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Abstract

The plausibility of local baroclinic instability as a generation mechanism for mid­
ocean mesoscale eddies is examined with a two-layer, quasi-geostrophic (QG) model
forced by an imposed, horizontally homogeneous, vertically sheared mean flow and
dissipated through bottom Ekman friction, Explanations are sought for two ob­
served features of mid-ocean eddies: 1) substantial energy is retained in the baro­
clinic mode and in the associated deformation radius (Rd ) scale, and 2) the ratio of
eddy to mean kinetic energy is much larger than one,

The tendency of QG to cascade energy into the barotropic mode and into scales
larger than Rd can be counteracted when stratification is surface-trapped, for then
the baroclinic mode is weakly damped, and hence enhanced, Numerical experiments
are performed with both surface-trapped and uniform stratification to quantify this,
Experiments with equal Ekman frictions in the two layers are also performed for
purposes of contrast, Interpretation is aided with an inequality derived from the
energy and enstrophy equations, The inequality forbids the simultaneous retention
of substantial energy in the baroclinic mode and in scales near Rd when Ekman
friction is symmetric, but points towards surface-trapped stratification and bottom­
trapped friction as an environment in which both of these can be achieved,

The dissertation also contains a systematic study of geostrophic turbulence forced
by nonzonal flows, Narrow zonal jets emerge when shear-induced mean potential
vorticity (PV) gradients are small compared to the planetary gradient (f3), and
energy is a strong function of the angle shear presents to the east-west direction,
When shear-induced PV gradients are comparable to f3, and the mean shear has a
westward component, fields of monopolar vortices form and persist, Energy is asym­
metric between fields of cyclones and anticyclones, Such asymmetry was commonly
thought not to occur in QG, but is shown here to be introduced by the nonzonal
basic state, In both jet and vortex regimes, eddy energy can be much larger than
mean kinetic energy, contrary to the expectation that f3 stabilizes weak shear flows,
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Chapter 1

Introduction

The energy of the ocean circulation is distributed over a tremendous range of length

scales, from planetary and basin scales of thousands of kilometers down to dissi­

pation scales of millimeters. It has been known for some time that the energies of

geostrophic currents-that is, currents having length scales comparable to or larger

than the deformation radius and time scales longer than a few days-are dominated

by features known as mesoscale, or geostrophic, eddies (c.f. Gill et al. 1974 and

references therein). Figure 1-1, produced from satellite altimetry data, makes clear

three aspects of oceanic flows. First, mean flows are strongly inhomogeneous; most

of the mean flow kinetic energy is concentrated in narrow intense currents such as

the Gulf Stream, Agulhas, Kuroshio, and Antarctic Circumpolar Current. Second,

eddy kinetic energies are also spatially inhomogeneous, decreasing by an order of

magnitude as one moves from boundary current regions into the interior. Third, the

ratio of eddy to mean kinetic energy is large everywhere. (Note these characteristics

of ocean circulation have been known for some time-c.£. Schmitz 1996 and references

therein for a summary of early work. Altimetry data provides more comprehensive

coverage than earlier methods.)

Because the mesoscale eddy field is vigorous and spatially inhomogeneous, diver­

gences of eddy potential vorticity (PV) fluxes may be large enough to have significant
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Figure I-I: Top panel: Global map, produced from altimetric data, of surface kinetic
energy of the mean flow multiplied by sin2 (lat-itude). Units are cm2 S-2. Note that a
best estimate of the geoid was made to estimate this quantity. Middle panel: Surface
eddy kinetic energy multiplied by the same factor, and displayed in the same units.
Note that here eddies are defined as deviations from a time mean and therefore
encompass phenomena other than mesoscale eddies. Bottom panel: Ratio of eddy
to mean kinetic energy at the surface. (Courtesy of Carl Wunsch and Charmaine
King, personal communication).
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effects on the large-scale mean ocean circulation, and by extension, the climate of

the earth. This is still a matter of current research (d. Hogg 1993; Wunsch 1999).

At the very least it is clear that eddies are a major source of particle dispersal, and

therefore important to biological systems (in which the tracers of interest are nutri­

ents). There has been much interest over the years in parameterizing eddy fluxes

of heat, salt, potential vorticity, and passive tracers (c.f. Green 1970; Stone 1972;

Gent and McWilliams 1990; Larichev and Held 1995; Wardle and Marshall 1999).

Many parameterization schemes are based on the paradigm that eddies are gener­

ated via local baroclinic instability. Yet it is not clear that local processes dominate

the production of mid-ocean eddies. Strong boundary currents such as the Gulf

Stream, Kuroshio, and Agulhas are known to produce intense vortical rings (c.f.

Fuglister and Worthington 1951; Cheney and Richardson 1976; Richardson 1983).

The author is not aware of any similarly unambiguous evidence of eddy formation

in the weak mean flows of the ocean interior. As will be seen shortly, however, there

is a long history of plausible arguments that the mid-ocean does produce eddies

via local baroclinic instability. Section 1.1 reviews a number of the arguments for

local and nonlocal generation of mid-ocean eddies. In section 1.2 a statement of the

philosophy behind the use of horizontally homogeneous models in this dissertation

will be made, and in section 1.3 a brief history of results obtained from homoge­

neous models is presented. Section 1.4 outlines the contributions to be made in

this dissertation. This introduction concludes with a short overview of succeeding

chapters.

1.1 Previous work on local and nonlocal genera­

tion

The fact that the eddy field is most energetic in regions of strong mean flows has

led many to study the possibility that mesoscale eddies are chiefly generated in
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intense currents and then radiated into the ocean interior. Flierl and Kamenkovich

(1975) modeled the Gulf Stream as a corrugated wall propagating zonally through

an otherwise quiescent ocean. They found that Rossby waves generated by the

wall motion remained trapped in the vicinity of the wall, suggesting that it was

difficult to radiate energy into the ocean interior. Two possibilities to circumvent

this difficulty have been suggested. Hogg (1988) and Malanotte-Rizzoli et al. (1994)

found that a zonal current which meanders stochastically can radiate disturbances

into the interior, and Kamenkovich and Pedlosky (1996) found that nonzonaljets can

radiate into the interior. Observational evidence for such radiation was given in Hogg

(1994), as well as Chester et al. (1994). The latter study employed tomographic data

to calculate the wave activity flux vector M R for time-mean flows, first developed

by Plumb (1986). Chester et al. showed that M R was directed away from the Gulf

Stream, indicating that it is a source of eddy activity for nearby regions. There is

another possibility for Gulf Stream eddy energy to penetrate into the ocean interior:

instead of energy propagating in the form of waves, it may propagate in the form of

rings. Flierl (1977) produced maps of the probability of finding a ring in a particular

part of the North Atlantic, and multiplied this probability by the average energy of

a ring. The resulting map is qualitatively similar to maps of the mid-ocean eddy

energy, suggesting that rings and the waves they generate may be responsible for

much of the mid-ocean eddy field.

Direct observational evidence of baroclinic instability in the mid-ocean has proven

difficult to find, but there have been many attempts to find indirect signatures of

it. For example, Bryden (1979) and Bryden (1982) found evidence of eddy heat

fluxes directed down mean temperature gradients, consistent with local baroclinic

instability, in the Antarctic Circumpolar Current and Gulf Stream recirculation re­

gions, respectively. Hogg (1985) also argued that baroclinic instability is active in

the recirculation region. He found that zonal phase propagation as a function of

frequency, horizontal scales at the peaks in the time spectrum, and vertical phase

18



shifts, were qualitatively similar to predictions from linear baroclinic instability the­

ory. However, Fu et al. (1982) found no convincing evidence of the energy con­

versions predicted by instability theory in the Atlantic North Equatorial Current.

These studies all utilized current meters. Stammer (1997) displayed maps of avail­

able potential energy of the mean circulation (computed from the Levitus (1994)

climatology) next to maps of eddy kinetic energy derived from altimetry data, and

noted striking qualitative similarities over much of the global ocean. He also showed

that eddy velocities are well correlated with mean thermal wind velocities. Finally,

he showed that global averages of eddy length scales are well correlated with the first

baroclinic mode deformation radius over a wide range of latitudes (figure 1-2). This

is consistent with the findings of Mercier and de Verdiere (1985) in eastern North

Atlantic current meter records. Since the pioneering efforts of Charney (1947) and

Eady (1949) it has been known that the dominant length scales emergent from a

linear baroclinic instability analysis are those near the first mode deformation ra­

dius. Thus the length scales of mid-ocean eddies are consistent with predictions

from linear baroclinic instability theory. (Note, however, that this cannot be taken

as proof that the instability mechanism is taking place, since other processes, such

as geostrophic adjustment, also take place at this scale-c.f. Cushman-Roisin (1994)

and references therein).

Frankignoul and Muller (1979) and Muller and Frankignoul (1981) proposed that

ocean eddies are directly generated by rapidly fluctuating wind fields. Their analysis

was linear, but has been extended into the nonlinear domain by others, for instance

Treguier and Hua (1987) and Treguier and Hua (1988). The latter two studies

found that eddy energies comparable to those seen in the eastern (quieter) parts

of the Atlantic could be generated from realistic wind forcing levels. However, the

more recent study of Large et al. (1991) was unable to generate observed levels of

eddy energies in a flat-bottom, quasi-geostrophic model of the North Pacific forced

by realistic winds. Stammer and Wunsch (1999) found that significant correlations
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between observed variations in eddy kinetic energy and in wind stress were confined

to the high latitude regions of the North Atlantic and North Pacific, and even there,

only some fraction of the eddy energy could be attributed to direct generation by

winds. Their conclusion is that direct eddy generation by the wind probably occurs

in the ocean, but that local baroclinic instability is more likely to be a major source

of the mid-ocean eddy field.

Two early papers which argued that baroclinic instability of mid-ocean currents is

an important source of mid-ocean eddy energy were Gill et al. (1974) and Robinson

and McWilliams (1974). Gill et al. (1974) pointed out that vast stores of available

potential energy exist in the mid-ocean. They argued via scaling that the ratio of

eddy to mean kinetic energy is bounded above by (L'R: in )2, of order 1000. Thus the

large scale circulation stores more than enough energy to produce eddies as vigorous

as those observed. They then demonstrated via a linear stability analysis that some

mid-ocean currents are baroclinically unstable. The linear analysis, however, is

valid only for small amplitudes, and is therefore unable to demonstrate that the

instability process is able to tap into a large fraction of the available potential energy

and ultimately produce eddy velocities which are much larger than the mean. This

point was discussed in Pedlosky (1975a), who disagreed with Gill et al. (1974)

about the likelihood of mid-ocean baroclinic instability as a source of mid-ocean

eddy production. He based his argument on a previous weakly nonlinear analysis

of eddies produced by a zonal flow in a channel (Pedlosky 1970), in which eddy

velocities are found to be bounded by the mean velocities.

Robinson and McWilliams (1974) also performed linear stability analyses on ide­

alized flows with typical mid-ocean parameters. They discussed many factors which

affect the instability process, including the nonzonal orientation typical in gyre flows.

As discussed in Pedlosky (1987), nonzonal flows are much more difficult to stabi­

lize than are zonal flows. Rhines (1977) noted that large-scale, unforced baroclinic

Rossby waves constituted meridional flows on a beta plane and could generate an
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eddy field. Spall (1994) found low-frequency zonal motions in a spin-down calcula­

tion of nonzonal flows, and suggested these as an explanation for the low-frequency

zonal motions found in the eastern North Atlantic current meter records of Muller

and Siedler (1992). Spall (2000) demonstrated via extensions of the scaling argu­

ments of Held and Larichev (1996) that weak nonzonal flows on a beta plane, unlike

weak zonal flows on a beta plane, are capable of producing eddy velocities much

larger than the weak mean shear. He successfully tested the scaling arguments in a

numerical model of a Sverdrup flow driven by an idealized wind-stress curl. Dubus

(1999) also examined the equilibration of an eddy field forced by an inhomogeneous

meridional flow on a beta plane, and concluded that equilibration involved Rossby

wave propagation, dissipation, and baroclinic instability.

One other possibility should be mentioned, although we will not examine it in

the body of the dissertation. It may be that most mid-ocean eddies are initially

generated nonlocally, for instance in energetic currents such as the Gulf Stream, but

that the characteristics of the eddy field (i.e. the vertical structure and horizontal

scales) are locally determined by factors such as stratification, bottom topography,

etc. This hypothesis was tested by Owens and Bretherton (1978), who simulated the

evolution of a specific eddy field in a specific region-the "MODE" region of the North

Atlantic-and compared the model output to observations. Their hypothesis, that

eddy structures are locally determined, was consistent with observations to within

experimental error. As a result, in the real ocean it may be difficult to separate the

problem of local versus nonlocal influence on mid-ocean eddy fields.

1.2 Homogeneous turbulence as a model of the

ocean interior

Mid-ocean mean flows typically vary over length scales of several hundred kilometers

or more. Eddy length scales are smaller, typically of order one hundred kilometers
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(Stammer 1997). Therefore a reasonable first approximation of the ocean interior

might be a model in which the mean flow doesn't vary at all in the horizontal.

A homogeneous model could represent a patch of ocean, large enough to contain

several eddy lengths, but small enough for the mean flows to be considered horizon­

tally homogeneous. By definition, homogeneous models cannot have rigid horizontal

boundaries. Numerical models of homogeneous turbulence must have finite extent,

but true boundaries, which would block motion, can be avoided with doubly pe­

riodic boundary conditions. That is, what leaves one side of the model domain

enters the other side. There are two major advantages of homogeneous turbulence

models for the problem considered in this dissertation. In horizontally homogeneous

flows, every point generates the same amount of eddy activity as every other point.

Thus there is no ambiguity in sorting out the source of the eddies; it can only be

local baroclinic instability. The second advantage is that integrals over the model

domain of the energy and enstrophy equations are simpler for homogeneous flows.

Some terms in the equations will integrate to zero under doubly periodic conditions,

which would not be the case in the presence of real boundaries. This makes inter­

pretation simpler. Actual mid-ocean mean flows, of course, are not homogeneous

(figure 1-1). In inhomogeneous flows there will be divergences of eddy fluxes, which

then alter the mean flow. This mechanism is absent in the present study. We will

return to this limitation of homogeneous models in the conclusions.

Homogeneous turbulence models have traditionally been run in two different lim­

its. One is that of freely evolving, or freely decaying, turbulence. In this case, there

is no forcing and no dissipation, other than hyperviscosity or filters used to eliminate

structure on scales too small to be resolved numerically. Thus one studies the free

evolution of an initial condition. This might be the appropriate limit to study, for

example, the propagation of a Gulf Stream ring through a quiet, inviscid interior.

Much has been learned about the action of the nonlinear terms in the equations of

motion through studies of freely evolving homogeneous turbulence, for instance, the
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tendency of two-dimensional turbulence to form coherent vortices (c.f. McWilliams

1984). However, energy in the ocean is continually being supplied by a variety of

sources, and dissipated in bottom boundary layers and through internal wave forma­

tion and breaking. Thus, forced-dissipated models more closely reflect true oceanic

conditions. Homogeneous turbulence models have been forced in a variety of differ­

ent ways, for instance, by an imposed horizontal temperature gradient which in turn

sets up a baroclinically unstable thermal wind shear (Haidvogel and Held 1980), or

by stochastic winds (Treguier and Hua 1987; 1988). For the problem of the mid­

ocean gyres, this author will follow the example set by Hua and Haidvogel (1986)

and Larichev and Held (1995), in which a baroclinically unstable mean shear flow is

imposed between the layers. It is assumed that this mean velocity is maintained by

winds blowing over the ocean, but those winds never appear explicitly in the model.

Although most of the results in this thesis will be obtained from forced-dissipated

model runs, some freely evolving runs will be done to illustrate tendencies of the

governing equations.

1.3 Previous work in homogeneous geostrophic

turbulence

On large scales, geophysical flows tend to be nearly two dimensional because of the

stiffening influence of rotation. Because of its two-dimensional nature, turbulence

in large-scale geophysical flows is profoundly different from turbulence in three­

dimensional flows. In three-dimensional turbulence, nonlinear interactions effect a

cascade of energy from large scales down to the small scales where dissipation takes

place (c.f. Kundu 1990 for a discussion of the history of these ideas). The crucial

difference between two-dimensional and three-dimensional turbulence is that the

former does not have vortex stretching. This means that squared relative vorticity

(often called enstrophy), as well as energy, is conserved in inviscid flows. Onsager

24



(1949), Lee (1951), Batchelor (1953), and Fjortoft (1953) were all aware of the strong

constraint that this placed on two-dimensional flows. Fjortoft (1953) showed that

conservation of energy and squared vorticity leads to the so-called "inverse cascade."

That is, in contrast to three-dimensional turbulence, two-dimensional turbulence

exhibits an energy cascade to large scales. Charney (1971) showed that potential

enstrophy (squared PV) in quasi-geostrophic flows plays a role similar to that of

squared relative vorticity in two-dimensional flows. He therefore argued that the

inverse cascades of purely two-dimensional flows ought to hold in stratified quasi­

geostrophic flows as well, even though the latter are not strictly two-dimensional

(because stratification leads to the possibility of depth-dependent motions).

If the inverse cascade were fully developed in the mid-ocean, eddies would be at

basin scales. Instead, they are much more compact. A possible explanation for this

was offered by Rhines (1975), who found that freely evolving two-dimensional flows

stopped cascading on a beta plane, at a scale j!i, where U is the velocity scale of the

turbulence and f3 is planetary beta. Rhines estimated this scale and found it to be

in rough agreement with the scales of mid-ocean eddies. However, more recent data

(Stammer 1997; figure 1-2) indicates that Rd , not j!i, is the controlling scale of the

eddies. Rhines (1977) extended his turbulence studies to two layers. He found that a

freely evolving solution on an f-plane did indeed behave like a two-dimensional flow,

in that initial vertical structure-i.e. baroclinic energy-was rapidly eroded; as the

flow "barotropized" , that is, became barotropic, it also cascaded to larger scales. He

found that barotropization and the inverse cascade could be halted by introducing

a vertical asymmetry into the problem, namely rough bottom topography. He then

suggested that rough topography could explain the baroclinicity and compactness of

mid-ocean eddies. Bretherton and Haidvogel (1976) also pointed out the importance

of rough topography. They used a minimum enstrophy principle to argue that eddies

tend towards a state of flowing along topographic contours, which therefore halt the

inverse cascade.
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Two important early papers on forced-dissipated geostrophic turbulence were by

Salmon (1978;1980). In forced-dissipated runs, energy is continually injected into

the deformation radius scale and into the baroclinic mode. Yet, in like manner

to Rhines (1977), Salmon found that eddies barotropized and cascaded to larger

horizontal scales. The ideas of these and other early authors were extended by

Larichev and Held (1995), who found that in homogeneous forced-dissipated flows

eddy energy generation is dominated by the large, energetic eddies at the endpoint

of the cascade, and not by deformation scale eddies as one would expect from linear

instability theory. It is the model of Larichev and Held (1995) that provides the

starting point for the numerical work presented here.

1.4 Contributions of this dissertation

The main hypothesis of this study is that local baroclinic instability of the weak gyre

flows of the mid-ocean contributes substantially to the generation of mid-ocean eddy

energy. Our model of the ocean interior is one of forced-dissipated, two-layer, hori­

zontally homogeneous quasi-geostrophic turbulence. The dissertation will primarily

focus on mechanisms that control three properties of mid-ocean eddies: 1) eddy

kinetic energy is roughly equipartitioned in the vertical between the barotropic and

first baroclinic modes (c.f. Wunsch 1997; figures 1-3 and 1-4), 2) horizontal length

scales of eddies appear to correlate better with the first baroclinic mode deforma­

tion radius than with larger cascade scales (Stammer 1997; figure 1-2), and 3) eddy

kinetic energy is much larger than mean kinetic energy (c.f. Gill et al. 1974; fig­

ure 1-1). We discuss each of these below.
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1.4.1 Effects of stratification and friction on vertical struc­

ture of eddies

The barotropization found in the models of Rhines (1977), Salmon (1978) and

Salmon (1980), and Larichev and Held (1995) is in conflict with observations, which

show an approximate equipartition of energy between barotropic and baroclinic

modes (Wunsch 1997; figures 1-3 and 1-4). In both studies of Salmon and in Larichev

and Held (1995), the depths of the two layers were equal. Flierl (1978) and Fu and

Fier! (1980) argued that models with a thin top layer would retain more energy in

the baroclinic field than models with equal layer depths, since in the latter case there

is no projection onto the baroclinic mode when two baroclinic modes interact. This

will be further developed in later chapters, and complemented with numerical results

(note that Flier! (1978) and Fu and FlierI (1980) did not present numerical results).

Stratification also affects eddy baroclinicity because the baroclinic mode is weakly

damped when the stratification is surface-intensified and the friction occurs only at

the bottom. Numerical experiments will be done with two values of the stratifica­

tion parameter 0 = Z:; experiments with equal layer depths represent a uniform

stratification while 0 = 0.2 experiments represent a surface-trapped stratification.

Sets of experiments with equal Ekman spin-down rates in both layers (a case we call

"symmetric friction"), as well as sets with Ekman friction in the bottom layer only,

will be performed to highlight the importance of the bottom-trapped nature of the

dissipation. It will be shown that both the nonlinear projection mechanism and the

damping mechanism enhance eddy baroclinicity.

1.4.2 Effects of stratification and friction on horizontal scales

of eddies

The eddy fields in Salmon (1978), Salmon (1980), and Larichev and Held (1995) tend

to be much larger than the first mode deformation radius. As we have seen, this is
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also in conflict with observations. As model eddy fields become more baroclinic with

surface-trapped stratification and bottom-trapped friction, their horizontal scales

should become closer to the deformation radius. In this dissertation a cascade

inequality is developed which quantifies the "two-dimensionality" of equilibrated

eddy fields in forced-dissipated flows. The inequality is developed from the energy

and enstrophy equations using reasoning similar to that used by Fjortoft (1953) in

his pioneering work on two-dimensional turbulence. The inequality forbids eddies to

simultaneously contain substantial energy in the baroclinic mode and in scales near

Rd , in the symmetric friction case. Numerical results strongly support this. Bottom

friction, especially when coupled with a surface-trapped stratification, allows the

inequality to be broken. Therefore, in terms of the measure defined by the inequality,

the eddies in this case are simultaneously strongly baroclinic and at scales near Rd ,

in accordance with observations.

1.4.3 Generation of strong eddy fields from nonzonal mean

flows on a beta plane

If we take the following as typical of mid-latitude gyres: U1 = 1 em s-1, U2 = 0, Rd =

50 km, and (3 = 2 X 10-11 m- 1 S-I, then by the Charney-Stern criterion (Charney and

Stern 1962), the mean shear flow is baroclinically stable if it is zonal (either eastward

or westward). It would seem therefore that large regions of the ocean interior are not

capable of generating a vigorous eddy field in the presence of (3. (Note that Gill et al.

1974 carried out their linear stability analyses on vertical shear flows having velocity

differences as large as 4 em S-I, which may be characteristic of strong currents in the

interior such as the Atlantic North Equatorial Current, but in general are stronger

than mid-ocean gyre flows. They also assumed destabilizing surface temperature

gradients.) Time-mean currents of the mid-ocean are usually nonzonal, due to the

presence of continental boundaries. As discussed earlier, linear stability analyses of

nonzonal mean flows (Robinson and McWilliams 1974; Pedlosky 1987) demonstrate
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that they are inherently more unstable than zonal flows. This thesis contains a

systematic study of fully nonlinear geostrophic turbnlence forced by nonzonal flows.

