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Software integration in multi-scale simulations: the PUPIL system
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Abstract. The state of the art for computational tools in both computational chemistry and compu-
tational materials physics includes many algorithms and functionalities which are implemented again
and again. Several projects aim to reduce, eliminate, or avoid this problem. Most such efforts seem
to be focused within a particular specialty, either quantum chemistry or materials physics. Multi-scale
simulations, by their very nature however, cannot respect that specialization. In simulation of frac-
ture, for example, the energy gradients that drive the molecular dynamics (MD) come from a quan-
tum mechanical treatment that most often derives from quantum chemistry. That “QM” region is
linked to a surrounding “CM” region in which potentials yield the forces. The approach therefore
requires the integration or at least inter-operation of quantum chemistry and materials physics algo-
rithms. The same problem occurs in “QM/MM” simulations in computational biology. The challenge
grows if pattern recognition or other analysis codes of some kind must be used as well. The most
common mode of inter-operation is user intervention: codes are modified as needed and data files
are managed “by hand” by the user (interactively and via shell scripts). User intervention is however
inefficient by nature, difficult to transfer to the community, and prone to error. Some progress (e.g
Sethna’s work at Cornell [C.R. Myers et al., Mat. Res. Soc. Symp. Proc., 538(1999) 509, C.-S. Chen
et al., Poster presented at the Material Research Society Meeting (2000)]) has been made on using
Python scripts to achieve a more efficient level of interoperation. In this communication we present
an alternative approach to merging current working packages without the necessity of major recod-
ing and with only a relatively light wrapper interface. The scheme supports communication among
the different components required for a given multi-scale calculation and access to the functionalities
of those components for the potential user. A general main program allows the management of every
package with a special communication protocol between their interfaces following the directives intro-
duced by the user which are stored in an XML structured file. The initial prototype of the PUPIL
(Program for User Packages Interfacing and Linking) system has been done using Java as a fast, easy
prototyping object oriented (OO) language. In order to test it, we have applied this prototype to a
previously studied problem, the fracture of a silica nanorod. We did so joining two different packages
to do a QM/MD calculation. The results show the potential for this software system to do different
kind of simulations and its simplicity of maintenance.
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1. Introduction

The very nature of multi-scale simulation implies that algorithms investigated and
implemented in this field involve the use of proven algorithms from many other fields.
These component algorithms are themselves complex and sophisticated.
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Often researchers in multi-scale simulations have resorted to reimplementation of
the component algorithms. Another approach that has been used is to take exist-
ing implementations of the component algorithms and merge them into a single
monolithic application capable of performing the multi-scale simulation [1–3]. Both
these approaches are time consuming and error prone because they require signifi-
cant changes to the codes that implement the component algorithms. As a result the
multi-scale simulation researcher faces a large investment of time to study and revise
unfamiliar codes and algorithms.

We propose the use of a general framework with standard interfaces to connect
multiple applications in a way that requires only minimal changes to those compo-
nents. We can then expect to reduce the time required to make component algorithms
work together, allowing the multi-scale simulation researcher to spend the majority
of his/her effort on developing and testing new algorithms addressing the multi-scale
character of the problem.

There are, as already suggested, two different approaches to merging even two
applications. The first way is to create a new application, e.g. by turning one applica-
tion into a subroutine called by the other. This requires a careful study of both appli-
cations to ensure consistency of data and correctness of execution. A disadvantage is
that when the maintainers of one of the original applications provide a new release,
the analysis has to be repeated to again ensure consistency and correctness. The sec-
ond way is to create a third application that runs the two original applications. If
analyzed carefully this approach requires minimal changes to the applications. Typi-
cally a small subroutine to extract some data at some point in the execution suffices.
Because the changes are minimal, a much smaller effort is required when a new ver-
sion of the application is released.

The scientific problem providing the context for our work is the multi-scale sim-
ulation of crack formation in silica. The bulk of the material is treated with molec-
ular dynamics (MD). However, the breaking of bonds is not sufficiently accurately
described by the 2-body or 3-body forces available in the literature. Therefore we
must describe a part of the system with quantum mechanical potential energy sur-
faces. A full ab-initio method is too costly, so a semi-empirical method is used. We
choose the Neglect of Diatomic Differential Overlap (NDDO) method. The NDDO
parameters were obtained by using the Transfer Hamiltonian approach [4]. The two
applications that must be coupled then are molecular dynamics software, such as
DL POLY [5], to drive the dynamics, and semi-empirical electronic structure soft-
ware, such as Thiel’s MNDO [6], to compute the forces from the electronic potential
energy surface. The task for our framework is to coordinate the applications dur-
ing the dynamics and make sure that the forces in the chosen “quantum” region are
the ones obtained from the semi-empirical software. In addition, there is a recently
developed algorithm [7] to determine which atoms should be considered part of the
“quantum” region and the framework must ensure proper execution of that algo-
rithm as well.

