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Abstract. A reparametrization of the Generalized Pareto
Distribution is here proposed. It is suitable to parsi-
moniously check trend assumptions within a Point-Over-
Threshold model of hazardous events. This is based on con-
siderations about the scale of both the excesses of the event
magnitudes and the distribution parameters. The usefulness
of this approach is illustrated with a data set from two buoys,
where hypotheses about the homogeneity of climate condi-
tions and lack of trends are assessed.

1 Introduction

Climatic change is a problem of general concern. When deal-
ing with hazardous events such as wind-storms, heavy rain-
fall or wave storms this concern becomes even more serious.
Climate change might mean an increase of human and mate-
rial losses, and therefore efforts to detect it from limited data
sets should be taken.

In this contribution, a hazard assessment of storm events
in the northern Mediterranean Spanish coast is carried out,
following a standard model for extremes such as heavy rain-
fall or wave storms. An event is defined as the period dur-
ing which a certain magnitude of the phenomenon (signif-
icant wave height in this case) exceeds a given reference
threshold. For this reason, this model is typically called
Point-over-Threshold (POT) model (Embrechts et al., 1997):
time-occurrence of these events is assumed to be Poisson dis-
tributed, and the magnitude exceeding the threshold for each
event is modelled as a random variable with a Generalized
Pareto Distribution (GPD). Independence is assumed, both
between this magnitude and occurrence in time, and from
event to event. For this contribution, we focus on assess-
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ing the presence of a change on the magnitude parameters:
the independence assumed ensures us that the occurrence and
magnitude estimation can be done separately.

Scarcity of data arises as an additional difficulty, as haz-
ardous events are usually rare. Estimation of hazard parame-
ters such as return periods may imply a great amount of un-
certainty. Bayesian methods (e.g.Gelman et al., 1995) have
been used successfully to deal with this unavoidable uncer-
tainty of the results, and therefore a Bayesian estimation of
GPD models (Egozcue and Tolosana-Delgado, 2002) seems
appropriate.

The selection of proper scales for the description of phe-
nomena also arises as an important issue. A handful of phe-
nomena are better described by a relative scale (e.g. posi-
tive data where the null value is unattainable) and are thus
suitably treated in a logarithmic scale: logarithmic scales has
been used successfully for daily rainfall data and wave-height
(Egozcue and Ramis, 2001; Pawlowsky-Glahn et al., 2005;
Egozcue et al., 2005; Sánchez-Arcilla et al., 2008).

2 The Generalized Pareto Distribution

2.1 Classical parametrization

The Generalised Pareto Distribution (GPD) models excesses
over a threshold (Pickands, 1975). If X is the magnitude
of an event andx0 a value of the support ofX, the excess
over the thresholdx0 is Y = X−x0, conditioned toX > x0.
Therefore, the support ofY is either an interval[0,ysup] or,
the positive real line. In our case,X will be the natural log-
arithm of significant wave height measurements from buoys,
and the thresholdx0 = 5.2, as explained in the application
section.
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with exponential limit form

FY (y|β,ξ = 0)= 1−exp

(

−
y

β

)

, 0≤ y < +∞ (1)

for ξ = 0.
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Fig. 1. Examples of GPD densities (upper diagram) covering alldo-
mains of attraction, and their representation in the parameter space
(lower diagram), numbered correspondingly. This lower diagram
shows the classical parametrization, the domains of attraction, and
the proposed reparametrization: the rays are iso-µ lines (increasing
µ values clockwise), and the hyperbolas are iso-ν lines (increasing
ν values upwards; thus Gumbel domain corresponds toν →−∞).

The associated probability density functions for the first
case is

fY (y|β,ξ)=
1

β

(
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ξ

β
y

)

−

1

ξ
−1

, 0≤ y < ysup. (2)

The scale parameter of the distribution isβ, a positive value.
The shape parameter,ξ, is real-valued, and it defines three
different sub-families of distributions. GPD distributions
with ξ < 0 have limited support, with expectation and upper
bound

ysup = −
β

ξ
, (3)

E[y] =
β

1−ξ
. (4)

These distributions belong to the Weibull domain of attrac-
tion. For valuesξ > 0, ysup = +∞, distributions belong to
the Fréchet domain of attraction, and forξ = 0 (exponential
case), distributions have an infinite support and belong to the
Gumbel domain of attraction. Figure 1 displays several rep-
resentations of GPD, as densities (upper diagram) and in the
parameter space (lower diagram).

