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Abstract

Background: Aerobic exercise can decrease postprandial triglyceride (TG) concentrations but the relationship
between exercise-induced energy deficits and postprandial lipemia is still unclear. The aim of the present study was
to examine the effect of a single bout of aerobic exercise, with and without energy replacement, on postprandial
lipemia and on peripheral blood mononuclear cell (PBMC) mRNA expression of very low density lipoprotein (VLDL)
and low density lipoprotein (LDL) receptors and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR).

Methods: Nine healthy male humans completed three two-day trials in a random order. On day 1, volunteers
rested (CON), completed 60 minutes of treadmill walking at 50% of VO2peak (EX) or completed the same bout of
walking but with the energy replaced afterwards with a glucose solution (EXG). On day 2, volunteers rested and
consumed a high fat test meal in the morning.

Results: Total and incremental TG AUC were significantly lower on the EXG (P < 0.05) and EX (P < 0.05) trials than
the CON trial with no difference between the two exercise trials. No significant difference was observed in VLDL or
LDL receptor mRNA expression among the trials (P > 0.05).

Conclusions: In conclusion, energy replacement by glucose did not affect the decrease in postprandial TG
concentrations observed after moderate intensity exercise and exercise does not affect changes in PBMC HMGCR,
VLDL and LDL receptor mRNA expression.
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Background
Prospective cohort studies demonstrate a strong link
between non-fasting triglyceride (TG) concentrations and
cardiovascular disease or mortality in both men and
women [1-3]. Moreover, increased postprandial TG con-
centrations also appear to promote blood remnant choles-
terol [4], thereby indirectly contributing to atherosclerosis
[5]. It has been shown that a single bout of aerobic exercise
can decrease postprandial TG concentrations [6-8]. The
energy expenditure of exercise is postulated to be a more
important determinant behind reductions in postprandial
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lipemia than exercise duration or intensity [7,9,10].
Importantly for public health, this means moderate
intensity exercise such as brisk walking is effective at
reducing postprandial TG concentrations whether
accumulated in short bouts throughout the day or a
single longer bout as long as the energy expenditure of
exercise is sufficient [8].
Whilst the energy expenditure of aerobic exercise has

been demonstrated to be related to the reduction in
postprandial lipaemia [7] the relationship between en-
ergy deficits and reductions in postprandial TG concen-
trations is not clearly defined [11]. An exercise-induced
energy deficit results in a greater reduction in postpran-
dial TG concentration than a dietary-induced energy
deficit [12]. Conversely, post-exercise restoration of an
exercise-induced energy deficit dramatically attenuates
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any decrease in postprandial TG concentrations the next
day [13,14]. To replace the energy debt in one of these
studies, an oral supplementation of glucose was given
immediately, 2 and 4 hours post vigorous exhaustive
exercise which significantly depleted muscle glycogen
reserves and oxidized only a small amount of fat [14].
However, it is unclear whether the attenuated response
in these studies was because of replacement of the
energy deficit created by exercise or replacement of the
substrate utilized during exercise. Harrison et al. suggest
that an oral glucose supplementation given after intense,
exhaustive exercise was important in the attenuated TG
response the next day as high carbohydrate diets induce
hypertriglyceridemia [14]. However, exaggeration of post-
prandial lipemia [15] by carbohydrate is associated with
fructose and not glucose intake [16]. The possibility exists,
therefore, that had fat oxidation been higher during exer-
cise then glucose re-feeding would not have reversed the
reduction seen in postprandial lipemia as intramuscular
TG would not have been replaced. Therefore, had fat oxi-
dation been high during exercise then glucose re-feeding
might not have reversed the reduction seen in postprandial
lipemia. Certainly, there were no studies have investigated
the fat to carbohydrate deficit on postprandial lipemia.
A number of studies have shown that TG-rich lipo-

