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Abstract

Background: Electrotaxis is the movement of adherent living cells in response to a direct current (dc) electric field (EF) of
physiological strength. Highly metastatic human lung cancer cells, CL1–5, exhibit directional migration and orientation
under dcEFs. To understand the transcriptional response of CL1–5 cells to a dcEF, microarray analysis was performed in this
study.

Methodology/Principal Findings: A large electric-field chip (LEFC) was designed, fabricated, and used in this study. CL1–5
cells were treated with the EF strength of 0mV/mm (the control group) and 300mV/mm (the EF-treated group) for two
hours. Signaling pathways involving the genes that expressed differently between the two groups were revealed. It was
shown that the EF-regulated genes highly correlated to adherens junction, telomerase RNA component gene regulation,
and tight junction. Some up-regulated genes such as ACVR1B and CTTN, and some down-regulated genes such as PTEN, are
known to be positively and negatively correlated to cell migration, respectively. The protein-protein interactions of
adherens junction-associated EF-regulated genes suggested that platelet-derived growth factor (PDGF) receptors and
ephrin receptors may participate in sensing extracellular electrical stimuli. We further observed a high percentage of
significantly regulated genes which encode cell membrane proteins, suggesting that dcEF may directly influence the activity
of cell membrane proteins in signal transduction.

Conclusions/Significance: In this study, some of the EF-regulated genes have been reported to be essential whereas others
are novel for electrotaxis. Our result confirms that the regulation of gene expression is involved in the mechanism of
electrotactic response.
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Introduction

Electrotaxis, also known as galvanotaxis, is the movement

of organisms or cells in response to an electric field (EF).

Physiological EF exists extracellularly, such as in wound, embryo’s

skin, and ducts [1,2]. It may also exist in the interface between

tumors and normal tissues [3,4]. Several types of cancer cells such

as prostate cancer cells, breast cancer cells, and lung cancer cells,

are known to migrate directionally under dcEF, and the degree of

electrotaxis of these cancer cells has been shown to correlate to

their metastatic abilities [5–8]. Living cell electrotaxis is different

from cell electrophoresis since the latter requires the detachment

of cultured cells from the substrate in advance [9]. In addition, the

EF strength for cell electrophoresis is about 100-fold higher than

that for electrotaxis [9]. Also, it has been shown that the

directional migration of the cells was caused by EFs but not EF-

induced events such as electro-osmotic flows [10].

The mechanism of electrotaxis has been explored for more than

10 years. Several important proteins and genes are reported to be

involved. It is known that physiological EF redistributes epider-

mal growth factor receptors (EGFRs), leading to the cathodal

polarization and the activation of EGFR-mitogen-activated

protein kinase (MAPK) signaling pathway [11,12]. EGFR

signaling is essential for EF-directed migration of breast cancer

cells [6]. Besides, cyclic AMP (cAMP) and cAMP-dependent

protein kinase A mediate the directional migration of human

keratinocytes in a dcEF [13,14]. Beta-4 integrin together with

epidermal growth factor (EGF) also mediate the electrotaxis of

human keratinocytes through a Rac-dependent signaling pathway

[15]. Electrical signals control wound healing through phospha-

tidylinositol-3-OH kinase (PI3K)-c and phosphatase and tensin

homolog (PTEN) [16]. The EF stimulation triggers the activation

of Src and inositol–phospholipid signaling, which polarizes in the

direction of the epithelial cell migration [16]. In Xenopus embryonic
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spinal neurons, GTPases Cdc42, Rac and Rho mediate growth

cone steering in a physiological EF through the spatiotemporal

regulation of GTPase activity and their effectors [17,18]. The EF-

guided migration of rat hippocampal neurons is mediated by the

activation of Rho-associated protein kinase (ROCK) and PI3K

[19]. In addition, the direction of the EF-induced migration of

Dictyostelium cells is switched by cGMP and phosphatidylinositol

signaling [20]. It is also reported that the calcium ions play

important roles in the directed migration of Dictyostelium cells and

the osteoblast-like cells [21,22], suggesting that calcium signaling

pathway may participate in the electrotaxis.

Most studies exploring the mechanism of electrotaxis are

focused on specific genes, proteins, and signaling pathways. The

global gene expression profiling could be an approach to reveal the

whole view of the mechanism. DNA microarray is a well-known

technology for genome-wide gene expression profiling. Recently,

the microarray analysis for electrotaxis study has been performed

in human dermal fibroblasts and epidermal keratinocytes [23,24].

In human dermal fibroblasts, the EF-regulated genes are

associated with cellular signaling pathways including TGF-b, G-

proteins, and inhibition of apoptosis [23]. In human epidermal

keratinocytes, the EF-regulated genes are shown to correlate with

chemokine, apoptosis, JAK-STAT, Wnt, and G-protein MAPK

activation signaling pathways [24]. So far, there is no research

work discussing the global effect of EF on the gene expression of

cancer cells.

Tumor cell invasion and metastasis are the major causes

resulting in the high mortality of lung cancer patients in five years.

Invasion is the most critical step in the metastatic process and it

occurs through the interaction between the tumor cells and the

surrounding environment. Human lung adenocarcinoma cells,

CL1-5, which is a sub-line derived from CL1-0, has higher

invasiveness than CL1-0 [25]. In our previous study, we have

shown that CL1-5 cells migrate toward the anode and orient

perpendicularly to the direction of the dcEF. In contrast, CL1-0

did not show obvious electrotactic response [8]. Since the positive

correlation between the metastatic ability and the electrotactic

response has been observed in the level of cell motion, it is

important to further investigate the influence of physiological EF

on the gene expression. In this work, the highly metastatic CL1–5

cells were examined by using DNA microarray. Through the

analysis of the EF-regulated genes and their corresponding

signaling pathways, we may understand more about the role of

physiological EF in tumor metastasis.

For the electrotaxis study, we have designed and fabricated a

microfluidic electric-field chip (EFC) which provides uniform dcEF

in the cell culture micro-chamber [8]. The thickness of the micro-

chamber is only 70 mm and thus the joule heating can be omitted

[8]. The limitation of the EFC is that the cell culture region is too

small to provide enough cells for microarray analysis in one-time

experiment. Therefore, a large electric-field chip (LEFC) providing

uniform dcEF was designed and fabricated in this work for sample

collection (Figure 1).