2.2 A new parametrization

One can reasonably assume that, in a climate change sce-
nario, the description model of the variable of interest
should not change, but the model parameters could reflect
the change: thus, modeling excesses of magnitudes over a
threshold by a Generalised Pareto Distribution, using a rela-
tive scale, admitting a physical limitation features, . . . are ele-
ments which will be considered constant. On the other hand,
if climate change has occurred (is occurring), there should
be a change of the parameters of the GPD distribution (ξ

andβ), maintaining the physical sense of the described phe-
nomena. In particular, if limited phenomena are described,
a GPD-Weibull domain of attraction should be chosen as a
priori statement, in order to include this limited feature to the
model (Egozcue et al., 2006). This may be easily controlled
by a new parameterisation of the GPD distribution:

µ = ln

(

−β

ξ

)

; ν = ln(−ξ ·β) ,

whereµ is a new location parameter, informing about the
upper bound of the distribution (Eq. 3), andν is a shape
parameter. The classical parameters can be retrieved with

β = exp

(

ν +µ

2

)

; −ξ = exp

(

ν−µ

2

)

.

The lower diagram of Figure 1 displays the parameter space
of the GPD with the two families of parameters: the classical
parameters are represented as a cartesian coordinate system,
whereas the proposed parameters form a hyperbolic coordi-
nate system.

3 Bayesian estimation

In a Bayesian estimation process (e.g. Gelman et al., 1995;
Egozcue and Tolosana-Delgado, 2002), the observable vari-
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3 Bayesian estimation

In a Bayesian estimation process (e.g.Gelman et al., 1995;
Egozcue and Tolosana-Delgado, 2002), the observable vari-
able is assumed to follow a parametric model of unknown pa-
rameters. In the case presented, the event magnitudes above
the threshold follow a GPD with the proposed reparametriza-
tion, Y ∼ GPD(µ,ν). These parameters are given a prior
probability distributionπ0(µ,ν), encoding the knowledge
available before looking at the data. In practical computer
applications, this is typically a uniform distribution on a dis-
crete grid spanning the range of a priori credible values of the
parameters. Then, the data set of excesses{yi,i = 1,...,M}

comes into the playground: a posterior distribution for the
parameters is derived by perturbing the prior distribution by
the data likelihood (Eq.2) according to the parametric model,

π(µ,ν) ∝ π0(µ,ν)×

M∏
i=1

fY (yi |µ,ν)

Finally, estimation of the parameters is derived fromπ(µ,ν),
either as the most likely value (maximum posterior estima-
tion), as the expected value or as any other desired statistic.
These are computed directly from the estimated grid poste-
rior probabilities.

4 Assessing the climate change hypothesis at local scale

Several models about parameter changes can be assessed
within this framework: abrupt change in a point of time,
change as a function of time (linear, logistic or other), etc.
For hazardous phenomena with a physical upper limit, the
parsimonious choice is to consider a linear change onν with
time, whilst µ remains constant,

µ(t) = µ0+1µ· t, ν(t) = ν0+1ν · t,

Then, the climate change hypothesis can be checked by as-
sessing the change onν:

H0 : {1µ= 0 , 1ν = 0}, H1 : {1µ= 0 , 1ν 6= 0}.

5 Application

These issues are illustrated using a set of 18 years of sig-
nificant wave-height data (Sánchez-Arcilla et al., 2008) in
log-scale, simultaneously at two stations, the buoys of Roses
and Tortosa. Figure2 shows their location along the Catalan
Coast and the sample of events and intensities. The same fig-
ure also shows the diagram of expected excess over a thresh-
old, used for identifyingx0, the threshold of analysis. Note
that there are some occurrence gaps in the Roses series (be-
fore 1994 and between 1997 and 2001 approximately), but
this does not affect computations regarding event magnitude.

If the possible trends were due to a global climate change,
one should expect them to be consistently reflected at several
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Fig. 2. Significant wave height data series (upper plots), location
of the buoys (middle, right plot) and diagram of expected excesses
as a function of the threshold (lower plot). This is used to choose
the threshold, as (under the hypothesis that excesses are GPD dis-
tributed) the function should be a line above it. Dashed/black lines
denote Roses, and solid/red ones Tortosa.

both prone to the same kind of storms, mostly N-NW or E
dominated (MestralandLlevantregimes, respectively). We
assume that the parameters might have a different value at
both stations, but that they should evolve consistently,

µR(t)= µ0, µT (t)= µ0 +bµ,

νR(t)= ν0 +aν ·t, νT (t)= ν0 +aν ·t+bν ,

A Bayesian joint estimation of all these parameters (initial

Fig. 2. Significant wave height data series (upper plots), location
of the buoys (middle, right plot) and diagram of expected excesses
as a function of the threshold (lower plot). This is used to choose
the threshold, as (under the hypothesis that excesses are GPD dis-
tributed) the function should be a line above it. Dashed/black lines
denote Roses, and solid/red ones Tortosa.

