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Passive acoustic monitoring allows the assessment of marine mammal occurrence and distribution

at greater temporal and spatial scales than is now possible with traditional visual surveys. However,

the large volume of acoustic data and the lengthy and laborious task of manually analyzing these

data have hindered broad application of this technique. To overcome these limitations, a general-

ized automated detection and classification system (DCS) was developed to efficiently and accu-

rately identify low-frequency baleen whale calls. The DCS (1) accounts for persistent narrowband

and transient broadband noise, (2) characterizes temporal variation of dominant call frequencies via

pitch-tracking, and (3) classifies calls based on attributes of the resulting pitch tracks using quad-

ratic discriminant function analysis (QDFA). Automated detections of sei whale (Balaenoptera bor-
ealis) downsweep calls and North Atlantic right whale (Eubalaena glacialis) upcalls were

evaluated using recordings collected in the southwestern Gulf of Maine during the spring seasons

of 2006 and 2007. The accuracy of the DCS was similar to that of a human analyst: variability in

differences between the DCS and an analyst was similar to that between independent analysts, and

temporal variability in call rates was similar among the DCS and several analysts.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3562166]
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I. INTRODUCTION

Marine mammal occurrence is currently assessed using

visual surveys or passive acoustic monitoring. Both methods

are challenged by detection uncertainty: visual surveys are

often hindered by poor sighting conditions (e.g., nighttime,

fog, and high sea states), uncertainty in species identifica-

tion, and missed detections due to short surfacing intervals,

whereas passive acoustic monitoring can be confounded by

variable calling rates, noise, uncertainty in caller identity,

and missed detections due to silent animals. Passive acoustic

monitoring, however, has a distinct advantage over visual

surveys: persistence. Whereas visual surveys are labor-

intensive (i.e., expensive) and weather-dependent and are,

therefore, limited to temporally sporadic sampling over short

periods (days to weeks), acoustic recorders can sample con-

tinuously for periods ranging from hours to years (Moore

et al., 2006). The single greatest drawback of passive acous-

tic monitoring is the large volume of raw acoustic data

returned that requires analysis to generate reliable species

detections (Mellinger et al., 2007; Van Parijs et al., 2009).

Manual analysis entails visually inspecting spectrograms of

acoustic data, aurally reviewing putative calls, and classify-

ing and logging confirmed calls. This method is extremely

labor-intensive, inefficient, and unrealistic for most long-

duration acoustic recordings. Not surprisingly, the rise in the

use of passive acoustic monitoring applications over the past

decade has spurred the development of automated methods

to detect and classify calls. The overarching goal of this de-

velopment effort is to significantly reduce the time required

to derive detection information from acoustic recordings

while maintaining a similar level of accuracy provided by a

human analyst.

The advent of automated detection and classification

algorithms for low-frequency baleen whale calls has been

strongly motivated by conservation needs. In particular, the

need for reliable occurrence data for the seriously endan-

gered North Atlantic right whale (Eubalaena glacialis) to

mitigate ship strikes and fishing gear entanglements has

encouraged significant development over the past decade

(Gillespie, 2004; Mellinger, 2004; Urazghildiiev and Clark,

2006, 2007a; Urazghildiiev et al., 2009; Dugan et al.,
2010a,b). In addition to high accuracy requirements, there is

an increasing emphasis on computational efficiency, as auto-

mated detection and classification systems (DCSs) are being

incorporated into low-power instruments that can provide

detections in real-time from a variety of autonomous plat-

forms (Clark et al., 2005; Johnson and Hurst, 2007). With

such a capability, moored buoys and autonomous underwater

vehicles can provide real-time marine mammal occurrence

and distribution information over significantly longer tempo-

ral and spatial scales than is now possible with visual meth-

ods. Given the dearth of observations in remote areas

(oceanic regions) and in seasons with rough seas (e.g., win-

ter), real-time passive acoustic monitoring promises to con-

tribute significantly to our understanding of global marine

mammal distribution and ecology.

Most automated techniques for detecting low-frequency

baleen whale calls operate primarily in the frequency domain

by searching through a spectrogram for a call (although a

few analyze the waveform directly; see Johansson and

White, 2004; Urazghildiiev and Clark, 2006). Long-duration

narrowband noise (e.g., ship noise) is minimized in most
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applications by subtracting a running mean or median from

each frequency band of the spectrogram (van Ijsselmuide

and Beerens, 2004; Harland and Armstrong, 2004; Mellin-

ger, 2004; Gillespie, 2004; Urazghildiiev and Clark, 2007a;

Urazghildiiev et al., 2009). Even for detectors operating in

the time domain, this narrowband noise is reduced by con-

verting the data to the frequency domain with a Fourier

transform, calculating the mean in each frequency band,

using an inverse Fourier transform to convert the mean spec-

trum back to the time domain, and subtracting this waveform

from the original digital acoustic data (Johansson and White,

2004; Urazghildiiev and Clark, 2006). This technique is

referred to as pre-whitening or normalizing.

Detectors fall roughly into two categories. In the first, a

spectrographic representation of a particular call (termed a

kernel or template) is convolved with the spectrogram to

produce a detection function; when the detection function

exceeds a particular threshold, a detection of that call type is

considered to have occurred. Examples of this type of detec-

tor include spectrogram cross-correlation (Mellinger and

Clark, 2000; Mellinger, 2004; Baumgartner et al., 2008),

neural networks (Mellinger, 2004), and banks of two-

dimensional linear finite impulse response filters (Urazghil-

diiev and Clark, 2007a; Urazghildiiev et al., 2009). In some

cases, normalization of the spectrogram is used prior to

convolution (Urazghildiiev and Clark, 2007a; Urazghildiiev

et al., 2009), but often the kernel is constructed specifically

to account for potentially interfering noise (Mellinger and

Clark, 2000). The second category of detectors seeks to iden-

tify any and all sounds in a spectrogram, extract attributes of

those sounds (e.g., minimum frequency, maximum fre-

quency, duration), and then classify the sound based on the

similarity of these measured attributes to those of several

call types comprised of tens to hundreds of exemplars.

Detectors of this kind include an edge detector (Gillespie,

2004), connectivity algorithm (Harland and Armstrong,

2004), and a detector based on power-law and Page’s test

algorithms (van Ijsselmuide and Beerens, 2004). Urazghil-

diiev et al. (2009) described a hybrid of these two

approaches, the feature vector testing (FVT) algorithm,

which uses banks of two-dimensional finite impulse response

filters to detect a particular call type (i.e., North Atlantic

right whale upcalls), extracts attributes (features) from the

resulting call, and compares the measured attributes to a pri-
ori call-specific limits for each of the features [Dugan et al.
(2010a,b) extend the FVT classification procedure using

neural networks, classification and regression trees, and

multi-classifier combination methods].