proteins, chylomicrons and very-low-density lipoproteins
(VLDL), can be bound and also directly internalized by
cells via the VLDL receptor, a member of the low-density
lipoprotein (LDL) receptor family [17,18]. The VLDL
receptor is widely expressed on the capillary endothelium
of skeletal muscle and adipose tissue but only in trace
amounts in the liver [17]. Conversely, the LDL receptor is
abundantly expressed in liver [17] and internalization of
LDL particles reduces cellular expression of 3-hydroxy-3-
methylglutaryl-CoA reductase (HMGCR), an important
enzyme involved in cellular cholesterol synthesis [17]. The
effect of acute aerobic exercise, with and without energy
replacement, on the expression of liver VLDL and LDL re-
ceptor and HMGCR has not received attention. However,
prior exercise can reduce the postprandial concentration of
remnant lipoprotein particle cholesterol and TG [19,20].
Given the role of the VLDL and LDL receptors in the
uptake of TG-rich lipoprotein remnant particles it seems
logical that hepatic expression of these receptors might
change in the postprandial period in response to exercise.
Any change in cholesterol uptake by the liver would also
affect liver expression of HMGCR. A method to study liver
lipid related mRNA expression via peripheral blood sam-
ples was proposed by Powell and Kroon [21]. Studies have
shown that the expression of these mRNA in peripheral
blood mononuclear cell could reflect parallel their action
in liver [21,22]. Analyses of mRNA expression in peripheral
blood mononuclear cell have been demonstrated in previ-
ous studies [22,23].
Thus, the aims of the present study were two-fold: i) to
examine the effect of using carbohydrate to restore an
energy deficit induced by moderate intensity exercise on
postprandial lipemia and ii) to examine changes in the
mRNA expression of PBMC VLDL and LDL receptor and
PMBC HMGCR, potentially relevant to remnant particle
clearance.

Results
Treadmill walking
The self selected walking speed during the EXG and EX
trial were 6.0 ± 0.1 km/h with 8.0 ± 2.0% of inclination.
The energy expenditure at 50% VO2peak for 60 min was
calculated by a regression equation from the result of
the 16-min submaximal oxygen uptake test, was 520 ±
50.4 kcal. The glucose replacement during EXG trial was
130.4 ± 12.6 g. The substrate oxidations during the exer-
cise estimated from the submaximal test were 9.9 ± 2.6 g
from fat and 116.1 ± 13.7 g from carbohydrate.

Dietary information on day 1
The total energy consumed day 1 was 2052 ± 64.2 kcal
with 237.1 ± 15.6 g of carbohydrate (46.40 ± 0.03%), 79.1 ±
3.9 g of fat (34.70 ± 0.01%) and 99.8 ± 15.3 g of protein
(19.40 ± 0.03%). The breakfast contained 525.9 ± 14.3 kcal,
with 45.8 ± 1.2% energy from carbohydrate (60.3 ± 2.8 g),
41.1 ± 1.3% from fat (24.1 ± 1.1 g), and 13.0 ± 1.5% from
protein (17.1 ± 0.6 g). The lunch provided 840.0 ± 57.0 kcal,
with 50.7 ± 0.3% energy from carbohydrate (106.5 ± 7.4 g),
31.5 ± 0.5% from fat (29.4 ± 1.8 g), and 17.8 ± 0.5% from
protein (37.5 ± 3.2 g). The standard dinner offered 692 kcal,
with 50% energy from carbohydrate (86.5 g), 32% from fat
(24.6 g), and 18% from protein (31.1 g).

Fasting plasma concentrations
Fasting concentrations of all measured plasma metabo-
lites were similar on the morning of day 2 in all trials
(Table 1).