nearby, homogeneous locations. For this reason, we anal-
yse simultaneously two locations, selected because they are
both prone to the same kind of storms, mostly N-NW or E
dominated (MestralandLlevantregimes, respectively). We
assume that the parameters might have a different value at
both stations, but that they should evolve consistently,

µR(t) = µ0, µT (t) = µ0+bµ,

νR(t) = ν0+aν · t, νT (t) = ν0+aν · t +bν,
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Table 1. Prior and posterior characterization. The prior distribution
is uniform on a 5-dimensional grid, with 21 equally-spaced nodes
along each axis between the minimum and the maximum values
reported. The time incrementaν is measured inν units per year.
The posterior distribution is computed on the same support, and has
its maximum value at the vector indicated as “maxpost”.

µ0 ν0 aν bµ bν

minimum 0.15 −9.00 −0.079 0.15 −5.00
maximum 0.50 +9.00 +0.079 0.70 +5.00
maxpost 0.225 −1.667 0.0197 0.306 −1.250

A Bayesian joint estimation of all these parameters (ini-
tial values µ0,ν0, common time trend in shape onlyaν , and
the local differencesbµ,bν between Tortosa and Roses) is
carried out using simple R routines, with flat prior distribu-
tions within grids defined in Table1. The maximum poste-
rior estimates (most likely value of the vector of parameters
according to the joint posterior distribution) are included in
the same table. The marginal posterior distributions of the
parameters are shown in Fig.3, together with a visual assess-
ment of the hypotheses of zero parameter according to the
position of the posterior with respect to the zero value. For
instance, regarding the time trend, we can conclude that the
hypothesis of no trend (aν = 0) is strongly likely, thus there
is no evidence in favor of a change in the shape of the GPD
(i.e. in the relative likelihood of strong vs. medium storms).
However, if there is a change in time, it is more probably a
positive one, of the order of+0.02 unitsν/year.

As a secondary result, the method may also provide esti-
mates of hazard-related parameters, like return periods, prob-
abilities of exceedance and upper bounds of excesses (as we
are fitting the data within the Weibull domain). One must
nevertheless bear in mind thatthese parameters are all ex-
tremely uncertain, especially for data series so short as those
used here. Figure4 shows an example of this uncertainty, by
depicting the data set together with kernel density estimates
of the excess upper bound distribution. Note how in the case
of Tortosa the spread of the upper bound may be compara-
ble to the spread of the data itself. This happens because
Tortosa measurements have more negativeν values, and thus
fall nearer to the Gumbel domain (exponential distribution)
than Roses measurements. Posed in other words, in Roses
the observed excesses bear evidence of an upper boundary
quite near to the data actually observed. On the contrary,
Tortosa buoy measurements point to a larger upper bound,
with more uncertainty, i.e. the fitted GPD is more similar to
a distribution with no upper limit, like the exponential form
for ξ = 0 of Eq. (1). This is in agreement with the fact that
Roses buoy is placed on a quite sheltered bay, whereas Tor-
tosa buoy is open to the Mestral and Llevant winds: thus
one should expectpotentiallylarger measurements in Tortosa
than in Roses.
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Fig. 3. Marginal posterior distributions for the model parame-
ters, compared with the joint maximum posterior estimate (Table 1,
dashed line) and the hypothesis of zero parameter (solid line). The
posterior density map show contour curves oflogπ(µ0,bµ). This is
used to obtain estimates ofµT . Note the white stripes in the lower
and left margins of this figure: they correspond to zero posterior
probability.

6 Conclusions

Assessing thescaleof available dataas well asmodelpa-
rametersallows to parsimoniouslycheck models of evolu-
tion of these parameters with time. For point-over-threshold
(POT) models of significant wave height, this general prin-
ciple suggests to treat log-transformed data, and fit them a
reparametrized Generalized Pareto Distributionrestricted to
the Weibull domain: the new parameters are the upper bound
of the distribution as location parameter, and a shape param-
eter. This parameterization has two advantadges: densities
always have a bounded domain (as expected foranyphysi-
cal process), and checks on the evolution of the distribution
shape can be done independent of the upper bound.

This is applied to an 18-year long data set of significant
wave height from two different buoys, in the same region
but sufficiently far away to consider them roughly indepen-
dent. If a climate change is present, this should be reflected
as a consistent trend in the shape parameter of both series.
Results showno significant trendin extreme storm magni-
tudes during the last 18 years. Thus, there is no evidence
in this (rather short) data set that climate change is recently

Fig. 3. Marginal posterior distributions for the model parame-
ters, compared with the joint maximum posterior estimate (Table
1, dashed line) and the hypothesis of zero parameter (solid line).
The posterior density map show contour curves of logπ(µ0, bµ).