Results

LEFC and EF stimulation
To build up an EF with the strength of 300mV/mm in the cell

culture region, the current flow of 696 mA was introduced into

the LEFC by applying the voltage of about 21V on the elec-

trodes (Figure 2). The electrical power consumed in the cell

culture region was estimated to be P = IV = 15.7mW

(696 mA675mm6300mV/mm). It was expected that joule-

heating could be omitted with such low electrical power. The

numerical simulation of the dcEF showed a uniform distribution in

the cell culture region (Figure 3). More than 85% culture region

was exposed in the EF strength of 300+/215mV/mm.

In microarray analysis, 20–30 mg total RNA is required for one

GeneChip, which means that about 106 CL1–5 cells are needed

for each replicate. The cell culture region of a LEFC is

75624mm2, about 40-fold larger than that of an EFC

(3615mm2). It was tested that CL1–5 cells harvested from a

LEFC could reach to 106 cells per chip. In other words, a LEFC

could provide enough amount of total RNA for one microarray

experiment.

Signaling pathway analysis
Through the ANOVA test, 1631 probe sets of Affymetrix HG-

U133 plus2.0 Array were identified with statistically differential

expression between the control group and the EF-treated group

(p,0.05). Among them, 431 probe sets had all signal intensities of

the two groups larger than the global median intensity of the six

arrays ( = 66.5, from the signal intensities of 54675 probe sets63

replicates62 groups). The 431 probe sets were considered in the

signaling pathway analysis. The accession numbers of these probe

sets were submitted to CRSD website, where the genome-wide

iterative enrichment analysis was performed. The top three

signaling pathways showing significant correlation to the EF-

regulated genes were adherens junction, telomerase RNA

component gene hTerc transcription regulation, and tight junction

(Table 1).

Subcellular localization and biological function analysis
The EF-regulated genes were categorized based on the

subcellular location of their protein products. The protein

database Swiss-Prot and Ensembl were referred to. If a protein

was located in ‘‘cell membrane’’ shown in Swiss-Prot, or it

contained ‘‘signal peptide and transmembrane domain’’ shown in

Ensembl, it was categorized as a cell membrane protein in this

study. Based on the definition, 6545 probe sets of HG-U133

Plus2.0 array were considered to represent the genes encoding cell

membrane proteins. Here we examined the significantly regulated

Figure 1. Assembly drawing of the large electric-field chip
(LEFC). The LEFC had connecting holes for the medium inlet/outlet
and the agar salt bridges. Cells were cultured in the micro-chamber (the
cell culture region). The width, length, and thickness of the micro-
chamber were 24mm, 75mm, and 70 mm, respectively.
doi:10.1371/journal.pone.0025928.g001
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genes with the fold change larger than 1.5 or smaller than 1/1.5

(the EF-treated group/the control group). Among 88 genes which

met the criteria, 18 genes were recognized to encode cell

membrane protein. The percentage is 18.2% ( = 16/88). For

comparison, we randomly selected 88 probe sets from the probe

sets of HG-U133 plus2.0 array (excluding the probe sets of control

sequences) and examined the percentage of genes encoding cell

membrane protein. The average percentage from 10000-time

operation is 12%.

The categorization of the 88 significantly regulated genes was

shown in Table 2 (up-regulated) and Table 3 (down-regulated).

Apart from the genes encoding cell membrane proteins, others

were categorized based on the ‘‘cellular component’’ in Swiss-Prot.

In addition, the genes listed in Table 2 and Table 3 were analyzed

with their biological function according to the Gene Ontology

annotation (Figure 4). The microarray analysis result was partially

validated by real-time RT-PCR. The 20 selected genes showed

positive correlation between the real-time RT-PCR and the

microarray analysis results in their expression change (Table 2 and

3).

Gene expression of reported electrotaxis-related genes/
proteins

We also examined the microarray analysis results of the genes

that have been reported to be correlated to electrotaxis. Among

the 1631 probe sets identified by ANOVA, those that have all

intensities above the background level (i.e. larger than the global

median) in at least one of the two groups were considered. The

expression of electrotaxis-related genes/proteins was discussed

below.

Figure 2. Lateral view of the electrotaxis system. A LEFC was integrated with a transparent ITO heater chip, two Ag/AgCl electrodes with
phosphate-buffered saline (PBS) as electrolyte, two agar salt bridges (1.5% agar in PBS), a syringe pump, a DC power supply, an ampere-meter, and an
inverted microscope.
doi:10.1371/journal.pone.0025928.g002

Figure 3. Simulated EF in the cell culture region of the LEFC. The EF strength along the dotted line (between the two arrows) was shown.
More than 85% culture area was exposed to the EF strength of 300+/215mV/mm.
doi:10.1371/journal.pone.0025928.g003
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Discussion

EF stimulation
Under the EF strength of 300mV/mm, our previous work has

shown that CL1–5 cells have a significant tendency of directional

migration and orientation while CL1-0 cells move randomly [8].

CL1–5 cells present a nearly constant movement towards the

anode immediately after the dcEF is turned on. However, the

orientation of CL1–5 cells is not evident until 2-hour exposure in

the dcEF. The different response time of the EF-induced

directional migration and the cell body orientation of CL1–5 cells

suggest the involvement of different signal pathways in electrotaxis.

This point of view is also suggested in a recent work by

Hammerick et al [26].

We presumed that the gene expression change associating with

the two electrotactic responses, the directional migration and the

orientation, could all be detected after 2-hour treatment of the

dcEF. Thus, in this study the microarray analysis was performed

for CL1–5 cells stimulated by 300mV/mm for 2 hours. The

results showed that several genes were significantly regulated.

Considering the high cost of DNA microarray analysis (about

US$1,00063 replicates62 groups for each time point), we started

by choosing the time period of 2 hours in this initial study. To

further distinguish if the regulated gene was correlated to the

directional migration or the orientation, microarray analysis of

short term EF stimulation (perhaps 10mins) will be pursued in our

future work.

In this study, the cell culture medium was replaced with serum-

free DMEM medium before the dcEF was applied. Serum is a

complex compound which contains different proteins like growth

factors, cytokines, and attachment factors. Under an applied dcEF

in the cell culture chamber, chemical gradient of these proteins

may be generated by electrophoresis. Therefore, the response of

cells under the dcEF might be affected by chemotaxis. To

minimize the possible effects of the chemical gradient when

investigating the influence of dcEF on the cells, the serum was

removed in advance. Our previous work has shown that the dcEF

induces the directional migration and the orientation of CL1–5

cells in serum-free medium [8]. The results suggest that the dcEF

could induce the electrotactic response of living cells without

chemical stimulation. Some different types of cells also show

electrotactic response in serum-free medium, such as neural crest

cells, hippocampal neurons, and CHO cells [27–29].