Postprandial plasma concentrations
Total (Figure 1A) and incremental (Figure 1B) TG AUC
were significantly lower on the EXG (31% for AUC and
32% for IAUC, both P < 0.05) and EX (26% for AUC and
39% for IAUC, both P < 0.05) trial than the CON trial.
No significant differences were observed between the
EXG and EX trials in total and incremental AUC. Plasma
TG responses over the six hours (Figure 1C) were lower
on both exercise trials than on the control trial with no
difference between the EXG and EX trial (main effect of
trial, P = 0.001). There was a significant trial by time inter-
action (P = 0.009) with TG concentrations significantly
higher between 2 and 4 hours on the Con trial compared
with the two exercise trials.



Table 1 Plasma concentrations in the fasted state on the
morning of day 2 of each main trial

EXG EX CON P value

TG (mmol/L) 0.68 ± 0.08 0.89 ± 0.19 0.93 ± 0.09 0.223

TC (mmol/L) 4.13 ± 0.25 4.65 ± 0.23 4.58 ± 0.25 0.153

HDL-C (mmol/L) 1.57 ± 0.08 1.74 ± 0.13 1.78 ± 0.16 0.189

LDL-C (mmol/L) 2.30 ± 0.26 2.57 ± 0.21 2.44 ± 0.21 0.348

Glucose (mmol/L) 4.59 ± 0.30 4.72 ± 0.16 4.91 ± 0.11 0.320

Insulin (pmol/L) 48.31 ± 10.36 49.50 ± 7.39 58.24 ± 5.88 0.315

NEFA (mmol/L) 0.51 ± 0.04 0.57 ± 0.06 0.55 ± 0.09 0.479

Glycerol (μmol/L) 52.56 ± 5.83 61.33 ± 5.72 51.00 ± 5.04 0.088

3-HB (μmol/L) 41.11 ± 10.80 58.89 ± 16.73 28.44 ± 8.31 0.084

Values are mean SEM, n = 9. CON, control; EXG, exercise with glucose
replacement; EX, exercise only; TG, triglyceride; TC, total cholesterol; HDL-C,
high-density lipoprotein-cholesterol; LDL-C, low density lipoprotein-cholesterol;
NEFA, Non-esterified fatty acids; 3-HB, 3-hydroxybutyrate.
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Plasma concentrations of TC, HDL-C and NEFA are
shown in Figure 2. There were no differences among the
three trials in concentrations of TC (Figure 2A), HDL-C
(Figure 2B) or NEFA (Figure 2C). The TC concentra-
tions did not change over the morning but HDL-C fell
slightly over the six hours on all trials (main effect of time,
P < 0.001). There was a significant interaction between
groups and times (p = 0.001). Plasma NEFA concentra-
tions were significant lower in EXG compared to CON at
180 and 360 min.
Summary postprandial responses for plasma insulin,