2. Requirement analysis

A first view for the system structure is shown in Figure 1, where the prototype
PUPIL (Program for User Packages Interfacing and Linking) system is what we ana-
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Figure 1. System requirements diagram to software integration in multi-scale simulation.

lyze in this work. We can see some package requirements to run a MD/QM simula-
tion in two steps. The user interface allows preparation of the necessary data input.
The simulation manager program interacts with different calculation packages asyn-
chronously and exchanges information with the user at the end of the simulation.
From this simple diagram we can expect three interfaces in the PUPIL system: User
interface, simulation manager interface, and finally, a specialized interface for each
application package or independent calculation unit.

The simulation manager coordinates all the independent packages following the
instructions received from the user through a structured file. The Interface will con-
nect different applications by exchanging information between them.

The external behavior of the software system is shown in two different diagrams
(Figures 2 and 3): The first one describes the user interface and the second one
describes the simulation server.

The user interface exhibits minimal functionality. It collects all the simulation
information and the input files for the calculation components. All the information
is packed in a structured XML file [8]. The same kind of structured file is used to
display the simulation results obtained from the simulation manager interface.

The simulation manager needs to read the simulation XML file, start and manage
the simulation, parse the output files, and finally store the results in the same XML
format for the user interface program.
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Figure 3. External behavior of Simulation Manager.

3. Specification

The main goal for the conceptual model is to show how the internal data is orga-
nized in memory (see Figure 4). The data structure can be organized into three mem-
ory regions: simulation data, input and output data files, and results. The simulation
data is used to coordinate all the packages involved in the multi-step simulation. The
second region is the Input and Output data file structures. All the files that have been
parsed can be stored as a structured file using sections, variables, and values. The
same structure can be used to store general input text files without parsing. Finally,
the third region is the simulation result storage. This part must be specialized for
the specific calculation units. Any future improvement must be done through building
and using a general protocol of communication.
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Figure 4. Conceptual Model.

The activity diagram indicates the basic synchronization between threads of server
and application execution. The diagram starts with one thread and the bold lines
show a fork process. The thread synchronizations are circles connected by a dashed
line and the actions are shown in big ellipses.

The prototype specification has two external packages (MD and external QM
force calculation) that must exchange information in the midst of the simulation.
This coordination is to be done by the PUPIL simulation manager. To communicate
between different programs we will use two CORBA [9] servers, which exchange posi-
tion, force, and energy information at each MD step between the MD package and
the simulation manager. In Figure 5 we observe the different threads for the simula-
tion manager, MD and QM force calculation packages, as well as the CORBA server
threads. The server threads are waiting to take the right action during the simulation
when the client needs their services. Some extra synchronization points are needed to
assure correctness and consistency in the general simulation execution.
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In this prototype, the QM package starts and the output information is being
parsed at the end of the QM calculation for each MD step. That choice allows us to
simplify the program architecture and avoid another CORBA server. The main goal
for this prototype is to test this kind of architecture.
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4. Design and implementation

As a result of the requirement analysis and specification, we have made certain design
decisions which are determined by the implementation circumstances and the hard-
ware facilities.

The job preparation and the simulation execution will be with asynchronous tools
because the computer cluster that runs the simulation is controlled by a queue sys-
tem; It decides when to run the simulation and which processor to use. That is the
reason for use of a structured file to exchange information about simulation manage-
ment, job preparation, and results between the PUPIL simulation manager and the
user interface. At the end, the simulation manager will write a XML file with the
results of the simulation that must be read by the user interface to extract the infor-
mation properly.

Taking into account all the design and specification decisions, a new external
behavior diagram can be drawn (Figure 6) for all the independent units integrated
into the PUPIL system.

In this figure we show the four steps that make up the whole simulation process.
In the first, the user builds a XML file with all the information required by the simu-
lation. Next (second step), the queue system assigns the resources that will be needed.
The third is the most complicated step and builds the core of the simulation. We can
see in the picture how the main PUPIL server manages the simulation by starting
the interfaces and calculation units. The communication between those units will be
through CORBA space or through input and output data files. Finally, the user inter-
face extracts the requisite information through the output XML simulation file.

The PUPIL user interface and simulation managers have been implemented in
JAVA as a fast, and easy prototyping Object Oriented language. The resulting over-
head will be shown later not to be relevant in the whole simulation. The use of
JAVA gives us advantages such as multi-platform support, quick implementation,
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easy maintenance, and software reuse. Only a small part of the simulation man-
ager is platform-dependent: the wrappers between JAVA and FORTRAN. In the case
of the prototype shown in this work, the specific MD interface uses two wrappers
between JAVA and FORTRAN. The first interface has been built through the JNI
(Java Native Interface) [10] as a bridge between JAVA and C, and the second allows
interlanguage calls between the C and FORTRAN languages.

The diagram in Figure 7 shows how the components are connected and how the
information flows. The MD/QM simulation starts with the MD, which queries the
MD interface for the forces for a given set of system coordinates at every MD step.
This request through the CORBA space reaches the simulation server. A MNDO cal-
culation then starts and the force and energy are obtained through parsing the out-
put file and are sent through the CORBA space to reach the force server. Following a
JNI wrapper, the forces and energy reach the MD interface, which communicates the
values to the FORTRAN code and finalizes a MD step. This process repeats until
the end of the MD simulation.