Nevertheless, cells are surrounded by a variety of growth factors

and cytokines in vivo which may also play roles in the electrotaxis of

cells. In our previous study, CL1–5 cells have been observed to

migrate toward the anode both in serum-free [8] and in serum-

containing (Movie S1) medium under an applied dcEF. It is an

important future work to compare the EF-regulated gene

expression in serum-containing medium and that in serum-free

medium. The concurrent effect of the EF and the chemical

gradient could thus be investigated. Such work may help us to find

out the candidate growth factors and cytokines that participate in

the mechanism of electrotaxis.

Signaling pathway analysis
Under the treatment of the dcEF, we observed the differential

regulation of six genes which were known to be involved in the

adherens junction pathway (hsa04520, KEGG) (Table 1). Four

genes ACVR1B (1.51-fold), FYN (1.21-fold), WASF3 (1.2-fold), and

ACP1 (1.18-fold) were shown to be up-regulated. ACVR1B (activin

A receptor, type IB) encodes a type I activin receptor, which is a

transmembrane serine/threonine kinase receptor and is essential

for signaling. Activin receptor signaling regulates prostatic

epithelial cell adhesion and is associated with the prostate cancer

metastasis [30]. The protein tyrosine kinase Fyn (encoded by FYN,

FYN oncogene related to SRC, FGR, YES) is a member of the Src

family kinases which are important in integrin-mediated cell

adhesion and migration [31]. Activation of Fyn promotes the

migration of squamous carcinoma cells [32]. WASF3 (WAS

protein family, member 3), also known as WAVE3, encodes a

protein member of the WAVE family which mediates actin

reorganization and cell movement. It has been reported that

WAVE3, which is regulated downstream of PI3K, concentrates in

the lamellipodia at the leading edge and mediates cell migration

and lamellipodia formation [33].

Table 1. Signaling pathways which were significantly correlated to the EF-regulated genes.

Signaling Pathway Accession # Gene Symbol Gene Name Fold Change

Adherens junction (KEGG) NM_020328 ACVR1B Activin A receptor, type IB 1.51

M14333 FYN FYN oncogene related to SRC, FGR, YES 1.21

AB020707 WASF3 WAS protein family, member 3 1.2

BG035989 ACP1 Acid phosphatase 1, soluble 1.18

AW139723 PVRL1 Poliovirus receptor-related 1 (herpesvirus entry mediator C; nectin) 1/1.97

NM_001614 ACTG1 Actin, gamma 1 1/1.05

Telomerase RNA component gene hTerc
Transcriptional Regulation (BioCarta)

BF445142 NFYA Nuclear transcription factor Y, alpha 1/1.16

NM_014223 NFYC Nuclear transcription factor Y, gamma 1/1.27

Tight junction (KEGG) AF191495 F11R F11 receptor 1.52

BG475299 CTTN Cortactin 1.51

NM_002870 RAB13 RAB13, member RAS oncogene family 1.25

N63821 EPB41 Erythrocyte membrane protein band 4.1 (elliptocytosis 1, RH-linked) 1.23

AK024986 PTEN Phosphatase and tensin homolog (mutated in multiple
advanced cancers 1)

1/1.19

NM_001614 ACTG1 Actin, gamma 1 1/1.05

doi:10.1371/journal.pone.0025928.t001
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Table 2. Significantly up-regulated (.1.5-fold) genes by dcEF.

Gene Name Gene Symbol Accession # Fold change

Microarray Real-time PCR

Cell Membrane

Transmembrane 6 superfamily member 1 TM6SF1 NM_023003 1.83 1.22

Major histocompatibility complex class I-related gene protein MR1 AF031469 1.81 1.59

Neurotrimin NTM AW085558 1.8 1.28

59-39 exoribonuclease 1 XRN1 BC039314 1.72

Integrin beta-5 ITGB5 NM_002213 1.55

Coagulation factor II (thrombin) receptor F2R BG026194 1.53

Junctional adhesion molecule A, F11 receptor F11R AF191495 1.52

Activin receptor type-1B ACVR1B NM_020328 1.51

Secreted

Stanniocalcin-1 STC1 U46768 1.78 1.49

Fibronectin type-III domain-containing protein C4orf31 C4orf31 NM_024574 1.72 1.49

Serglycin SRGN J03223 1.69

Aspartylglucosaminidase AGA M64073 1.56

Wingless-type MMTV integration site family, member 5A WNT5A NM_003392 1.54

Cytoplasm

Myristoylated alanine-rich C-kinase substrate MARCKS AA770596 1.77

Aryl hydrocarbon receptor repressor AHRR AB033060 1.67 1.53

Notch homolog 2 N-terminal-like protein NOTCH2NL AW024960 1.61

Enolase 3 beta ENO3 NM_001976 1.6 1.22

E3 ubiquitin-protein ligase MIB2 MIB2 BE222279 1.6

SEC14-like protein 2 SEC14L2 NM_012429 1.56 1.26

Desmoplakin DSP AW444944 1.52

Src substrate cortactin CTTN BG475299 1.51

Nucleus

Neuroblast differentiation-associated protein AHNAK AHNAK NM_024060 2.05 1.76

Tumor protein p53-inducible nuclear protein 1 TP53INP1 AW341649 1.95 1.74

E3 SUMO-protein ligase PIAS2 PIAS2 AF077953 1.7

Chromobox protein homolog 5 CBX5 BE568225 1.63

Zinc finger protein 232 ZNF232 AW173312 1.6 1.27

Splicing factor, arginine/serine-rich 11 SFRS11 AW241752 1.53

Transducin-like enhancer protein 1 TLE1 BE302305 1.51 1.22

Mitochondrion

Putative transferase C1orf69, mitochondrial C1orf69 AW243177 1.53

Lysosome

Solute carrier family 29 (nucleoside transporters), member 3 SLC29A3 NM_018344 1.79 1.23

Uncategorized

Polycomb group RING finger protein 3 PCGF3 BG231712 2.19 1.5

Next to BRCA1 gene 2 protein NBR2 BC034248 2.05 1.85

Dedicator of cytokinesis protein 9 DOCK9 AW450751 1.94

Probable protein phosphatase 1N PPM1N BE732320 1.88

1-aminocyclopropane-1-carboxylate synthase-like protein 1 ACCS AI676022 1.85

Glutamate decarboxylase 1 GAD1 NM_013445 1.84 1.39

Solute carrier family 6 (neurotransmitter transporter, taurine), member 6 SLC6A6 BC006252 1.7