The automated DCS presented here falls into the second

category of detector=classifiers. Instead of extracting call

attributes directly from the spectrogram, the time variation

of the fundamental frequency is first estimated as a pitch

track, and attributes of the call are extracted from this pitch

track. This approach allows more efficient estimation of

complex frequency modulation (e.g., calls with multiple

inflection points) and potential incorporation of amplitude

modulation. Pitch-tracking has been used to estimate high

frequency contours of odontocete whistles (Buck and Tyack,

1993; Suzuki and Buck, 2000; Oswald et al., 2007; Shapiro

and Wang, 2009) and minke whales (Mellinger et al., 2011),

but it has yet to be applied to the detection and classification

of low-frequency (<1 kHz) baleen whale calls. We refer to

the DCS as generalized because the methods for pitch-

tracking, extraction of attributes, and call classification are

not specific to any particular call type (unlike, for example,

kernel-based spectrogram cross-correlation methods), and

are therefore applicable to any narrowband call. We present

here a description of the algorithm and an evaluation of the

DCS using recordings collected in the southwestern Gulf of

Maine during the spring seasons of 2006 and 2007.

II. METHODS

The algorithm used for the DCS, in brief, is as follows

(see Fig. 1 for an example). Spectrograms are smoothed

using a Gaussian smoothing kernel [Fig. 1(a)], and tonal

noise (such as that generated by ships) is reduced by sub-

tracting a long-duration mean from each frequency band in

the spectrogram [Fig. 1(b)]. Transient broadband noise is

identified and removed from the spectrogram, putative calls

are initially detected in the spectrogram using a simple am-

plitude threshold, and the time variation of the fundamental

FIG. 1. A pitch-tracking example. (a) Spectrogram [S; Eq. (1)] created from

short time Fourier transforms of the audio data (sampling frequency¼ 2048

Hz, frame¼ 640 samples, overlap¼ 80%, Hann window) and smoothed

with the smoothing operator [M; Eq. (2)]. Four calls are present: two sei

whale downsweeps (40–100 Hz, 1.4 s duration) and two right whale moans

(120–170 Hz, 2.7 s duration). (b) Filtered spectrogram [A; Eq. (3)] created

by subtracting a running mean from each discrete frequency band. Note re-

moval of 220–225 Hz tonal noise. (c) Pitch tracks of calls with average

amplitudes in excess of 12 dB relative to background. (d) Same pitch tracks

in (c) with amplitude displayed in color.
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frequency for each call is estimated as a pitch track [Figs.

1(c) and 1(d)]. Attributes or features of a call (e.g., duration,

average frequency, and frequency sweep) are extracted from

the pitch track, and quadratic discriminant function analysis

(QDFA) is used for classification. Details of each step in the

algorithm are described below.

A. Spectrogram smoothing

The short time Fourier transform was used to produce

spectrograms from the digital audio data. The power spec-

trum for each frame of the spectrogram was produced using

the fast Fourier transform with a Hann window and the

resulting amplitudes were converted to units of decibels (i.e.,

10 log10[P], where P is the power spectrum). Each spectro-

gram (R) was convolved with a 3� 3 smoothing operator

(M) to produce smoothed spectrograms (S) as

Si;j ¼
1X

M

Xiþ1

p¼i�1

Xjþ1

q¼j�1

Rp;q Mp�iþ1;q�jþ1; (1)

where

M ¼
1 2 1

2 4 2

1 2 1

2
4

3
5; (2)

and i and j are the time and frequency indices in the spectro-

grams, respectively (after Gillespie, 2004). For the data pre-

sented below, spectrograms were produced from audio data

sampled at 2048 Hz using a frame size of 640 samples and

an overlap between frames of 80% (i.e., 80% of the digital

audio data used to produce power spectra in successive

frames of the spectrogram were identical); the resulting

spectrograms had a temporal resolution of 0.0625 s and a

frequency resolution of 3.2 Hz.

B. Tonal noise reduction

Continuous tonal noise produced by ships and slowly

varying background noise (e.g., storms) was minimized in

the spectrogram by subtracting an exponentially weighted

running mean from each frequency band in the spectrogram

(S) as

Ai;j ¼ Si;j � mi�1;j; (3)

where mi-1,j is the running mean for frequency band j and A
is the resulting filtered spectrogram. The running mean is

updated at each time step as

mi;j ¼ 1� eð Þmi�1;j þ e Si;j: (4)

The coefficient e is specified as

e ¼ 1� elog 0:15ð ÞDt=T ; (5)

where Dt is the time resolution of the spectrogram and T is

the time constant for the exponentially weighted running

mean. Since the weights used to calculate the running mean

decrease exponentially over the time elapsed since the cur-

rent time, the time constant, T, indicates the time at which

this weight becomes 15% of the weight applied to the current

value. In the filtered spectrogram (A), calls are identified as

deviations in amplitude from the sound recorded in a win-

dow of time just before the call. The time constant of the

running mean should be at least longer than the duration of

the longest call expected in the acoustic record. For the data

presented below, a time constant of 10 s was used.

C. Broadband noise reduction

Broadband noise is often present in passive acoustic

recordings and can be caused by objects striking the hydro-

phone or the platform carrying the hydrophone, a loose re-

corder or platform component that creates noise when

moved by waves or currents, the hydrophone or platform

coming in contact with the bottom, platform-generated noise

(e.g., buoyancy pumps on profiling floats or gliders and

chain noise on moorings), environmental sources (e.g., ice),

or biological sources (e.g., fish “thumping,” right whale

gunshot calls). Our initial goal was to design a system to

detect and classify narrowband calls, so it was desirable to

detect and eliminate broadband noises. Future development

of this system will include classification of these broadband

sounds based on amplitude- and frequency-modulated

characteristics.

For each time step i in the filtered spectrogram (A), seg-

ments of broadband noise are detected as successive fre-

quency bands, where Ai,j> abb and the frequency span of the

segment exceeds a specified bandwidth (/bbseg). The fre-

quency span of each detected segment is summed, and if this

sum exceeds a second frequency bandwidth (/Rbbseg), the

time step in the filtered spectrogram is considered to contain

a broadband signal. A broadband sound is detected when

broadband signals occur in successive time steps such that

the sound exceeds a specified duration (sbb). The broadband

sound is then “blanked” in the filtered spectrogram by setting

all elements of the broadband sound to zero (i.e., Ai,j¼ 0 for

all time steps i within the broadband sound, and all fre-

quency elements j spanning the minimum and maximum

frequencies of all the detected broadband signals). For the

data presented below, the following parameters were used:

abb¼ 9.6 dB, /bbseg¼ 50 Hz, /Rbbseg¼ 150 Hz, and

sbb¼ 0.125 s.