It is shown that large eddy energies can be generated even when mean PV gradients

arising from vertical shear are weak compared with planetary beta. Equilibrated

eddy energy is examined as a function of angle for a fixed planetary beta, and as

a function of planetary beta for a fixed angle. Anisotropic regimes consisting of

slowly drifting zonal jets are found when beta dominates the mean gradients, while

a surprising regime of isotropic, strongly baroclinic, monopolar vortices is found to

exist when beta and the shear-induced gradients are comparable in magnitude.

1.5 Overview of dissertation

This dissertation is organized as follows. Chapter 2 presents the governing PV equa­

tions in both layer and modal forms. From these, energy and enstrophy equations

are derived. Choice of model parameters, the numerical method used to integrate

the model equations, and the nature of the various small-scale dissipation schemes

used in the dissertation are also discussed in chapter 2. Finally, chapter 2 concludes

with a description of a linear stability analysis which will be useful throughout the

remainder of the dissertation. Chapter 3 presents four sets of numerical experiments

which explore the effects of stratification and friction on eddy vertical structure and

length scales. Chapter 4 presents an inequality which quantifies the effects of strat­

ification and friction on the inverse cascade to the barotropic mode and to scales

larger than Rd. Chapter 5 presents results from a systematic study of geostrophic

turbulence forced by nonzonal mean flows. Eddy characteristics are examined as

functions of angle of mean shear for a fixed value of beta, and as functions of beta

for a fixed angle. The latter exploration uncovered an interesting regime of coherent

vortices, which is studied in more detail in chapter 6. Conclusions are presented in

chapter 7.
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Figure 1-3: (a) L0910 of the water column average kinetic energy per unit mass (in
cm2 S-2) in the North Pacific Ocean. (b) Percentage of (a) found in the barotropic
mode. (c) Percentage of (a) found in the first baroclinic mode. (d) Percentage of
(a) found in the second baroclinic mode. Figure taken from Wunsch (1997).
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Chapter 2

The model

2.1 Quasi-geostrophic PV equations

The numerical results in this thesis arise from integrating a two-layer quasi-geostrophic

(QG) model. The two-layer model is the simplest in which to study baroclinic in­

stability. See Pedlosky (1987) for a rigorous discussion and derivation of QG. The

two-layer version of QG used here is close to that in Flierl (1978), but with an im­

posed mean flow. It is similar to that on page 423 of Pedlosky (1987), except that

an Ekman friction is allowed to exist in the top layer, there is no bottom topogra­

phy, and model quantities have been split into imposed time-mean quantities and

fluctuation quantities. Another difference will be seen shortly, in the definition of

A general form of the two-layer equations, which covers all the cases studied in

this thesis, is:
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where UI and Uz are the imposed horizontally homogeneous zonal mean flows, VI

and V2 are the imposed horizontally homogeneous meridional mean flows, subscripts

1 and 2 denote the upper and lower layers, respectively, ssd stands for small-scale

dissipation, to be discussed later in this chapter, and the other quantities are defined

below. The model prognostic variables are the fluctuation streamfunctions 'lj;l and

'lj;z, and the fluctuation potential vorticities ql, and q2. Fluctuations are defined

as deviations from the imposed time-mean quantities. Velocities are defined as

derivatives of the streamfunctions:

Nonlinear interactions are contained in the Jacobian term, defined by:

J(A B) = fJA fJB _ fJA aB
, ax ay ayax

(2.3)

(2.4)

The ratio of the depth of the upper layer, HI, to the depth of the lower layer,

Hz is denoted by 0:

(2.5)

A 0 value of 1 represents a uniform stratification, while a 0 value less than 1 repre­

sents a surface-trapped stratification.

On page 425 of Pedlosky (1987) he defines a deformation radius within each

layer. Here we follow Flier! (1978) and define a single deformation radius Rd by

R\ = F1 + Fz, where F1 = (Pof6)H and Fz = (pof6)H. (Note that fo is the
d 9 P2 PI 1 9 P2 PI 2
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Coriolis parameter, 9 is gravitational acceleration, PI and P2 are the densities of

the upper and lower layers, respectively, and Po is the average density.) We have

assumed a rigid lid, so that the barotropic mode deformation radius is infinite. With

this definition of Rd the fluctuation potential vorticities are:

while the mean PV gradients are:

aql (112 - Vi)
ax (1 + J)R~

aql _ (3 (Uj - 112)
ay - + (1+ J)R~

aq2 J(Vi- 112)
ax (1 + J)R~

aq2 _ (3 J(112 - Uj)
ay - + (1+ J)Rr

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

where (3 = ~{ is the planetary PV gradient.

The layer Ekman friction coefficients R I and R2 have units of inverse time. The

lower layer Ekman friction arises from contact of the water with the sea bottom.

The upper layer Ekman friction is not thought of as having a physical origin. It will

be argued in this thesis that the bottom-trapped nature of the friction, i.e. the fact
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that the friction does occur at the bottom rather than throughout the fluid, is very

important. This can be shown by comparing experiments with bottom-friction only

to experiments with "symmetric friction", that is, experiments in which R I = R2 .

Note that R 2 is a function of the depth of the Ekman layer:

R _ fodEkman
2 - 2H

2
'

where fa is the Coriolis parameter and

(2.12)

dEkman =
2Vturbulent

fo
(2.13)

VtuTbalent being the turbulent eddy viscosity in the bottom Ekman layer (c.f. Pedlosky

1987; Flier! 1978). If Vturbulcnt were the same in both top and bottom layers, then

with the rigid lid present, R I would difl'er from R2 by a factor of 0. We will see

later, however, that R I = R2 is the most appropriate choice to make for a friction

occuring throughout the fluid, in terms of highlighting the importance of bottom

friction with a contrasting set of experiments.

2.1.1 Modal PV equations

The numerical model integrates the layer equations, but some aspects of interpre­

tation are easier in a modal framework (d. Pedlosky 1987; FlierI1978). The layer

PV equations can be transformed into modal equations using the following defini­

tions, in which the subscripts BT and BC denote barotropic and baroclinic modes,

respectively:

(2.14)
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(2.15)

(2.16)

(2.17)

Note the association of the baroclinic mode with Rd in 2.17. With these definitions,

the barotropic PV equation is:

(2.18)

while the baroclinic PV equation is:
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V5(Vi- V:i) 8'IjJBT 1- 5Vi- V:i 8'1jJBG
+ (1+ 5)RJ 8y + 1 + 5 RJ 8y

(2.19)

2.2 Energy and enstrophy equations

The energy and enstrophy equations are shown below in both layer and modal

formulations. Both will prove useful in interpreting later results.

2.2.1 Layer energy and enstrophy equations

Layer energy equations are derived by multiplying the top and bottom layer PV

equations 2.1 and 2.2 by ;~~ and 1~5 respectively, and integrating over the domain

(d. Charney 1971). Many of the terms, including the Jacobian terms, integrate to

zero because of the doubly periodic boundary conditions.

The top layer energy equation is:

(2.20)

37



while the bottom layer energy equation is:

= - /:" JJ('V'ljJ2)
2

dx dy + ssd.

Adding these yields a total energy equation:

(2.21)

= - 1":1" JJ('V7h? dx dy - 1;" JJ('V'ljJ2)2dx dy + ssd. (2.22)

Simple manipulations yield the constraint that vertically integrated PV fluxes

are zero in a homogeneous flow:

This allows the total energy equation to be rewritten as:
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(2.24)

(2.25)

from which we see that eddy PV fluxes extract energy from a homogeneous mean

flow only if it is vertically sheared. In a statistical equilibrium, the g, terms go to

zero in a time average, and energy generation is balanced by dissipation. Ekman

friction in either layer is a potential sink of energy, as is small-scale dissipation.

In both individual layer energy equations, the second term on the left-hand side

prevents one from identifying terms as gtLayerEnergy-in other words, there is no

"layer one energy" or "layer two energy" that is separately conserved. Only when

the two layer equations are added do these terms combine to form a total energy

term which is conserved in the absence of forcing and dissipation. Because energy

can be transferred between layers, we will see later that bottom Ekman friction can

dominate dissipation of total energy in experiments where Ekman friction is absent

in the upper layer. Even when small-scale dissipation is the only dissipation present

in the upper layer, its effects on the energy balance are usually minimal, as we shall

see.

Potential enstrophy equations (Charney 1971) are obtained by multiplying the

layer PV equations by :.;.~ and 1~8 respectively, and again integrating over the

domain. The top layer potential enstrophy equation is:

!!.}] ~ oqr dxd
at 21+0 y
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5R l If( 2 )2 5R l lf )2= ~ 1 + 5 \7,pl dx dy - (1 + 5)2R~ (\7,pl dx dy

5R fl'+ (1 + 5)2R~ . \7,pl • \7,p2 dx dy + 8sd,

while the bottom layer potential enstrophy equation is:

iJlf1 2- -~dXdy
iJt 21+5

(2.26)

R2 lf 2 )2 5R2 If( )2= -1 + 5 (\7,p2 dxdy - (1 + 5)2R~ \7,p2 dxdy

A total potential enstrophy equation is obtained by adding these:
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(2.28)

where we have made use of 2.23 to eliminate the f3 terms.

In contrast to the energies, layer potential enstrophies are individually conserved

in the absence of forcing and dissipation (and beta). On the f-plane, there is no

means for layer one potential enstrophy to be transferred downwards to layer two.

Therefore, the dissipation of layer one enstrophy must be accomplished by the small­

scale dissipation within the top layer itself. Consequently, we anticipate that small­

scale dissipation will playa larger role in the enstrophy balance than in the energy

balance. Note that a nonzero f3 allows enstrophy transfer between layers. Even in

the absence of forcing and dissipation, enstrophy may not be conserved in each layer

in that case, but total enstrophy integrated over both layers will still be conserved.

2.2.2 Modal energy and enstrophy equations

The barotropic and baroclinic PV equations can be multiplied by 'ljJBT, 'l/JBC, qBT,

and qBC, and integrated over the domain to yield barotropic and baroclinic energy

and enstrophy equations. Adding these gives modal versions of the total energy

equation:

41



(2.29)

as well as the total potential enstrophy equation:

(2.30)

Note that with symmetric Ekman friction present (R1 = R2 ), dissipation terms

involving correlations between barotropic and baroclinic modes disappear. One way

to interpret the correlation terms in the energy equation is the following: suppose

that there is kinetic energy in both the barotropic and baroclinic modes, but that

these modes are correlated in such a way as to render the bottom layer velocity

zero. If Ekman friction is present only in the bottom layer (R1 = 0), then the

energy dissipation must sum to zero. The sign-indefinite correlation terms on the

right-hand side of equation 2.29 are the means to offset the sign-definite terms and

bring the total sum to zero in such a case.

When R 1 = R2, equation 2.29 indicates that barotropic and baroclinic kinetic

energies are damped at equal rates, independent of the value of o. However, when
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Ekman friction occurs only in the bottom layer, the baroclinic kinetic energy IS

damped at a rate proportional to Ii times the damping rate of barotropic kinetic

energy. Therefore, in the bottom-friction only case with equal layer depths, the

modes are damped at equal rates; under the action of bottom friction and surface­

trapped stratification, the baroclinic mode is weakly damped. Similar arguments

apply to Ekman dissipation of enstrophy.

2.3 Model parameters

For almost all of the forced-dissipated runs presented in this thesis, the magnitude

of the difference in imposed mean flow velocities between the two layers is 1 em S-L

(2.31)

This was chosen as a representative value of mid-ocean mean flows by assuming

that transport in the Gulf Stream (~ 50 km Width, ~ 1 m S-I flow) is balanced

by an interior transport of ~ 1 em S-I across a basin width of ~ 5000 km. Tables

of eastern North Atlantic current meter data in Muller and Siedler (1992) indicate

that our chosen value of mean shear flow may be on the low side, even for that

relatively quiescent region of the ocean. However, figure 2-1 indicates that 1 em S-I

is representative of large regions of the mid-ocean.

The first baroclinic mode deformation radius in all model runs is 50 km, a com­

mon value in subtropical gyre regions (c.f. R.ichman 1976). The domain size in the

runs is 201TRd ~ 3000 km. This is too large to truly represent a patch of ocean over

which mean flows change very little, and too small to represent a basin. The domain

size was chosen to contain many deformation radii so that an inverse cascade away

from the deformation scale could be resolved.

Many of the runs are done on an f- plane, in which planetary f3 is zero. Since

f- planes are rotationally invariant, the direction of the imposed mean flow on an
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Figure 2-1: Surface kinetic energy of the mean flow, estimated from altimetry data,
multiplied by sin2 (latitude). Units are cm2 S-2 The difference between this plot
and the top panel of 1-1 is that the contour scale has changed drastically, to give
more definition to the region of weak interior mean flows. (Courtesy of Carl Wunsch
and Charmaine King, personal communication).

f-plane is irrelevant; following tradition, we make it zona!. (In this case, U1 = 1 cm

s-1, and all other mean velocities are zero). The nonzonal runs will be done on beta

planes, using various values of beta. The nominal value of planetary beta will be

2. 10-11 m-1 S-l.

2.4 Numerical method

The two-layer equations are integrated numerically in the so-called "qgb" model,

originally written by Bill Dewar and later modified by Glenn Flier!' It has been used

by many investigators and gone through many revisions. The author does not know

of any formal references for the model, although Miles Sundermeyer has written a

helpful unpublished document. The model is written in fortran 77, in modular form.

The modular form isolates key steps of the model, for instance, definitions of com-
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mon block variables, timestepping routines, reading of initial conditions, outputting

diagnostics, etc., into separate subroutines. This makes it simpler to implement

changes. The code was continually modified as the dissertation work progressed.

The qgb code is "pseudo-spectral" (c.f. Canuto et al. 1988 and references

therein). Variables are written as Fourier sums, for example:

q(x, y) = L L q(k, l)eikx+ilY,
k 1

(2.32)

where q(k, I) is the Fourier coefficient. The quantity that is time-stepped in the qgb

code is q(k, I, t) rather than q(x, y, t). Inversions of q(k, I) are performed at each time

step to obtain streamfunction .,j;(k, I). A major advantage of the spectral method is

that differentiation is accomplished by simple multiplication, for example:

:xq(x,y) = LLikq(k,l)eikx+ilY.
k 1

(2.33)

The nonlinear term J( 'IjJ, q) is evaluated as \7. iiq; ii and q are calculated from their

Fourier coefficients via an inverse transform, and then multiplied together. The

components uq and vq are transformed, multiplied by ik and ii, respectively, then

retransformed and added to obtain \7 • iiq. A simple truncation at the Nyquist

wavenumbers was employed to eliminate the worst effects of aliasing. More sophis­

ticated methods of spectral de-aliasing were tested by LaCasce (1996) and found

to make little difference. The spectral nature of the model automatically makes

the boundary conditions doubly periodic, as desired. As suggested by Geoff Val­

lis, most later versions of the model employed the "fftw" fast fourier transform

(http://www.fftw.org). On most platforms the version of the code using fftw was

nearly twice as fast as the version of the code having the original transform routine.

The first two time-steps of all model runs are second-order Runge-Kutta; there­

after, the timestepping scheme is third-order Adams-Bashforth, a scheme which is
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accurate and stable but not overly expensive computationally. Streamfunction and

PV fields, as well as a number of diagnostics, are written out at regular intervals

specified by the user.

Hundreds of exploratory runs were done at a resolution of 64 by 64 grid points.

At this resolution, with the parameters given above, there is only one grid point per

deformation radius, seemingly quite marginal. Once the 64 by 64 explorations were

completed, extensions of selected low resolution runs were made in higher resolution

(usually 256 by 256, or four points per deformation radius). The qualitative, and

sometimes even the quantitative, results of the 64-squared runs held up in most cases,

although there were some notable exceptions. Because the higher resolution runs are

computationally expensive, in many cases shortcuts were employed to save time. For

instance, many of the 256 by 256 solutions were initialized with interpolated versions

of the equilibrated 64 by 64 solutions, rather than with the small-scale random

conditions used to initialize the low-resolution runs; this eliminated computing long

spin-up phases at high resolution. Another shortcut employed, when exploring high­

resolution behaviors as a function of Ekman friction, was to use an equilibrated 256

squared solution with one value of friction as an initial condition for a solution with

a nearby value of friction. Again, this took much less time than starting from a

small-amplitude, small-scale random initial condition. An implicit assumption here

is that forced-dissipated solutions do not depend strongly on initial condition. This

is not the case for the vortex regime discussed in chapter 6, but seems to be true for

the rest of the experiments described in the thesis.

2.5 Small-scale dissipation

It has long been known that enstrophy cascades to small scales in quasi-geostrophic

turbulence (d. Salmon 1998). As a result, if there is no small-scale dissipation,

we expect enstrophy to rapidly build up at small scales and the model to become
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numerically unstable. The most common small-scale dissipation scheme used in

geophysical turbulence studies has been so-called "hyperviscosity", which is of the

form:

(2.34)

where N is either 1 or 2, depending on layer. Hyperviscosity was used to generate

some of the results in chapters 5 and 6. All other results presented in this dissertation

employed an exponential cutoff wavenumber filter, except for a few experiments

discussed below in which no small-scale dissipation was needed.

2.5.1 Large symmetric friction case: no small-scale dissipa­

tion needed

Ekman friction is not scale-selective. It acts on all scales, including the smallest

scales present. It was found, therefore, that no small-scale dissipation was needed

in the highly viscous symmetric friction runs. These appear to exist in a weakly

nonlinear wave regime rather than a strongly turbulent state, so cascades of enstro­

phy to small scales are slow and can be absorbed by Ekman friction alone. Note

that when Ekman friction is in the bottom layer only, small-scale dissipation must

be present, to absorb the enstrophy cascade.

The particular implementations of cutoff filter and hyperviscosity employed in

this work are described in the following sections.

2.5.2 Implementation of wavenumber cut-off filter

In a spectral model, a wavenumber cut-off filter (c.f. Canuto et al. 1988) can be

employed which dampens small scales but has no effect on large scales. Here we use

a cut-off filter of the form:
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jilter(i, j) = exp(-a(Jx~ + y~ - c¢)M) where

jilter(i, j) = 1.0 where (2.35)

In LaCasce (1996), a = -18.4 and M = 4. This author inherited a version of the

code with a = -18 and M = 7; these values were used for the initial exploratory runs

at 64 by 64 resolution. The LaCasce (1996) values were used later in the thesis, in

experiments with 128 squared and 256 squared resolutions.

In the model filter implementation, (x¢, y¢) == (kflx, lfly) , where k and l are the

zonal and meridional wavenumbers, respectively, in spectral space and flx = fly

are the grid spacings. This means that x¢ and y¢ each run from 0 to 1r, where 1r

corresponds to the Nyquist scale. The cut-off value, c¢, was chosen to be 0.651r

in the LaCasce thesis as well as in all of the runs in this thesis. The filter and

truncation operations both act to prevent accumulation of spectral energy on small

scales. Each operation takes place during every model timestep.

Figure 2-2 plots filter values for the three resolutions most commonly used in the

thesis. Note that the filter begins to act at wavelengths of ~ 3Rd , 1.5Rd , and 0.75Rd ,

respectively, for the 64 squared, 128 squared, and 256 squared experiments. This

suggests that the 64 squared experiments are marginally resolved. However, it will

be shown later that the first moment of the kinetic energy spectrum, a commonly

used measure of eddy length scales, is expected to generally be less than or equal

to the wavenumber corresponding to the deformation scale. This means that the

wavelength of the most energetic scale will be greater than or equal to 21rRd , not

Rd itself. Therefore the wavelengths at which the filter starts to act are not as close

to the most energetic wavelengths as the numbers given above might lead one to

believe. Thus, the energetic scales are well resolved in most of our experiments,
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although resolution of scales containing most of the enstrophy, which is dominated

by smaller scales, will not be as good.
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Figure 2-2: Exponential cut-off wavenumber filter used in 64 squared, 128 squared,
and 256 squared experiments. The x-axis is doma;~ size (10 in these experiments)
times the model wavenumbers. A value of 64 corresponds to a wavelength equal to
the deformation radius.

The major advantage of using a filter for small-scale dissipation is that larger

scales are completely unaffected by the filter. Hyperviscosity, on the other hand, af­

fects all scales to some extent. The repercussions of this are demonstrated in LaCasce

(1996). There a barotropic dipolar vortex ("modon") was numerically time-stepped

in a 128 by 128 domain using three different forms of small-scale dissipation: the

exponential cut-off wavenumber filter, a Laplacian damping (vv2q), and a hypervis­

cous damping (vv 8q). The vortex under the filter retained its shape and lost only

one percent of its amplitude. Under both Laplacian and hyperviscous damping,

however, the vortex suffered distortion as well as substantial loss of amplitide. The

filter therefore yielded the response most consistent with inviscid dynamics.

One disadvantage of the filter is that its effects on energy and enstrophy dissipa-

49



tion are not easily rendered in analytical form. The form of energy and enstrophy

dissipation due to hyperviscosity can easily be found analytically, and computed

explicitly in the numerical model. In this case, the analytical form would involve

the squares of high derivatives of the streamfunction and would thus have no simple

physical explanation. An alternative approach, adopted in this work, is to calculate

the effects of small-scale dissipation on energy and enstrophy balances as residuals.

Because cutoff wavelength moves to increasingly smaller scales as resolution in­

creases, solutions obtained with a wavenumber filter may change with resolution.

Most of the results in this dissertation displayed relatively small (nominally, less than

thirty percent) changes in quantitities such as energy levels as resolution increased.

But there is one class of solutions-the vortex regime discussed in chapter 6-for which

energy increases dramatically with increasing resolution, so much so that equilibra­

tion was not obtained after several weeks of computer integration time. Very similar

vortex solutions exist under the action of hyperviscosity, but at energies low enough

to reach equilibrium in one week or so of processor time. We therefore adopt hyper­

viscosity as our choice of small-scale dissipation in the vortex regime. With a fixed

coefficient 1/ and exponent n of hyperviscosity, energy levels are little affected when

resolution increases from 128 squared to 256 squared grid points. This is because

with fixed 1/ and n, the finer scales introduced with higher resolution are heavily

damped.

2.5.3 Implementation of hyperviscosity

In the presence of hyperviscosity, the quasi-geostrophic equation that must be solved

in the spectral model is:

(2.36)

where OT stands for other terms in the equation and N takes on the value 1 or 2
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depending on the layer in question. For simplicity, we drop N in what follows, and

write q in place of ij.

Direct evaluation of equation 2.36 is difficult, because k2n becomes quite large

for the largest wavenumbers. As a result, small timesteps are needed to avoid

violating the "c.f.l. condition" for numerical stability, and the experiment becomes

too computationally expensive to be feasible. To circumvent this, a "semi-implicit"

scheme is widely used in the discretization of 2.36:

q(t + !:l.t) - q(t) = !:l.t OT -!:l.t vk2n(q(t + !:l.t) + q(t))
2 .