Chromosome 11 open reading frame 71 C11orf71 AV721563 1.67

Family with sequence similarity 167, member A FAM167A BE856336 1.6

Kelch repeat and BTB domain-containing protein 11 KBTBD11 NM_014867 1.6

Fibrinogen C domain-containing protein 1 FIBCD1 BF439289 1.56 1.2

Genomic Expression Changes of Cancer Cell in dc EF
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The expression of PVRL1 (1/1.97-fold) and ACTG1 (1/1.05-

fold) were shown to be suppressed by the applied dcEF. PVRL1

(Poliovirus receptor-related 1), also called nectin-1, encodes a

calcium-independent cell-cell adhesion protein. Nectin-1 plays a

role in the organization of adherens junctions in epithelial and

endothelial cells [34,35]. ACTG1 (Actin, gamma 1) encodes a

cytoplasmic actin found in nonmuscle cells. Actins are well known

to be involved in various types of cell motility, and maintenance of

the cytoskeleton. The applied dcEF enhanced the expression of

ACVR1B, FYN, and WASF3, which might in turn enhance the

migration of CL1–5. It was suggested that EF-reduced adhesion

(PVRL1Q) contributed to the enhanced motility. The suppression

of ATCG1 was minor compared to the change of the other genes.

It has been shown that the migration rate of CL1–5 is enhanced

when applying a dcEF to the cell culture region [8].

We further investigated the relationship between the protein

products of these six genes. The analytical tool MetaCore

(GeneGo) was applied to build up the networks of the direct or

indirect protein-protein interaction. The interactions and the

subcellular localization of the proteins were shown in Figure 5. It

was observed that Fyn, ACP1, and c-Src have direct interaction

with two kinds of receptors, platelet-derived growth factor (PDGF)

receptors and ephrin receptors [36–43]. C-Src was shown to be 1.3-

fold up-regulated by dcEF in this study. PDGF receptors have

been implicated to be activated by physical forces that alter the

receptor conformation [44]. The networks suggested that PDGF

receptors might be stimulated by the dcEF and then activated Fyn,

c-Src and c-Abl, which influenced the activation of WAVE3 [45–

47]. The activated WAVE3 subsequently regulated the reorgani-

zation of the actin cytoskeleton and thus influenced the cell

morphology and motility [48]. The results also suggested that

ephrin-A receptors and ephrin-B receptors might play roles in

converting the electrical stimuli into biological signals. However,

the gene expression change was not observed in PDGF receptors,

ephrin receptors, and c-Abl in this study. The expression level and

the role of these proteins in electrotaxis need to be investigated

further.

Several EF-regulated genes were involved in the transcriptional

regulation of telomerase RNA component gene hTerc (h_terc,

BioCarta), which encodes the RNA component of human

telomerase. The RNA component serves as a template for the

telomere repeat [49]. Through the treatment of the EF, we

observed that NFYA (Nuclear transcription factor Y, alpha) and

NFYC (Nuclear transcription factor Y, gamma) were down-

regulated with 1/1.16-fold and 1/1.27-fold, respectively. NFYA

and NFYC encode two subunits of a trimeric complex NF-Y

protein, which is an activator of the hTerc gene. The down-

regulation of NFYA and NFYC suggested that the expression of

hTerc may decrease due to the applied dcEF. Since there is no

probe set for the hTerc gene in HG-U133 Plus 2.0 array, the

expression of this gene was not shown in the microarray result.

The application of the dcEF to CL1–5 cells also altered the

expression of important genes involved in the tight junction

pathway (hsa04530, KEGG). Four correlated genes F11R (1.52-

fold), CTTN (1.51-fold), RAB13 (1.25-fold), and EPB41 (1.23-fold)

were shown to be up-regulated. F11R gene (F11 receptor), also

called junction adhesion molecule-A (JAM-A), is an important

regulator of tight junction assembly and cell migration [50]. CTTN

gene (Cortactin) encodes a protein cortactin that regulates the

interactions between components of adherent-type junctions. It

organizes the cytoskeleton and cell adhesion structures of epithelia

and carcinoma cells. Many studies have documented a role for

cortactin in promoting cell motility and cancer invasion [51].

RAB13 gene (member RAS oncogene family) encodes one of the

small guanosine triphosphatases (GTPases) of the RAB subfamily,

which is known to localize to the tight junction. This protein has

been shown to play a critical role in regulating both the structure

and function of tight junctions in polarized epithelial cells [52].

Rab13 protein is also shown to be activated during epithelial cell

scattering-the process that includes the first steps of carcinoma

Gene Name Gene Symbol Accession # Fold change

Microarray Real-time PCR

Uncharacterized protein C17orf90 C17orf90 AY007126 1.56

Unknown (Hypothetical protein)

LOC100289219 --- AI188104 2.23

cDNA clone IMAGE:3879939 --- BE789947 2.14

cDNA clone IMAGE:2526201 --- AW024656 2.08

cDNA clone IMAGE:1127501 --- AA653638 2.07

LOC100132999 --- AA532655 1.73

cDNA clone IMAGE:1336731 --- AA809353 1.71

cDNA clone IMAGE:2976454 --- AW629461 1.71

cDNA clone IMAGE:2062250 --- AI343467 1.69

LOC84856 (hypothetical non-coding RNA) --- AK024638 1.59

cDNA clone IMAGE:2055268 --- AI307251 1.57

cDNA clone cdAAME10 --- AV734194 1.56

LOC100134259 --- W72564 1.53

cDNA clone IMAGE:3233624 --- BE672607 1.53

cDNA clone IMAGE:3285426 --- BE671045 1.52

cDNA clone IMAGE:1946650 --- AI341823 1.51

doi:10.1371/journal.pone.0025928.t002

Table 2. Cont.
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invasion/metastasis [53]. The gene EPB41 (Erythrocyte membrane

protein band 4.1) encodes one of the 4.1 proteins called 4.1R. The

4.1 family proteins are components of the cortical cytoskeleton

underlying the cell membrane. They contribute to the organization

of cell polarity, adhesion and motility. They also affect transportation

through the membrane and response to growth factors [54]. On the

other hand, PTEN (1/1.19-fold) and ACTG1 (1/1.05-fold) were

shown to be down-regulated. PTEN is identified as a tumor

suppressor and encodes a phosphatidylinositol-3,4,5-trisphosphate

3 (PtdIns(3,4,5)P3)- phosphatase. PTEN down-regulates intracellular

levels of PtdIns(3,4,5)P3 and thus negatively regulates the PI3K/Akt

pathway. Under the applied dcEF, PtdIns(3,4,5)P3 was reported

to be polarized to the leading edge of differentiated HL60 cells

migrating towards the cathode [16]. It is known that PTEN inhibits

cell migration, spreading, and focal adhesions [55]. In brief, F11R,

CTTN, RAB13, EPB41, PTEN and ACTG1 were known to mediate

cell motility and/or cytoskeleton organization, suggesting that they

may play roles in the electrotactic response of CL1-5.