This is used to obtain estimates of µT . Note the white stripes in
the lower and left margins of this figure: they correspond to zero
posterior probability.

6 Conclusions

Assessing thescaleof available dataas well asmodelpa-
rametersallows to parsimoniouslycheck models of evolu-
tion of these parameters with time. For point-over-threshold
(POT) models of significant wave height, this general prin-
ciple suggests to treat log-transformed data, and fit them a
reparametrized Generalized Pareto Distributionrestricted to
the Weibull domain: the new parameters are the upper bound
of the distribution as location parameter, and a shape param-
eter. This parameterization has two advantadges: densities
always have a bounded domain (as expected forany physi-
cal process), and checks on the evolution of the distribution
shape can be done independent of the upper bound.

This is applied to an 18-year long data set of significant
wave height from two different buoys, in the same region but
sufficiently far away to consider them roughly independent.
If a climate change is present, this should be reflected as a
consistent trend in the shape parameter of both series. Re-
sults showno significant trendin extreme storm magnitudes
during the last 18 years. Thus, there is no evidence in this
(rather short) data set that climate change is recently modi-
fying distributional properties of the magnitude of extreme
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Tortosa), together with the time evolution of the expectation of the
fitted GPD (Eq.4, thick solid line), as derived from the maximum
posterior parameter estimates (Table1). The most likely posterior
estimates (from the same Table, thick dashed line) and 95% con-
fidence interval upper boundary (dashed line) for the upper bound
of the excesses (Eq.3) are also displayed. The marginal posterior
density of these excess upper bound for Roses and Tortosa are dis-
played separately in the right panel. Note the higher uncertainty in
Tortosa than in Roses.

storms in the Catalan coast. This does not deny climate
change as a whole, given the shortness of the series and the
inherent uncertainties of the GPD model.

A comparison of both stations suggest that the measure-
ments in Tortosa are (relatively) more compatible with a
Gumbel domain (i.e. an exponential law for the excesses of
log-significant waveheight) than those in Roses: though both
stations fall within the Weibull domain (bounded distribu-
tions), measurements from Tortosa show significantly larger,
more uncertain estimates of the upper bound of the distribu-
tion. This is tentatively related to the sheltered position of the
Roses buoy. The uncertainty on this upper bound estimates is
extremely large. This would also happen with other hazard-
related parameters like return periods and exceedance prob-
abilities. The set of tools used (GPD with bounded domain
for log-waveheight point-over-threshold exceedances within
a Bayesian approach) has the additional advantadge to fairly
portray this uncertainty.
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de Gestío d’Ajuts Universitaris i de Recercaof the Generalitat
de Catalunyaunder the project Ref: 2009SGR424. The first
author ackowledges also funding within the program “Juan de la
Cierva” of the Spanish Ministry of Education and Science (ref.
“JCI-2008-1835”).

Edited by: J. Salat
Reviewed by: one anonymous referee

References

Egozcue, J. and Ramis, C.: Bayesian hazard analysis of heavy pre-
cipitation in eastern spain, Int. J. Climatol., 21, 1263–1279, 2001.

Egozcue, J. and Tolosana-Delgado, R.: Program BGPE: Bayesian
Generalized Pareto Estimation, Barcelona, Spain, CD-ROM,
ISBN 84-69999125, 2002.

Egozcue, J. J., Pawlowsky-Glahn, V., and Ortego, M. I.: Wave-
height hazard analysis in eastern coast of spain. bayesian ap-
proach using generalized pareto distribution. Adv. Geosci. 2, 25–
30, 2005.

Egozcue, J. J., Pawlowsky-Glahn, V., Ortego, M. I., and Tolosana-
Delgado, R.: The effect of scale in daily precipitation haz-
ard assessment, Nat. Hazards Earth Syst. Sci., 6, 459–470,
doi:10.5194/nhess-6-459-2006, 2006.

Embrechts, P., Kl̈uppelberg, C., and Mikosch, T.: Modelling
extremal events for insurance and finance, Berlin, Germany,
Springer-Verlag, 663 pp., 1997.

Gelman, A., Carlin, J., Stern, H., and Rubin, D.: Bayesian data
analysis, New York, NY, USA, Wiley, 526 pp., 1995.

Pawlowsky-Glahn, V., Tolosana-Delgado, R., and Egozcue, J. J.:
Scale effect in hazard assessment application to daily rainfall,
Adv. Geosci., 2, 117–121, 2005.

Pickands, J. I. (1975). Statistical inference using extreme order
statistics. Ann. Statist., 3, 119–131.
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