glucose, glycerol, NEFA and 3-HB are provided in Table 2.
No significant differences were observed in plasma insulin,
glucose, glycerol or 3-HB among trials. Insulin and glu-
cose concentrations peaked in the first hour after the meal
and then fell steadily to baseline concentrations through-
out the 6 hour period on all three trials. Conversely, gly-
cerol and 3-HB fell rapidly in the first 1–2 hours after the
test meal and then increased throughout the rest of the
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Figure 1 Total (A) and incremental (B) 6 hour area under the triglycer
postprandial TG concentrations over the 6 hours (C) on the control (C
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6 hours on all trials. There was a significant trial by time
interaction for plasma NEFA concentrations (P = 0.001)
(Figure 2). Plasma NEFA concentrations fell rapidly in the
first hour after consumption of the test meal on all trials
and then increased until the end of the 6 hours. The
NEFA concentrations were significantly decreased in the
EXG trial at 180 and 360 min postprandial compared with
CON. There was no significant difference in NEFA con-
centrations between the EX and CON trials or between
the two exercise trials (Figure 2C).
Receptor mRNA expression
Expression of VLDL receptor, LDL receptor, and HMGCR
mRNA are shown in Figure 3. No significant difference
was observed in mRNA expression among the trials
although the mRNA expression of the LDL receptor
(P = 0.056) and HMGCR (P = 0.039) changed over time
(main effect for time). There were no interaction effects
for the mRNA expression of VLDL, LDL receptors and
HMGCR.
Discussion
The present study is the first to demonstrate that aerobic
exercise followed by immediate post-exercise glucose re-
placement can reduce postprandial plasma TG concentra-
tions the next morning as effectively as exercise without
energy replacement. Our data contrast with two previous
studies which found that post-exercise energy replacement
mitigated any benefit on postprandial TG concentrations
the next day [13,14]. Given that we used moderate inten-
sity exercise with a glucose energy replacement in the
present study suggests that substrate replacement may not
play an important role in determining the effect of any
exercise bout on postprandial lipemia. Our results impli-
cated that fat deficit induced by aerobic exercise may
improve the postprandial TG response the next morning.
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Figure 2 Fasting and postprandial 6 hour concentrations of total cholesterol (TCHO) (A), high density lipoprotein cholesterol (HDL-C)
(B) and Non-esterified fatty acids (NEFA) (C) on the control (CON) (○), exercise (EX) (▲) and exercise with glucose replacement (EXG)
(■) trials. Values are mean ± SEM, n = 9. *EXG group significantly different from CON (P < 0.05).
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Two previous studies using aerobic exercise found that
energy replacement dramatically attenuated the effect of
exercise on postprandial lipemia [13,14]. The first of
these studies found that a meal-replacement drink con-
taining 48% carbohydrate, 38% fat and 14% protein atten-
uated the effects on postprandial lipemia the morning
after a treadmill walk at 50% VO2peak expending 27 kJ/kg
body mass [13]. The second study used glucose, given
intermittently over 4 hours, to replace the energy used in
a 90 minute cycling bout at 70% VO2peak which was
Table 2 The postprandial responses for plasma insulin,
glucose, glycerol, FFA and 3-HB

EXG EX CON P
value

Glucose
(mmol/L*6 h−1)

Total AUC 29.97 ± 1.72 29.83 ± 1.08 30.04 ± 1.16 0.972

Incremental
AUC

3.14 ± 1.10 2.08 ± 0.51 1.57 ± 0.46 0.246

Insulin
(pmol/L*6 h−1)

Total AUC 920.12 ± 194.16 782.55 ± 94.03 976.27 ± 114.28 0.270

Incremental
AUC

635.42 ± 143.74 509.06 ± 69.10 631.86 ± 95.58 0.433

NEFA
(mmol/L*6 h−1)

Total AUC 3.26 ± 0.22 3.40 ± 0.23 3.79 ± 0.30 0.119

Glycerol
(μmol/L*6 h−1)

Total AUC 344.97 ± 18.53 353.78 ± 21.34 360.75 ± 23.00 0.996

3-HB
(μmol/L*6 h−1)

Total AUC 312.26 ± 84.13 545.13 ± 199.83 246.94 ± 57.08 0.226

Values are mean SEM, n = 9. CON, control; EXG, exercise with glucose
replacement; EX, exercise only; NEFA, Non-esterified fatty acids;
3-HB, 3-hydroxybutyrate.
followed by ten 1-minute sprints and which expended
~1508 kcal [14]. These two studies contrast with our find-
ings with the major difference being that the glucose
energy replacement we used was unlikely to replace the
substrate used during exercise. Exercise at 50% VO2peak is
nearing the maximal rate of fat oxidation for many indi-
viduals [24,25] and the glucose solution we used would
not have replaced the fat oxidized during exercise.
The relative importance of a fat deficit from exercise