The confluent CL1-5 cell monolayers could be observed after

the overnight incubation (,20hrs) in the culture chamber of

Table 3. Significantly down-regulated (, 1/1.5 fold) genes by dcEF.

Gene Name Gene Symbol Accession # fold change

Microarray Real-time PCR

Plasma Membrane

Poliovirus receptor-related protein 1 PVRL1 AW139723 1/1.97 1/1.29

Heparan-sulfate 6-O-sulfotransferase 1 HS6ST1 BC001196 1/1.79 1/1.21

Armadillo repeat-containing protein 10 ARMC10 AY150851 1/1.78

Beta-1,4-galactosyltransferase 6 B4GALT6 BG503479 1/1.69

ATP-binding cassette sub-family A member 7 ABCA7 NM_019112 1/1.68

PDZ and LIM domain 5 PDLIM5 AF116705 1/1.58

G-protein coupled receptor 156 GPR156 AW451851 1/1.53

Pro-neuregulin-2, membrane-bound isoform NRG2 AI271427 1/1.52

Secreted

Latent-transforming growth factor beta-binding protein 3 LTBP3 AW515704 1/1.60

Cytoplasm

Methylosome protein 50 (WD repeat domain 77) WDR77 NM_024102 1/1.81

PAS domain-containing serine/threonine-protein kinase PASK U79240 1/1.81

TNF receptor-associated factor 2 TRAF2 NM_021138 1/1.79

SH3 and PX domain-containing protein 2A SH3PXD2A NM_014631 1/1.55

Baculoviral IAP repeat-containing protein 7 BIRC7 NM_022161 1/1.51

Nucleus

REST corepressor 2 RCOR2 BF528119 1/1.76

Kinetochore-associated protein NSL1 homolog NSL1 AW168886 1/1.60

Mitochondrion

Mitochondrial ribosomal protein L38 MRPL38 AU143610 1/1.64

Cardiolipin synthase 1 CRLS1 AI339837 1/1.58

Long-chain-fatty-acid--CoA ligase 3 ACSL3 NM_004457 1/1.52

Uncategorized

Psoriasis associated RNA induced by stress (non-protein coding), non-coding RNA PRINS AK022045 1/1.94

Phosphate cytidylyltransferase 2, ethanolamine PCYT2 BC000351 1/1.89 1/1.37

Chromosome 11 open reading frame 31 C11orf31 AF085883 1/1.81

Glutamate--cysteine ligase regulatory subunit GCLM NM_002061 1/1.63

Rap guanine nucleotide exchange factor 1 RAPGEF1 AU158380 1/1.54

Guanine nucleotide binding protein (G protein), alpha 11 (Gq class) GNA11 AL110227 1/1.51

Unc-5 homolog B (C. elegans) UNC5B AL049370 1/1.51

Unknown (Hypothetical protein)

cDNA clone IMAGE:2157199 --- AI476341 1/1.87

cDNA clone IMAGE:1560745 --- AA969238 1/1.67

cDNA clone GKCBWAO9 --- AV699953 1/1.65

LOC401312 --- BC042871 1/1.63

cDNA clone UI-CF-DU1-ado-n-20-0-UI 3- --- BU687162 1/1.58

doi:10.1371/journal.pone.0025928.t003
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LEFC. It is reported that the development of high resistance

electric seals takes 48-hour plating to reach the steady-state in tight

junction formation [56]. Since the tight junction-associated genes

were observed to be EF-regulated, we inferred that the dcEF may

influence tight junction formation during the stimulation period.

Thus, we further examined the gene expression of other major

tight junction components, such as the transmembrane protein

occludins and claudins, and the cytoplasmic ZO family. However, no

significant difference was observed between the control group and the

EF-treated group. The results suggested that dcEF might influence

the tight junction assembly through regulating JAM-A instead of

occludins, claudins, and ZO family in the transcription level.

To sum up, EF may influence the movement of CL1-5 by

regulating the adherens junction and tight junction in transcription

level. Many regulated genes in these two signaling pathways are

known to correlate to cell migration. Except for PTEN and

ACTG1, most of the genes have not been reported to be EF-

correlated yet.

Subcellular localization analysis
One known mechanism of electrotaxis is that membrane

receptors redistribute under the applied dcEF and cause the

asymmetric signaling of the cell [1]. It is also proposed that EFs

may be transduced into mechanical signals by the mechanical

torque exerting on the glycoproteins on the cell membrane [57].

Since the cell membrane proteins might be directly influenced by

the dcEF, we would like to investigate their proportion in the

products of the EF-regulated genes. About 18.2% of the

significantly regulated genes (fold change .1.5 or,1/1.5) were

observed to encode cell membrane protein. However, only 12% of

randomly selected genes encoded cell membrane protein. The

result indicated that a relatively high percentage of membrane

proteins were significantly regulated by the dcEF in transcription

level. The EF-affected membrane protein genes discovered in this

work could be the candidates for the further glycomic study of

electrotaxis.

Biological function of EF-regulated genes
In addition to biological adhesion, we could see that the dcEF

regulated the genes functioning in the biological processes such as

biological regulation, cellular process, signaling, metabolic process,

etc. (Figure 4). Several genes were known to participate in apoptosis,

including the up-regulated genes SRGN and TP53INP1 (Table 2),

and the down-regulated genes BIRC7, TRAF2, UNC5B, and GCLM

Figure 5. Protein-protein interaction between the products of the EF-regulated genes associated with adherens junction. The
diagram showed that the EF up-regulated Fyn, ACP1, and c-Src might directly interact with two kinds of membrane receptors, PDGF receptors and
ephrin receptors. Green arrow: positive effect; Red arrow: negative effect; gray arrow: unspecified effect.
doi:10.1371/journal.pone.0025928.g005

Figure 4. Biological processes correlated with the EF-regulated
genes. The significantly regulated genes listed in Table 2 (up-
regulated) and Table 3 (down-regulated) were categorized with their
biological function according to the Gene Ontology annotation.
doi:10.1371/journal.pone.0025928.g004
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(Table 3). In addition, some other significantly regulated genes

encoded the proteins correlated to G protein signaling, including

the up-regulated genes F2R and DOCK9, and the down-regulated

genes GNA11, GPR156, and RAPGEF1. It is known that G proteins

are signal transducers that transmit chemical signals outside the cell,

such as hormones, neurotransmitters, and chemokines, and cause

changes inside the cell [58]. The result implied that G proteins may

also play roles in transmitting mechanical signals in EF stimulation.