Solving for q(t + !:l.t) yields:

(2.37)

!:l.tOT
q(t + !:l.t) = 1 b.t "k'"

+ 2

1 _ 6.t vk 2n

+ (1 + b.t ~k'n )q(t).
2

(2.38)

Unless !:l.t is very small, as k -> 00, the coefficient of q(t) in equation 2.38

asymptotes to -1. Since one is not a large number, numerical integration with

coarser timesteps is possible. Consider, however, the behavior of 2.36 in the absence

of QT. The solution then is:

(2.39)

where qo is a constant, meaning that:

(2.40)

Therefore, for large k and finite!:l.t, the coefficient of q(t) asymptotes to zero, not

one as in the semi-implicit scheme. Thus, while the semi-implicit scheme for hyper­

viscosity is numerically stable for large timesteps, it is not a correct implementation

of 2.36.
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Glenn Flier! (personal communication) has invented an alternative scheme for

incorporating hyperviscosity into the qgb numerical model. It begins with the fol­

lowing equation, which is easily shown to be equivalent to equation 2.36:

~( uk
2n

, ) = vk2n'OTate q e .

In finite-difference form this becomes:

Dividing by euk2n
, gives:

q(t + 6t) = e-vk2nfi'(q(t) + 6t OT).

(2.41)

(2.42)

(2.43)

This scheme is implemented in the Adams-Bashforth timestepping scheme used by

the qgb code as:

q(t + 6t) = e-M
' •

[q(t) + dtO OT(t) + dt1 OT(t - 6t)e-Afi' + dt2 OT(t - 26t)e-ZM'J, (2.44)

where A = V k 2n
, and dtO, dtl, and dt2 are fractions of 6t dictated by the Adams­

Bashforth scheme:

16
dt1 = --6t

12 '
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dt2 = 1526t. (2.45)

As discussed above, this implementation of hyperviscosity is equivalent to the

direct evaluation of 2.36, and is thus correct, unlike the semi-implicit scheme. How­

ever, the exponent on the right-hand side of equation 2.44 is negative, and thus the

exponential does not become overly large for large wavenumbers. Therefore, unlike

a direct evaluation scheme, our scheme does not require expensively small timesteps.

In fact, it can suffer from the opposite problem; for large k, the exponential may

become so small that the computer cannot distinguish the values from zero. This is

especially true since the Adams-Bashforth timestepping scheme requires the square

and cube of the exponential. Therefore, where this hyperviscosity scheme is used,

matrices of the exponential operator along with its square and cube are checked to

ensure that they do not contain an inordinate number of zeroes.

2.6 Linear stability analysis

The main results of this thesis are strongly nonlinear numerical integrations, for

which analytical interpretation is often difficult. Important insights can be gained

from a linear stability analysis, which is analytically tractable (c.f. Pedlosky 1987

and references therein). If nonlinear Jacobian terms are dropped, and wavelike

solutions of the form ei{kx+ly-wt) are assumed, the governing equations (equation 2.1

and equation 2.2) can be written like so:

where

Bq+ 01$ = wq,

q= ( ::)
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(2.48)

and

(

ulk +vII
B=

o
(2.49)

C -- (k~": -l~": +iRI (k
2

+1
2

) 0 ) (2.50)
o k Oij2

_IOij2 + iR (k2 + 12 )By ax 2

where mean PV gradients are given by equations 2.8 through 2.11. The frequency

w can be complex; the presence of imaginary parts implies exponential growth or

decay, depending on sign. Linear stability analysis can predict the length scales of

fluctuations which grow the fastest, and therefore often dominate the flow.

The inversion relationship between the streamfunctions and potential vorticities

can also be written in matrix form:

(2.51)

where

R~(IH)

which can be inverted to give:

I
R~(1H)

_(k
2 + 1

2
) - R~(~+')

(2.52)
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Combining 2.51 and 2.46 yields the eigenvalue problem:

(2.54)

In this dissertation, equation 2.54 is solved using a linear stability code written in

MATLAB. Given input parameters Ul,U2,Vl,V2,/3,i'J,R1,R2, and Rd, the linear analysis

code calculates growth rates for wavenumbers k and I, where k and I take on both

positive and negative values and range in magnitude from lO~O • ~: to 1000. t.
The linear stability code proved useful at several junctures in the course of this

research. For example, several tests of the qgb model were performed by assigning

specific values of the background parameters given above and initializing it with

small-amplitude monochromatic waves of specific wavenumbers k and I. Growth

rates calculated from the qgb model matched those calculated from 2.54 to within

five percent for all tests performed. More uses of the linear stability code in the

dissertation will be described where appropriate.
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Chapter 3

Effects of stratification and

friction on eddy baroclinicity and

length scales

3.1 Inverse cascades in two-dimensional flows

In a pioneering effort, Fjortoft (1953) demonstrated that conservation of squared

relative vorticity (enstrophy) as well as energy in two-dimensional turbulence leads

to the so-called inverse cascade of energy to larger scales. Over time, the argument

for an inverse cascade has been refined. What follows is taken from Salmon (1998),

but similar arguments can be found in many other sources.

Consider purely two-dimensional motions, governed by the equation:

aq
at + J('I/) ,q) = 0, (3.1)

where q = \j2'IjJ. If one multiplies this equation by 'IjJ and q, and integrates over a

domain assumed to be doubly periodic, there are no contributions from the second

term on the left-hand side, and we obtain the energy and enstrophy conservation
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equations, which we write in both physical and spectral space:

(3.2)

(3.3)

where E(k) is the wavenumber spectrum of kinetic energy. We now assume that

energy initially concentrated at wavenumber k) spreads to other wavenumbers over

time, so that:

(3.4)

But

(3.5)

because of the conservation of energy and enstrophy. Therefore

(3.6)

where kE , the first moment of the energy spectrum (often called the centroid), is

defined by:

JkE(k) dk
kE = JE(k)dk' (3.7)

Energy therefore cascades to larger scales in two-dimensional turbulence. On the

other hand, similar reasoning (c.f. Salmon 1998) implies that moments of the enstro­

phy spectrum cascade to smaller scales over time. We demonstrate these arguments
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with a numerical experiment, in which equation 3.1 (with a wavenumber cut-of!' filter

added to the right hand side for numerical stability) is integrated in a 256 by 256 do­

main. Figure 3-1 shows the initial and final streamfunction and vorticity fields after

a long time integration. The streamfunction has indeed cascaded to larger scales,

while compact coherent vortices are visible in the PV field (McWilliams 1984). Only

three percent of the initial energy was lost in this integration, while 94 percent of

the enstrophy was consumed by the wavenumber filter. This is because enstrophy

cascades to small scales while energy cascades to larger scales, beyond the reach

of the filter. A philosophical digression: many articles and textbooks utilize con­

servation of enstrophy in arguing for the existence of an inverse cascade of energy,

and the author will continue to do so as well. As a practical matter, however, the

downscale transfer of enstrophy means that it will be dissipated, either by reaching

true dissipation scales in an actual fluid, or by reaching the smallest resolved scales

in a numerical fluid. Enstrophy is therefore not really conserved, but the argument

for a cascade can be modified to allow for this. If we acknowledge dissipation of

enstrophy:

:t J k2E(k) dk ::; 0,

then equation 3.4 will imply that:

-2k1:t J kE(k) dk ::" - :t Jk2E(k) dk::" 0,

(3.8)

(3.9)

and the inverse cascade still holds. See Batchelor (1969) and Bretherton and Haid­

vogel (1976) for a more detailed discussion. The cascade arguments to be presented

throughout the dissertation can be altered in like manner to include enstrophy dis­

sipation but we omit this for the sake of brevity.
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Final Psi
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Figure 3-1: An example of the inverse cascade in freely evolving two-dimensional
turbulence.
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3.2 Barotropization and inverse cascades in strat-

ified QG flows

Stratified quasi-geostrophic flows are not purely two-dimensional because stratifi­

cation introduces the possibility of baroclinic (depth-dependent) motions, Charney

(1971) argued that potential enstrophy q2 in stratified quasi-geostrophy is analagous

to enstrophy in two-dimensional motion, so that an inverse cascade should still take

place, In the stratified case, the inverse cascade includes energy transfer to larger

vertical scales (i.e, the barotropic mode) as well as larger horizontal scales, Rhines

(1977) demonstrated barotropization and the inverse cascade with numerical experi­

ments and complementary theoretical arguments, Below the author presents his own

version of these arguments and an illustrative example, In the absence of forcing

and dissipation, the modal energy and enstrophy equations 2,29 and 2,30 are:

(3,10)

Now write the barotropic and total baroclinic energies in spectral form:

JJ~C\l7/JBddXdY = JEBT(k)dk,

Then the energy and enstrophy conservation statements can be written:
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aj'2 2 1-a [kEm(k)+(k +-2)EBc(k)]dk=0
t Rd

Let us define centroids of the barotropic and total baroclinic energy spectra:

k _ JkEBT(k) dk
BT - J EBT(k) dk '

k _ JkEBC(k) dk
BC- JEBC(k)dk'

(3.14)

(3.15)

(3.16)

(3.17)

and then assume a spreading of energy in both modal spectra, so that addition gives:

aJ 2 2at [(k - km ') EBT(k) + (k - kBC) EBC(k)] dk ::0: 0,

which leads to:

(3.18)

Using equation 3.15, we substitute for the first two terms in 3.19 to obtain:

Conservation of total energy allows this to be rewritten as:
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where E is the total energy, thus a constant. This inequality suggests that the

cascade acts to reduce the quantity in brackets on the left hand side. Thus the

length scale of the barotropic mode should increase, while total baroclinic energy

decreases. Since Rd is fixed, it does little good, from the point of view of reducing

the second term in brackets, to lower the baroclinic wavenumber; instead, decreasing

total baroclinic energy is more effective. In summary, therefore, we expect the fluid

to become more barotropic, and to increase its barotropic length scale, but for the

baroclinic length scale to be little affected. Rhines (1977) has pointed out that the

process can also be interpreted as a release of potential energy into kinetic energy,

somewhat akin to baroclinic instability. Potential energy release flattens isopycnals,

leading to a barotropic final state.

Slightly different information can be obtained by following the example of Salmon

(1998) and writing the spreading of the total energy spectrum around an initial

concentration at wavenumber k1 as follows:

which implies that:

(3.22)

:t[2k1Jk(EBT(k) + EBC(k)) dk + ~~JEBC(k) dk] s: O. (3.23)

The latter equation suggests once again that total baroclinic energy should decrease

over time, as well as that the length scale associated with total energy should in­

crease.

The inverse cascade to larger horizontal scales and to the barotropic mode is

evident in figure 3-2, which contours the evolution of a freely evolving two-layer 5

= 1 experiment in a 256 squared domain. More details of this run will be discussed

in section 3.4. The initial condition is taken from one of the equilibrated forced­

dissipated solutions to be discussed later in this chapter.

62



Initial Psi1, H1 = H2 Run

Final Psi1

Initial Psi2

Final Psi2

Figure 3-2: An example of barotropization (as indicated by the greater degree of
correlation between layers in the final state) and the inverse cascade in freely evolving
two-layer turbulence with equal layer depths.
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3.3 Can the level of barotropization be reduced

with surface-trapped stratification and bottom-

trapped friction?

Two-layer flat-bottom quasi-geostrophic turbulence demonstrably cascades to the

barotropic mode and to larger length scales. Here we argue that the cascade may

weaken in models with a surface-trapped stratification, for two reasons. The first

mechanism we present is relevant to all of the cases examined in this chapter, while

the second is relevant when Ekman friction is bottom-trapped.

In a two-layer model with layer depths H j and H 2 , the barotropic (BT) and

baroclinic (BC) modes are given by:

F =(fifi)BC _ {Ii;

V1h

(3.24)

(3.25)

where the two elements in each column vector represent the values of the structure

function in the top and bottom layers, respectively.

Nonlinear interaction between two BC modes is represented by the square of

FBc , which projects onto the BT and BC modes as follows:

which yields:

F~C = a * F BT + b * F BC .

a=l
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b~ H 2 - HI .- (3.28)
"jH1 * H 2

Note that b equals zero if and only if the two layer depths are equal. In this case,

nonlinear interactions between BC modes project only onto the BT mode. When

layer depths are unequal, energy injected into the BC mode via the instability pro­

cess has a stronger chance of remaining there. This can be seen directly in the

modal forms of the governing PV equations 2.18 and 2.19. Nonlinear baroclinic­

baroclinic interactions always project onto the barotropic mode, through the term

J(WBC, V 2WBC)' In the baroclinic equation, however, this Jacobian is multiplied

by a factor of 1';;, meaning that nonlinear BC-BC interactions project onto the

baroclinic mode if and only if layer depths are unequal. Therefore barotropization

ought to be reduced when <5 is not equal to one. This dissertation will compare

eddy baroclinicity in numerical experiments having equal layer depths to those in

experiments having unequal layer depths. In the unequal layer depth experiments

it would be desirable to have a layer depth ratio <5 = ~: representative of mid-ocean

conditions. Flierl (1978) and Fu and Flier! (1980) chose a typical mid-ocean vertical

profile of buoyancy frequency, calculated the associated baroclinic modes, and then

calculated the projection of the square of the first baroclinic mode onto itself, in

other words, the continuous analogue of equation 3.26. They found that a <5 value of

0.2 yields the same self~projection coefficient (b in equation 3.26) as calculated from

the actual ocean profile. Note that this is approximately the ratio of the depth of

the thermocline to that of the abyss in a typical mid-ocean location.

In this chapter, the effect of <5 on eddy baroclinicity will be tested first in freely

evolving experiments, and then in sets of forced-dissipated experiments. All exper­

iments are on an f-plane. The Fu and Flier! (1980) nonlinear self-projection idea

has been tested only a few times before in geostrophic turbulence studies. Rua and

Raidvogel (1986) tested the effects of nonuniform stratification in a few six-layer

experiments and found that indeed the non-uniform N 2 cases retained more baro-
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clinicity. Treguier and Hua (1987) also examined the effects of nonuniform mean

stratification on the eddy baroclinicity in their stochastic wind forcing numerical

experiments. A more recent result is that of Smith and Vallis (2000), who studied

freely evolving turbulence in a multi-layer model. Their vertical resolution permits

them to examine energy transfer from higher baroclinic modes to the first baroclinic

mode as predicted by Fu and Flier! (1980), as well as effects of small scale structures

in the velocity profile. Neither of these effects can be studied in the two-layer mod­

els used in this dissertation. On the other hand, it is more computationally feasible

to study a wide range of parameter space in a two-layer model. Here we perform

a number of runs with symmetric Ekman friction-that is, Ekman friction which is

equal in the two layers-as well as the bottom friction used in Hua and Haidvogel

(1986) and in most other studies. In the latter case, stratification enhances baro­

clinicity for another reason besides the differences in nonlinear modal interactions.

The barotropic mode is damped less strongly when the upper layer is thin and the

Ekman friction occurs at the bottom only. As far as the author knows, this disser­

tation is the first occasion on which this frictional effect has been examined in the

context of highly nonlinear baroclinic instability.

We will refer to 5 = 0.2 experiments as having surface-trapped stratification, and

to 5 = 1 experiments as having uniform stratification. Since, in a two-layer model,

the change in stratification occurs at the interface, these descriptions are not literally

true. However, the 5 = 0.2 (1) conditions are the best representatives in two-layer

models of surface-trapped (uniform) stratification in the sense that the baroclinic

mode is intensified (not intensified) at the surface, analogous to the surface-trapped

(uniform) cases with continuous stratification. Then the nonlinear projections of

the baroclinic mode onto itself, as well as the relative strengths of modal damping,

are analogous as well.

Eddy interactions with bottom topography have also been proposed as a mech­

anism for halting barotropization and the inverse cascade-c.f. Rhines (1977) and

66



Treguier and Hua (1988). This dissertation will not focus on topographic effects,

but will discuss them briefly in later chapters.

3.4 Effects of stratification on freely-evolving ex­

periments

Figure 3-3 displays the initial and final distributions Of"I/Jl and "l/J2 for a freely evolving

experiment with Ii = 0.2. The initial modal streamfunctions, "l/JBC and "l/JBT' are

identical to those in the Ii = 1 freely evolving experiment shown in figure 3-2. Initial

modal energies are therefore equal, but the initial layer streamfunctions are different

in the two cases. Barotropization and the inverse cascade are still visibly present, but

quantitative measures will distinguish this experiment from its Ii = 1 counterpart.

In both experiments, total eddy energy is conserved to within two percent over

the length of the run. The top half of figure 3-4 confirms that the ratio of total baro­

clinic energy to barotropic energy decreases over time for both values of Ii. However,

the offset between the experiments indicates that surface-trapped stratification does

indeed retain more baroclinic energy. Thus these numerical experiments confirm

the picture of modal interactions anticipated by Fu and Flierl (1980). Ratios of

baroclinic to barotropic kinetic energies (not shown) behave similarly.

Eddy baroclinicity can also be measured via modal partition of enstrophies,

although this must be done with caution since, as in the one-layer case, most of

the initial enstrophy is dissipated. Modal enstrophy partitions are plotted in the

bottom panel of figure 3-4. Transfer to the barotropic mode over time is still present,

but to a lesser degree than in the modal energy partition. Again, offsets between

experiments indicate that surface-trapped stratification retains more baroclinicity.

Length scales of the freely evolving experiments are plotted in figure 3-5. They

were calculated as reciprocals of centroids of barotropic and total baroclinic energy

spectra. The length scale associated with total energy is also plotted. As predicted,
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Initial Psi1, H1 = 0.2 H2 Run

Final Psi1

Initial Psi2

Final Psi2

Figure 3-3: An example of barotropization and the inverse cascade in freely evolving
two-layer turbulence with J = 0.2.

68



100 150
Time (Years)

f-
III
ill 1
~

---~0
III 0,ill
~ "-
+
ill
0.. -1
«
'-'

0
T"" -2
8' 0

...J

1.5
(\J.....
.0

10-

---(\J
0 -.0 0.5

,
0-
0
T"" 0OJ
0

...J

-05'0

------

50

50

I=-=--=-

100

H1/H2 = 0.2
H1/H2= 1

150

H1/H2 = 0.2
H1/H2 = 1

200

200

250

250
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freely evolving experiments.

the total energy length scale has increased over time, as has the barotropic length

scale. The increase in the baroclinic length scale is less dramatic, also as predicted.
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3.5 Baroclinicity in bottom-friction only forced-

dissipated experiments

In this section, we examine the baroclinicity of eddy fields forced with a zonal,

vertically sheared flow on an f-plane and dissipated with bottom Ekman friction.

Experiments are done with two values of (j to ascertain the efIects of stratification

on eddy baroclinicity.

First, we show an example spinup curve, figure 3-6. As with many of the dis­

sertation results, this particular experiment was spun up at 642 resolution, and

a snapshot of the equilibrated low resolution solution was interpolated onto 2562
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and then continued. Total eddy energy increased by about 25 percent in the 2562

run. Contours of upper layer fluctuation streamfunction during the spinup phase

are displayed in figures 3-7 through 3-10. The initial condition, which was used

to initialize many of the experiments in this thesis, was generated randomly (by

grid point) in MATLAB. Note that increased resolution does not appear to change

the qualitative nature of the turbulence. The spinup is nearly isotropic, with some

hints of banded structures in the north-south direction (see for instance the 5.55

and 8.73 years plots). Near isotropy is consistent with linear growth rates, which

are contoured as a function of zonal and meridional wavenumber in the top half of

figure 3-11. Maximum growth rates are achieved when the meridional wavenumber

I = 0, consistent with the hint of north-south structures (note in all contour plots

in this document east at the right, west is at the left, south is at the bottom, and

north is at the top). Contours of linear growth rates for the inviscid case are shown

in the same figure for comparison. The presence of bottom friction destabilizes large

wavenumbers (small scales), consistent with arguments made in earlier studies (c.f.

Williams and Robinson 1974). We will return to this fact later.

Experiments were performed with several different values of the bottom friction

coefficient, to facilitate a range of model behaviors. For each experiment, plots of

total eddy energy are examined in order to judge the time at which equilibration has

been achieved; eddy statistics are taken as averages from that time forwards. Clearly,

there is an unavoidable degree of subjectivity in deciding whether a particular run

has equilibrated.

Total eddy energy and eddy kinetic energy are displayed as a function of the

bottom friction coefficient in figure 3-12. Note that the x axis is log base ten of

dissipation time, meaning that friction increases from right to left. Dissipation time

varies from 0.7 days to 1451 days. Using the linear stability code, no value of

bottom Ekman friction could be found that would stabilize the flow. Total eddy

energy varies by about 2.5 orders of magnitude. At the less viscous end of the

71



Spinup for H1/H2 = 0.2, bottom friction 290 day dissipation time expt
1.5.--~-~--~-~----,---~-~-,

~

(j)
0-

N

E
{)

c 0.5

_2L--~-~--~-~---,"----~--~---.J

a 100 200 300 400 500 600 700
Time in Years

>­
2'
(j) a
c
w
>-:g -0.5
w

~ -1

'0
0-1.5
~

0">
o
--'

642

Grid Points
2562

Grid Points

Figure 3-6: Spinup curve for the f-plane, zonal shear flow, a= 0.2, 290 day dissipa­
tion time bottom friction only experiment. The solid line demarcates the transition
from 642 to 2562 resolution.

experiments, energy increases monotonically as friction is reduced. At the viscous

end, total energy increases with increasing friction, contrary to intuition. Non­

monotonicity is also present in kinetic energy, but is less pronounced, indicating

that potential energy, which is unaffected by Ekman friction, is mainly responsible

for the non-monotonic behavior of total energy with friction. It may be that large

frictional values prohibit energy transfer to the lower layer, thus creating a buildup

of potential energy. Linear growth rates (figure 3-13) continue to decrease as Ekman

friction increases, so the non-monotonicity is apparently not explainable via unusual

linear stability properties.

Estimates of frictional spin-down times in the ocean vary widely. Weatherly and

Martin (1978) estimate a bottom boundary layer thickness of 10 m; inserting this

as an Ekman layer depth into 2.12, along with fa = 10-4 3-1 and H2 = 4000 m,

yields a 100 day spin-down time for the barotropic mode. They note that earlier
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Initial Psi1

1.58 Years

290 Days

2.37 Years

Figure 3-7: Contours of top layer fluctuation streamfunction for the spinup example,
displayed at selected times.
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5.55 Years

11.91 Years

8.73 Years

15.09 Years

Figure 3-8: Contours of top layer fluctuation streamfunction for the spinup example,
continued.
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18.27 Years

24.63 Years

21.45 Years

27.81 Years

Figure 3-9: Contours of top layer fluctuation streamfunction for the spinup example,
continued. By the last panels, the turbulence has reached equilibration.
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Figure 3-10: Effect of changing resolutions on top layer fluctuation streamfunction
for the spinup example.

76



2

1 .0

a 0 0
-1

-2
-2 a 2

2

1
"'0
0:: aoj<

....J

-1

-2
-2 a 2

K*Rd

Figure 3-11: Top panel: Linear growth rates as functions of zonal and meridional
wavenurnbers K and L, in units of 10-8 s-1, for the f-plane spinup example (with
290 day bottom Ekman friction). Bottom panel: Linear growth rates in the f-plane
inviscid case having otherwise the same parameters, shown for comparison.