on postprandial lipemia has received little attention. We
believe the only study to have examined this issue dir-
ectly compared the effect of two 90 minute runs at 60%
VO2max with or without acipimox to inhibit lipolysis
from adipose tissue during exercise [26]. In that study
both exercise trials were equally effective in ameliorating
postprandial TG concentrations in response to a high fat
meal taken the next morning. The authors suggested
that the magnitude of fat metabolism during exercise
was not the major determinant of the effect of exercise
on postprandial lipemia. However, it should be noted
that study fat oxidation still contributed 16% of the en-
ergy expenditure to exercise even with acipimox and the
authors suggest that acipimox use probably did not in-
hibit intramuscular TG breakdown. On the other hand,
acipimox also increases oxidation of carbohydrate as
energy sources, while the role of carbohydrate oxidation
during exercise on postprandial TG response has not
been concluded from this study. Given that a glucose
drink replacement failed to mitigate the effects of exer-
cise on postprandial lipemia in the present study, we
suggest our findings support a hypothesis that fat oxida-
tion does play some role in determining post-exercise re-
ductions in postprandial lipemia. However, we note that
we did not measure muscle TG uptake or intramuscular
TG concentrations before or after exercise so direct
evidence for this hypothesis is lacking.
The role of carbohydrate in mediating the effects of

exercise on postprandial lipemia has been suggested to
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Figure 3 Fasting and postprandial 6 hour mRNA expression of the PBMC very low density lipoprotein (VLDL) receptor (A), low density
lipoprotein (LDL) receptor (B) and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) (C) on the control (CON) (□), exercise (EX) (▨)
and exercise with glucose replacement (EXG) (■) trials. Values are mean ± SEM, n = 9.
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be important. Harrison and colleagues [14] suggest that
glucose re-feeding in their study and the replacement of
muscle glycogen after intense exercise may indicate the
importance of a carbohydrate over a fat deficit in medi-
ating the exercise effects on postprandial metabolism.
This is supported by studies demonstrating that short-
term carbohydrate diets exaggerate postprandial lipemia
[19,27]. However, it is well documented that the effect of
carbohydrate on TG concentrations is primarily associ-
ated with fructose (or sucrose) intake and not glucose
[16,28]. Our data support this as the glucose energy re-
placement solution we provided had no effect on fasting
or postprandial TG the next morning despite the fact that
the exercise intensity was only 50% VO2peak and total
energy expenditure of the exercise bout was only ~1/3 of
that in the study by Harrison and colleagues. In addition,
the timing of energy replacement in present study was
2 hour after exercise, which may not be ideal nutritional
supplementation timing for muscle glycogen recovery.
The different exercise intensity, total energy expenditure
of the exercise and energy replacement timing after exer-
cise in this study may result in lower muscle glycogen
concentration when compared to Harrison and colleagues.
We suggest that the attenuated lipemia seen in the study
by Harrison and colleagues was a result of energy replace-
ment and replacement of glycogen stores used by the
muscle during exercise rather than a relative importance
of a carbohydrate over a fat deficit.
To our knowledge no study has investigated the effect

of acute exercise on postprandial PBMC VLDL or LDL
receptor mRNA expression after a high fat meal. A single
bout of exercise is known to reduce the postprandial con-
centration of TG-rich remnant lipoprotein particle choles-
terol and TG [19,20]. Thus, we hypothesized increased
expression of the PBMC VLDL and LDL receptor and a
down-regulation of HMGCR mRNA in the liver after the
exercise bouts in the present study but we found no
differences among trials. The VLDL receptor is poorly
expressed in liver and no change in PBMC expression in
the present study likely reflects that other pathways –
decreased hepatic VLDL secretion or increased muscle
TG uptake – are more important in contributing to
reduced remnant lipoprotein TG after exercise. Similarly,
we found no differences among trials in LDL receptor
mRNA expression even though expression of PBMC
HMGCR mRNA did change over time after feeding, sug-
gesting reduced endogenous hepatic cholesterol synthesis.
Although we did not measure remnant lipoprotein choles-
terol concentrations, which might be one of the limitation
of current study, the remnant lipoprotein cholesterol con-
centration has been shown to predict carotid artery intima
media thickness [29] and remnant lipoproteins have been
identified as a particularly atherogenic subclass of lipopro-
teins [4,5]. However, remnant lipoprotein cholesterol con-
tribution to the total cholesterol pool is small compared
with total LDL cholesterol [20] which likely explains why
PBMC LDL receptor mRNA expression was not increased
after exercise.
We acknowledge several limitations to the present