Some other EF-regulated genes associated with G-protein signaling

are observed in human dermal fibroblasts and adult epidermal

keratinocytes [23,24].

Gene expression of reported electrotaxis-related genes/
proteins

EGFRs have been reported to polarize in the cathode-facing

side of lung cancer cell lines A549 and CL1-5 that migrated

towards the cathode and the anode under the dcEF, respectively

[7,59]. It is also known that the EF-enhanced directional

migration correlates well with the expression level of EGFR/

ErbB1 in breast cancer cells. Transfection of MTLn3 cells and

MDA-MB-435 cells with expression vectors for ErbB family

members ErbB1, ErbB2 and ErbB3 also significantly enhance EF-

induced migration [6]. In our microarray analysis, the expression

change of ErbB1 and ErbB2 under the EF stimulation was not

observed. The expression of ErbB3 seemed to be down-regulated

by the applied dcEF, since the signal strength of the control group

(71.3 in average with all replicates .66.5) is larger than that of the

EF-treated group (48.7 in average with all replicates ,66.5).

Beta-4 integrin, encoded by ITGB4, is associated with alpha-6

integrin to be a receptor for the laminins. It has been reported that

beta-4 integrin and EGF coordinately regulate the EF-mediated

directional migration via Rac1 in human keratinocytes [15]. From

the microarray analysis result, we did not see the regulation of

EGF, ITGB4, and Rac1 under the dcEF. However, ITGB5 that

encodes beta-5 integrin, another member of integrin family,

showed significant up-regulation by the dcEF (1.55-fold, Table 2).

Beta-5 integrin is associated with alpha-V integrin to be a receptor

for the fibronectins. It has been reported that RNA interference

knockdown of beta-5 integrin expression reduces cell migration in

vitro and metastasis in vivo [60]. Our result suggested the positive

correlation between the up-regulation of ITGB5 and the enhanced

migration of CL1-5 cells under the applied dcEF.

Rac and Cdc42 are GTPases that regulate lamellipodia and

filopodia formation, respectively. They have been proposed to

dominate the steering of growth cones cathodally in Xenopus

embryonic spinal neurons. It has also been shown that RhoA,

whose activation leads to growth cone collapse, elevates anodally

in the EF-treated growth cones [17,18]. Rho proteins regulate the

dynamic assembly of cytoskeletal components for several physio-

logical processes including cell motility. They are known to be

involved in cell transformation and cancer metastasis. In our

microarray analysis, we did not see the expression change of Rac,

Cdc42, and RhoA under the dcEF. However, DOCK9, encoding a

specific guanine-nucleotide exchange factor (GEF) that recognizes

and activates Cdc42, was shown to be up-regulated by 1.94-fold

(Table 2) [61]. Besides, RhoJ, which encodes another member of

Rho family, seemed to be up-regulated by the EF treatment

(accession # BC025770). For RhoJ, the signal strength of the EF-

treated group (all replicates .66.5, 91.4 in average) is larger than

that of the control group (all replicates ,66.5, 32.4 in average).

Recently, RhoJ is found to positively regulate endothelial motility

and tubule formation [62].

EF-guided migration of rat hippocampal neurons is mediated by

the activation of ROCK and PI3K. The inhibition of ROCK and

PI3K decreased the directedness and the speed of the neuron

migration [19]. In addition, electrical-signal-induced wound

healing has been reported to be controlled by PI3Kc and PTEN.

Genetic disruption of PI3Kc abrogates electrotactic migration of

epithelial cells. On the other hand, deletion of the tumor

suppressor PTEN enhances EF-directed keratinocyte migration

[16]. In our study, PI3K and ROCK did not show obvious

regulation by the applied dcEF. Nevertheless, PTEN was observed

to be 1/1.19-fold down-regulated by the dcEF.

In summary, comparing the electrotaxis-related proteins

reported in previous studies, some corresponding genes or their

members in the families were observed to be regulated in the

microarray analysis, but some were not. It is suggested that the

polarization of proteins and the regulation of gene expression level

both play roles in the mechanism of electrotaxis.

In addition, the calcium ions are reported to play important

roles in the directed migration of Dictyostelium cells and the

osteoblast-like cells [21,22]. In this study, several EF-regulated

genes were observed to be involved in the calcium signaling

pathway (hsa04020, KEGG), including the up-regulated F2R

(1.53-fold, Table 2) and PLCB2 (signal intensities of the CR group

,66.5), and the down-regulated PHKB (1/1.23-fold), CALM1 (1/

1.22-fold), GNA11 (1/1.51-fold, Table 3), ITPR2, GRIN2C, and

ERBB3 (signal intensities of the EF group ,66.5 for the last three

genes). The result suggested that the calcium ions may also

participate in the electrotaxis of CL1-5 cells.

Microarray analysis in different EF-stimulated cells
Transcriptional response of human dermal fibroblasts (HDF-a)

and human epidermal keratinocytes (HEKa) to the dcEF (100mV/

mm, 1hour) has been studied through microarray analysis [23,24].

Here we compare and discuss the EF-regulated gene expression

changes in HDF-a cells, HEKa cells, and CL1-5 cells (Table 4).

The significantly regulated genes were mostly different in these

three types of cells, but some similarities and correlations were

observed. For example, PTEN expression has been shown to be

down-regulated in HDF-a cells and HEKa cells. Similar decrease

of PTEN level was observed for CL1-5 cells. MACF1 (microtubule-

actin crosslinking factor 1) has shown down-regulation in HEKa

cells. Similarly, decrease of MACF1 was observed in CL1-5 cells.

Nevertheless, some genes showed opposite responses to the EF

stimulation. These differences were mainly observed between

HEKa cells and CL1-5 cells. For example, B4GALT6 (UDP-

Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 6) has

shown EF-induced up-regulation in HEKa cells. In this study,

B4GALT6 was down-regulated in CL1-5 cells.