77



work generally estimated a bottom boundary layer thickness of 30 m, which yields

a 33 day spin-down time. Wunsch (1998) argues from the shape of current-meter

spectra that the barotropic mode spins down in about 100 days. However, Gille et

al. (2000) estimated dissipation time scales from altimetry data of 550 to 1450 days.

The author believes a better method of choosing data points which best represent

the "real" ocean is to use ratios of top layer eddy to mean kinetic energy. In the

<5 = 0.2, 290 day dissipation time experiment (chosen earlier as a spinup example),

this ratio is 50, which compares well with surface data in the mid-latitude regions

in figure 1-1. The total eddy kinetic energy (column integrated) for this experiment

is 5.7 cm2 S-2, which compares well with the top left panels of figures 1-3 and 1-4.

Ratios of modal kinetic energies are plotted against dissipation in figure 3-14.

Note that for both values of <5 the ratio reaches a limiting plateau at the viscous

end. The limiting values can be predicted from a simple argument. Inversion of

equations 2.14 and 2.15 yields the following relationship between the bottom layer

streamfunction and the modes:

'l/J2 = 'l/JST - .fJ'l/Jsc. (3.29)

Suppose that when bottom Ekman friction is large, the modes correlate with each

other in order to render the bottom velocities very small, so that dissipation is

minimized. Figure 3-15, which plots the ratio of upper to lower layer kinetic against

dissipation, confirms that the lower layer velocities are extremely small at the viscous

end. Thus, to first order, we assume that 'l/J2 is zero in 3.29, which locks the modes

together in the relationship:

(3.30)

These are the limiting values shown in the figure.
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versus dissipation time for 256 by 256 bottom-friction only f-plane zonal flow foreed­
dissipated experiments.
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experiments. Extra lines indicate the limiting values of 1 and 5 (Z: for the two sets
of experiments).

In freely evolving experiments, eddies shift towards a barotropic state over time.

Here, as friction reduces, eddies are able to evolve for some time before feeling

friction, and they also tend towards a barotropic state, the more so as friction is

continually reduced. This means that ~~~~ is bounded above by Z:. Observations

(d. Wunsch 1997;Zang 2000;figures 1-3 and 1-4) indicate that in the mid-latitudes of

both the North Pacific and North Atlantic, the first baroclinic mode contains more

kinetic energy than does the barotropic mode-typically by about 50-80 percent.

Our model results suggest that the first baroclinic mode will not have more kinetic

energy than the barotropic mode in the case of uniform stratification, whereas it

can in the case of surface-trapped stratification. Thus the surface-trapped nature of

the stratification, and the bottom-trapped nature of the friction, may playa critical

role in the level of eddy baroclinicity observed in the ocean.

Let us now find the nondimensional parameter which delineates the transition
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between friction-dominated and nonlinear cascade-dominated regimes, We scale

the Ekman friction term and the nonlinear Jacobian term in the bottom layer PV

equation 2.2:

(3.31)

We have seen that upper layer velocities are always greater than lower layer ve­

locities. We will see later that eddy length scales are always larger than Rd. For

simplicity, then, let us write:

,p2 ,,p,
6'I/Jl nonlinear L2 (lH)RjL,

nonlinear ~ J( 'l/J2, (1 A)R2) =? f .. ~ R,";,+ U d nctwn ---rt- (3.32)
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where the Jacobian has picked out separate layer eddy length scales L] and L 2 . If

we scale the upper layer eddy velocities by U1 and use t: ~ U1 , 3.32 simplifies to:

nonlinear 5U1L2
---~ (3.33)
friction (1 + 5)R~R2 .

As we will see, in the transition regime, eddy scales in both layers are close to Rd.

So if Rd and L2 are both set to an eddy length scale L, and the 5 factors are ignored,

3.33 further simplifies to:

nonlinear U1 Tjdetion (--,----- ~ ~ ~ 3.34)
friction LR2 Teddy

Nonlinear terms dominate when eddy turnover time is small compared to frictional

time, and friction dominates when the eddy turnover time is large compared with

the dissipation time. This last exercise helps us understand the meaning of the

scaling in a simple limit. However, we will use 3.33 as our nondimensional parameter

because it does not assume that the length scales are order R d , so it will hold more

generally over the range of friction values used. The top half of figure 3-16 plots

the baroclinicity ratios against this parameter. The transition occurs when the

nonlinear and friction terms are of the same order. When the nonlinear term is

much larger than friction, eddies cascade to a barotropic state as friction reduces.

When friction dominates, eddy baroclinicities take on the predicted limiting value

Z:. This parameter is a function of L 2 and U1 , which are not known a priori, since

they are part of the solution of the nonlinear equilibration problem. Comparison

of the top halves of figures 3-11 and 3-13 indicates that linear stability properties

undergo a qualitative transition as friction changes. Namely, a destabilization of

short waves occurs as friction increases, as evidenced by the fact that in the latter

plot, growth rates at high wavenumbers are larger fractions of the maximum growth

rates than is the case in the former plot. The linear analysis, of course, cannot know

about L 2 and U1 ; it must depend on ';i:~: (and on 5, but since that is order one
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we omit it). The bottom half of figure 3-16 plots ratios of the nonlinear solutions

against ~:;;. The regime transition occurs when this quantity is order one; thus

the value of friction at the transition can be roughly predicted without knowing any

of the characteristics of the nonlinear problem.

Ratios of modal kinetic energies are plotted against total eddy energy in figure 3-

17. The regime of non-monotonic energy versus friction shows up as a "hook" on

the plots. Outside this regime, barotropization increases with increasing energy.

Plotting baroclinicities as a function of total eddy energy rather than dissipation

time brings the curves for the two different ij values closer together; the curves

collapse together even more strikingly in the next section. An ofIset exists between

the baroclinicity ratios; the ij = 0.2 experiments are more baroclinic for a fixed value

of total eddy energy, typically by a factor of about two. Note that ~~~~ = 0.7 in

the ij = 0.2 290 day dissipation time experiment, which we have chosen as having a

realistic ratio of eddy to mean kinetic energy. The baroclinicity ratio is too low; the

145 day experiment has a baroclinic to barotropic ratio of 1.5, closer to mid-ocean

values. For this experiment the ratio of eddy to mean kinetic energy is 22, which is

somewhat small compared to mid-ocean values (figure 1-1). The model is not quite

baroclinic enough for realistic energies, when compared to the actual ocean.

Plots of total baroclinic energy over barotropic energy (not shown) paint a similar

picture, as do the enstrophies. Total potential enstrophy (normalized by 12
, where

1 takes the nominal value 10-4 s-1) is plotted versus dissipation in figure 3-18. Non­

monotonic behavior with friction is evident. The ratio of (,FI/JBC)2 over (\l2'IjJBT)2 is

plotted against the ratio of nonlinear to Ekman terms in the top half of figure 3-19.

When Ekman friction dominates, the enstrophy baroclinicity ratio takes on the same

limiting values as does the kinetic energy ratio. Barotropization of enstrophies is

observed as nonlinear terms begin to dominate, but the amount of barotropization

is considerably less than when energy ratios are the norm. When the enstrophy

ratio is plotted against total potential enstrophy, in the bottom half of figure 3-
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19, an offset exists between the [j = 0.2 and [j = 1 experiments, indicating that

eddy baroclinicity as measured by modal enstrophy ratios is also enhanced with

surface-trapped stratification. The ratio of (\l2'1jJBC? + b(\l'ljJBC)2 (the part of the
"

baroclinic enstrophy which feels Ekman friction and is thus weakly damped under

surface-trapped stratification-d. equation 2.30) over (\l21/JBT)2, and the ratio of

total baroclinic potential enstrophy to barotropic enstrophy, tell the same story and

are not shown for the sake of brevity.

Figure 3-20 plots Ekman dissipation of energy and enstrophy over PV flux

production-see equations 2.29 and 2.30. Ekman friction balances energy produc­

tion to within about ten percent, meaning that the wavenumber filter makes little

difference to the energy balance. However, the same is not true of the enstrophy

balance. At the viscous end, the fraction of enstrophy dissipated by bottom Ekman

friction takes on a limiting value of l~O' As friction reduces, this fraction decreases.

This can be understood with the following simple argument, based on the layer po-
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Figure 3-18: Total potential enstrophy versus dissipation time for 256 by 256 bottom­
friction only f-plane zonal flow forced-dissipated experiments.

tential enstrophy equations 2.26 and 2.27. These equations, under the conditions

of the present experiments, and under the assumption of a statistically steady state,

are:

(3.35)

(3.36)

where !J and fz denote depth-integrated enstrophy dissipations by the wavenumber

filter in the top and bottom layers, respectively, and Eq denotes depth-integrated en­

strophy dissipation by bottom Ekman friction. Combining these with equation 2.23

yields Eq + 12 = ii,h, which implies that:
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5 fz
---~~~

1+5 (1+5)k
(3.37)

In experiments with large bottom friction, if one assumes that fz is nearly zero, i.e.

that Ekman friction dominates the bottom layer enstrophy dissipation, then the left

hand side goes to 11" exactly the ratio that is seen in the figures. On the other

hand, as Ekman friction decreases, the nonlinear term dominates and one expects

a strong cascade. Then fz becomes important and the fraction accounted for by

Ekman friction decreases, also in agreement with the figures.
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zonal flow forced-dissipated experiments. In the lower panel, lines are drawn at the
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3.6 Baroclinicity in forced-dissipated experiments

with symmetric friction

The results of the last section indicate that surface-trapped stratification enhances

eddy baroclinicity in bottom-friction only forced-dissipated experiments. We began

with two arguments as to why this should be so, one having to do with nonlinear

interactions between modes and one having to do with damping of the modes. Both

mechanisms are present in the bottom friction only experiments. Friction was proven

important by the fact that the upper bound of the ratio KKEE'Be can be calculated
• BT

from a frictional argument. The nonlinear interaction mechanism was shown to be

important in freely evolving experiments. Symmetric friction experiments can shed

further light on the importance of the two mechanisms in a forced-dissipated system.

In these experiments surface-trapped stratification enhances eddy baroclinicity only

through the nonlinear projection mechanism.

Brute-force application of the linear stability code indicates that there is a cutoff

value of friction in the symmetric case. When friction increases beyond this cutoff

value, the flow is linearly stable. This is consistent with earlier studies (c.f. Barcilon

1964; Williams and Robinson 1974) and with model behavior; eddy energy was

found to decay when friction is increased beyond the cutoff value.

As in the bottom friction only experiments, the value of Ekman friction was

varied over a wide range in the symmetric friction experiments. Total eddy energy

and eddy kinetic energy are plotted as a function of dissipation time in figure 3­

21. Non-monotonic behavior is once again evident, and more so in the total energy

plot than the kinetic energy plot. Here the non-monotonic behavior occurs near a

stability boundary. Since there is no stability boundary in the bottom friction only

case, it is not clear to this author that the reasons for non-monotonic behavior are

the same under the different types of friction. The non-monotonic behavior has not

been explained in either case.
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Figure 3-21: Total eddy energy and eddy kinetic energy versus dissipation time for
256 by 256 J = 0.2 (top panel) and J = 1 (bottom panel) symmetric friction f-plane
zonal flow forced-dissipated experiments.
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Ratios of modal kinetic energies are plotted versus total eddy energy in figure 3­

22. Once again, eddies barotropize with increasing energy. Offsets between the

5 = 0.2 and 5 = 1 experiments over most of the energy range indicate enhance­

ment of eddy baroclinicity by surface-trapped stratification. However, the offset is

much less than in the bottom-friction only experiments (figure 3-17). This contrast

further suggests that surface-trapped stratification enhances eddy baroclinicity in

the bottom-friction only experiments mainly because of the weak damping of the

baroclinic mode, rather than through differences in nonlinear interactions between

modes. Ratios of total baroclinic energy to barotropic energy-not shown-give simi­

lar results. Figure 3-23 plots baroclinicity of eddy energies versus dissipation time.

For both values of 5, baroclinicity increases as friction increases towards the stabil­

ity boundary. In fact ~~~~ takes on larger values than any achieved in the bottom

friction experiments.
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Figure 3-22: Ratios of modal kinetic energies versus total eddy energy for 256 by
256 symmetric friction f- plane zonal flow forced-dissipated experiments.

The same modal enstrophy partition plotted in the bottom friction case is plotted
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versus total enstrophy for the symmetric friction case in figure 3-24. Offsets between

[; = 0.2 and [; = 1 experiments are more noticable in the enstrophies than in the

energies, and more comparable to offsets in the bottom friction only experiments.

The nonlinear projection mechanism apparently becomes more important when the

baroclinicity measure is enstrophy rather than energy, consistent with the fact that

Ekman friction does not dominate dissipation of enstrophy as it does dissipation of

energy.
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3.7 A word about friction in the ocean

This chapter of the thesis has emphasized the importance of the bottom-trapped

nature of friction in enhancing levels of eddy baroclinicity in the models, and, per­

haps, the actual ocean. Under the action of linear bottom Ekman friction, which we

use in this thesis, dissipation of kinetic energy is proportional to the energy itself.

This makes for simple interpretation of model behavior, but one might wonder how

realistic it is. Derivation of the lower layer QG PV equation can be done as follows.

Starting from the vorticity balance (c.l'. Pedlosky 1987):

one then integrates over the bottom layer of depth H2 to obtain:

[.!!.- + J(o/' .)]\720 /, = f Winter face - Wtopblat '1-'2, '1-'2 JO H
2

'

(3.38)

(3.39)

where Winter face is the vertical velocity at the layer interface and leads to the vortex

stretching term, while Wtopbl is the vertical velocity at the top of the bottom bound­

ary layer. In "classical" Ekman layers, Wtopbl is proportional to the vorticity of the

flow above the boundary layer, leading to a simple linear friction. Work on bottom

boundary layers suggests that bottom stress T is proportional to the square of the

turbulent velocity scale, rather than the velocity itself, as is assumed in classical

Ekman theory. Assuming the former rather than the latter leads to a complicated

nonlinear relationship between Ekman pumping velocity and background flow (c.f.

page 329 of Gill 1982). Over rough topography, energy dissipation may be domi­

nated by internal wave generation and subsequent breaking (c.f. Polzin et al. 1997;

Gille et al. 2000). This, too, may lead to more complicated relationships. With

these mechanisms, it would still be true that dissipation occurs at the bottom, and

probably still true that the baroclinic mode in a surface-trapped stratification would
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be weakly damped. It would be difficult to show this analytically, but perhaps not

so difficult to show in numerical models. A study similar to the present one but with

more realistic dissipation schemes is a possible avenue of future investigation. The

biggest problem when taking that route would be to decide exactly what is a realistic

form of the friction. This has always been a difficult problem for oceanographers,

and is a matter of ongoing research.

3.8 Appearance and length scales of model eddy

fields

In this section we examine the appearance of model eddy fields discussed in the

preceding sections. We also take a quantitative look at eddy length scales. We expect

that eddy fields which are strongly baroclinic will also have compact horizontal

scales, since the baroclinic mode is associated with Rd. This association can be seen

in the experiment contoured in figure 3-25, in which the baroclinic streamfunction

is at substantially smaller scales than the barotropic streamfunction.

Snapshots of upper layer fluctuation streamfunctions for the <5 = 0.2 bottom­

friction only experiments are shown in figures 3-26 through 3-29. The length scales

of the most viscous experiment are relatively large, and the field is generally smooth

in appearance. Surprisingly, small-scale fronts are noticable. This may be related

to the destabilization of small scales by large bottom friction, as discussed earlier.

Destabilization is demonstrated in figure 3-30, which plots the ratio of the growth

rate for a wave with meridional wavenumber I = 0 and zonal wavenumber k = ;d
(i.e. a wavelength of 2Rd ), over the maximum growth rate, as a function of ~;;:. A

transition occurs when this parameter is order one. For small frictions, the growth

at our chosen small scale of ~d is much less than the maximum growth achieved in

the domain. For large frictions, the growth at small scales is a much greater fraction

of the maximum growth rate. Thus one might expect small scales to be energized in
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Upper Layer

Barotropic

Lower Layer

Baroclinic

Figure 3-25: Instantaneous snapshots of fluctuation layer and modal streamfunctions
for (j = 0.2 f-plane forced-dissipated experiment with 967.2 day bottom friction
dissipation time.
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the most viscous experiments. As friction reduces, the fronts contort and eventually

break up, transiting smoothly into a regime of densely packed vortices (starting

at dissipation times of 23.2 and 46.4 days) more typical of the f-plane geostrophic

turbulence literature (c.f. Larichev and Held 1995). The current study is apparently

the first to push into this highly viscous regime. The smooth transition of the

streamfunction appearance, as well as of integral quantities such as ~~~~ (which are

easily predictable in the viscous regime), lead this author to guess that more study

of the viscous regime might shed light on the behavior of the whole range of forced­

dissipated f-plane geostrophic turbulence. The vortex regime in the mid-range of

friction values eventually cascades to the domain scale as friction is further reduced.

This is consistent with the long-time behavior of freely evolving experiments. Note

that none of these experiments could be described as "wavelike" in appearance. The

fj = 1 bottom friction only experiments are not shown here for the sake of brevity.

Their behavior is similar.
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0.725 day dissipation

2.90 day dissipation

1.45 day dissipation

5.80 day dissipation

Figure 3-26: Contours of snapshots of top layer fluctuation streamfunction for the
bottom friction only e5 = 0.2 experiments.
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46.4 day dissipation

23.2 day dissipation

72.5 day dissipation

Figure 3-27: Contours of snapshots of top layer fluctuation streamfunction for the
bottom friction only (j = 0.2 experiments, continued.
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145.1 day dissipation

290.2 day dissipation

193.4 day dissipation

580.3 day dissipation

Figure 3-28: Contours of snapshots of top layer fluctuation streamfunction for the
bottom friction only r5 = 0.2 experiments, continued.
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967.2 day dissipation 1450.8 day dissipation

Figure 3-29: Contours of snapshots of top layer fluctuation streamfunction for the
bottom friction only (j = 0.2 experiments, continued.

The (j = 0.2 symmetric friction experiments have snapshots of their upper layer

fluctuation streamfunctions plotted in figures 3-31 through 3-33. Experiments hav­

ing frictional values close to the stability cutoff exist in a regime of long weakly

nonlinear waves. Figure 3-34 plots linear growth rates for the most viscous (j = 0.2

experiment. The different x and y scales of this plot indicate more anisotropy than

earlier examples of f-plane linear growth rates. Here the values of I (the meridional

wavenumber) are small, consistent with the north-south appearance of the waves

and with the fact that maximum linear growth rates occur when I = O. Extra verti­

cal lines are drawn at the wavenumbers corresponding to two waves fitting into the

domain. This experiment has few linear growth rate contours outside these lines,

meaning that there is little instability for waves with wavenumbers larger than two.

This explains why in the most viscous experiment there is essentially only one wave

in the domain. (Note that one might question the viability of a homogeneous tur­

bulence model for this case in which there is only one wave in the domain. The

reader should keep in mind that this is a process study. When a wide parameter

space is covered, understanding is sometimes achieved at the expense of realism.) As

friction reduces, more and more scales become unstable (figures 3-35 and 3-36), and
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Figure 3-30: Linear growth rates at the length scale ~ divided by the maximum
growth rate, as a function of ~;;:' for the f~plane fj = 0.2 bottom friction only
experiments.

the waves become more nonlinear in appearance, until the fields become turbulent

at long dissipation times, and ultimately cascade to domain size. Again, the fj = 1

experiments are similar in appearance, and are omitted for the sake of brevity.
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159.4 day dissipation

165.8 day dissipation

161.2 day dissipation

Figure 3-31: Contours of snapshots of top layer fluctuation streamfunetion for the
symmetric friction 0 = 0.2 experiments.
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181.3 day dissipation

290.2 day dissipation

11~~'Q
~ ':))//,..."\ r

193.4 day dissipation

580.3 day dissipation

Figure 3-32: Contours of snapshots of top layer fluctuation streamfunction for the
symmetric friction [j = 0.2 experiments, continued.
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1450.8 day dissipation

2901.6 day dissipation

Figure 3-33: Contours of snapshots of top layer fluctuation streamfunetion for the
symmetric friction J = 0.2 experiments, continued.
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Figure 3-34: Linear growth rates in units of 10-8 S-I, for the 159.4 day dissipation
time symmetric friction is = 0.2 f-plane experiment. Extra lines drawn at the scale
corresponding to half the domain size.

Modal length scales (measured as reciprocals of appropriate modal energy cen­

troids) are plotted against the ratio of bottom layer nonlinear to Ekman terms in

figures 3-37 and 3-38. Length scales of modal kinetic energies for the symmetric

friction experiments are also plotted versus dissipation time in figure 3-39. Length

scales of baroclinic kinetic energy are always less than or equal to those of available

potential energy, because extra derivatives involved in the calculation of the former

emphasize smaller scales. Therefore, length scales of total baroclinic energy are al­

ways in between those of baroclinic kinetic energy and those of potential energy. At

the less viscous end of the parameter range covered, in all four sets of experiments,

length scales of baroclinic kinetic energy remain near Rd , while the barotropic mode

cascades nearly to the domain scale when nonlinear terms dominate (since domain

size is 207fRd, eddy lengths cannot exceed lORd)' Consistent with the barotropic

cascade, the length scale of total eddy energy is nearly as large as that of barotropic
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Figure 3-35: Contours of linear growth rates for 5 = 0.2 symmetric friction experi­
ments. The outermost contour in each plot represents the zero value. The fact that
the zero contour extends outwards as friction decreases means that larger wavenum­
bers (smaller scales) are becoming unstable.
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Figure 3-36: Contours of linear growth rates for 5 = 0.2 symmetric friction experi­
ments. The outermost contour in each plot represents the zero value.
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energy, for the least viscous experiments. At the viscous end of the bottom-friction

only plots, length scales associated with the modal kinetic energies are equal, as

expected from equation 3.30, and remain near Rd. In the symmetric friction exper­

iments, eddy length scales become larger as the stability boundary is approached,

consistent with the earlier discussions. In the 5 = 0.2 symmetric friction experi­

ments, the transition between a regime in which nonlinear and Ekman terms are of

the same order to one in which the nonlinear term dominates occurs between the

290.2 and 580.3 day dissipation experiments. Figure 3-32 shows that these corre­

spond to the transition between waves and turbulence, and figure 3-38 indicates that

this transition also leads to a separation between barotropic and baroclinic kinetic

energy length scales.

Length scales of layer kinetic energies are plotted against the ratio of lower layer

nonlinear to Ekman terms in figures 3-40 and 3-41. The top layer kinetic energy

length scale of the 5 = 0.2 290 day dissipation time bottom friction experiment

(our most "realistic" in terms of the ratio of eddy to mean kinetic energy) is 1.26

~. Top layer length scales offer the best opportunity for comparison to altimetry

data, since altimeters measure variability of sea surface height. Stammer (1997)

did not use centroids as a measure of eddy length scales. Figure 1-2 uses 2~ of

the wavelength of maximum surface kinetic energy as a measure. For our most

realistic experiment, the wavelength of maximum kinetic energy is at 41fRd , which

corresponds to a length scale 2: of 2Rd . Stammer (1997) found that eddy length

scales measured this way varied from 2 to 4 Rd over mid-latitudes. Note that, unlike

the 5 = 1 experiments, even the least viscous of the 5 = 0.2 experiments have not

yet cascaded to domain scale in the top layer. At the less viscous ends of the plots,

5 = 0.2 experiments (both symmetric friction and bottom friction only) have larger

eddies in the bottom layer than in the top layer. This can be explained as follows.