D. Pitch-tracking

Pitch-tracking estimates the frequency variation of the

call over time using dynamic programming (Wang and

Seneff, 2000; Shapiro and Wang, 2009). Candidate sounds

for pitch-tracking are located in the spectrogram using a sim-

ple amplitude threshold: Ai,j> apt (apt¼ 10 dB is used in the

data presented below). Once an element in the spectrogram

is found that satisfies this inequality, a pitch track of the

sound is estimated. The algorithm begins with forward

pitch-tracking to locate the end of the call, and then uses

backward pitch-tracking to identify the entire call. Forward

pitch-tracking is used first since the loudest part of a call
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likely will occur later in time than when the call is first

detected with the amplitude threshold.

Forward pitch-tracking starts at indices (i0, j0) in the fil-

tered spectrogram (i.e., Ai0,j0> apt). A cost (Ci,j) is computed

for each successive spectrogram element (i> i0) as

Ci;j ¼
P fj0; fj
� �

� Ai;j for i ¼ i0 þ 1;
min

k
Ci�1;� þ P fj; f�

� �
� Ai;j

� �
for i > i0 þ 1;

(
(6)

where

P fu; fvð Þ ¼ x log2

fu
fv

� �����
����; (7)

x is a user-specified weight (x¼ 20 dB in the data presented

below), the asterisk indexes all frequencies, and the function

“ min
k

X�½ �” returns the minimum value of a vector X and the

index (k) of that minimum value in X. The frequency indices

from the “min” function above are retained as

Ji;j ¼
j0 for i ¼ i0 þ 1

k for i > i0 þ 1:

	
(8)

The function P(fu,fv) represents a penalty incurred by a

potential pitch track for jumping from frequency fu to fv in

successive spectrogram frames; this penalty is minimized for

small frequency changes [P(fu,fv)¼ 0 for fu¼ fv], is equal to

x for octave jumps, and grows with increasingly larger fre-

quency changes. The value of Ci,j for i> i0 represents the cu-

mulative cost of moving from (i0, j0) to (i, j), where the cost

is defined as the penalty for frequency jumps between suc-

cessive spectrogram frames minus the filtered spectrogram

amplitude. The frequency indices (J) are used to reconstruct

the best path (i.e., the one with least cost) from (i, j) back to

(i0, j0) as f(i, j), (i�1,k1), (i�2, k2), (i�3, k3), …, (i0, j0)g,
where k1¼ Ji,j, k2¼ Ji�1,k1, k3¼ Ji�2,k2. At each time step i,
the best path is determined as min

m
Ci;�
� �

, and the gradient in

the cost over the last three points in this best path is com-

puted as Gi¼Ci�2,m2 – Ci,m, where m2¼ Ji�1,m1 and

m1¼ Ji,m. If the gradient drops below a threshold (Gi< c),

pitch-tracking ceases and the path is ended at (iend,

jend)¼ (i–2, m2). The gradient threshold used in the data pre-

sented below was c¼ 15 dB.

Backward pitch-tracking proceeds from (iend, jend) back-

ward in time (i< iend) in exactly the same manner as

described above for forward pitch-tracking. The best path

determined during the backward pitch-tracking is used as the

final call track. Amplitudes of the filtered spectrogram (A)

are extracted along the call track, and the final output of the

pitch tracking algorithm is a set of time, frequency, and am-

plitude triplets (tp, fp, Ap) for each spectrogram frame in the

call.

After detection and pitch-tracking, calls are “blanked”

from the filtered spectrogram (A) to ensure they are not

included in the pitch tracks of subsequently detected calls.

Blanking entails setting each element of the call and neigh-

boring elements to zero: Au,v¼ 0 where i�3 � u � iþ3, j�5

� v � jþ5 for each set of indices (i, j) of the call.

E. Attribute extraction

For each call track, several attributes were calculated for

use in the QDFA. Call attributes for classification typically

include characteristics such as start frequency, end fre-

quency, frequency range, duration, and slope of frequency

variation (e.g., Gillespie, 2004; Urazghildiiev et al., 2009);

however, these attributes rely heavily on accurate estimates

of the start and end of a call, which is often quite difficult to

determine, particularly when calls are amplitude modulated

(e.g., a call “ramps up” in sound level at the beginning or

“ramps down” at the end). To minimize errors in the classifi-

cation of calls caused by uncertainty in the start and end

times and frequencies, we chose to make all attributes ampli-

tude-weighted (AW) statistics (Table I). The four attributes

used in the QDFA included the AW average frequency, fre-

quency variation, time variation, and slope of the pitch track

in time-frequency space; these attributes are AW proxies for

the more traditionally used mid frequency, frequency range,

duration, and slope, respectively. Amplitude weighting was

applied within a pitch track so that louder parts of the call

were weighted more heavily relative to softer parts of the

call when computing the attributes (i.e., calls recorded with

identical amplitude and frequency modulation but at differ-

ent overall amplitudes would have identical attributes). We

found that these AW attributes were less variable than their

corresponding traditional attributes (Fig. 2) and therefore

provided a more consistent representation of a call type in

the QDFA. Frequencies were converted to base 2 logarithms

when calculating the attributes since frequency is perceived

on a logarithmic scale.

F. Discriminant function analysis

Exemplars of various call types from sei whales (Balae-
noptera borealis) and right whales were extracted from pas-

sive acoustic recordings collected in the Northwestern

Atlantic Ocean (Table II; see below). Pitch tracks were esti-

mated and attributes calculated for all exemplars. For each

call type (indexed by g), a vector of attribute means (lg), the

TABLE I. Attributes used to describe a pitch track for the QDFA. A pitch

track consists of n sets of time (tp), frequency (fp), and amplitude (Ap) trip-

lets. Each attribute is a weighted statistic where the weights are the call

amplitudes (Ap).

Attribute Formula

Average frequency

(log2[Hz])
�f ¼ 1P

A

Xn

p¼1

Ap log2 fp

� �
Frequency variation

(log2[Hz]) fh i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1P
A

Xn

p¼1

Ap log2 fp
� �
� �f

�
�2

s

Time variation (s)
th i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1P

A

Xn

p¼1

Ap tp � t0

� �
� �t

�
�2

s

Slope (octaves

per second)
b ¼

Pn

p¼1

Ap tp�t0ð Þ
Pn

p¼1

Ap log2 fpð Þ
� �

�
Pn

p¼1

Ap

Pn

p¼1

Ap tp�t0ð Þ log2 fpð Þ
� �

Pn

p¼1

Ap tp�t0ð Þ
� �2

�
Pn

p¼1

Ap

Pn

p¼1

Ap tp�t0ð Þ2
� �

Note: �t ¼ 1P
A

Xn

p¼1

Ap tp � t0
� �
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attribute variance–covariance matrix (Rg), the inverse of the

variance–covariance matrix (R�1
g ), and the determinant of

the variance–covariance matrix (jRgj) were computed and

stored in a call library.