study. One of the major limitations of this study is that
we did not measure substrate oxidation during the exer-
cise bout as participants were unable to keep the mouth-
piece in for the duration of the walk. Nonetheless,
according to our submaximal exercise test, the estimated
substrate oxidation was 9.9 ± 2.6 g from fat and 116.1 ±
13.7 g from carbohydrate for 60 min of 50% VO2peak

walking which is not intense exercise. Harrison and col-
leagues directly measured participants muscle glycogen
concentrations before and after exercise using muscle
biopsy but we did not have access to this technique and
could not, therefore, examine changes in muscle sub-
strate concentrations after the exercise bouts. Indeed,
intramyocellular triacylglycerol concentration has been
shown to decrease for 62.7% after moderate endurance
exercise [30]. We hypothesize that intramuscular TG
deficit is important in reducing postprandial lipemia but
biopsy studies to determine muscle substrate concentra-
tions along with studies on TG extraction across the
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muscle after exercise are needed to determine the effects
of energy replacement on postprandial lipemia [31].
In conclusion, the present study found that energy

replacement by glucose did not affect the decrease in
postprandial TG concentrations observed after moderate
intensity exercise where fat oxidation contributes most
to energy expenditure. Future studies should closely
examine the role of substrate oxidation during exercise
on postprandial lipemia. We also found no change in
PBMC HMGCR, VLDL or LDL receptor changes after
exercise with or without energy replacement and suggest
that other pathways are of more importance in reducing
remnant lipoprotein TG and cholesterol than the ex-
pression of these receptors.

Methods
Subjects
Nine healthy, untrained and active males (mean ± SEM;
age: 23.8 ± 0.2 years, height: 1.72 ± 0.02 m, body mass:
69.8 ± 1.5 kg, VO2peak: 49.0 ± 3.9 ml/kg/min) volun-
teered to complete this study after approval by the
Human Subject Committee of National Taiwan College
of Physical Education. All participants gave their written
informed consent after an explanation of the procedures
and risks involved. Participants were screened for any
potential health issues by questionnaire before testing.
No participants were taking any medication.

Experimental design
Participants completed three two-day trials. During day
one of each trial, the participants either 1) remained sed-
entary (CON), 2) performed 60 min of treadmill walking
at 50% of peak oxygen uptake (EX), or 3) performed
60 min of treadmill walking at 50% of peak oxygen up-
take with the energy expended from exercise replaced by
glucose (EXG). On day two of each trial, the participants
consumed a high fat test meal in the morning. Each trial
was performed in a random order. Participants were
asked to refrain from caffeine and alcohol for 1 week
before all main trials and instructed to avoid vigorous
physical activity for 3 days before all main trials. All
subjects were asked to record 3 days diet before the first
main trial, and were asked to repeat the same diet 3 days
before the other trials.

Preliminary tests
At least 7 days before main trials began, participants
were asked to perform two preliminary tests on a tread-
mill (Medtrack ST65, Quinton, Seattle, Washington,
USA) for calculated the relationship between O2 uptake,
submaximal walking inclination and energy expenditure:

(a) submaximal oxygen uptake test: A 16 min,
continuous submaximal walking test, consisting of
four stages, was used to determine the relationship
between submaximal walking inclination and oxygen
uptake. The speed of the treadmill was self-selected
by participants between 5.5 and 6.5 km/h. Treadmill
inclination was increased from an initial 0% by 2.5%
every 4 minutes. At the end of the test participants
were given 30 minutes to recover before they
completed a peak oxygen uptake (VO2peak) test.