The interface for the force calculation package writes the input files for the QM
packages, starts the force calculation, and parses the output file to get proper infor-
mation at each MD step. On the other hand, the interface for the MD starts the MD
package and parses the output MD file once. This behavior could be extrapolated to
every independent application package that must be plugged into the PUPIL soft-
ware system.

All the components have been grouped by programming language. The simulation
manager is composed of two files. The first one will be a Java Archive (JAR file) with
the two CORBA servers and all the JAVA interfaces for the calculation units. The
second one is a shared library, grouping all the machine-dependent software. On the
other hand, the user interface code has one JAR file with all the components and a
support library with the open-source JMOL molecular viewer project as a JavaBean.
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In order to simplify the prototype presented in this work we do not use a wrapper
to interact with the MNDO code.

This stage of developments leads to a new components diagram with the imple-
mentation details shown in Figure 8. In this diagram we see the three components
and their interaction through the function calls.

We have three main execution blocks. The first one is the main PUPIL simulation
manager. The second one is the MD execution that connects to the main simulation
server using a wrapper library and a JAVA CORBA client. The MD code needs two
subroutines to translate the internal coordinate variables to the proper data structure
required by the PUPIL package and the inverse function for force and energy val-
ues. The third block is the MNDO execution that is not modified in this prototype
version.

The summary of file interaction for the prototype is shown in Figure 9. There are
two application packages that must be plugged into the PUPIL system, the PUPIL
simulation manager as a JAR file and its connection with the shared library. Another
part is the user interface and the visualization java package called JMOL. This has
been incorporated into the user interface as a Java Bean.

The user interface is not yet fully functional and has been implemented to sup-
port only the simulation. This software package could have two kinds of users; the
first would be the end user who would use the functionality offered by the applica-
tion packages already prepared to interact in a multi-scale simulation. The second
kind would be a computational scientist who wants to plug a new application pack-
age into the PUPIL system.
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5. Testing

The test aims to reproduce a previous calculation for a silica MD/QM fracture [11].
Uniaxial Strain has been applied to a silica nanorod molecule (Figure 10). This sys-
tem has 108 atoms that are distributed as 6 silica rings with 12 atoms each one
(SiO)6 and 3 oxygen atoms to saturate the edge rings. The initial geometry has been
obtained following previous work [11, 12] by a MD equilibration using the transfer
Hamiltonian method and the TTAM and BKS interatomic potentials for SiO2.

The strain applied over the nanorod molecule had been defined as a constant
velocity of 25 m/s along the z coordinate for each atom situated on the edge rings.
The MD code used here is different from the previous work, but both of them use
a thermostat with velocity rescaling over 1 K that corrects the temperature almost at
every step. The strain step is 0.001 Å every 2 fs and the external force calculation is
done with the same QM package using the Transfer Hamiltonian (TH) approxima-
tion [4].

The final stress-strain comparison graph for the silica fracture of the nanorod mol-
ecule is shown in Figure 11. At the initial steps we can see a similar behavior for the
two curves. That means a similar Young modulus for the elastic zone and a similar
breaking point for the molecule.

We used a dedicated machine to determine the overhead associated with the com-
munication between the servers through CORBA space and the writing and parsing
of files for each MD step. The results obtained are shown in Table 1. In this table
we can see that CORBA communication does not take too much time in compari-
son with the whole MD step. The overhead related to the I/O and communication
takes 50% of the MD computational time, not taking into account the time associ-
ated with the external force calculation. This overhead could be significantly reduced
if a wrapper interface were to be added to the MNDO package. The MNDO output
file is a big file to parse and this takes a long time to process and write.
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Figure 10. Nanorod System.
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Figure 11. Stress-strain graph for the Nanorod system.

Table 1. Time process percentage for the main process involved into
a Molecular Dynamic stress step in a dedicated machine

Time description %Real %User %Syst.

Write input MD 0.20 0.02 0.08
Write input forces calculation 0.14 0.04 0.04
Putting coordinates (CORBA) 1.57 0.24 0.26
Forces calculation 79.53 78.89 76.95
Parsing forces output file 8.90 12.56 3.52
Putting forces (CORBA) 0.17 0.02 0.06
Parsing MD output files 0.09 0.10 0.04
Other PUPIL process 9.40 8.13 19.05
Time MD stress step 100.00 100.00 100.00
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6. Conclusion

The design of the PUPIL package can be extended and improved in two ways. The
first improvement will be to consider a quantum region and a classical region with
selection controlled by the wavelet algorithm [7]. This will require keeping track of
the history to apply the wavelet analysis and then obtaining the list of atoms to be
treated with the quantum electronic potential energy surface from the wavelet analy-
sis module. Secondly, the user interface could be improved in the direction of adding
new user packages or introducing an expert system to guide the user into the multi-
scale simulation.

The software architecture used for the PUPIL prototype shown here has been
sufficient to coordinate the multi-scale simulation and merge different user packages
into one simulation. The overhead in the communication between servers has been
shown to be negligible. JAVA is sufficient to implement those servers. Small subrou-
tines are needed to link any package to the PUPIL system and a considerable effort
is necessary to write input files and parse output files once. The test did show the
potential usability of this package on a real system.
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