Attributes of calls were compared to those of each call

type in the call library using QDFA (Johnson, 1998).

Whereas linear discriminant function analysis assumes each

call type has an identical attribute variance–covariance ma-

trix, QDFA allows each call type to have a different attribute

variance–covariance matrix. To begin, the Mahalanobis dis-

tance (dg) between a new call and the mean attribute vector

of each call type g was computed:

dg xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x� lg


 �T
R�1

g x� lg


 �r
; (9)

where x is a vector of attributes calculated from the pitch

track of the unclassified call and ()T denotes the vector trans-

pose function (Johnson, 1998). The discriminant function

(dg) was then computed as

dg xð Þ ¼ dg xð Þ2 þ loge Rg

�� ��� �
� 2 loge pg

� �
; (10)

where pg is the relative prior probability of the occurrence of

call type g (Johnson, 1998). The relative posterior probabil-

ity of the call belonging to call type g is

pg xð Þ ¼ e�1=2dg xð Þ

XN

k¼1

e�1=2dk xð Þ
; (11)

where N is the total number of call types in the call library

(Johnson, 1998). The call is classified simply by finding the

call type with the maximum relative posterior probability

(pg). In cases where the new call is not represented in the

call library, the QDFA can still classify the call with a high

relative posterior probability, but the Mahalanobis distance

will be quite large, indicating that the new call falls far out-

side the multivariate distribution of the call type to which it

was classified (see example below). Therefore, accurate clas-

sification of baleen whale calls will make use of both the rel-

ative posterior probability and the Mahalanobis distance.

In most cases, no a priori knowledge of relative call

occurrence is available, so equal prior probabilities can be

used (i.e., pg ¼ N�1 for each call type g). For the data pre-

sented below, equal prior probabilities were used. However,

in certain situations, the relative prior probability for a par-

ticular call type can be increased if that call is known to

occur more often than other calls. For example, humpback

whales (Megaptera novaeangliae) often produce calls that

are very similar to other species’ calls, creating a challenge

for any classification system (including humans). In cases

where humpback whale song is detected, the prior probabil-

ities for all humpback whale calls can be increased so that

calls of questionable identity will be more likely assigned to

humpback whales than if equal prior probabilities are used.

Human analysts typically use this same approach: if hump-

back whales are known to be present, humpbacks are given

the “benefit of the doubt” for questionable calls. QDFA pro-

vides a convenient means to incorporate this “benefit” in the

relative prior probabilities.

FIG. 2. Variation in traditional and AW attributes with increasing signal am-

plitude above background. Each filled circle represents the coefficient of var-

iation for an attribute extracted from pitch tracks of 100 synthetic upsweeps

(400–600 Hz over 0.75 s with amplitude “ramp up” and “ramp down” times

of 0.25 s each and a background of randomly generated white noise).

TABLE II. Sources of exemplar calls comprising the call library for sei whale downsweeps and right whale upcalls.

Dates Platform Location Number of exemplars Source

Sei whale downsweep

May 2005 Glider Southwestern Gulf of Maine 43 Baumgartner and Fratantoni, 2008

Jul-Sep 2007 Mooring Davis Strait 127 Stafford unpublished data

Sep 2007 Mooring Mid-Atlantic Bight 47 Lynch unpublished data

Total 217

Right whale upcall

May 2005 Glider Southwestern Gulf of Maine 63 Baumgartner and Fratantoni, 2008

Nov 2009 Glider Central Gulf of Maine 191 Baumgartner and Fratantoni unpublished data

Total 254
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To illustrate how QDFA is used to classify calls, con-

sider a call library consisting of five call types with two

attributes measured for each exemplar. Exemplars of each

call type should cluster together in a scatterplot of the attrib-

utes (Fig. 3). The mean attribute vector (lg) represents the

centroid of the multivariate distribution for each call type

and the variance–covariance matrix (Rg) describes the vari-

ability of the exemplars around this mean attribute vector

(i.e., the spread of and correlation among the attributes). The

Mahalanobis distance is a normalized distance from the

mean attribute vector that accounts for the variance–

covariance structure; in Fig. 3, any point on the ellipses

around each mean vector has a Mahalanobis distance of 2

from that mean vector. To visualize how a new call would

be classified given each call type’s mean attribute vector and

variance–covariance matrix, a “territory map” can be con-

structed (Fig. 3). For example, a new call with attribute

1¼ 500 and attribute 2¼ 300 would fall in the “territory” of

call type 2, and would therefore be classified as call type 2.

Similarly, a new call with attribute 1¼ 600 and attribute

2¼ 200 would also fall in the “territory” of call type 2 and

would therefore also be classified as call type 2; however,

the Mahalanobis distance of this new call from the mean at-

tribute vector of call type 2 is very large (8.7), suggesting

that this new call may not belong to any of the call types

contained in the call library. Note that when the univariate

distributions of call types overlap significantly in each attrib-

ute (e.g., call types 1 and 5 in Fig. 3), QDFA can often do a

reasonable job of classifying new calls by taking advantage

of the correlation structure among the attributes.

G. Call library

The DCS was evaluated for two call types: sei whale

downsweep calls (Rankin and Barlow, 2007; Baumgartner et
al., 2008) and right whale upcalls (Schevill et al., 1962;

Clark, 1982, 1983). Exemplars of these two call types were

manually extracted from several independent acoustic data-

sets collected in the Northwestern Atlantic Ocean from 2005

to 2009 (Table II). Pitch tracks were generated for all calls in

these datasets, and sei whale downsweeps and right whale

upcalls that were clearly audible and accurately pitch tracked

were selected as exemplars. On average, sei whale down-

sweep exemplars were 16.8 dB above background (n¼ 217,

standard deviation (SD)¼ 3.14 dB, and range¼ 11.1–27.7

dB) and right whale upcall exemplars were 16.2 dB above

background (n¼ 254, SD¼ 2.68 dB, and range¼ 10.2–22.8

dB). AW attributes (Table I) were calculated for each exem-

plar so that the mean attribute vector (lg) and variance–co-

variance matrix (Rg) for all call types could be estimated.

QDFA could then be conducted by measuring AW attributes

for the pitch tracks of new calls (x) and applying Eqs. (9)–

(11) with the mean attribute vector (lg) and variance–covari-

ance matrix (Rg) for each call type (g) in the call library.