Inversion of equations 2.14 and 2.15 yields the following relationships between layer

and modal kinetic energies:
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(3.40)

(3.41)

When <5 = 0.2, the top layer kinetic energy is dominated by the baroclinic mode

while the bottom layer kinetic energy is dominated by the barotropic mode. Since

the baroclinic mode is at smaller scales in the cascading regime, top layer kinetic

energy should therefore be at smaller scales than the bottom layer kinetic energy.

There is some evidence for an increase in kinetic energy length scale with depth

(though not as much as in these experiments) in eastern North Atlantic current

meter records (c.f. page 174 of Mercier and de Verdiere 1985). Barotropic and

baroclinic modes contribute equally to the kinetic energies in both top and bottom

layers when <5 = 1. Therefore there should be less difference between the layer scales,

as the figures show. Note that the layer scales must be equal in the <5 = 1 symmetric

friction case, as there is nothing to distinguish between layers.

3.9 Chapter summary

Freely evolving two dimensional turbulence cascades to large scales. Freely evolving

flat-bottom stratified QG turbulence cascades to the barotropic mode and to large

scales. Observations of eddy fields in the actual ocean conflict with these model

tendencies. Wunsch (1997) showed that the barotropic mode generally accounts for

about 35 to 40 percent of the mid-ocean eddy kinetic energy. The rest is taken

up by baroclinic modes, predominantly the first baroclinic mode. Since the first

baroclinic mode is associated with Rd , retention of substantial energy in the first

baroclinic mode should lead to retention of substantial energy in scales near Rd.

Stammer (1997) found this to be the case in altimetric data. We have examined
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III this chapter how the cascade could be arrested, so that models better match

observations.

The central argument of this thesis is that local baroclinic instability of weak

mid-ocean gyre flows is a plausible mechanism for generation of mesoscale eddies. A

damped, baroclinically unstable flow should hold more energy in the baroclinic mode

and in deformation scales. This is because unstable flows continually inject energy

into the baroclinic mode and the deformation radius, while friction prevents eddies

from cascading far away from this state. However, some influential studies of forced­

dissipated turbulence, for instance, Salmon (1978), Salmon (1980), and Larichev and

Held (1995), found that forced-dissipated model eddy fields still become barotropic

and large scale. All of these studies were done in models with two equal layer depths,

the analogue of uniform stratification in the continuous case. Here we argue that the

level of barotropization should be reduced with surface-trapped stratification and

with Ekman friction that is present only in the bottom layer. There are two reasons

that this should be so. One is that baroclinic nonlinear self~interactions project

onto the baroclinic mode if and only if layer depths are unequal. The other is that

the baroclinic mode is weakly damped compared to the barotropic mode when the

stratification is surface-trapped and the friction is bottom-trapped.

As a precursor to forced-dissipated experiments, which are our main focus in this

thesis, freely evolving experiments on an f-plane were done with two values of the

parameter i5 = z:; 1, representing a uniform stratification, and 0.2, representing a

surface-trapped stratification. In both cases, barotropization took place, but it was

less complete in the surface-trapped case. This was true whether modal energy ratios

or modal enstrophy ratios were used as a measure of eddy baroclinicity. Since there

is no Ekman friction in the freely evolving experiments, this difference in behavior

must be due to the nonlinear projection mechanism.

Next, eddy baroclinicity in two sets of forced-dissipated experiments having

bottom-trapped friction was compared; again, the sets are distinguished from each
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other by their value of 6. When the ratio of lower layer nonlinear to Ekman friction

terms is much less than one, lower layer eddy velocities are nearly zero, which im­

plies a strong correlation between modes. This correlation can be used to predict

the ratio of baroclinic to barotropic kinetic energies in this regime. The value of

the modal ratio in this limiting case serves as an upper bound for the entire set

of experiments. When friction weakens so that the nonlinear term dominates over

bottom Ekman friction, eddy baroclinicity reduces, consistent with behavior at long

times in freely evolving experiments. The upper bound of ~~~~ is one for experi­

ments with 6 = 1 and 5 for experiments with 6 = 0.2. Mid-latitude current meter

data indicates that the baroclinic mode generally contains about fifty percent more

kinetic energy than does the barotropic mode. Therefore the surface-trapped nature

of ocean stratification and the bottom-trapped nature of the friction may play an

important role in setting observed oceanic eddy baroclinicities. For a fixed amount

of total eddy energy, the 6 = 0.2 experiments retain more baroclinic energy than

do the 6 = 1 experiments, and the enstrophies tell a similar story. Also, 6 = 0.2