(b)Peak oxygen uptake test: Participants completed an
uphill treadmill walking test, at a constant speed
until they reached volitional fatigue, in order to
determine their VO2peak. The speed of the treadmill
was set at 6.0 to 7.0 km/h depending on each
participant’s fitness level. The inclination was
increased from an initial 0% by 2.5% every 3 minutes
until subjects reached volitional fatigue.

Expired air samples were determined during both tests
with the use of gas analyzer (Vmax Series 29C, Sensor
Medics, California, USA). A regression equation was
used to calculate the relationship between VO2 and
walking inclination. The energy expenditure for 60 min
walking at 50% VO2peak was calculated from the result
of the 16-min submaximal oxygen uptake test.

Main trials
Day 1
On the first day of each main trial, subjects were asked to
consume breakfast and lunch by themselves at 0800–0900
and 1200–1300, respectively. All subjects were asked to
visit the laboratory at 1600. During the two exercise trials
participants performed 60 minutes of treadmill (Medtrack
ST65, Quinton, Seattle, Washington, USA) walking at 50%
VO2peak, and stopped exercising at ~1700. All participants
were asked to rest for at least 2 hours in the laboratory
post-exercise. Participants were allowed to drink water ad
libitum during this recovery period. A dinner was pro-
vided by a dietitian at ~1900. The energy provided by the
dinner was 692 kcal, with 50% energy from carbohydrate,
32% from fat, and 18% from protein. On the EXG trial a
weighted glucose solution dissolved in water was provided
with the dinner. The energy in this solution was equiva-
lent to the energy expended during the prior exercise
bout. On the CON trial, participants rested in the labora-
tory from 1600 until dinner was provided at the same time
as on the exercise trials. At the end of the meal partici-
pants returned home to rest. They were not allowed to
consume any other food or drinks except water until they
returned to the laboratory the next morning.

Day 2
The next morning participants reported to the laboratory
at 0800. Participants sat in the laboratory for 10 min after
which a fasting blood sample was collected by a cannula



Table 3 Primers used in real-time PCR analysis

Gene Primer sequence Size
(bp)

Tm
(°C)

VLDL receptor (F)ACCTCTGGCCAAATATGCAC 304 58.9

(R)CACTCAGTCTTTGCAAACCTCC

LDL receptor (F)GCGTCCCTGTACAGATAGTGG 284 63.3

(R)GCCACTCATACATACAACGG

HMG-CoA reductase (F)CCACGAACGCTCTTAGCTTTC 215 57.1

(R)CTAAGAGGCTCTCCATGCTGC

β-actin (F)GGATGCAGAAGGAGATCACTG 90

(R)CGATCCACACGGAGTACTTG
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inserted into an antecubital vein. A 10 mL sterile sodium
chloride solution (0.9% w/v) was used to flush and clean
the cannula after each blood sampling. Participants then
consumed a high fat test meal for breakfast. Participants
were asked to consume the meal within 20 min. A timer
was started immediately after subjects consumed the test
meal. Further blood samples were collected at 0.5, 1, 2, 3,
4, 5 and 6 hours after the end of the meal. Peripheral
blood mononuclear cells mRNA was extracted from the
fasting sample and at 3 and 6 hours. The subjects were
asked to remain seated and resting in the laboratory until
the end of the six hour testing period. Participants were
allowed to drink water ad libitum during the first trial.
The timing and volume of water intake were recorded on
the first trial and repeated in the following two trials.

High fat test meal
The test meal consisted of whipping cream, butter, cereal,
nuts, and white bread. The test meal was prescribed
according to body mass and provided 1.2 g fat, 1.1 g
carbohydrate, 0.33 g protein, and 69.3 kJ/kg of body mass.
Macronutrient contents of the meal were based on those
provided by the manufacturers of the foods.