H. Evaluation

The accuracy of the DCS was evaluated using passive

acoustic recordings collected in the Great South Channel of

the southwestern Gulf of Maine during 2006 and 2007. On

four separate occasions, arrays of four recoverable Cornell

University Marine Autonomous Recording Units (MARUs)

were deployed 2 miles to the north, south, east, and west of a

central station for short periods of time (1–2 days) in the vi-

cinity of right whales (Table III). The R/V Albatross IV
occupied the central station for the duration of each study to

collect collocated visual observations of whales as well as

oceanographic and prey distribution measurements (Baum-

gartner et al., 2008, 2011); therefore, significant ship noise

was present in all recordings. Each MARU was moored with

sand bags so that they floated 1.5–2 m above the sea floor.

MARUs consisted of a digital audio recorder, hard drive,

and batteries encased within an 18-in. glass sphere that was

positively buoyant, vacuum sealed, and rated to a depth of

6700 m. Raw audio was captured with an HTI-94-SSQ series

hydrophone (2 Hz–30 KHz frequency response) and internal

preamplifier (combined maximum sensitivity of �165 dB re

1 V=lPa) mounted outside the plastic “hard hat” that pro-

tected the glass sphere. The MARUs were programmed to

sample at a rate of 10 kHz, and the resulting digital audio

data were low-pass filtered and decimated to 2048 Hz to

allow efficient detection of low-frequency baleen whale

calls. Recordings from only one MARU per station were

used in the evaluation.

Sei whale downsweeps and right whale upcalls were

identified in all recordings via manual review by a single an-

alyst (analyst 1) using XBAT software (Figueroa, 2006). The

original 10 kHz audio data were low-pass filtered and deci-

mated to 2 kHz, and spectrograms were produced using a

Hann window, fast Fourier transform frame size of 512 sam-

ples, and an overlap of 0.25 resulting in a frequency

FIG. 3. An example of a call library of five call types with two attributes

measured for each exemplar. Exemplars of each call type are shown as small

filled symbols, and the mean attribute vector for each call type is indicated

by the larger open symbol. The “territory” of each call type is shaded in

gray and bounded by gray lines. The ellipses represent a Mahalanobis dis-

tance of 2 from each call type’s mean attribute vector. The univariate distri-

butions of the attributes for each call type are shown above and to the right

of the axes for attribute 1 and attribute 2, respectively.
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resolution of 3.91 Hz and a temporal resolution of 0.192 s.

Sounds were classified based on both temporal and fre-

quency characteristics observed in the spectrogram as well

as during aural review. All detected calls, regardless of am-

plitude (signal-to-noise ratio), were used in the analyses

described below. A typical right whale upcall lasts approxi-

mately 1 s and increases from 100 to 400 Hz (Clark, 1982,

1983). In contrast, sei whale downsweeps last approximately

1 s, range from 90 to 40 Hz, and occasionally occur in pairs

(Baumgartner et al., 2008). During manual review, the ana-

lyst “boxed” each call by selecting the start and end time and

the minimum and maximum frequency. Manual review of

right whale upcalls is sometimes confounded by the presence

of humpback whale calls that are similar in structure. In

cases where humpback whale calls were present, the viewing

screen duration was increased from 30 to 240 s to determine

whether the potential upcall occurred within a humpback

whale song. There are no established criteria for distinguish-

ing between right whale upcalls and similar humpback whale

calls, but the repetitive quality of humpback whale song

allows for a large number of questionable right whale upcalls

to be rejected.

To facilitate an evaluation of between-analyst variability

in detection rates, two independent analysts (analysts 2 and

3) also reviewed the acoustic data from station 1 to identify

sei whale downsweeps and right whale upcalls. Analysts 1

and 3 conducted their manual review in a manner that is

very typical for acoustic studies: viewing spectrograms to

initially detect calls and then reviewing the call aurally to

aid in classification. In contrast, analyst 2 reviewed and

localized sei whale downsweep calls from station 1 as well

as the other three stations using a kernel detector and spec-

trogram cross-correlation to aid in identifying potential calls

(see Baumgartner et al., 2008 for details of this manual anal-

ysis). The use of a kernel detector by analyst 2 allowed an

assessment of how many calls analysts 1 and 3 missed

because calls were too faint to be detected using traditional

manual review methods. Detection rates from all three ana-

lysts and the DCS were compared for station 1, and hourly

sei whale call rates were compared for all stations among an-

alyst 1, analyst 3, and the DCS.

As in all DCSs, our DCS uses a threshold to decide

when a call is correctly classified. In the evaluation below,

only calls with a Mahalanobis distance of three or less were

considered correctly classified. This threshold was deter-

mined based on the distribution of Mahalanobis distances in

the call library. For sei whale downsweep calls, 93%

(n¼ 201) of all 217 exemplars had Mahalanobis distances of

three or less; similarly, 93% (n¼ 235) of all 254 right whale

upcall exemplars had Mahalanobis distances of three or less.

The choice of this threshold depends on the application;

since our goal was to compare and evaluate the DCS, we set

the threshold to correctly classify most calls (in contrast, if

one’s goal is to identify only high-quality calls, then the

Mahalanobis distance threshold would be reduced).

In addition to a Mahalanobis distance threshold, only

calls with average amplitudes of 12 dB or more above back-

ground were considered for classification (computed as the

average of all amplitudes, Ap, of the pitch track; note that

this 12 dB average amplitude threshold is different than apt,

the amplitude threshold used to initiate pitch-tracking). Qui-

eter calls are not only more difficult to detect (for the DCS

and the human analyst; Urazghildiiev and Clark, 2007b) but

also difficult to pitch track accurately. Simulations with syn-

thetic upsweeps of varying amplitudes above background

indicated that pitch tracks often became fragmented at

amplitudes below 12 dB (Fig. 4); therefore, an amplitude

threshold of 12 dB above background was used to reduce the

false detection rate at the expense of increasing the missed

call rate. For the evaluation presented below, only DCS

detections below 12 dB were discarded; all manual detec-

tions were included regardless of amplitude.

III. RESULTS

Analyst 1 identified 1062 sei whale downsweep calls

and 509 right whale upcalls in the acoustic recordings col-

lected at stations 1–4, and the DCS generated pitch tracks

within the time and frequency extents of 99.1% and 98.0%

of these calls, respectively. Using a Mahalanobis distance of

three and an average amplitude of 12 dB as thresholds, the

DCS detected a total of 880 sei whale downsweeps, 570

(65%) of which were in agreement with analyst 1. Assuming

the analyst detected and correctly identified all sei whale

downsweeps in the recordings, the DCS apparently missed

46% of all downsweeps and incorrectly classified 35% of the

downsweeps [Fig. 5(a)]. The DCS detected a total of 466

right whale upcalls, 244 (52%) of which were in agreement

with analyst 1. Assuming the analyst detected and correctly

identified all right whale upcalls in the recordings, the DCS

apparently missed 52% of all upcalls and incorrectly classi-

fied 48% of the upcalls [Fig. 5(b)]. On average, DCS-

detected sei whale downsweeps were 16.3 dB above back-

ground (n¼ 880, SD¼ 3.47 dB, and range¼ 12.0–33.0 dB)

and right whale upcalls were 14.3 dB above background

(n¼ 466, SD¼ 2.06 dB, and range¼ 12.0–24.8 dB).