experiments having a realistic ratio of eddy to mean kinetic energy have values of

~~~~ that are near one, which is close to values seen in the mid-ocean. Their length

scales compare favorably with observations as well. There are important differences

in the dissipation of energy and enstrophy. Ekman friction dominates dissipation of

total energy even when it occurs only at the bottom. This is because energy can be

transferred from the upper layer to the lower layer and then dissipated by bottom

Ekman friction. However, upper layer enstrophy cannot be so transferred and must

be dissipated by the small-scale dissipation present in the upper layer. Ekman fric­

tion only accounts for a fraction of the total dissipation of enstrophy. This fraction

is bounded above by the value it takes in the viscous regime, which can be predicted

from a simple argument.

In experiments with bottom friction only, surface-trapped stratification enhances

eddy baroclinicity both because of differences in nonlinear modal interactions and
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because the baroclinic mode is weakly damped. More can be discerned about the

importance of the two mechanisms from experiments having symmetric Ekman fric­

tion. In these experiments, offsets in modal energy ratios are still present when

plotted against total eddy energy, but are much reduced. When modal partitioning

of energy is the measure of eddy baroclinicity, therefore, the nonlinear projection

mechanism seems to be the less important of the two effects. When eddy baroclinic­

ity is measured by modal enstrophy ratios, however, the damping mechanism is less

dominant, consistent with the fact that Ekman friction accounts for only a fraction

of the enstrophy dissipated in bottom-friction experiments.

Plots of upper layer streamfunction of the model eddy fields display more differ­

ences between bottom-friction only experiments and symmetric friction experiments.

The latter experience a cutoff value of Ekman friction which can be obtained from

a linear stability analysis, consistent with Barcilon (1964). As friction increases

beyond this value, eddies disappear. The model exists in a regime of long, weakly

nonlinear waves near the stability boundary. As friction decreases away from the

cutoff value, linear stability analysis indicates that smaller scales become unstable.

Consistent with this, eddy length scales decrease, and the waves take on a more

nonlinear appearance, before breaking up into a smaller scale, turbulent eddy field.

As friction reduces still more, eddies cascade to larger scales. The bottom friction

experiments are noticably less wavelike for high values of friction, which, no matter

how large it becomes, does not stabilize the eddy field. The appearance of eddies

in this viscous regime is quite unlike that seen in previous f-plane forced-dissipated

studies. Small-scale fronts are noticable, and may be related to the destabilization

of short waves caused by large values of bottom friction, as argued by Williams and

Robinson (1974). As friction reduces, the fronts break up into eddies, and a cascade

to large scales takes place.

When nonlinear terms dominate over Ekman friction in the bottom layer, length

scales associated with modal kinetic energies separate. The baroclinic scale remains
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near Rd , while the barotropic scale cascades to nearly domain size. Bottom layer

length scales tend to be larger than upper layer length scales in the presence of

surface-trapped stratification, consistent with a simple argument and with a lim­

ited number of observations. Surface-trapped stratification enhances the baroclinic

mode, and increases the ratio of baroclinic to barotropic kinetic energy in the up­

per layer, enabling top layer length scales to resist the cascade to large scales more

effectively than their uniform stratification counterparts.

In the next chapter a mathematical tool will be derived which ties together

much of what was presented in this chapter; the baroclinic instability mechanism,

the importance of surface-trapped stratification, and the importance of the bottom­

trapped nature of friction. Application of this tool to the experiments performed

in the present chapter will inform us quantitatively about the importance of these

mechanisms in arresting barotropization and the inverse cascade.
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Chapter 4

Quantification of the inverse

cascade to large scales and the

barotropic mode with a cascade

inequality

In this chapter we seek a quantitative explanation of eddy length scales for the

forced-dissipated experiments presented in the last chapter. One might ask for a

theory that dictates under what conditions cascades take place to scales larger than

the forcing scale of a baroclinically unstable flow-namely, the deformation radius­

and under what conditions the cascade may be halted. Looked at in another way, one

might ask whether the energy and enstrophy equations can be manipulated in the

forced-dissipated case in a manner similar to the way Fjortoft (1953) manipulated

them in the freely evolving case.

Glenn Flier! has indeed produced such an argument, in the case of a one layer

flow forced at a particular scale and dissipated through Ekman friction; this could

apply, for instance, to the work of Maltrud and Vallis (1991). The argument comes in

the form of an inequality which states that energy containing scales at equilibration
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will be larger than the forcing scale. Although the one layer inequality is never used

in this dissertation, its derivation is given below for illustrative purposes. It will

then be generalized to a damped two-layer baroclinically unstable system. When

applied to the results of the preceding chapter, the two-layer inequality elucidates

the effects of friction and stratification on the inverse cascade to scales larger than

the deformation radius and to the barotropic mode.

4.1 Derivation of one-layer cascade inequality

The governing equation for a one-layer forced-dissipated system is:

(4.1)

The forcing is assumed to be confined to a narrow band in wavenumber space, so

that there is a well defined forcing scale. The energy and enstrophy equations are

obtained through multiplication of 4.1 by 1/J and V 21/J, respectively, and integration

over the domain:

:tK E = -2R KE - }17/; jorcing dx dy,

:tZ = -2R Z - k} j j 1/J jorcingdxdy,

where kp is the scale of the forcing and:

KE = j j(V1/J)2dXdY = j E(k) dk
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In a statistically steady state the g, terms drop out of time averages of 4.2 and 4.3,

and the forcing terms can be eliminated, leaving:

[J k2E(k) dk] = k~[J E(k) dk], (4.6)

h b k d L k - f kE(k) dk h If·were rac ets enote time averaging. et E - f E(k) dk· Begin with t e se -

evident inequality:

[J (k - kE)2 E(k) dk] 2> 0,

which can be manipulated to give:

which, together with 4.6, yields:

2 [k1 JE(k) dk]
kp 2> [J E(k) dk]

(4.7)

(4.8)

(4.9)

We have shown that energy cascades beyond the scales at which it is injected

in an equilibrated, forced-dissipated flow. This has been argued to be the case

in many papers (d. Kraichnan 1967; Leith 1968; Batchelor 1969; Salmon 1978;

Salmon 1980; Maltrud and Vallis 1991; Larichev and Held 1995). We are able

to explicitly prove it in this case. Note that dissipation of energy (enstrophy) by

Ekman friction is proportional to energy (enstrophy) itself, enabling the argument

to be made easily. Note also (Geoffrey Vallis, personal communication) that the

nonlinear term J(1/;, \l21/;) does not participate in the derivation, because it does not

contribute to generation of domain-integrated energy or enstrophy. The inequality

would be unaltered in a system governed by equation 4.1 but with the Jacobian
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term set to zero. Since scale transfer is effected by nonlinear terms, one senses an

apparent contradiction. The argument is rescued by the fact that 4.9 is not a strict

inequality. If a linear system were forced at a scale kF , energy would remain at

that scale and 4.9 would be an equality. Note that small scale dissipation could be

included in this argument, and 4.9 would be unchanged.

Although developed independently by Glenn Flierl, and not widely known in

the community, this type of argument has apparently been made by others (Andrew

Majda, personal communication). According to Majda, it can be extended to include

different types of friction, and may have been extended to two layers by others. This

author is not aware of any other studies which make extensive use of the two-layer

inequality in interpreting numerical results, as will be done here.

4.2 Derivation of two-layer cascade inequality

We now generalize the one-layer result to the two-layer damped baroclinically un­

stable system relevant to this thesis. By analogy to the one layer case, the forcing

terms (which are now in the form of eddy PV fluxes multiplied by mean shears) can

be eliminated from the modal energy and enstrophy equations 2.29 and 2.30. We

do so by multiplying the latter by - R~ and then adding it to the former, resulting

1l1:
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Now define centroids of the modal kinetic energy spectra:

k _.J kEBT(k) dk
BT - .J EBT(k) dk

k =.J kEBc(k) dk
BC "'c.JC-:E=-B-c~(k~)-:dk:-·

We take a time average of 4.10 and write the enstrophies spectrally:

We now apply analogs of 4.8 to each of the modes separately:

Combining these with 4.13 yields:

1 > R2 [k§TK EBT + fA;~~~ k§c K EBc]
- d [KEBT]

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)
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Again, brackets denote a time average. The deformation radius takes the place of

kF as the forcing scale, as one would expect in a baroclinically unstable system. The

simplest form of the inequality occurs when R j = R2 , in which case 4.15 reduces to:

(4.16)

If we ignore the time-averaging operator, this roughly tells us that:

(4.17)

When frictional spin-down time is equal in the two layers, the fluid behaves "two­

dimensionally", in the sense that barotropic, large-scale motions are preferred. It

cannot simultaneously retain substantial energy in length scales near Rd and in the

baroclinic mode. This will be tested in the next section.

4.3 Evaluation of two-layer cascade inequality in

symmetric friction case

Figures 4-1 and 4-2 display the evaluation of the cascade inequality versus dissi­

pation time and versus the ratio of bottom layer nonlinear to Ekman terms, for

the symmetric friction experiments. The quantity on the right-hand side of equa­

tion 4.16, which we call the "two-dimensionality measure", is indeed bounded by

one. The measure approaches one near the stability boundary, when nonlinear and

Ekman terms are of the same order. A cascade to the barotropic mode and to

large scales ensues, and the measure becomes significantly less than one, when the

nonlinear term becomes larger than the Ekman term. The 0 = 0.2, 161.2 day dis­

sipation time experiment comes closest, at 0.995, to breaking the inequality. As

discussed in chapter 2, it was found that when Ekman friction is present in both
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layers and sufficiently large, the wavenumber filter could be turned off. The six most

viscous (j = 0.2 symmetric friction experiments, and the seven most viscous (j = 1

symmetric friction experiments, were run without a wavenumber filter. This was

done in order to match conditions in the numerical experiment as closely as possible

to those assumed in the development of the cascade inequality, which ignored the

effect of the filter on enstrophy dissipation at small scales. (However, some amount

of small-scale filtering is unavoidable in a spectral model. For instance, our method

of de-aliasing is to truncate energy at scales smaller than the Nyquist scale.)

The cascade inequality allows us to make connections between the separate be­

haviors of eddy baroclinicities and length scales. The behavior of eddy length scales

near the stability boundary (figure 3-39) was qualitatively explained in chapter 3,

from the friction-induced changes in unstable scales. Near the stability boundary,

eddy fields are wavelike in appearance, not turbulent. Therefore, nonlinear cascades

are not fully developed, which is why the two-dimensionality measure is close to

one, rather than much less one, near the stability boundary. We can therefore use

the cascade inequality and the length scales (which we take as "explained" from the

linear stability results) to predict eddy baroclinicities near the stability boundary.

Near the boundary length scales are much larger than Rd. Therefore the ratio ~~~~

must be much larger than one in order for the two-dimensionality measure to remain

near one. In turn this means that k1e ~~~~ will dominate the two-dimensionality

measure, and 4.16 can be approximated by 1 2: R~k1e i~~~~l, or:

[KEsel
[KEBT ] ,

(4.18)

where LBe is the reciprocal of kBe . Figure 4-3 shows the predicted upper bound

on the baroclinicity ratio LJt,c, as well as the actual baroclinicity ratio taken by the
d

experiments, as a function of the ratio of bottom layer nonlinear to Ekman terms.

When the latter ratio is order one, the predicted and actual values of i~~~~l are quite

similar. When the nonlinear term begins to dominate over friction, the baroclinicity
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Figure 4-1: Evaluation of the two-dimensionality measure [k1TKE~;::rKEBcJ for
the 256 squared symmetric friction experiments, plotted against dissipation time.
The measure is bounded by one for all experiments, supporting the analytical work.
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Figure 4-2: Evaluation of the two-dimensionality measure [k1,TKEr;;::rKEBcl for the

256 squared symmetric friction experiments, plotted against (11~)fl22R3' The measure
is near one for experiments in which nonlinear and Ekman terms are nearly equal.
It becomes substantially less than one when the nonlinear term is much larger than
friction.
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ratio becomes substantially less than the predicted value. Note also that because

the baroclinic length scale cannot exceed lORd (the domain size divided by 27f),

k1cR~ cannot be less than I~O' meaning that the baroclinicity ratio cannot exceed

100. Figure 3-23 indicates that this is the case, though the baroclinicity ratios have

not yet closed in on the upper bound very closely.

When the ratio of nonlinear to Ekman terms exceeds one, a cascade to the

barotropic mode, and to large scales in the barotropic mode, proceeds, meaning

that the two-dimensionality measure becomes significantly less than one. In the

symmetric friction case, eddies cannot simultaneously contain substantial energy

in the baroclinic mode and in scales near Rd. Yet in the actual ocean eddies are

strongly baroclinic and compact. We will see in the next section that vertically

asymmetric (bottom) Ekman friction, especially when coupled with surface-trapped

stratification, allows eddies to behave less like a two-dimensional fluid, in other

words, to achieve baroclinicity and compactness at the same time.

4.4 Evaluation of two-layer cascade inequality in

bottom friction only case

When Ekman friction occurs in the bottom layer only (R l = 0), the cascade in­

equality 4.15 becomes more complicated than in the symmetric friction case:

(4.19)

Vertically asymmetric Ekman friction introduces sign-indefinite terms into the in­

equality, as well as an additional factor of fj in front of the baroclinic terms in the

two-dimensionality measure. The presence of sign-indefinite terms means that the
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Figure 4-3: "Predicted" (see text) vs actual values of eddy baroclinicity for J = 0.2
(top panel) and J = 1 (bottom panel) symmetric friction experiments.
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precision present with symmetric friction is lost in the bottom friction only case.

However, the sign-indefinite terms can be evaluated numerically, and the inequality

will still prove useful for interpretation. The top half of figure 4-4 indicates that, in

some bottom friction experiments, the two-dimensionality measure exceeds one. In

terms of this measure, these experiments have achieved a level of simultaneous baro­

clinicity and spatial compactness which is impossible under the action of symmetric

friction. The bottom half of the figure shows that the sign-indefinite terms take on

negative values over most of the domain. They take on their largest negative values

in the experiments in which the two-dimensionality measure exceeds one. Thus the

sign-indefinite terms could be seen as enabling the eddies to be baroclinic and near

Rd at the same time.

In bottom friction experiments, the two-dimensionality measure defined in 4.19

exceeds one by a small amount in experiments where sign-indefinite terms take on

their largest negative values. But this form of the measure includes a factor of Z~

in front of the baroclinic terms. In other words, baroclinic terms are downweighted

by a factor of 0.2 in the experiments having surface-trapped stratification. The cas­

cade inequality places no bounds on the value of the two-dimensionality measure

defined in 4.16, when friction is bottom-trapped. In that form of the measure, the

Z~ factor is not present; equal weight is given to the barotropic and baroclinic en­

strophies in assessing the two-dimensionality. We anticipate that this form of the

two-dimensionality measure will take on substantially larger values for the (j = 0.2,

bottom friction experiments, especially since baroclinic kinetic energy is enhanced in

these. This is exactly what is seen in figure 4-5. The barrier of one, which could not

be exceeded with symmetric friction (irrespective of stratification), and which can be

slightly exceeded in bottom friction only experiments with uniform stratification, is

far exceeded in experiments with bottom friction and surface-trapped stratification.

This indicates that, in terms of the two-dimensionality measure defined in 4.16, the

last set of experiments have achieved the highest levels of simultaneous eddy baro-
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clinicity and compactness. In other words, they are the least "two-dimensional" , and

most closely resemble the actual mid-ocean eddy field, which is also simultaneously

baroclinic and near Rd.

- ~- H1/H2 =0.2,
--&-- H1/H2 = 1, ', \

x , , ,
;' ~~ ,

, ,
~~

,,,,,,,,
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~-~
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o
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Log10 of Bottom Layer Nonlinear/Friction Terms

Figure 4-5: Evaluation of [k1TKEr;;::rKEBcl for the 256 squared bottom friction

only experiments, plotted against (11~'f1.;R~' Downweighting of baroclinic terms has

been removed from the two-dimensionality measure, which then far exceeds one for
many of the a= 0.2 experiments.

In experiments with Ekman friction in the bottom layer only, the wavenumber

filter must be retained, in order to absorb the enstrophy cascade in the upper layer.

We saw in chapter 3 that in bottom friction experiments, the wavenumber filter

dissipates most of the potential enstrophy. Is it actually sensible, then, to ignore the

contribution of the filter to enstrophy dissipation, as was done in the derivation of the

cascade inequality? The fact that enstrophy really is dissipated (and therefore not

conserved) in numerical experiments has often been omitted from disussions in the

literature on two-dimensional and geostrophic turbulence; see comments at the end

of section 3.1. Despite the absence of small-scale dissipation effects in its derivation,
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the inequality we have developed here explains the numerical results rather well. The

author has rederived the cascade inequality to account for enstrophy dissipation by

the wavenumber filter, which involves turning the enstrophy equation 2.30 into an

inequality through use of equation 3.37 before proceeding with the remainder of the

derivation. The resulting form of the cascade inequality is, the author believes, too

cumbersome to be useful. Thus, the current presentation was deemed best.

The cascade inequality has helped us to interpret our model results. It is

tempting to try to apply it to actual ocean data. Direct evaluation of the two­

dimensionality measure in the real ocean, however, would be difficult, as it would

neccessitate separation of modal length scales. Note that the altimetry data used

by Stammer 1997 measures sea surface height, which is a combination of modes.

4.5 Effects of topography on the cascade inequal­

ity

Topography, of both the slope and rough varieties, introduces yet more sign-indefinite

terms into the cascade inequality. If these terms become negative, they can reverse

the tendency of the inverse cascade to push energy into large-scale, barotropic mo­

tions. With topography present we anticipate the two-dimensionality measure to

exceed one for a larger range of friction values, or to roll off to small values at a

slower rate. It is still true, however, that the factor ~: is introduced when the

friction is bottom-trapped, and some topography experiments (not included in this

document) indicate that the nature of stratification and friction will therefore still

be important in forced-dissipated numerical experiments with topography.
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4.6 Chapter summary

In this chapter we develop a cascade inequality for homogeneous geostrophic tur­

bulence forced by an imposed baroclinically unstable mean flow and dissipated by

Ekman friction. The inequality is derived from the energy and enstrophy equations,

in a manner similar to the arguments made by Fjortoft (1953) for freely evolving

one-layer turbulence. We apply the inequality to the four sets of numerical ex­

periments introduced in chapter 3. The inequality contains a "two-dimensionality

measure" which quantifies the amount of energy in the baroclinic mode and in

spatial scales near Rd. The measure is strictly bounded by one in the symmetric

friction case, regardless of the value of ~:' and numerical results strongly support

this. Precision is lost when the friction is bottom-trapped because of the presence

of sign-indefinite terms. In order to make progress we must resort to numerical eval­

uation of these. We find that these take on large and negative values, thus enabling

the two-dimensionality measure to exceed one in some bottom-friction experiments.

Factors of ~: appear in the two-dimensionality measure when there is bottom fric­

tion. We expect a two-dimensionality measure with this factor omitted to exceed

one for many of the <5 = 0.2 experiments. Thus the cascade inequality points to

surface-trapped stratification and bottom-trapped friction as the best combination

for producing eddies that achieve high levels of eddy baroclinicity and spatial com­

pactness. The numerical experiments demonstrate this to be true. We therefore

argue that the surface-trapped nature of mean ocean stratification, coupled with

the bottom-trapped nature of dissipation, may playa fundamental role in allowing

eddies to simultaneously retain substantial energy in the baroclinic mode and in

horizontal scales comparable to Rd , as they do in the actual ocean.
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Chapter 5

Generation of strong eddy fields

from nonzonal mean flows on a

beta plane

This part of the thesis focuses on the nonlinear equilibration of geostrophic tur­

bulence forced by nonzonal mean flows. Linear instability analysis indicates that

nonzonal flows are inherently more unstable than zonal flows, in the presence of

planetary beta. Hence it is possible that the direction of mid-ocean gyre flows may

matter a great deal to the amount of eddy energy generated by local baroclinic

instability.

We begin with a description of the baroclinic instability process. This will de­

velop intuition useful in interpreting later results. The discussion uses a combination

of ideas from Cushman-Roisin (1994) and Glenn Flierl's 12.803 class notes; these

draw on ideas originally put forth by Bretherton (1965). Figure 5-1 illustrates the

instability mechanism for a zonal mean shear flow on an f- plane. The bottom layer

is taken to have no mean flow, while an eastward mean flow is present in the up­

per layer. By the thermal wind relation, the layer interface slopes upward to the

north. A wave, shown in the upper layer, induces north-south displacements of
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vortex tubes. The vortex tube to the left, having moved northward, encounters a

decreasing layer thickness h. Since *is increasing, the tube develops a negative

relative vorticity, as shown, in order to conserve potential vorticity. Similar argu­

ments imply a positive relative vorticity in the southward moving vortex tube on

the right. In like manner, lowEll' layer vortex tubes moving north (south) develop

positive (negative) relative vorticity anomalies due to stretching (squeezing). For

reasons of clarity, lower layer waves and vortex tubes are not shown in figure 5-1.

Figure 5-2 does show the waves and relative vorticity anomalies in each layer. With

an appropriate phase relationship, as indicated, anomalies reinforce each other, thus

amplifying wave crests and creating baroclinic instability.

Equations 2.9 and 2.11 indicate that when j3 = 0, zonal shear flows, no matter

how weak, will reverse mean PV gradients between layers. Therefore on an f-plane

baroclinic instability exists with arbitrarily small shear. 1 When mean flows are

zonal and planetary beta is larger than the shear-induced PV gradients, gradient

sign-reversal no longer occurs between layers. Hence, large planetary beta stabilizes

all fluctuations attempting to grow on zonal mean flows. When the mean shear has a

meridional component, PV gradients will change sign in the east-west direction. This

remains true no matter how large planetary beta becomes-see equations 2.8 and 2.10.

Waves varying in the north-south direction, which produce east-west parcel motions,

can therefore develop vorticity anomalies from arbitrarily small meridional interface

tilts and become unstable. These waves are much like their f-plane counterparts,

except that planetary beta inhibits vigorous north-south motions. Although beta

does not eliminate instabilities in mean flows which have a meridional component, we

will see that it does tighten the range of unstable wavenumbers into an anisotropic

band.

Equilibrated eddy amplitudes cannot be obtained from a linear analysis. Sec-

lSome of the simple facts we present in this discussion are altered in the presence of friction.
For now we ignore this effect. Friction is included in the actual stability analyses we perform in
this thesis.
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Figure 5-1: First illustration of the baroclinic instability process, adapted from
Cushman-Roisin 1994. Here the mean shear flow is purely zonal.
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Figure 5-2: Second illustration of the baroclinic instability process, adapted from
Glenn Flierl's 12.803 class notes. This is a view looking down on two waves in a
zonal two-layer flow.
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tion 5.2 examines fully developed turbulence forced by nonzonal flows. The question

we begin with is whether weakly sheared nonzonal flows can generate eddies having

velocities much larger than the mean, as observed in the mid-ocean, despite the

stabilizing presence of planetary (3. Dependence of energy on angle of shear flow

with respect to the east-west direction will be tested. This test will complement the

results of Spall (2000), who performed two types of numerical experiments, one on

a purely meridional flow, the other on a gyre flow having all angles present. Here,

through performance of several experiments with differerent fixed angles, we can as­

certain whether eddy energy is generated over the entire gyre, or only in those parts

having mean flows that are steeply angled to the east-west direction. The directions

of the mean shear vector were chosen to vary from westward to southward; only

ninety degrees of the possible 360 was covered. Unless otherwise stated, a r5 value

of 0.2 and a bottom-trapped Ekman friction will be used in all of the nonzonal flow

experiments in this dissertation.

5.1 Satisfying J ('ljJ, q)

zonal flows

o for homogeneous non-

We intend to perform numerical experiments on a beta plane, with an imposed

mean shear flow which is nonzonal. One might ask whether the mean flow will be

balanced in such a case, because it is not along lines of constant planetary vorticity.

This matters because the governing equations of our model are equations for the

fluctuation streamfunction and PV. They could be derived in the following manner,

akin to a Reynolds decomposition (c.f. Kundu 1990). We begin with an equation

for the full (mean plus fluctuation) streamfunction and potential vorticity:

oq
ot + J(1/J,q) = F+D,
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where we have dropped layer subscripts for convenience, F is a forcing, and D is a

dissipation. We now divide quantities into a time mean plus fluctuations:

aq - - --at + J(7/J, q) + J(7/J, q) + J(7/) ,q) + J(7/J, q) = F + F + D + D, (5.2)

where quantities without overbars now represent fluctuations. If we assume that:

J(7/J, q) = F + D, (5.3)

and, in addition, we assume that D + D is a linear function of q + q (so that D is

a function only of q) and the forcing is steady (so that F is zero), then 5.3 can be

subtracted from 5.2 to give:

aq _ -
at + J(7/J, q) + J(7/J, q) + J(7/J, q) = D. (5.4)

This is the fluctuation equation we integrate in our model, where we take D to be

an Ekman friction plus a small-scale dissipation. If D + D were a nonlinear function

of q + q, or if the forcing were not steady, such a separation would not have been

possible. Thus, if one wants to assume that the mean flows arise from forcing and

dissipation, one must make special assumptions about the nature of these in order

to end up with the fluctuation equations we integrate here. It is simpler instead to

assume that the mean flow is balanced:

J(7/J,q) =0. (5.5)

If we now assume that there is no forcing, nor a D term, we again arrive at the

fluctuation equations.

We show below that, for a chosen shear vector and chosen values of 5, (3, and Rd ,

the equation J( 7/J, q) = 0 can in fact be satisfied for a nonzonal mean flow on a beta
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plane. Satisfaction of J(,p, q) = 0 in both layers, along with an imposed magnitude

and angle of shear, presents us with four equations:

_oql _oql
UI~ +VI~ = 0,

uX uy

UI - Uz = zshear,

VI - Vz = rnshear,

(5.6)

(5.7)

(5.8)

(5.9)

where zshear and mshear are the zonal and meridional shears, respectively. For

most of the nonzonal flow experiments the following will hold:

(zhear, mshear) = 1 em S-I • (case, sine), (5.10)

where e is 180 degrees for westward shear, 270 degrees for southward shear. The

first two equations can be rewritten using 2.8 through 2.11:

{J
- UlV2-VjU2_
VI + (1 + 5)R~ - 0,
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The four unknowns in equations 5.8 through 5.12 are Ul,UZ,Vl, and V2. The second

term on the right hand side of 5.12 is -0 times the second term on the right hand

side of 5.11. Therefore:

Vz = -aVl, (5.13)

which, along with 5.9, determines the meridional velocities. If we now divide 5.11

by VI, and use 5.13, we obtain:

aUl +Uz = ,6(1 + a)RJ, (5.14)

which, along with 5.9, determines the zonal velocities. The solution of the system

IS:

1
111 = 1 + affishear,

z 1
Ul = ,6Rd + --"zshear,

l+u

2 a
Uz = ,6Rd - --"zshear.

l+u
(5.15)

The mean flow can be balanced in each layer, as long as we are willing to let the

layer velocities be adjusted via 5.15.

The cross product of the layer mean PV gradients is:
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(5.16)

where k is the unit vector in the vertical direction. Flows of arbitrary direction on an

f-plane, as well as zonal flows on a beta plane, have colinear layer PV gradients. But

layer PV gradients are non-colinear for nonzonal flows on a beta plane. Figure 5-3

illustrates geometrically how layer velocities can be chosen to satisfy J('I/J, q) = 0,

for nonzonal mean flows on a beta plane. Once values of (3, 0, Rd , and the shear

vector § = (Ul - U2, VI - V2) are chosen, the layer mean PV gradients are fixed.

Mean flow vectors (Ul' VI) and (U2, V2) must be perpendicular to these gradients

in order to satisfy J('I/J, q) = 0 in both layers. Therefore they will lie along lines

(L l and L2 in the drawing) that are not parallel. Unit vectors along Ll and L2

span the plane. It is therefore possible to find mean flow vectors along L l and

L2 that satisfy § = (Ul - U2, VI - V2)' With a few stated exceptions, all of the

nonzonal flow experiments conducted in the thesis were put through this procedure,

to ensure a balanced mean flow. A few comparisons were made between nonzonal

experiments with zero lower layer velocity (so that J(7jj, q) = 0 is not satisfied), and

experiments having the same shear and other parameters, but in which the mean

flows are balanced. No differences in energy levels or other eddy characteristics were

found, indicating that the state of balance in the mean flow does not seem to matter,

at least in the homogeneous problem.

5.2 Eddy generation from weak nonzonal flows on

a beta plane: effect of varying angle

As discussed in chapter 1, our chosen parameters of 1 cm S-1 shear between the

layers, a 50 km deformation radius, and a beta value of 2 x 10-11 m- l S-1 do not
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Figure 5-3: Geometrical illustration of the procedure for choosing layer velocities so
that J( 'I/J, q) = 0 in each layer, for a nonzonal flow on a beta plane.
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satisfy the Charney-Stern criterion for linear instability. Therefore they are linearly

stable if zonal. When a 193.4 day bottom friction dissipation time is added 2, some

instabilities exist, with a maximum growth rate of 5 .10-23 S-I. The destabilizating

effect of bottom friction has been known for some time (Holopainen, 1961) and will

make interpretation of the present results somewhat more difficult. Linear growth

rates for nonzonal flows at two different angles are calculated from the stability

code and contoured in figure 5-4. Note the different x and y scales; there is much

