key regions in p24 surrounding the dominant 

epitopes restricted by known protective alleles (KK10 for HLA-B27 and TW10 for HLA-

B57/58) in HLA-B27, -57 or B58 negative individuals is associated with significantly reduced 

viral loads.  In addition, the presence of individuals not expressing known beneficial alleles in 
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HIV-1 elite controller cohorts [64], further indicates that HIV-1 control is not necessarily bound 

to a few specific HLA class I alleles. A detailed study of the total HIV-1-specific CTL response 

of subjects not expressing these alleles yet effectively controlling HIV-1 can be expected to 

provide further and crucially needed insight into the importance of targeting specific (conserved) 

regions of the viral genome for HIV-1 control.  Similarly, the characterization of functional 

attributes of these responses, including functional avidity and the ability to suppress in vitro viral 

replication will need to be further assessed in such individuals. Building on experimentally 

derived and potentially promising immunogen sequences as defined here may thus provide a 

suitable basis for further immunogen design and iterative clinical trials in the human setting.  
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FIGURE LEGENDS 
 
Figure 1. Localization and conservation of beneficial and non-beneficial OLP in HIV-1 

clade B and C cohorts. Total HIV-1-specific T cell responses were assessed in a cohort of 223 

chronically HIV clade B infected, untreated individuals in Lima, Peru (graphs A-C) and in 631 

chronically HIV clade C infected, untreated individuals in Durban, South Africa (graphs D-F) 

using peptide test sets of 410 18mer overlapping peptides (OLP) spanning the consensus B and C 

sequences, respectively [2, 31]. For each OLP, the protective ratio (PR, defined as “the ratio of 

the log median viral load in OLP non-responders divided by log median viral load in OLP 

responders”) was determined. Each symbol represents an individual OLP, grouped either by (A, 

D) proteins or  (B, E) protein-subunits for OLP located in Gag, Pol and Env (p-values in A, D 

based on ANOVA, in B, E on Mann-Whitney by pariwise comparing the different protein 

subunits, red lines indicating median PR values).  In (C and F), the OLP-specific entropy (a 

measure of the viral diversity in the region the OLP spans) is compared to the OLP-specific PR 

and shows an inverse association between the sequence conservation and PR (Spearman rank).  

 

Figure 2. Genome distribution, entropy and RT localization of OLP with significant impact 

on viral loads in HIV-1 clade B and C infection: The distribution of OLP with significantly 

elevated or reduced PR across the viral proteome is shown in A) for clade B infection (cut-off 

uncorrected p-value of p<0.05) and in B) for clade C infection (cut-off q<0.2).  The entropy of 

beneficial and non-beneficial clade B OLP is compared in C) while in D), the entropy of 

beneficial OLP in HIV clade C Gag is compared to the remainder of Gag OLP (p-values based 

on Mann Whitney, red lines indicating median sequence entropies). In E and F, protein structures 

for HIV-1 reverse transcriptase (Protein databank structure ID 3IG1) were loaded into the Los 
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Alamos HIV Database “protein feature accent” tool 

(http://www.hiv.lanl.gov/content/sequence/PROTVIS/html/protvis.html) and locations of 

beneficial RT OLP identified in clade B (Table 1) and in clade C  (Table 2) marked by red 

highlights. 

 

Figure 3 Increased breadth of responses to beneficial OLP results in gradually reduced 

viral loads and is independent of cohort and HLA-B27, -57, -B58, -B81 and –B63.   (A) The 

number of responses to beneficial OLP in the clade C cohort in Durban was determined for each 

individual and compared to viral loads. An increased breadth of responses to the 22 beneficial 

OLP was associated with reduced viral loads (ANOVA, p<0.0001). (B) This association 

remained equally stable after removing all individuals expressing known beneficial HLA allele 

(HLA-B27, -B57, -B5801, -B63, -B81) from the analysis (ANOVA, p<0.0001).  (C) The set of 

26 beneficial and 17 non-beneficial OLP identified in the clade B infected cohort in Lima, Peru 

was tested in a second clade B infected cohort in Barcelona. HIV controllers showed a 

significantly higher focus of responses on the 22 beneficial OLP (61% of all responses to the 43 

OLP) while non-controllers reacted predominantly with the non-beneficial OLP (only 29% of all 

responses targeting beneficial OLP). The Barcelona cohort did not included subject expressing 

any HLA allele previously associated with relative control of HIV-1 (p=0.0011, Mann Whitney).  

 

 

Figure 4. Responses to OLP identified in multi-variate analysis are associated with reduced 

viral loads: Response patterns and HLA class I genetics in the clade B cohort in Lima and clade 

C cohort in Durban were subjected to FASS multivariat analysis [41-43]. Viral loads in 
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individuals mounting zero vs. at least one response to beneficial OLP identified by the FASS 

multi-variate analysis were compared for (A) the Lima clade B cohort and the (B) Durban clade 

C cohort.  The larger data set for the clade C cohort allowed for a further stratification of the 

responder group by increasing numbers of targeted OLP emerging from the FASS analysis (C). 

A gradually declining median viral load in relation to an increasing breadth of these responses 

was seen (ANOVA, p < 0.0001).  

 

Figure 5 Responses to beneficial OLP are of higher functional avidity and suppress in vitro 

viral replication more effectively.  (A) Responses to the four beneficial OLP located in HIV-1 

clade B Gag p24 were retested using a peptide set of 10mers overlapping by 9 residues. A total 

of 21 responses in HIV-1 controllers and 24 responses in HIV-1 non-controllers were titrated and 

the SD50% compared between the two groups, showing a significantly higher functional avidity 

in the controllers (p=0.0051, Mann Whitney). (B) Responses to 17 different optimally defined 

CTL epitopes located in beneficial, neutral and non-beneficial OLP were titrated in samples from 

78 HIV infected individuals with variable viral load and disease status. The median SD50% 

(ng/ml) was defined for each epitope and compared to the OLP-specific protective ratio 

(Spearman Rank test, p=0.0020). (C) Ten individuals who mounted responses to well-defined 

optimal CTL epitopes located in beneficial as well as in non-beneficial clade B OLP were 

identified and their responses titrated. The SD50% for responses detected in the same individual 

were compared (Wilcoxon matched pairs test, p=0.0039). (D) In-vitro viral replication inhibition 

assays [48] were performed using a Nef modified and Raltegravir resistant test virus and purified 

CTL effector populations from the same individual targeting beneficial and non-beneficial OLP. 

One representative experiment of three assays conducted in different individuals is show. Levels 
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of Gag p24 were determined after 4 days of co-culture of effector cells and auologous CD4 T 

cells used as target cells. Target cells were stimulated 3 days prior with dual-specific anti-CD3/8 

mAb and infected at a MOI of 0.1. The negative control contained wells with target cells only 

(“no CD8”).   
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         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         
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 

 


      
        
        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        
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        

 
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
 

       
      
      

      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
     
    
    
      
      
      
      

      

    

      
      
      
      
      
      
      
      
     
      
     
     
     
      
      
      
      

 

 
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 
     

        


  
           

           

           
           
           
           
           
          
           
           
           

          
           
           
           
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