Some differentially expressed genes in different cell types were

shown to participate in the same signaling pathway. In HDF-a

cells and CL1-5 cells, several EF-regulated genes were involved in

TGF-b signaling pathway. In HDF-a cells, THBS1 (thrombos-

pondin 1), BMP2 (bone morphogenetic protein 2), DAF (CD55

molecule, decay accelerating factor for complement (Cromer

blood group)), CD44 (CD44 molecule (Indian blood group)), etc.

have been shown to be up-regulated [23]. In human lung cancer

CL1-5 cells, ACVR1B (1.5-fold) and ID1 (inhibitor of DNA binding

1, dominant negative helix-loop-helix protein, 1.3-fold) were

observed to be up-regulated, while LTBP3 (latent TGF-b binding

protein 3, 1/1.6-fold) was down-regulated. It is reported that ID1

can be induced by BMPs in TGF-b signaling and in turn promotes

cancer cell migration [63]. THBS1 and LTBPs affect the

activation of TGF-bs, and THBS1 can be down-regulated by

the inhibition of LTBP1 [64,65]. BMPs and LTBPs are secreted

proteins while THBS1 is an extracellular matrix protein. The

correlation between HDF-a and CL1-5 in TGF-b signaling
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suggested that different types of cells may interact due to the EF

stimulation.

Even under similar testing condition, HDF-a and HEKa show

different transcriptional responses to the dcEF, suggesting that the

dcEF has different influences on different cell types [23,24].

Besides, it has been reported that dermal fibroblasts do not show

significant migration under dcEF, epidermal keratinocytes migrate

toward the cathode, and CL1-5 cells migrate toward the anode

[8,66,67]. Thus, the differential transcriptional responses may

correlate to the distinct electrotactic responses.

Conclusion
A LEFC providing uniform dcEF was designed, fabricated, and

used for sample collection in the electrotaxis study. The gene

expression change of CL1-5 cells treated with the EF strength of

300 mV/mm for 2 hours was globally investigated by microarray

analysis. Signaling pathway analysis of the EF-regulated genes

showed that the dcEF may influence adherens junction,

transcriptional regulation of telomerase RNA component gene

hTerc, and tight junction of CL1-5 cells. Some up-regulated genes

such as ACVR1B, FYN and CTTN, and some down-regulated genes

such as PTEN, are known to be correlated with cell migration and

cancer metastasis. The protein-protein interactions of adherens

junction-associated EF-regulated genes suggested the participation

of PDGF receptors and ephrin receptors in sensing electrical

stimuli. Subcellular localization analysis of the significantly

regulated genes showed that the applied dcEF affected the genes

encoding cell membrane proteins in a relatively high ratio. In

addition, the applied dcEF influenced many biological processes

such as adhesion, signaling, and metabolic process. Some EF-

regulated genes are known to be associated with cell apoptosis or

G protein signaling. We further considered the gene expression of

the electrotaxis-related proteins reported in previous studies. Some

of the corresponding genes were observed to be regulated but

some were not. It is suggested that the polarization of proteins and

the regulation of gene expression both play roles in the mechanism

of electrotaxis. Comparing the microarray analysis results in CL1-

5 cells with that of the published studies in HDF-a cells and HEKa

cells, we observed differential transcriptional responses between

these three cell types. Some different EF-regulated genes in

different cell types were shown to participate in the same signaling

pathway, suggesting that different types of cells may interact under

the EF stimulation.

Materials and Methods

Large electric-field chip (LEFC) fabrication and system
setup

The LEFC chip consisted of several layers of poly-methyl-

methacrylate (PMMA) sheets, a layer of double-sided tape (8018,

3M), and a commercial 15cm cell culture dish (Corning) (Figure 1).

The chambers, channels, and boundary of each part of the chip

were designed by using AutoCAD (Autodesk). The patterns drawn

on the software were transferred to a laser scriber (M-300,

Universal Laser Systems) to cut pattern in each layer [68]. The

patterned PMMA layers were then aligned and joined together to

form a transparent PMMA chip by thermal bonding (120oC,

2hours). The PMMA chip, the patterned double-sided tape, and

the 15cm cell culture dish were then assembled to form the LEFC

with well-sealed channels and chambers.

The LEFC had connecting holes for the medium inlet/outlet

and the agar salt bridges (Figure 1). Cells were cultured in the

micro-chamber (the cell culture region). The width, length, and

thickness of the micro-chamber were 24mm, 75mm, and 70 mm,

respectively. For the electrotaxis experiment, a LEFC was

integrated with a transparent ITO (Indium Tin Oxide) heater

chip, two Ag/AgCl electrodes with phosphate-buffered saline

(PBS) as electrolyte, two agar salt bridges (1.5% agar in PBS), a

syringe pump, a DC power supply, an ampere-meter, and an

inverted microscope (IX71, Olympus or TE2000-U, Nikon)

(Figure 2). The distribution of dcEF in the micro-chamber was

numerically simulated using a commercial software CFD-ACE+
(ESI Group) (Figure 3). The use of Ag/AgCl electrodes is essential

because a simple design that uses platinum (Pt) wire as the

electrodes introduces pH changes near the electrodes. More detail

on the setup of the electrotaxis experiment can be found in the

literature and our previous studies [8,69,70].

Cell preparation and treatments
The lung cancer cell line CL1-5 acquired from Prof. Pan-Chyr

Yang [25] was cultured in the complete medium consisting of

Dulbecco’s Modified Eagle’s medium (DMEM, Gibco) and 10%

fetal bovine serum (FBS, Invitrogen). CL1-5 cells were incubated

Table 4. Comparison of EF-induced gene expression changes in human dermal fibroblasts (HDF-a), human epidermal
keratinocytes (HEKa), and human lung cancer cell line CL1-5.

Gene Name Gene Symbol Fold Change

HDF-a HEKa CL1-5

Phosphatase and tensin homolog (mutated in multiple advanced cancers 1) PTEN 1.3 1.2 1.2

Ribosomal protein L10 RPL10 1.9 -- {

Microtubule-actin crosslinking factor 1 MACF1 -- 1/1.5 1/1.3

UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 6 B4GALT6 -- 1.5 1/1.69

Alpha thalassemia/mental retardation syndrome X-linked
(RAD54 homolog, S. cerevisiae)

ATRX -- 1/2 q

WNK lysine deficient protein kinase 1 WNK1 -- 1/1.8 q

Directional migration x [66] cathode [67] anode [8]

--: no reference.
{: the signal strength of the EF-treated group (two replicates .66.5) was larger than that of the control group (all replicates ,66.5).
q: the signal strength of the EF-treated group (all replicates .66.5) was larger than that of the control group (all replicates ,66.5).
EF-stimulation condition: HDF-a and HEKa, 100mV/mm, 1hr, normal medium; CL1-5, 300mV/mm, 2hrs, serum-free medium.
doi:10.1371/journal.pone.0025928.t004
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in flasks (Corning) under 37uC and 5% CO2, and they were sub-

cultured every 3–4 days. All experiments were performed with

CL1-5 cells within 10 and 30 passages from the original source.