more anisotropy present than in the f-plane problem with bottom friction, consistent

with earlier discussions. The 185 degree flow has growth rates that are twelve orders

of magnitude larger than the zonal case. Maximum growth rates are plotted as a

function of the angles we will use in the nonlinear experiments in the top half of

figure 5-5. Growth rates continue to increase with increasing angle. Our goal in this

section is to determine whether the nonlinear equilibration problem shows a similar

increase in eddy energy with angle.

Equilibrated eddy energies (total and upper layer kinetic) are shown as a function

of angle in the bottom half of figure 5-5. Experiments were done with shear angles

of 270 (southward), 255, 240, 225, 210, 195, 190, 185, and 180 (westward) degrees.

Thus the experiments have a shear directed south of west. For the westward flow

Ul = -1 em S-1 and Uz = VI = Vz = o. For the southward flow, Ul - U2 = 0 and

VI - V2 = -1 em S-l Planetary beta was fixed at 2 • 10-11 m- l S-I, which fixes

the ratio Rf3 = flaneta;y beta d. t = 6. The 270, 255, 240, 225, 210, and 195
upper aver stear gra zen

degree experiments were spun up from a small scale random initial condition on a

64 squared grid, then interpolated onto a 256 squared grid and continued. Increased

resolution did not change the energy levels for any of these save the 195 degree

experiment, which increased its energy level dramatically. The energy increase was

accompanied by a regime transition, from waves to jets. The 195 degree experiment

2Nearly all of the nonzonal experiments were done with this value of bottom Ekman friction.
Exceptions will be noted.
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Figure 5-4: Top panel: Linear growth rates in units of 10-8 s-1, for a nonzonal 1
em S-l flow angled at 185 degrees (5 degrees south of west), and with a 193.4 day
bottom friction dissipation time. Note the anisotropy indicated in the different K
and L scales. The largest growth rates are for waves having zonal wavenumber K
nearly zero, so that parcel motions are nearly zonal. This is consistent with earlier
discussions. Bottom panel: Same but for flow angled at 270 degrees.
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Figure 5-5: Top panel: Maximum linear growth rates in S-1 as a function of angle
for southwestward nonzonal flows having shear of magnitude 1 cm 8-1 , {3 = 2 • 10-11

m- l S-I, and a 193.4 day Ekman friction dissipation time. Bottom panel: Total eddy
energy, and upper layer kinetic energy, for the nonlinear equilibration experiments.
The magnitudes of shear, planetary beta, and other relevant parameters are held
fixed such that planda,-" beta. =6.

, upper layer- shear grad2ent
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was then run at 512 squared resolution, and energy did not change. The 180, 185,

and 190 degree experiments are more difficult to interpret. Those that are plotted

were spun up from a small scale random initial condition, and settled into fairly

low energy levels. However, when the initial condition was instead taken from the

195 degree experiment, energy levels dropped to only slightly below those in that

experiment. This is true even for the zonal flow, which has extremely small linear

growth rates. For flow angles that are nearly zonal, final energy levels therefore

appear to be strongly dependent on initial condition (and possibly resolution as

well). The ability of the zonal flow to retain substantial energy when initialized

with a large amplitude fluctuation is reminiscent of the subcritical instability and

hysteresis found by Lee and Held (1991). Their model was more complicated than

the present one, having radiative damping and boundaries. Ours may be a simpler

one in which to study hysteresis. Experiments further investigating the behavior at

small angles are ongoing. The essential point, however, remains-where PV gradients

induced by the mean flow are much less than planetary beta, eddy energy is a strong

function of the angle the shear vector presents to the east-west direction. Total eddy

energy increases by an order of magnitude from the 195 degree experiment to the

270 degree experiment, and kinetic energy increases by two orders of magnitude.

The 270 degree experiment has a ratio of top layer eddy to mean kinetic energy of

about 7200, which is far too large when compared to observations. This ratio is 81

for the 195 degree experiment, still too large.

Anisotropy is quantified in the top half of figure 5-6. As the mean shear becomes

nearly zonal, eddies become ever more zonal. This increasing anisotropy probably

arises because, as the mean flow becomes nearly zonal, eddy energy decreases, fluc­

tuation potential vorticities decrease as well. Therefore, parcels are more strongly

constrained by planetary beta to flow in a zonal direction. When mean flows are

nearly zonal, the ratio of baroclinic to barotropic kinetic energy asymptotes to z:
= 5 (bottom half of figure 5-6). As with f-plane experiments having large bottom
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friction, the small angle experiments have very small bottom velocities. Here fric­

tion is held fixed, but the forcing effectively decreases as the shear angle approaches

180 degrees and the magnitude of shear is held fixed. This is because eddy mo­

tions are nearly zonal. Thus, in the experiments in which the mean shear is nearly

zonal, either very small meridional eddy motions extract energy from the large zonal

shear, or larger zonal eddy velocities extract energy from a small meridional shear­

see equation 2.29. In either case, PV fluxes will be small compared with the case

in which mean flows are farther from zonal, in which zonal eddy motions extract

energy from large meridional shears. Since energy production is small in the nearly

zonal mean shear cases, they resort to minimizing energy dissipation in the bottom

as a survival tactic. For mean shear angles far from zonal, eddy energies are large,

and so is the degree of barotropization, consistent with the f-plane results of chapter

3.

Snapshots of the upper layer fluctuation streamfunction for these experiments

are plotted in figures 5-7 through 5-9. The appearance of zonal bands of eddies is

reminiscent of the persistent zonal jets found by Panetta (1993), who also examined

two-layer turbulence on a beta plane, with an imposed baroclinically unstable, but

purely zonal, shear flow. An example streamfunction from that study (figure 5­

10) shows alternating bands of jets, whereas the present nonzonal experiments are

often dominated by one narrow jet. Inhomogeneity of the present experiments is

emphasized in figure 5-11, which shows the upper and lower layer fluctuation PV

fields, as well as the streamfunctions, for the 195 degree experiment. Zonal averages

of the upper layer zonal velocities for the snapshots are plotted in figures 5-12 and 5­

13. The 180 degree experiment is omitted for brevity; it looks very similar to the

185 degree experiment. The zonal average plots, as do the streamfunction plots,

indicate a transition from a wave regime (in which energy is spread throughout

the domain) at the three smallest angles to a jet regime at 195 degrees (in which

energy is concentrated in only one part of the domain). When the mean shear
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Figure 5-6: Top panel: Anistropy, quantified as the ratio of zonal to meridional
kinetic energies in the upper layer, as a function of angle of shear vector with respect
to the east-west direction. Bottom panel: Ratio of baroclinic to barotropic kinetic
energies, as a function of angle of shear vector. Extra line indicates limiting ratio of
5 = Z:; at that ratio the bottom layer velocities are very small.
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flow has a meridional component, zonal motions are able to extract energy from

the mean shear. Perhaps that is why, in some of these cases, the eddy field sets

itself up to be spatially inhomogeneous, so that there will be divergences of eddy

fluxes which can help to equilibrate the jet, which otherwise has little to prevent

it from continuing to grow. Figure 5~14 plots the zonally averaged zonal velocity

of a snapshot of the 195 degree experiment next to upper layer PV fluxes. Clearly,

both zonal and meridional PV fluxes show variations in the north~south direction

(note that zonally averaged zonal velocity will be affected by variations in y of the

meridional PV fluxes, which are much smaller than the zonal PV fluxes). Thus we

have the remarkable result that an eddy field generated by a homogeneous mean flow

can set itself up to be inhomogeneous, so that divergences of eddy fluxes will act as

an equilibrating mechanism, as they do when acting on the mean flows in weakly

nonlinear equilibration studies (c.f. Pedlosky 1970). The plots of zonally averaged

zonal velocity indicate that the jets are all of the same sign (eastward flowing).

The 195 and 210 degree experiments were negated and then continued, with little

difference in energy resulting. Thus the fact that they are all eastward flowing may

be a result of the initial condition. Since energy increases between the 195 and 210

degree experiments, which have the same value of planetary beta, it seems unlikely

that the controlling width of the front is the JUe~dY scale emphasized by Panetta

(1993) and Rhines (1975). The calculated upper layer Rhines length is ~ 1.3Rd for

the snapshot of the 195 degree experiment, ~ 2.0Rd for the snapshot of the 210

degree experiment. Upper layer length scales for these two experiments, calculated

as inverses of centroids of the upper layer kinetic energy spectrum, are ~ 4.8Rd and

~ 1.9Rd , respectively, for the two experiments. The fronts drift meridionally over

time, so that averages taken over long time spans are spatially homogeneous. This

ought to be the case, since the forcing is spatially homogeneous. At any instant in

time, though, the flow fields do not have to be spatially homogeneous. The degree of

inhomogeneity in these experiments is remarkable in comparison to others. Note that
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the domain size in these simulations, 20nRd , is quite close to that used by Panetta

(1993), so differences in the number of jets observed here and in that study are not

simply a function of domain width. Experiments with nonzonal mean flows in wider

domains are being conducted presently but will not be concluded until after this

dissertation is completed. Preliminary indications are that wider domain nonzonal

experiments may contain more than one jet. However, the distance between jets still

seems to be much larger than the jet width. By that measure even the multi-jet large

domain experiments retain an inhomogeneity not present in Panetta (1993)-see the

middle upper panel in figure 5-10 for confirmation that the jets in that study are

not much narrower than the inter-jet spacing. Panetta has also conducted a study

of geostrophic turbulence forced by nonzonal flows but did not send a manuscript

in response to repeated requests, so the degree of duplication is unknown.
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270 degrees

240 degrees

255 degrees

225 degrees

Figure 5-7: Contours of snapshots of upper layer fluctuation streamfunction, as a
function of angle of shear vector with respect to the east-west direction.
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210 degrees

190 degrees

195 degrees

185 degrees

Figure 5-8: Contours of snapshots of upper layer fluctuation streamfunction, as a
function of angle of shear vector with respect to the east-west direction.
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180 degrees

Figure 5-9: Contours of snapshots of upper layer fluctuation streamfunction, as a
function of angle of shear vector with respect to the east-west direction.
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Figure 5-10: Snapshots of jets generated from an unstable zonal flow on a beta plane
in Panetta (1993) (a) Upper layer eddy streamfunction (upper panel) and potential
vorticity (lower panel). (b) Same as (a) but for a different time. Between the two
panels are time averages of zonally averaged zonal wind and meridional potential
vorticity gradient.
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q1 195 degrees
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Figure 5-11: Contours of snapshots of upper and lower layer fluctuation streamfunc­
tion and PV, for the 195 degree experiment. All four fields are spatially inhomoge­
neous.
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Figure 5-12: Zonally averaged zonal velocity for the strearnfunction snapshots shown
earlier.
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Figure 5-13: Zonally averaged zonal velocity for the streamfunction snapshots shown
earlier.
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We have chosen to perform nonzonal flow experiments with a zonal shear compo-

nent that is directed westward. However, in the regime in which rlaneta~y beta d' t
upper ayer sear gra zen

is large, somewhat similar results apply when the zonal shear is eastward. A 64

squared experiment with the same magnitude of shear (and other paramters) as the

240 degree experiment, but with the shear directed 60 degrees south of east, has

about 46 percent less energy, a higher ratio of ~~~~ (0.28 compared to 0.16), and

a slightly higher upper layer anisotropy ratio K:'~::;i:~a' (3.40 compared to 3.13).

Figure 5-15 indicates that a single jet is present in this experiment as well. The dif­

ferent energy levels indicate an asymmetry between eastward and westward flows.

This will be discussed in more detail in chapter 6, where a more dramatic asymmetry

will be found.

We have shown that the energy of an eddy field forced by a weak nonzonal mean

flow on a beta plane ( rlaneta~y beta d' t» 1) is a strong function of angle, and
upper ayer sear gra zen

that meridional flows can produce large ratios of eddy to mean kinetic energy (in

fact, generally too large, when compared to observations). This complements the

work of Spall (2000), which showed that nonzonal flows present in the interior of

a wind-driven gyre flow can produce eddy kinetic energies larger than that of the

mean. In a gyre flow, a number of angles are present at once. Here we isolate

the effects of angle by performing several experiments, each with a different fixed

angle. Taken at face value, the present experiments indicate that in a gyre, it is the

regions having flows that are nearly meridional that produce the bulk of the eddy

energy. The physical appearance of the eddy fields here, however, is quite different

from those in Spall (2000). The absence of boundaries allows zonal motions such

as jets to flourish. Spall's study, conducted in a bounded domain, found no such

marked anisotropy in the eddy fields. As a general statement, eddy kinetic energy

in the mid-ocean is nearly isotropic (d. Table 1 in Wunsch 1997). It is possible,

of course, to produce isotropic eddy fields in a doubly periodic domain. We saw

little anisotropy in the f-plane experiments in earlier chapters. We anticipate that
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Figure 5-14: Top panel: Zonally averaged zonal velocity for snapshot of 195 degree
experiment. Units em S-l Middle panel: Zonally averaged meridional PV flux vq.
Bottom panel: Zonally averaged zonal PV flux uq. Units for the PV fluxes are em
S-2. The x-axis is gridpoint number, running from south (1) to north (256).
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Figure 5-15: Contours of upper and layer fluctuation streamfunction for an experi­
ment with shear directed 60 degrees south of east.

anisotropy will decrease in nonzonal flow experiments if we reduce planetary beta,

while keeping the magnitude of shear fixed. Then the PV gradient induced by shear

will be comparable in size to planetary beta. We have advertised the ocean interior as

an environment in which shear-induced PV gradients are much less than planetary

beta. However, maps produced by Keffer (1985) show that this may not be the

case (figures 5-16 and 5-17). In subtropical gyres it is not uncommon for potential

vorticity gradients in the upper thermocline to be nearly perpendicular to those in

the lower thermocline (which are directed north-south, as one would expect when

planetary beta dominates-note that abyssal PV maps produced by O'Dwyer and

Williams 1997 show some departures from zonality, but not so much in the Pacific,

thus, PV gradients are likely to change direction with depth over much of the world

ocean). It is possible, therefore, that we have underestimated the size of the shear

gradients. This may be a natural consequence of the two layer model used in this

research. In a two layer model, one layer is taken to represent the thermocline.

But the Keffer maps indicate much vertical variation within the thermocline, which
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cannot be represented in a two layer model. The ocean interior may actually be

better represented by experiments in which shear-induced and planetary gradients

are comparable, which we achieve in the next section by reducing beta. Equilibrated

eddy fields will be examined as a function of the ratio R(3 = flaneta~y beta d' t
upper ayer seaT gra zen

for a fixed magnitude and angle of shear flow (other parameters are fixed as well).

Our expectation is that the degree of anisotropy will reduce as this ratio decreases.

We will find this to be true, As in the current section, we will also uncover some

unexpected results.
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Figure 5-16: Potential vorticity ~~~, where f is the Coriolis parameter, p is density,
and z is the vertical coordinate, of the (50 = 26.05 - 26.25 layer in the Pacific upper
thermocline (the middle of this layer is at a depth of about 200 to 400 meters over
much of the Pacific subtropical gyre). Units are 10-13 cm-1 S-l From Keffer (1985).
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Figure 5-17: Potential vorticity of the (Je = 27.3 - 27.5 layer in the Pacific lower
thermocline (the middle of this layer is at a depth of about 1000 meters over much
of the Pacific). Definition of PV and units same as in previous plot. From Keffer
(1985).
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5.3 Effect of varying beta on isotropy of eddies

generated from nonzonal mean flows

In the next set of experiments, the angle of the shear vector was fixed at 210 degrees

(30 degrees south of west), while planetary beta was varied. The anisotropy of this

set of experiments is plotted in figure 5-18. The large R{3 regime is dominated by

zonal motions, while the small R{3 regime (and the f-plane result with the same

Ekman friction) is isotropic. These experiments were performed with both hyper­

viscosity and wavenumber filter as small-scale dissipation schemes. The reasons for

this will be discussed shortly.
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Figure 5-18: Anisotropy of experiments with fixed magnitude and angle of shear, but
varying planetary beta. Points marked with an "x" were integrated in a 256 squared
domain with the wavenumber filter; "0" denotes experiments in a 128 squared do­
main with hyperviscosity.

The angle between layer PV gradients is plotted as a function of R{3 in figure 5-

19. For R{3 » 1 the angle is quite small, while for R(3 = 0 the angle is 180 degrees.

Anisotropy is plotted as a function of the angle between layer gradients in figure 5-
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20. The transition between anisotropic and isotropic regimes occurs when the angle

is approximately 90 degrees; more experiments are neccessary to pin down the tran­

sition more accurately. When there is a small angle between gradients, there is

effectively an imposed direction, and anisotropy develops in the eddy field. Larger

angles between gradients implies that there is no imposed direction, and the eddy

fields are isotropic.
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Figure 5-19: Angle between layer PV gradients as a function of
planetary beta

upper layer shear gradient·

Figures 5-21 and 5-22 plot total eddy energy and eddy kinetic energy versus Rf3.

Planetary beta is often thought of as a stabilizing influence on eddies. However, our

experiments with large beta contain more energy than the f-plane result. Also, for

the large Rf3 experiments, energy increases as beta increases. This means that in

the present experiments, eddy kinetic energies cannot be explained by the scaling

of Spall (2000), which is:
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(5.17)

meaning that energy should decrease with increasing beta. Differences in the nature

of eddy fields between the current experiments (which are jet dominated) and the

Spall (2000) gyre calculations (no jets) are probably behind the fact that the gyre

scaling does not work here. Another difference is that there is no Lbasin in a doubly­

periodic domain. The most unexpected result of the plot is the emergence of a

strongly energetic regime that arises when R{3 is greater than zero but less than

one (or so; again, more experiments are required to firmly establish the criterion).

This regime was discovered in 64 squared runs. When resolution increased to 128

squared and 256 squared, the qualitative appearance of eddy fields remained the

same, but energies did not equilibrate-they continued to rise-after a few months

of numerical integration. Strong resolution dependence was observed in only a few

other experiments in this thesis, the small angle experiments of the last section. In
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order to obtain results in a feasible time, we performed experiments in the weak beta

regime using hyperviscosity as our small-scale dissipation. The qualitative nature

of eddy fields under hyperviscosity is the same as with the filter, but equilibration

takes place in about one week of processor time. Results should be independent of

resolution with a fixed coefficient and power of hyperviscosity. This was checked and

found to be true. More details of the hyperviscosity parameters will be discussed in

the next chapter. Note that three values of RfJ were run with both hyperviscosity

and wavenumber filter, with little difIerence in energy resulting.
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Figure 5-21: Total eddy energy as a function of RfJ = flaneta~y beta d' t for a
upper aver sear gra zen

nonzonal flow of fixed shear and angle (30 degrees south of west).

Eddy baroclinicities are plotted in figure 5-23. For large values of RfJ , energy

increases as RfJ increases. Along with increased energy comes increased barotropiza­

tion, consistent with the results of chapter 3. None of these experiments is close to

the limit ~~~~ = 5, meaning that lower layer velocities are substantial.

Snapshots of the upper layer fluctuation streamfunction for these experiments

are plotted in figures 5-24 through 5-27. The experiments with RfJ values greater
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Figure 5-22: Total eddy kinetic energy as a function of R(3 for a nonzonal flow of
fixed shear and angle.

than or equal to 3 are zonal in appearance and contain one narrow front. The

two experiments having planetary beta. = 1.5, but with different small-scale
upper layer shear gradwnt

dissipations, both hint at transition between anisotropic and isotropic regimes.
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Figure 5-23: Modal kinetic energy partitions of experiments with fixed magnitude
and angle of shear, but varying Rf3.
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Rbeta=12 (Filter)

Rbeta=6 (Filter)

Rbeta=9 (Filter)

Figure 5-24: Contours of snapshots of upper layer fluctuation streamfunction for
experiments with fixed magnitude and angle of shear, but varying Rf3. In the large
Rf3 experiments, small-scale dissipation was accomplished with a wavenumber filter.
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Rbeta=3 (Filter)

Rbeta=1.5 (Filter)

Rbeta=3 (Hyper)

Rbeta=1.5 (Hyper)

Figure 5-25: Contours of snapshots of upper layer fluctuation streamfunction for
experiments with fixed magnitude and angle of shear, but varying RfJ. In the medium
RfJ experiments, both wavenumber filter and hyperviscosity were used as small-scale
dissipations. The qualitative appearance of the two RfJ = 3 experiments is similar.
This is less true for the two RfJ = 1.5 experiments.

175



Rbeta=O.75 (Hyper)

Rbeta=O.1875 (Hyper)

Rbeta=O.375 (Hyper)

Rbeta=O.09375 (Hyper)

Figure 5-26: Contours of snapshots of upper layer fluctuation streamfunction for
experiments with fixed magnitude and angle of shear, but varying R{3. When R{3 is
less than one, small-scale dissipation was accomplished with hyperviscosity.
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f-plane (Filter) f-plane (Hyper)

D.

Figure 5-27: Contours of snapshots of upper layer fluctuation streamfunction for
f-plane experiments with both types of small-scale dissipation. The eddy fields are
qualitatively similar.

Linear growth rates for the experiments with RfJ = 12 and RfJ = 0.375 are

plotted in figure 5-28. The anisotropy present in the linear RfJ = 12 plot (note the

different x and y scales) is evident in the spinup phase as well, which is contoured

in figures 5-29 through 5-33. The spinup is more complex than the f-plane spinup

shown in chapter 3, and proceeds through several stages.
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Figure 5-28: Linear growth rates in units of 10-8 S-1, for a nonzonal 210 degree flow
having R(3 = 12 (top panel) and R(3 = 0.375 (bottom panel).
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Initial Psi1

19.7 years

8.9 years

38.8 years

Figure 5-29: Contours of upper layer fluctuation streamfunction for the 64 squared
spinup of nonzonal 210 degree experiment with RfJ = 12.
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Psi1 50.8 years Psi2 50.8 years
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Psi1 51.5 years Psi2 51 .5 years

Figure 5-30: Contours of both layer fluctuation streamfunctions for the 64 squared
spinup of nonzonal 210 degree experiment with R(3 = 12.
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Psi1 52.1 years

Psi1 54.0 years

Psi2 52.1 years

Psi2 54.0 years

Figure 5-31: Contours of both layer fluctuation streamfunctions for the 64 squared
spinup of nonzonal 210 degree experiment with RfJ = 12.
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78.8 years

190.0 years

158.2 years

221.8 years

Figure 5-32: Contours of upper layer fluctuation streamfunction for the 64 squared
spinup of nonzonal 210 degree experiment with RfJ = 12.

182



237.7 years

420.1 years

244.0 years

Final Psi1

Figure 5-33: Contours of upper layer fluctuation streamfunction for the 64 squared
spinup of nonzonal 210 degree experiment with Rf3 = 12,
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Energy is plotted versus time during the spinup phase of the Rp = 12 experiment

in figure 5-34. The plot is marked at five spots of interest, all of which have been

contoured above. From a small-scale random initial condition, eddy energy reaches a

minimum at 8.9 years (the first line in figure 5-34). At this point hints of anisotropy

can already be seen. Energy then undergoes its steepest growth, as waves varying

in the north-south direction (which grow fastest) continue to be selected out of the

random initial condition. By the time the waves are strong enough to generate

secondary instabilities, at 50.8 years (the second line in figure 5-34), both kinetic

and total energies are already larger than those of the fully equilibrated f-plane case.

Now we can give a rough explanation of why equilibrated eddy energies are larger for

the same magnitude of shear when there is a strong beta present than on an f- plane.

The anisotropy of the former implies that solutions that are nearly linear waves will

be selected from a random initial condition. These waves grow exponentially for a

long time before processes which eventually lead to equilibration begin to develop.

At around 50.8 years, development of secondary instabilities is rapid. The next

four snapshots show streamfunctions in both layers. Secondary instability is present

in the bottom layer as well as the top. Energy still increases beyond 50.8 years, but

at a much slower rate. Let us see if we can explain this transition point through

calculation of the total PV gradients (imposed background plus fluctuations) in the

two layers:

8Qtotal-layerl

By
(5.18)

Bqtotal-layer2 _ (3 <5 (172 ~ TIl) Bq2

By - + (1 + <5)R~ + By'
(5.19)

We consider the waves together with beta and the imposed mean flow to define a new

mean zonal basic state, from which secondary instabilities may grow. Figure 5-35

shows the zonally averaged total PV gradients at time 50.8 years. The waves have

184



indeed induced a reversal of potential vorticity gradient in the upper layer, which

apparently explains the appearance of secondary instabilities. Secondary instabil­

ities of strongly zonal wave motions has been previously investigated by Pedlosky

(1975b; 1975c). He found that they could act as an equilibration mechanism for

waves growing on a zonal mean flow. In the current experiments, energy increases

many times over after secondary instabilities develop and before equilibration is

reached.

By 78.8 years (the third line in figure 5-34), the upper layer streamfunction has

developed into alternating bands of jets (twelve of them) and small eddies. Then,

slowly, a concentration of contours into fewer jets takes place. By 244.0 years (the

fourth line in figure 5-34), two jets are present. After 420.1 years (the fifth and last

line in figure 5-34), only one jet remains.

Figure 5-36 plots kinetic energy versus time for experiments with the four largest

values of beta. It focuses on the transition from steep growth to slower growth,

which takes place at the beginning of the spinup. We assume that this occurs when

aqMa~-layer1 changes sign, and use this to predict the transition points of the other
y

three experiments using results from the R(3 = 12 experiment. The fluctuation term

in equation 5.18 is linearly proportional to the fluctuation velocities (or derivatives

of the fluctuation velocities). Thus, the hypothesis that potential vorticity gradients

should change sign for secondary instabilities to develop, would lead us to believe

that the fluctuation energies at the transition points for the different experiments

should change as the square of ((3+ (0-b~~ ). In the top left corner of figure 5-36 a line

is drawn at the 50.8 year kinetic energy level for the R(3 = 12 experiment. Similar

"turnover" points in the other experiments are predicted by taking that value of

kinetic energy and multiplying by the square of the ratio of beta plus the top layer

shear gradient. The figure indicates that this reasoning seems to work quite well

for the R(3 = 9 and R(3 = 6 experiments, and somewhat less well for the R(3 = 3

experiments. We take this figure as further evidence that secondary instabilities
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arise when the zonal waves forced by the mean flow become strong enough to reverse

8qMa~y'ayed, and that this transition delineates the period of steepest growth from

that of less steep growth. The transition from linear waves to a secondary instability

regime occurs at higher energy when beta is increased. This provides a tentative

answer as to why the energy of nonzonal experiments increases with increasing beta,

where beta is large. The energy at the transition point is still far from the final

equilibrated energy (figure 5-34), however, so it would be more satisfactory to have

a theory for the fully equilibrated energy levels. In the opinion of Panetta (1993),

development of such a theory will not be easy for jet-dominated regimes.
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Figure 5-34: Spinup of 64 squared nonzonal 210 degree RfJ = 12 experiment. Lines
drawn at 8.9, 50.8, 78.8, 244.0, and 420.1 years. Note that the experiment was
continued at 256 squared resolution.

Energy versus time during the spinup of the RfJ = 0.375 experiment is plotted

in figure 5-37, and the spinup is contoured in figures 5-38 through 5-40. The spinup

is more isotropic. Eddy energy reaches a minimum more quickly here, at around

1.59 years, most likely because of the isotropy; in the RfJ = 12 experiment a smaller
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Figure 5-35: Zonally averaged total meridional PV gradient, at time 50.8 years of
64 squared nonzonal 210 degree R(3 = 12 experiment.

band of wavenumbers were unstable. Between 11.9 and 31.0 years energy briefly

undergoes a period of smaller growth, before increasing again. Figure 5-41 demon­

strates that small amounts of cyclone/anticyclone asymmetry are present during

this period. By 40.5 years (figure 5-42), asymmetry is clear, and by 58.8 years (fig­

ure 5-43), asymmetry is very strong (all the eddies are cyclones). We will examine

this asymmetry more carefully in the next chapter.
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Figure 5-36: Transition from linear waves to secondary instabilities for 64 squared
nonzonal 210 degree experiments having different values of Rf3 greater than one.
Extra lines indicate transition points predicted from the Rf3 = 12 experiment; see
text for details.
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Lines drawn at 11.9, 21.5, 31.0, 40.5, and 58.8 years. Note that reaching final
equilibration took a long time; the experiment was continued until about 1200 years.
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Initial Psi1

3.97 years

1.59 years

11.9 years

Figure 5-38: Contours of upper layer fluctuation streamfunction for the 128 squared
spinup of nonzonal 210 degree Rf3 = 0.375 experiment.
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21.5 years

31.0 years

27.0 years

40.5 years

Figure 5-39: Contours of upper layer fluctuation streamfunction for the 128 squared
spinup of nonzonal 210 degree Rf3 = 0.375 experiment.
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58.8 years

158.2 years

78.7 years

397.5 years

Figure 5-40: Contours of upper layer fluctuation streamfunction for the 128 squared
spinup of nonzonal 210 degree Rf3 = 0.375 experiment.
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Figure 5-41: Surface plot of upper layer fluctuation streamfunction at 27.0 years of
the 128 squared spinup of nonzonal 210 degree R{3 = 0.375 experiment.
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Figure 5-42: Surface plot of upper layer fluctuation streamfunction at 40.5 years of
the 128 squared spinup of nonzonal 210 degree Rf3 = 0.375 experiment.