To assess between-analyst variability in detection and

classification and the effect this variability may have on the

assessment of the DCS, detections from analysts 2 and 3

were compared to that of analyst 1 for station 1 only.

TABLE III. Summary of each station in the southwestern Gulf of Maine where recordings were collected to evaluate the DCS.

Station Start date=time Location Recorder deployments (h) Water depth (m)

1 5=7=06 13:30 41 17.24 N, 69 08.89 W 25.5 103

2 5=23=06 15:30 41 15.06 N, 68 58.79 W 39.0 137

3 5=21=07 19:00 41 18.76 N, 69 03.28 W 41.5 160

4 6=6=07 20:00 41 56.52 N, 69 04.66 W 48.0 192
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Analysts 1, 2, and 3 identified 570, 939, and 301 sei whale

downsweeps during station 1, respectively, while the DCS

identified 451 downsweeps. Using the same metrics of

missed calls and false detections, analyst 2, analyst 3, and

the DCS apparently missed 38, 51, and 33% of all down-

sweeps while incorrectly classifying 62, 7, and 15% of all

downsweeps, respectively, when compared to analyst 1 [Fig.

5(a)]. Analysts 1, 2, and 3 identified 131, 224, and 165 right

whale upcalls during station 1, respectively, while the DCS

identified 115 upcalls. Again using the same metrics of

missed calls and false detections, analyst 2, analyst 3, and

the DCS apparently missed 54, 49, and 63% of all upcalls

while incorrectly classifying 73, 59, and 58% of all upcalls,

respectively, when compared to analyst 1 [Fig. 5(b)].

Despite a lack of perfect agreement between analyst 1

and the DCS for individual calls, agreement for hourly call

rates was remarkably good, even during periods of pro-

longed humpback whale vocal activity during station 3 (Fig.

6; discrepancies during stations 3 and 4 for sei whale down-

sweeps are addressed in Sec. IV). Differences in call rates

between analyst 1 and the DCS for both sei whale down-

sweeps and right whale upcalls were generally modest when

calls were detected by analyst 1 [Figs. 7(a) and 7(c)] and

were quite low when analyst 1 detected no calls [Figs. 7(b)

and 7(d)]. There were some large disagreements for sei

whale downsweeps when the analyst detected calls [Fig.

7(a)]; however, these underestimates by the DCS tended to

occur when manually detected call rates were quite high

(� 30 calls per hour). The DCS tended to underestimate call

rates for both sei whales and right whales relative to analyst

1; on average, DCS call rates were 0.66 and 0.79 times the

analyst-detected rates for sei whale downsweeps and right

whale upcalls, respectively. Overall, the DCS captured the

variability in analyst-detected hourly call rates quite well.

During 71 and 84% of the 153 hourly periods examined, the

DCS and analyst 1 agreed to within three or fewer calls for

sei whale downsweeps and right whale upcalls, respectively.

Moreover, DCS hourly call rates were very low or zero

when analyst-detected call rates were zero, indicating that

the actual false detection rate is likely very low for the DCS.

FIG. 4. Average (filled circle) and

standard deviation (gray line) of

attributes extracted from 12 sets of

100 synthetic upsweeps (400–600

Hz over 0.75 s with amplitude “ramp

up” and “ramp down” times of 0.05

s each and a background of ran-

domly generated white noise). Am-

plitude above random background

noise was varied among sets of

upsweeps. Traditional (a, c, e, and g)

and AW (b, d, f, and h) attributes are

shown. When fragmented pitch

tracks were generated for an

upsweep, attributes were extracted

for the pitch track with the longest

duration and largest frequency

range. Vertical dotted line in each

plot indicates 12 dB threshold (see

text).
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Although discrepancies in hourly call rates were

observed between analyst 1 and the DCS, hourly call rates

also varied among analysts when compared during station 1

(Fig. 8). When compared to analyst 1, sei whale downsweep

call rates were, on average, higher for analyst 2, lower for

analyst 3, and in close agreement for the DCS [Fig. 8(a)],

whereas right whale upcall call rates were, on average,

higher for analyst 2 and in close agreement for both analyst

3 and the DCS [Fig. 8(b)]. Recall that analyst 2 was aided by

a kernel detector when identifying both right and sei whale

calls, therefore it is not surprising that detection rates for this

analyst were higher than the others. Despite discrepancies in

the absolute call rate, the analysts and the DCS tended to

agree very well on the relative call rate; that is, temporal

FIG. 5. (a) Performance of the DCS with respect to individual sei whale downsweep calls identified by analyst 1. The solid line indicates the performance of

the DCS for varying Mahalanobis distance thresholds for all stations combined, whereas the dotted line indicates the same for station 1 only. The open circle

indicates the performance of the DCS for a Mahalanobis distance threshold of three for all stations, and the filled circle indicates the same for station 1 only.

The performance of analysts 2 (filled square) and 3 (filled triangle) are also shown with respect to analyst 1 for station 1 only. (b) Performance of the DCS, an-

alyst 2, and analyst 3 with respect to individual right whale upcalls identified by analyst 1.

FIG. 6. Hourly call rates of (a) sei

whale downsweeps, (b) right whale

upcalls, and (c) various humpback

whale calls observed by analyst 1

(filled gray bars) and the DCS (black

line; a and b only). Humpback whale

call rates are included here to

indicate periods of potential interfer-

ence with DCS detections of sei

whale downsweeps and right whale

upcalls. Discrepancies in (a) during

stations 3 and 4 are addressed in

Sec. IV and Fig 9.
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variability in call rates was quite similar among the analysts

and the DCS. All of the analysts and the DCS observed (1)

high rates of sei whale downsweeps during the first 3 h of

station 1, (2) a long period of relatively low call rates imme-

diately afterward, and (3) higher call rates after 0400 on

May 8. Likewise, the analysts and the DCS observed initially

high rates of right whale upcalls followed by a long period

of low but variable call rates until the last hour of the station

when the call rate increased dramatically.

IV. DISCUSSION

The performance of automated DCSs for marine mam-

mal sounds is always judged against detections from a

FIG. 7. Differences in hourly call

rates observed by the DCS and ana-

lyst 1 for (a) sei whale downsweep

calls when one or more downsweeps

were detected by analyst 1, (b) sei

whale downsweep calls when no

downsweeps were detected by ana-

lyst 1, (c) right whale upcalls when

one or more upcalls were detected

by analyst 1, and (d) right whale

upcalls when no upcalls were

detected by analyst 1. Negative dif-

ferences indicate that the DCS

detected fewer calls than analyst 1.