Blood sample collection
A cannula (Venflon 20G, Sweden) connected to a 3-way
stopcock (Connecta Ltd., Sweden) with a 10 cm extension
tube was used to collect 10 mL venous blood samples at
each time point. The blood samples were collected into
EDTA tubes and blood cell counts immediately measured
by a cell counter (Sysmax KX-21 N, Kobe, Japan) and the
concentration of hemoglobin and hematocrit used to calcu-
late any changes in plasma volume using accepted formula
[32]. The remaining blood sample was then centrifuged at
500 g’ (Eppendorf 5810, Hamburg, Germany) for 20 mins
to extract the plasma. The plasma was aliquoted and stored
at −70°C for analysis at a later date.

Blood analytical methods
Plasma concentrations of TG, non-esterified fatty acids
(NEFA), glucose, glycerol, total cholesterol (TC), high dens-
ity lipoprotein-cholesterol (HDL-C) and 3-hydroxybutyrate
(3-HB) were measured with an automated analyzer (Hitachi
7020, Tokyo, Japan) using commercially available kits
(Randox, Antrim, UK). Plasma concentrations of insu
lin were measured by electrochemiluminescence (Elecsys
2010, Roche Diagnostics, Basel, Switzerland) using a com-
mercial kit.

mRNA quantification
Isolation mononuclear cells and RNA preparation
Peripheral blood mononuclear cells were harvested using
the ficoll separation method [33]. After the plasma was
removed from the centrifuged EDTA sample, the white
blood cells were removed immediately from the buffy
coat. Then 6 ml of HISTOPAQUE® -1077 (Sigma-Aldrich)
were put into the removed white blood cells for 15 min
and centrifuged at 1800 rpm for 3 min. The supernatant
was removed and diluted by 10 mL of buffer A (10 mM
Phosphate buffer, pH 7.4, 154 mM NaCl, 2 mM KCl,
1 mM EDTA and 0.02% w/v NaN3). The supernatant was
partially removed by three to four successive washes with
centrifugation after each step. Platelets were collected
after washing in 10 ml buffer A. The mononuclear cells
RNA were extracted using QuickGene Mini80 (FUJIFILM,
Japan) using a commercially available kit. The Super-
script™ III First-Strand Synthesis System (Invitrogen,
Carlsbad, California, USA) was used to obtain cDNA. The
extracted cDNA samples were stored at −80°C for analysis
at a later date.

Real-time PCR
Real-time PCR was performed using a Bio-Rad iCycler
sequence detection system (Bio-Rad). The primers of the
VLDL receptor, LDL receptor, and HMGCR are shown
in Table 3. The reaction was added to 0.1 mL PCR strip
tubes and were set by mixing 12.5 μl iQ™ SYBR® Green
Supermix (BIO-RAD), with 1 μl cDNA, 0.5 μl primer
(R), 0.5 μl primer (F), and 10.5 μl sterilized water. The
plate was sealed and performed using a detector (iQ5
Multicolor Real-Time PCR Detection System). All vol-
umes were normalized to β-actin expression (GenBank
accession no. X00351) mRNA. The number of PCR cy-
cles was defined as the mRNA levels and were quantified
by use of the CT value [34].

Statistical analysis
The 6 hour total area under the TG concentration versus
time curve (AUC) was calculated using the trapezium
rule. The incremental area under the curve (iAUC) was
calculated using the same method after correcting for
fasting concentrations. The other metabolic parameters
were calculated AUC and iAUC as previously described
calculation of TG. All AUCs were compared among
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trials using a one-way analysis of variance (one-way
ANOVA) with repeated measures. Plasma lipid, insulin
concentrations and receptor mRNA expression were
compared among trials and over time using a two-way
ANOVA with repeated measures. Where appropriate
post hoc pairwise comparisons were made using the
Bonferroni method. Statistical significance was set at the
0.05 level of confidence. All results are expressed as
means ± SEM.
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