For the electrotaxis study, CL1-5 cells were cultured in the

LEFC during the entire experiment. Before the experiment was

started, CL1-5 cells were trypsinized from the flask and suspended

in the culture medium with the density of 107 cells per milliliter.

Then the cells were injected into the micro-chamber manually and

incubated for 4 hours for cell attachment. After that, the fresh

culture medium was infused into the micro-chamber by a syringe

pump at the rate of 200 ml/hr. The cells were incubated overnight

under the culture medium flow. A transparent ITO heater chip

below the LEFC (Figure 2) was controlled by a digital temperature

controller (TTM-J4-R-AB, TOHO Electronics Inc.) to maintain

the temperature (37+/20.5oC) in the cell culture region. A

temperature sensor (TPK-02A, TECPEL) was placed between the

ITO chip and the LEFC for monitoring the temperature.

Electric field stimulation
Before the dcEF was applied, the cell culture region was washed

by serum-free medium (DMEM) with the flow rate of 200 ml/min

for five minutes. Then the flow rate of serum-free medium was

reduced to 200 ml/hr and the power supply was turned on. The

galvanic current was conducted into the micro-chamber through

the agar salt bridges, and it was monitored by an ampere-meter

continuously. The agar salt bridges can separate the culture

medium and the possible byproducts from the electrodes [1]. The

strength of the dcEF was calculated based on Ohm’s law [8]. The

stimulation was lasted for two hours with the EF strength of

300mV/mm. For the control group, the experimental setup was

the same except that the EF strength was 0mV/mm.

For gene expression analysis, the stimulated cells were collected

from the LEFC immediately after the power supply was turned off.

In brief, the serum-free medium in the LEFC was replaced by PBS

with the flow rate of 200 ml/min. Then trypsin was injected into

the micro-chamber and incubated for 1 minute in 37oC. Then the

solution containing the cells was drawn out and mixed with the

culture medium to stop the reaction of trypsin. The solution was

centrifuged and the supernatant was removed. RNAlater (Am-

bion, Applied Biosystems) was then added to stabilize and protect

RNA in the cells. The cells were stored at 4uC for later use.

RNA isolation
Total RNA was isolated from the stored cells using RNaqueous

kit (Cat# AM1912, Ambion, Applied Biosystems) according to the

manufacturer’s instruction. The quantity (mg/ml) and quality of

total RNA was determined by Nanovue (GE Healthcare) and

Agilent 2100 Bioanalyser (Agilent Technologies). For subsequent

application, only samples with A260/A280 within 1.9,2.2 were

used.

GeneChip hybridization
The microarray analysis was performed by using whole-genome

Affymetrix GeneChip Human Genome U133 Plus2.0 Array,

which represented 20722 genes from 54675 probe sets (based on

the newest version (Release 31) of HG-U133 plus 2.0 annotation

file). The GeneChips were processed at the Microarray Core of

Institute of NTU Center for Genomic Medicine in National

Taiwan University and the Affymetrix Gene Expression Service

Lab of Institute of Plant and Microbial Biology in Academia

Sinica. The procedure suggested by the manufacturer (GeneChip

Expression Analysis Technical Manual rev5, Affymetrix) was

followed. In brief, 10 mg total RNA was used for cDNA synthesis.

Then, biotin-labeled cRNA was generated by in vitro transcription,

using cDNA as templates. Finally, the biotin-labeled cRNA was

fragmented. 10 mg labeled sample was hybridized to the

GeneChips at 45uC for 16.5hours. The wash and staining were

performed by Fluidic Station-450 and the GeneChips were

scanned with Affymetrix GeneChip Scanner 7G.

Microarray data analysis
Initial data analysis was performed by using the Affymetrix

Microarray Suite v5.0 software, setting the scale of all probe sets to

a constant value of 500 for each GeneChip. For further data

treatment and analysis, the initial data were uploaded to the web

server of composite regulatory signature database (CRSD) [71].

The initial data of the control group (3 biological replicates) and

the EF-treated group (3 biological replicates) were batched and

normalized with quantile normalization. To observe the different

gene expression between the two groups, the analysis of variance

(ANOVA) test was employed. After that, the signaling pathway

analysis of the genes with statistical difference (p,0.05) was carried

out by using CRSD, based on two databases Kyoto Encyclopedia

of Genes and Genomes (KEGG, http://www.genome.jp/kegg/

pathway.html) and BioCarta (http://www.biocarta.com/genes/

index.asp). The degree of gene regulation is numerically expressed

as the fold change, which is the quotient of the mean signal

strength of the EF-treated group and that of the control group.

Italic and standardized characters are used for representing the

official symbol of genes and proteins, respectively.

Real-time RT-PCR
The expression of the EF-regulated genes with higher fold

changes was further validated by real-time RT-PCR. The primers

were designed using the commercial software Primer Expression

3.0 (Applied Biosystems (ABI)), based on Affymetrix target

sequences for the selected transcripts (Table S1). The specificity

of the primer sequences was checked by NCBI BLAST. Total

RNA (2 mg) was transcribed into cDNA with High Capacity

cDNA Reverse Transcription Kit (Part# 4368814, Applied

Biosystems). The reaction mixture consisted of Power SYBR

Green PCR Master Mix (Applied Biosystems), 10ng cDNA,

sterilized deionized water, and the forward and reverse primers

(MDBio Inc.). The real-time PCR was performed using StepO-

neTM Real-Time PCR System (Applied Biosystems), following the

protocol provided by ABI. StepOne Software v2.1 was used for the

subsequent data analysis (Applied Biosystems). Relative quantifi-

cation between the EF-treated group and the control group

was carried out with the DDCT method, using GAPDH as

the endogenous house keeping control. All real-time RT-PCR

expression values were determined from 2-3 independent

biological experiments.

Supporting Information

Movie S1 Response of CL1–5 to dcEF in serum-containing

medium. The cells were treated with the EF strength of 200mV/

mm for 4 hours in EFC. The serum-containing medium is the

same as the culture medium.

(WMV)

Table S1 Forward and reverse primer sequences for real-time

RT-PCR.

(DOC)
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