FIG. 8. Hourly call rates observed

by the DCS and all analysts as well

as the differences in call rates among

the DCS, analyst 2, and analyst 3 rel-

ative to analyst 1 for (a) sei whale

downsweep calls and (b) right whale

upcalls during station 1. Negative

differences indicate fewer calls were

detected than analyst 1. Mean and

95% confidence interval of hourly

call rate differences are indicated by

a filled square with error bars.
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human analyst who has manually (visually and aurally)

browsed the acoustic data. Differences between these two

detection systems are often attributed to errors in the auto-

mated system, as the human analyst is considered perfect.

There is little recognition that analysts can easily miss calls

either because of incorrect spectrogram viewing parameters

or fatigue (Urazghildiiev and Clark, 2007b). Moreover,

many baleen whale calls are only nominally stereotypical;

therefore, some degree of subjectivity is inherent in the clas-

sification of calls by an analyst. The three independent ana-

lysts in our study observed very different call rates during

station 1: analyst 2 detected over three times as many sei

whale downsweeps as analyst 3, and analyst 2 detected

nearly twice as many right whale upcalls as analyst 1. While

analysts 1 and 3 only manually browsed the audio data, ana-

lyst 2 had the benefit of using a kernel detector to help iden-

tify calls prior to manually browsing and could therefore

detect much fainter calls than analysts 1 or 3. By comparing

the call rates of analyst 2 to the other analysts, it is clear that

analysts 1 and 3 missed a significant number of calls. Even

when using the same manual methods to identify calls, ana-

lysts 1 and 3 observed different call rates owing to either

differing detection rates or more likely, different rules for

what constitutes a sei whale downsweep or a right whale

upcall. This subjectivity in classification produces uncer-

tainty in the analyst’s call rates, which, in turn, causes dis-

crepancies between the analyst and an automated system.

For example, the DCS apparently had a high false detection

rate for sei whale downsweeps toward the end of station 3

and throughout station 4 [Fig. 6(a)]; however, when com-

pared to a time series of sei whale downsweep calls detected

and localized by analyst 2 (Fig. 9; data from Baumgartner et
al., 2008), the DCS produced realistic call rates during these

same time periods. It is unlikely that analyst 1 failed to

detect the calls at the end of station 3 and throughout station

4; instead, analyst 1 subjectively decided that those calls

were not sei whale downsweeps, and analyst 2 concluded

that they were.

The three analysts in this study were trained acousti-

cians with considerable experience identifying marine mam-

mal sounds. Discrepancies among them are not attributable

to inexperience. Instead, differences in detection rate and

subjectivity in classification appear to be an unavoidable

consequence of manual browsing. While an automated DCS

cannot possibly be expected to perform better than a human

analyst in classification, our DCS has one potential advant-

age over an analyst: the rules by which calls are classified

are always fixed. Often an analyst’s definition of a call type

is not a concrete set of criteria against which calls are com-

pared. Instead, the rules are somewhat fluid to accommodate

new variants of the call or to allow consideration of neigh-

boring calls when classifying. While this flexibility may lead

to more accurate classifications in some cases, it also pro-

duces subjectivity, as no two analysts’ rules can ever be

identical. The DCS, in contrast, uses an objective set of crite-

ria to classify calls, so that the rules are exactly the same

each time a classification is made. This consistency is

extremely useful when assessing relative call rates, since

changes in call rates cannot be attributed to a change in clas-

sification rules over time [e.g., Figs. 6(a) and 9], but instead

can be attributed to true changes in calling behavior.

Given significant between-analyst variability in detec-

tion and classification rates, it is important to assess the per-

formance of an automated DCS against the relative

performance of an analyst. Our results from station 1 (Figs.

5 and 8) suggest that the differences between the DCS and

analyst 1 are very similar to the differences among the ana-

lysts. That is, discrepancies between the DCS and analyst 1

occur as often and are of similar magnitude as those between

analyst 1 and the other two analysts. Moreover, the temporal

patterns in hourly call rates are also quite similar among the

analysts and the DCS. We therefore conclude that the DCS

performs at least as well as a typical analyst.

The traditional manual review methods employed by ana-

lysts 1 and 3 resulted in missed calls when compared to the

kernel detector aided detections of analyst 2. These differen-

ces were most likely attributable to the kernel detector’s abil-

ity to identify times when calls are too faint to easily detect

visually in the spectrogram during manual browsing without

significant contrast enhancement in the displayed spectrogram

(Urazghildiiev and Clark, 2007b). Whereas analysts 1 and 3

would not notice these calls, analyst 2 would aurally review

each kernel-detection even when there was little evidence of

the presence of a call in the spectrogram. In some cases, this

review would result in the detection of a faint call. Intensive

manual review to detect every call in an acoustic recording is

FIG. 9. Hourly call rates of sei whale downsweeps observed by analyst 2 (filled gray bars) and the DCS [black line; same as in Fig. 6(a)] to illustrate differen-

ces in analyst-detected call rates. Note differences in call rates between analyst 1 [Fig. 6(a)] and analyst 2 (this plot) toward the end of station 3 and throughout

station 4. Analyst 2 was aided by a kernel detector to identify and classify calls (Baumgartner et al., 2008); only localized calls are included here.
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very often unrealistic; for the 25.5 h of recordings during sta-

tion 1 alone, analyst 2 reviewed over 11 000 kernel detections

to identify 939 sei whale downsweeps and 224 right whale

upcalls. The manual review of analysts 1 and 3 took roughly

the same effort, and while these reviews detected fewer calls,

the temporal pattern of call rates was identical to analyst 2

(Fig. 8). While the DCS also detected fewer calls than analyst

2, it produced similar temporal patterns in call rates to that

observed by all of the analysts (Fig. 8). Moreover, the DCS

took less than 10 min to detect and classify all calls, a tiny

fraction of the time required by the analysts. If the goal of the

analysis is to measure absolute call rates (i.e., to detect and

classify every call), then using an analyst aided by an auto-

mated detector with a low threshold of detection is clearly the

most accurate approach, albeit extremely laborious. However,

if relative call rates are sufficient, then our study suggests that

the DCS is far more efficient than an analyst and just as accu-

rate. Assessment of temporal and spatial patterns in call rates

rely far more on relative rates than absolute rates; that is, it is

more important to know, for example, that call rates increase

in one area versus another area or that call rates decrease dur-

ing the day relative to night. Our results for sei whale down-

sweeps and right whale upcalls suggest that these relative

rates can be efficiently and accurately assessed by the DCS.

The DCS can also be helpful in assessing occurrence.

Acoustic data present a unique challenge when assessing

occurrence; while the correct detection and classification of

calls indicates the presence of one or more whales, the ab-

sence of detections does not necessarily imply an absence of

whales (since whales may be silent). Similar to the assess-

ment of absolute call rates, an analyst aided by an automated

detector with a low threshold for detections is the only reli-

able way to detect every call and thereby correctly assess

presence based on vocalizations. Although this process is la-

borious, it is necessary if a whale only calls on very rare

occasions. However, if call rates are high and the false detec-

tion rate of a DCS is low, then missed calls do not pose sig-

nificant challenges for detecting the presence of a species.

With an automated DCS, changing the threshold with which

calls are considered correctly classified can reduce the false

detection rate significantly. In the case of our DCS, the

Mahalanobis distance threshold for classification can be

reduced so that only high-quality calls (i.e., calls that are

well within the multivariate distribution of exemplar attrib-

utes) are considered. If call rates are reasonably high, then

the detection of a small number of high-quality calls pro-

vides strong evidence of presence. For both sei whale

downsweeps and right whale upcalls, the probability of ana-

lyst-observed presence was 1.0 when only two calls with

Mahalanobis distances of 1.5 or less were detected per hour

by the DCS (Fig. 10). In contrast, much higher call rates are

required to indicate a high probability of analyst-observed

presence when using greater Mahalanobis distance thresh-

olds. For example, the probability of analyst-observed sei

whale presence exceeded 90% on average when four and 14

downsweep calls with Mahalanobis distances of 3.0 and 4.5

or less were detected per hour by the DCS, respectively [esti-

mated from logistic regressions shown in Fig. 10(a)]. Simi-

larly, the probability of analyst-observed right whale

presence exceeded 90% on average when seven and 26

upcalls with Mahalanobis distances of 3.0 and 4.5 or less

were detected per hour by the DCS, respectively [Fig.

10(b)].

Recall that calls in this study were classified with a

call library built from independent acoustic recordings (Ta-

ble II). This permitted as rigorous an evaluation as possi-

ble. In many applications, the researcher’s goal is to

identify calls of interest as efficiently and accurately as

possible, not to evaluate the DCS. In these cases, the call

library can be built directly from the very acoustic record-

ings intended to be analyzed. This approach is particularly

useful when calls vary over time (i.e., seasonally or annu-

ally), such as for humpback whale song. Evaluation of

false detections can be easily accomplished by review of a

FIG. 10. Relationship between DCS-observed hourly call rates and analyst-observed probability of presence for (a) sei whales and (b) right whales based on

detections of the sei whale downsweep and right whale upcall, respectively. Data shown for DCS-observed hourly call rates determined with Mahalanobis dis-

tance thresholds of 1.5 (open circles, solid line), 3.0 (filled squares, dashed line), and 4.5 (open diamonds, dotted line). Lines represent fitted logistic regression

curves: logit hð Þ ¼ b0 þ b1 q, where h is the analyst-observed probability of detection, q is the DCS-observed hourly call rate, and b0 and b1 are the model pa-

rameters. Analyst-observed hourly presence of sei whales was calculated from the combined downsweep detections of analysts 1 and 3, whereas hourly pres-

ence of right whales was observed by analyst 1 only.
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subset of auto-detected calls by a human analyst; however,

missed calls can only be evaluated by comparing auto-

detections with calls detected and classified during a

lengthy independent manual review. When assessing rela-

tive call rates, missed calls pose a problem only if absolute

call rates are very low. In such cases, the DCS (human or

automated) must be able to detect and correctly classify

nearly every call. In contrast, when absolute call rates are

high, temporal trends or patterns in call rates can still be

characterized despite missed calls. False detections are far

more egregious when assessing relative call rates, but the

rate at which the DCS produces false detections can be

directly measured with manual review of a subset of the

auto-detected calls.

Although evaluated here for sei whale downsweep calls

and right whale upcalls, the DCS can be used for a wide vari-

ety of narrowband tonal and frequency-modulated calls,

such as those produced by fin (Balaenoptera physalus), blue

(Balaenoptera musculus), humpback, and bowhead (Balaena
mysticetus) whales. The addition of new call types to a call

library is trivial; only the mean attribute vector (lg), the

inverse of the attribute variance–covariance matrix (R�1
g ),

and the determinant of the attribute variance–covariance ma-

trix ( Rj j) for each new call type are added to the call library

based on pitch tracks from many tens to hundreds of exem-

plars. Broadband sounds (e.g., right whale gunshots) are not

amenable to pitch-tracking, so the DCS described above

does not classify these sounds. However, the DCS detects

broadband sounds for the purposes of removing them from

the spectrogram prior to pitch-tracking. In a manner exactly

analogous to the DCS, attributes can be extracted and the

broadband sounds can be classified using QDFA based on a

separate broadband call library. Because detection and pitch-

tracking are generalized and do not rely on call-specific tem-

plates (unlike, for example, kernel-based spectrogram cross-

correlation methods), only a single pass through the spectro-

gram is required to detect and classify all call types, which

significantly speeds processing for multi-species applica-

tions. By removing a long-duration running mean from each

frequency band in the spectrogram prior to detection and

pitch-tracking, the DCS makes all calculations relative to

background noise levels. While this has the advantage of

accounting for persistent tonal noise (e.g., noise generated

by storms or ships), it also makes the DCS insensitive to

changes in gain between different instruments; therefore,

identical processing parameters can be used across

instruments.

Spectrogram cross-correlation methods rely in great

measure on the stereotypy of a call. The effectiveness of

spectrogram cross-correlation methods to detect a call is

reduced if there is significant variation in call characteris-

tics because the kernel or template is fixed in frequency-

time space. While multiple kernel detectors could be used

to account for such variation, this approach can be quite

computationally expensive. In contrast, the DCS inherently

accounts for variability in call characteristics during classi-

fication with QDFA. For example, the right whale moan

(Matthews et al., 2001) is a low-frequency warble that is a

poor candidate for kernel-based spectrogram cross-correla-

tion because the duration varies from call to call. Because

duration is simply another attribute used to classify pitch

tracks, variation in this attribute poses no problem for the

DCS.

In summary, the DCS provides an efficient means to

detect and classify a wide variety of narrowband sounds pro-

duced by marine mammals. Although we have presented

results here for right and sei whale calls, we have used the

DCS on several other calls, including those of fin, blue,

humpback, and bowhead whales as well as bearded (Erigna-
thus barbatus) and ribbon (Histriophoca fasciata) seals. The

exclusion of persistent tonal noise and transient broadband

noise improves performance by reducing false detection

rates. The system’s capability to identify and exclude noise

makes it particularly useful for deployment on autonomous

platforms that may inadvertently produce sounds of their

own. We have found that QDFA provides a convenient, par-

simonious, and extendible framework with which calls can

be accurately classified.
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