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Figure 5-43: Surface plot of upper layer fluctuation strearnfunction at 58.8 years of
the 128 squared spinup of nonzonal 210 degree R(3 = 0.375 experiment.
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5.4 Chapter summary

Linear stability analysis indicates that weak shear flows typical of mid-ocean gyres

are stabilized in the presence of planetary beta. It also indicates that flows having

the same magnitude of shear, but oriented nonzonally, are unstable. Thus, the

original goal for this part of the thesis was to show that the inherent nonzonality

of gyre mean flows is an important factor in the production of mid-ocean eddies

through local baroclinic instability. Before getting to the pertinent experiments, a

few preliminary points regarding nonzonal flows were addressed. First, we discussed

in a qualitative way difl"erences in baroclinic instability arising from flows on an

f-plane and from weak nonzonal flows on a beta plane. Of particular importance

is the realization that the latter will be more anisotropic. Then we showed that

J (~, q) = 0 can be satisfied for nonzonal flows on a beta plane. In pursuing that

argument we found that mean PV gradients between layers are non-colinear if and

only if planetary beta and meridional shears are present at the same time.

Following these preliminaries we did in fact show that for weak shear flows having

a fixed value of beta, energy is a strong function of angle (and is actually too large

when compared to observations). Therefore, those parts of the gyre that flow nearly

in a north-south direction may generate the bulk of eddy energy in the interior. In

the process of showing this, we encountered some unexpected results. Instantaneous

snapshots of upper layer streamfunction and zonal averages of upper layer velocity

reveal spatial inhomogeneities not present in the experiments of Panetta (1993), who

forced jets through instability of zonal flows. In nonzonal experiments, for a wide

variety of angles, a single front is formed, which then slowly drifts thoughout the

domain, via advection by the mean meridional shear. The frontal width is not simply

related to the vUet' scale. The appearance of inhomogeneity may have to do with

the fact that zonal jets arising from a background flow with a meridional component

actively extract energy from the background. Thus the preference of zonal motions

due to the imposition of planetary beta may make equilibration impossible unless
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inhomogeneities arise so that eddy flux divergences can act on the jet.

All of the above experiments are more anisotropic than the actual mid-ocean

eddy field. We anticipate that anisotropy can be reduced in doubly periodic non­

zonal flow experiments through reduction of the ratio R(3 = flaneta~y beta d" t·upper ayer sear gra ~en

Then shear-induced PV gradients will be comparable to beta, and the angle between

layer vorticity gradients will be larger, as seen in oceanic PV maps (figures 5-16

and 5-17). With this serving as motivation, the other set of experiments performed

in this chapter investigated the effects of varying beta for a fixed angle and magni­

tude of shear. When R(3 » 1, eddy fields are dominated by zonal jets. Their energy

is greater than that of f-plane experiments having the same magnitudes of shear and

friction. For likely similar reasons, energy of the nonzonallarge R(3 experiments in­

creases as R(3 increases. Spinup behavior of the large R(3 experiments points the way

towards a tentative explanation of these facts. At first, selection takes place from a

random initial condition of the zonal motions favored for exponential growth. When

these zonal motions become strong enough, secondary instabilities develop. At this

point, eddy energy has already surpassed that of the f-plane case. Energy continues

to grow, but at a much slower rate, after the transition takes place. The secondary

instabilities seem to be triggered by a reversal of total potential vorticity gradient

in the top layer. As beta increases, so must the strength of the zonal motions, if

the gradient is to be reversed. Hence, energy level at the transition increases with

increasing beta (or R(3). This level is still far below the final equilibrated energy

level, but the fact that it increases with beta, as does the final level, is encouraging.

When R(3 is nonzero but less than one, eddy fields are indeed isotropic, and consist

of monopolar vortices. These are the subject of the next chapter.
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Chapter 6

Cyclone-anticyclone asymmetry in

quasi-geostrophic turbulence

forced by nonzonal mean flows

This chapter focuses on the vortex regime uncovered in the last chapter. We begin

with a discussion of their sensitivity to small-scale dissipation. From that will emerge

hyperviscosity parameters and a vortex solution which we regard as nominal. Many

of the other chapter results are based on slight alterations of the other parameters

which determine the nominal solution. Dependence on strength of Ekman friction

and angle of shear will be examined. All of the vortex solutions found up to this

point will be fields of cyclones. Cyclone-anticyclone asymmetry will be documented

in the governing equations, and initial conditions which produce anticyclones will

be discussed. The anticyclones exist in a state of lower energy than do the cy­

clones, consistent with the asymmetries in the governing equations. Next, results of

spin-down and freely-decaying experiments initialized with vortex solutions, in both

equivalent barotropic and two layer systems, will be shown. The results provide

tentative answers about maintenance of the vortices. After that, a determination of

the dominant balance in the vortex regime will be made, which will provide more
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information on the dynamics of the vortices. A comparison to the coherent vortices

of earlier studies will be made, followed by the chapter summary, which will dis­

cuss what we know and do not know about these vortices, as well as their possible

significance.

6.1 Sensitivity of vortex solutions to small-scale

dissipation

The vortex regime was originally found in 64 squared resolution experiments using

the wavenumber filter described in chapter 2 (with an exponent of 7). Energy versus

beta was plotted for nonzonal experiments at a fixed angle, as in figure 5-21, and a

narrow peak was found for beta values that are small but nonzero. Inspection of the

solution flow fields in this range revealed them to be vortical. Numerous exploratory

runs, some of which will be shown here, were then performed at 64 squared reso­

lution. Extension to higher resolution proved difficult. Starting from small scale

random initial conditions, 128 squared and 256 squared simulations were attempted

using a wavenumber filter. Vortices emerged at those resolutions (figure 6-1), but

they did not equilibrate after a few months of processor time (figure 6-2). Number

of vortices, as well as energy, increases dramatically with resolution. Clearly, a 64

squared domain provides marginal resolution in the vortex regime. Consistent with

that, when the wavenumber filter exponent is changed to 4 at 64 squared resolution,

the vortices disappear. Since the 128 squared and 256 squared wavenumber filter so­

lutions would not converge in a resonable amount of time, it was decided to perform

high-resolution explorations of the vortex regime using hyperviscosity (_1)n+l v\72nq

as our small-scale dissipation. Some time was spent exploring different hyperviscous

powers n and coefficients v. The range of v over which the vortices exist widens

as n increases, and also as resolution increases. We did not find vortices when n

was less than 3. We chose n = 3 and v = 0.0001 (nondimensional) as our nominal
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hyperviscosity parameters. With these values, vortices emerge and equilibrate in

a reasonable time"evidently some dissipation is needed at vortex scales (~ Rd ) for

rapid equilibration. The nondimensional Ekman damping rate was 0.03 for most

of the vortex experiments (excepting the ones in which Ekman friction was varied).

The length scale was nondimensionalized by the deformation radius; that is, L=l

corresponds to Rd. Therefore, at a wavelength of 27rRd , hyperviscous damping is

300 times less than Ekman damping. That our choice of hyperviscosity parameters

is reasonable is confirmed in section 5.3, in which we saw that three solutions outside

of the vortex regime were little different whether hyperviscosity or wavenumber filter

was used. A hyperviscous vortex solution is contoured alongside wavenumber filter

results in figure 6-1 for the sake of comparison. Deviations from a circular state are

more noticable in the hyperviscous solution (and in the 256 squared solution, which

is presumably far from equilibrium). Solutions with both wavenumber filter and hy­

perviscosity clearly represent the same phenomenon. This hyperviscous experiment

is taken to be our nominal vortex solution. It was continued at 256 squared resolu­

tion (but with n and v kept constant) with no difference in energy resulting. It was

also run with the same shear vector but with lower layer mean velocities set to zero,

so that J(1jJ, q) = 0 is no longer satisfied in the layers. The latter solution actually

contained about twenty percent less energy, but was otherwise very much the same

(in a statistical sense). Thus, an unbalanced mean flow does not add energy to the

solution, and the vortices are not an artifact of the procedure we use to balance the

mean flows.

Because vortices are more robust as resolution mcreases with a wavenumber

filter, because they exist under both wavenumber filter and hyperviscosity, and

because they exist for a wider range of coefficients as the power n of hyperviscosity

increases, we believe that they are not numerical artifacts. Vortex energy is more

sensitive to the details of resolution and small-scale dissipation than are the other

results put forth in this thesis. However, qualitative behaviors we will describe
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for the 128 squared hyperviscous experiments are very similar to those in the 64

squared wavenumber filter experiments. Hence there is hope that qualitative, if not

quantitative, results are independent of small-scale dissipation.

6.2 Dependence of vortex solutions on other pa-

rameters

The vortices were discovered in plots of energy versus beta for a fixed magnitude

and angle of shear. For the 128 squared hyperviscous solutions, this plot was shown

in the last chapter. So we have already looked at the dependence on beta to some

extent. The criterion for vortices to exist on a beta plane appears to be that beta be

less than the magnitude of the shear-induced PV gradient. Vortex size in figure 5-26

changes little as beta varies. The size of the vortices in 6-1, which share the same

value of beta, is also very nearly the same, despite the fact that energies vary greatly.

These facts indicate that vortex sizes are not set by the Rhines scale JU.;dY,contrary

to conventional thinking about geostrophic turbulence on a beta plane. To further

illustrate this point, we note that the Rhines scale in the upper layer is ~ 18Rd for

the 64 squared wavenumber filter vortex experiment, which when multiplied by 27f

is larger than domain size.

A basic state consisting of a zonal 1 cm S-1 shear flow on an f-plane, with a weak

linear slope topography varying in the east-west direction, also produces vortices

(figure 6-3). This state has non-colinearity of layer PV gradients in common with

the nonzonal beta plane experiments. The existence of vortices in the upper layer

despite the lack of a beta there is further evidence of the irrelevance of the Rhines

scale in the vortex regime; in this case, there is no Rhines scale in the upper layer.

The topographic results cloud the issue of what determines the transition into a

vortex regime, since in that case the upper layer shear-induced potential vorticity

gradient cannot be compared to a planetary beta. No other topographic results will
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64 squared
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128 squared

128 squared hyper

•

Figure 6-1: Contours of snapshots of upper layer fluctuation streamfunction for 195
degree Rf3 = 0.375 experiments with wavenumber filter at 64 squared, 128 squared,
and 256 squared resolution. Lower right shows nominal 128 squared hyperviscous
solution for comparison.
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Figure 6-2: Energy versus time for 64 squared, 128 squared, and 256 squared 195
degree RfJ = 0.375 experiments with wavenumber filter.

be presented in this chapter, but they will be kept in mind.

The shear of the nominal experiment is directed 15 degrees south of west, while

RfJ = 0.375. Experiments were performed with the same value of RfJ and magnitude

of shear but with difIerent angles (all of them south of west). Energy versus an­

gle is plotted in figure 6-4, and snapshots of upper layer fluctuation streamfunction

are contoured in figures 6-5 and 6-6. Clearly, vortices exist over a wide range of

angles. Energy is not a strong function of angle over much of the range of angles

studied, unlike in the strong beta solutions examined in the last chapter. Vortices

exist in a westward basic state, but not in a southward basic state, under the nom­

inal hyperviscosity. Vortices were found in a southward flow under the action of

a wavenumber filter, again indicating that the vortex regime is more robust under

a filter. Attempts to find vortices in flows with an eastward zonal component of

shear (Uj - U2 > 0) were unsuccessful, whether hyperviscosity or wavenumber filter

was used, and whether the initial condition was random or taken to be the nominal
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Rbeta = 0.06

Rbeta = 6

Rbeta = 0.6

Figure 6-3: Contours of snapshots of upper layer fluctuation streamfunction in f­
plane zonal flow experiments having a linear slope topography varying in the x­
direction. Resolution is 64 squared and the wavenumber filter has an exponent of
7. Bottom friction dissipation time is 580 days for the tapa be~a b t = 0.06upper ayer sear e a

experiment, 290 days for the other two experiments.
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vortex solution. One of the eastward shear flow solutions is contoured in figure 6-7.

The mean shear is directed 12 degrees south of east, and has a magnitude of 1.23 em

S-I. Beta is equal to 312. 2 • 10-11 m- l s-1, the angle between layer PV gradients

is 171 degrees, and R(3 = 0.153. The Ekman spindown time is 193 days. The eddy
2

fields are isotropic (u~top is 0.96), but coherent vortices are not present. Total eddy
bott07n

energy is 2.9 cm2 S-2, two orders of magnitude less than the hyperviscous vortex

solutions. Since parameter space is large, we cannot be sure, in the absence of a the­

ory for the vortices, that they do not exist in eastward shear flows, but the current

evidence is that they do not.
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Figure 6-4: Energy versus angle for 128 squared R(3 = 0.375 experiments with
hyperviscous small-scale dissipation.
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180 degrees

210 degrees

195 degrees

225 degrees

Figure 6-5: Contours of snapshots of upper layer fluctuation streamfunction for
128 squared R(3 = 0.375 experiments with hyperviscous small-scale dissipation and
various angles of shear.

206



240 degrees 270 degrees

Figure 6-6: Contours of snapshots of upper layer fluctuation streamfunction for
128 squared R(3 = 0.375 experiments with hyperviscous small-scale dissipation and
various angles of shear.

Ekman friction was also varied from the value used in the nominal experiment

(193.4 days). Energy versus friction is plotted in figure 6-8. For comparison, energy

versus friction is also plotted for the f-plane experiments of chapter 3, and for some

64 squared wavenumber filter experiments in which friction was varied while shear

angle was fixed at 45 degrees south of west. Energy of the vortex experiments is

more nearly monotonic with friction than in the f-plane experiments. Modal kinetic

energy ratios are plotted versus total energy and versus dissipation in figure 6-9. The

most energetic vortex experiments retain more baroclinicity at a fixed energy than

their f-plane counterparts. The tendency to become more barotropic with decreasing

friction is clearly present, as is the fact that Z: serves as an upper bound on ~~:~.

Contours of snapshots of experiments with different values of Ekman friction

are displayed in figures 6-10 and 6-11. Vortices exist over a wide range of Ekman

frictions, but are severely weakened for the strongest values. The monopolarity

which is a signature of the vortex regime is only visible in occasional snapshots of

the 24.2 day hyperviscosity experiment. (The author saw this in a MATLAB movie;

not shown here.) The ratio of nonlinear to Ekman terms in the lower layer (given by
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Figure 6-7: Snapshot of upper layer fluctuation streamfunction for an experiment
with mean shear directed 12 degrees south of east and RfJ = 0.153. The eddy field
is isotropic, but no coherent vortices are evident.

equation 3.33) changes from 18 to 0.5 when friction changes from 48.4 to 24.2 days

in the 64 squared filter experiments. Likewise, the ratio changes from 6.5 to 0.6 for

the corresponding hyperviscous experiments. Thus, as we might expect, transition

from strong to weak vortices occurs when Ekman friction becomes comparable to

nonlinearity. Vortex size does not change even as energy undergoes large variations.

This is yet another indication that their scale is not set by the Rhines length.

Barotropization with increasing energy is the only sign of the inverse cascade present

in these experiments. The 48.4 day dissipation time hyperviscous experiment has

a ratio of upper layer eddy to mean kinetic energy of 1366, which is too large

when compared with observations, and a baroclinicity ratio ~~~~ of 4.24, also too

large. Baroclinicity ratios decrease to 1.26 for the 773.8 day experiment. These

baroclinicity ratios are comparable to those seen in the actual ocean, but the ratio

of top layer eddy to mean kinetic energy is even more unrealistically large (29000).

Thus, unlike other flat-bottom QG solutions, the vortex solutions typically retain

too much baroclinic energy.
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hyperviscous experiments. 64 squared 225 degree wavenumber filter experiments
with the same value of Rf3, and 256 squared f-plane experiments from chapter 3, are
included for comparison.
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773.8 days

193.4 days

386.9 days

96.7 days

Figure 6-10: Contours of snapshots of upper layer fluctuation streamfunction for
128 squared R(3 = 0.375 experiments with hyperviscous small-scale dissipation and
various values of bottom Ekman friction.
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48.4 days

24.2 days (filter)

24.2 days

Figure 6-11: Contours of snapshots of upper layer fluctuation streamfunction for 128
squared Rf3 = 0.375 experiments with hyperviscous small-scale dissipation and vari­
ous values of bottom Ekman friction. The 64 squared wavenumber filter experiment
sharing the largest value of Ekman friction is also shown, for comparison.

212



The nominal vortex experiment has a 5 value of 0.2. Vortices do emerge in 5 = 1

experiments (figure 6-12). The upper left panel contours an experiment with the

same shear as the nominal 5 = 0.2 experiment, with the nominal experiment serving

as an initial condition. The value of Rf3 is 0.62, and the angle between layer PV

gradients is 152 degrees. The baroclinicity ratio ~~~~ for this experiment is 0.41,

and the total eddy energy is 33 cm2 S-2 The upper right panel experiment also

had the same shears, but was initialized with a small-scale random initial condition.

It has fewer vortices but similar integral quantities (0.42 and 28 cm2 S-2). These

are to be compared with values of 2.8 and 686 cm2 S-2 for the nominal 5 = 0.2

experiment. Consistent with the discussion in chapter 3, baroclinicity ratios are

bounded above by Z:. Unlike in the f-plane results, however, for a fixed value of

shear, it is the 5 = 0.2 experiments in this regime that contain more energy. The

lower left panel shows an experiment in which shear is adjusted so that upper layer

PV gradients are equal to those in the nominal 5 = 0.2 experiment, with that result

again serving as an initial condition. Thus Rf3 is 0.375, while the angle between

layer PV gradients is 167 degrees. Here the energy is 616 cm2 s-2, more comparable

to that in the nominal experiment. Thus we have more evidence that magnitudes of

upper layer PV gradients play an important role in the vortex regime. Along with

increased energy comes a reduced baroclinicity ratio (0.32). Finally, the lower right

panel displays snapshots after equilibration of an experiment with equal upper layer

potential vorticity gradients, but with a small-scale random initial condition. The

baroclinicity ratio is also 0.32 but the energy is 1340 cm2 S-2

A few experiments were performed with other parameters equal to those in the

nominal vortex experiment, but with symmetric Ekman friction instead of bottom­

only Ekman friction. These experiments were done with a wavenumber filter rather

than hyperviscosity, since all indications are that vortices are more robust under

the filter. However, they do not emerge from a small-scale random initial condition

when symmetric friction dissipation time is 1451 days. With the same parameters,
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Same shear, ic nominal

Same pvgrad, ic nominal

Same shear, ic random

Same pvgrad, ic random

Figure 6~12: Contours of snapshots of upper layer fluctuation streamfunction for
128 squared 195 degree hyperviscous experiments having <5 = 1 and the same value
of (3 (11

6
• 2 • 10-11 m-1 8-1 ) as the nominal <5 = 0.2 vortex experiment. See text for

details.
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if the initial condition is instead taken from the nominal vortex experiment, vortices

quickly disappear. They also disappear when used to initialize a 387 day dissipation

time symmetric friction experiment. Apparently, the vortices only emerge in a layer

which has no Ekman friction. That they do reside in the upper layer is made clear

in figure 6-13, which shows lower layer fluctuation streamfunction for the nominal

experiment. Vortices are not visually evident, nor are they in the lower layer of any

of the forced-dissipated experiments performed in this dissertation. Many of the

interesting features we have described in this thesis-the fronts in the highly viscous

regime of chapter 3, the jets of chapter 5, and the vortices of this chapter-exist in the

upper layer of our forced-dissipated experiments. In that layer there is no Ekman

friction, and Reynolds numbers can become large. Most of the jets and vortices that

exist in the actual ocean also exist in surface layers, where friction is weak.

Figure 6-13: Contours of snapshot of lower layer fluctuation streamfunction for
nominal 128 squared hyperviscous vortex experiment. Vortices are not evident.
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6.3 Cyclone-anticyclone asymmetry and depen-

dence on initial conditions

Thus far we have seen two examples of symmetry breaking in the vortex regime.

One is that eastward flows, unlike westward flows, do not seem to generate vortex

solutions. The other is that vortex fields are monopolar. Let us now discuss the

symmetry properties of the governing equations. We use the lower layer PV equation

(equation 2.2) for purposes of illustration. It is:

(6.1)

when hyperviscosity is the small-scale dissipation. We first discuss what happens

when Uj and U2 are negated. For simplicity in this case, suppose (j = 1. Then a: =

,6+ (~8)A?t· Negating Uj and U2 means that the shear part of ~"{; flips sign. However,

,6 does not. Therefore 6.1 is not invariant to a change in sign of the zonal velocities,

which is consistent with the fact that vortices exist in flows with a westward zonal

component of shear but apparently not in flows with an eastward zonal component

of shear. If Ekman friction were vertically symmetric, then in the (j = 1 case the

upper and lower layer subscripts could be switched and the layer PV equations 2.1

and 2.2 would be invariant. Then there could be no asymmetry between eastward

and westward shear flows. We have seen, however, that the vortex regime does not

exist with symmetric friction. It exists with bottom Ekman friction, under which it

is impossible to switch the layer indices. Therefore the asymmetry between eastward

and westward flows in the vortex regime is connected to the vertical asymmetry of

the Ekman friction.

Now let us examine the symmetry properties of cyclones and anticyclones. The

nominal solution is a field of cyclones, as are all other vortex solutions examined
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thus far. That the vortices are all of the same sign is at this point still unexplained.

For now, let us aceept that it is so, and ask whether the negative of an equilibrated

solution is also a solution. Negating ·,p2 (and "ljJl) implies that q2 is also negated

(see equation 2.7). Therefore 8/f: changes sign, as do all other terms in the equation

(which are linear in either "ljJ2 or q2) save the Jacobian (which is nonlinear since

both "ljJ2 and q2 are present). If the nonlinear term were absent, the governing

equations would be invariant to the transformation "ljJ2 ---+ -"ljJ2. The presence of

the Jacobian complicates matters. Since its calculation involves taking derivatives,

the Jacobian term could be negated by negating "ljJ2 and one (but not both) of the

spatial coordinates. If planetary beta and mean shear terms were absent, either x

or y could be negated along with "ljJ2, and 6.1 would be invariant. Since either {3 or a

mean shear flow impose a direction, the presence of either limits the choice of spatial

coordinates to flip. Supposing VI and V2 were zero, then 6.1 would be invariant under

"ljJ2 ---+ -"ljJ2' Y ---+ -y, but not under "ljJ2 ---+ -"ljJ2' X ---+ -x. McWilliams and Flier!

(1979), and probably others, were aware of the invariance of freely evolving QG on

a beta plane under the transformations '1/)2 ---+ -"ljJ2' Y ---+ -yo A zonal shear can

also be added, and 6.1 will be invariant under this transformation. However, the

most general case of 6.1-a nonzonal flow on a beta plane-is not invariant under

this transformation. Symmetry between cyclones and anticyclones is broken when

the nonlinear term, which requires one of the spatial coordinates to be inverted to

maintain invarianee, is present concurrent with a nonzonal flow on a beta plane,

which implies that the directions imposed by (3 and shear will be different. This

makes it impossible to find a coordinate to invert which will make 6.1 invariant. We

will see concrete consequences of this symmetry breaking shortly.

Equation 6.1 is invariant under the transformations "ljJ2 ---+ -"ljJ2' Y ---+ -y, VI ---+

-VI, and V2 ---+ -V2. This was tested by switching the nominal solution "IjJ(x, y) to

-"ljJ(x, -y) in both layers, and negating the mean meridional flow, but otherwise

keeping the parameters the same. The number of vortices (now anticyclones) stayed
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constant, as did the equilibrated energy (in a statistical sense, that is). Experiments

also confirmed that a vortex solution formed in a westward zonal flow is invariant

under 'I/; --; -'I/;, y --; -yo On the other hand, the equations predict that a solution

developed in a nonzonal flow is not invariant under 'I/; --; -'I/;, y --; -y if v is kept

fixed. Figure 6-14 plots energy versus time for an experiment in which the inverted

nominal experiment was used to initialize the nominal mean flow. Energy reduces

by about an order of magnitude. This, then, is how the asymmetry manifests itself.

The number of vortices has reduced by one (figure 6-15). Figures 6-16 and 6-17

reveal that the vortices stay anticyclonic but undergo a reduction of amplitude.

Thus there are two related cyclone-anticyclone asymmetries present in the vortex

regime. One is that, for certain values of RfJ , a monopolar vortex field emerges. The

other is that, if the mean shear is southwestward (northwestward), energy levels are

higher (lower) for a field of cyclones than for a field of anticyclones.
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Figure 6-14: Energy versus time for the 128 squared hyperviscous experiment in
which an inverted nominal solution is used to initialize the nominal mean flow.

We have seen that negating the nominal solution of cyclones leads to a lower

218



Initial Final

Figure 6-15: Initial and final upper layer fluctuation streamfunction for the 128
squared hyperviscous experiment in which an inverted nominal solution is used to
initialize the nominal mean flow.

energy state of anticyclones. We have also seen signs that vortex solutions emergent

in a particular experiment depend on initial condition. Most experiments to date

have been initialized by a field that is randomly generated in space (c.L top left

panel in figure 5-38). This initial condition has always led to a high-energy state

of cyclones, when the mean flow is southwestward. We now initialize the nominal

parameters with a variety of fields, to determine how powerful the cyclone and anti­

cyclone attractors are. Initial conditions used include spectra of various powers, and

equilibrated solutions taken from other parts of the thesis. Figures 6-18 through 6­

21 display experiments that resulted in cyclones. Those resulting in anticyclones are

shown in figures 6-22 and 6-23. Not shown are experiments initialized by twice the

nominal streamfunction, by half the nominal streamfunction, and by the negative of

the small-scale random initial condition. The first two of these returned to the nom-

inal energy levels and stayed cyclonic, while the latter produced cyclones of slightly

higher energy. Energy levels and numbers of vortices vary between experiments.

However, all initial conditions produced either a high energy state of cyclones, or

a low energy state of anticyclones. Note that anticyclones were not produced by
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Figure 6-16: Initial upper layer fluctuation streamfunction for the 128 squared hy­
perviscous experiment in which an inverted nominal solution is used to initialize the
nominal mean flow.
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Figure 6-17: Final upper layer fluctuation streamfunction for the 128 squared hy­
perviscous experiment in which an inverted nominal solution is used to initialize the
nominal mean flow,
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any of the random initial conditions attempted. The baroclinicity ratio ~~~~ was

in the range 2.6 to 2.8 for all of these experiments. Although vortex number varies

from experiment to experiment, it is an observation of this author, formed through

observing time evolutions of many experiments, that once equilibration is reached

within a particular experiment, the number of vortices remains constant. Despite

the forcing and dissipation present, there is apparently no creation of new vortices

or destruction of old ones, once equilibration is reached.
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Figure 6-18: Fluctuation streamfunction contours and surface plot for snapshot
of cyclones resulting from 128 squared hyperviscous experiment initialized with k- 1

spectrum. Total eddy energy is 948 cm2 S-2. Note that the nominal solution consists
of 17 cyclones and a total eddy energy of 686 cm2 S-2
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Figure 6-19: Fluctuation streamfunction contours and surface plot for snapshot of
cyclones resulting from 128 squared hyperviscous experiment initialized with k-2

spectrum. Total eddy energy is 612 cm2 S-2

224
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Figure 6-20: Fluctuation streamfunction contours and surface plot for snapshot of
cyclones resulting from 128 squared hyperviscous experiment initialized with k-3

spectrum. Total eddy energy is 555 cm2 S-2.
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Figure 6-21: Fluctuation streamfunction contours and surface plot for snapshot of
cyclones resulting from 128 squared hyperviscous experiment initialized with J = 1,
f-plane 2.90 day dissipation time experiment. Total eddy energy is 956 cm2 S-2
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Figure 6-22: Fluctation streamfunction contours and surface plot for snapshot of
anticyclones resulting from 128 squared hyperviscous experiment initialized with
(j = 1, f-plane 1451 day dissipation time experiment. Total eddy energy is 144 cm2

S-2 Note that the energy of the anticyclones in 6-17 is 66 cm2 S-2
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Figure 6-23: Fluctuation streamfunction contours and surface plot for snapshot of
anticyclones resulting from 128 squared hyperviscous experiment initialized with
225 degree experiment from section 5.2. Total eddy energy is 118 cm2 S-2
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6.4 Spin-down and freely decaying experiments

initialized by vortex solutions

In this section the nominal vortex solution is used to initialize three types of ex­

periments: 1) equivalent barotropic freely decaying experiments, 2) two-layer freely

decaying experiments, and 3) two-layer experiments with Ekman friction in the

bottom layer. These experiments are designed to examine vortex behavior in the

absence of forcing, or of Ekman dissipation, or of both. The results are compli­

cated, but as a whole they enhance our understanding of the vortex regime. They

were all run with hyperviscosity as a small-scale dissipation. To aid understanding

of the one-layer results we provide a brief theoretical digression on cascades in the

equivalent barotropic system, often called the "1.5 layer" model.

6.4.1 Freely evolving equivalent barotropic turbulence

When R d is introduced into a freely evolving one-layer quasi-geostrophic system, the

governing equation is:

a( 2 1) ( 2at \7 'IjJ - RZ'IjJ + J 'IjJ, \7 'IjJ) = 0,
d

where as usual we ignore small-scale dissipation. The energy equation is obtained

via multiplication by 'IjJ and integration:

where the energy spectrum E(k) now contains potential as well as kinetic energy.

At this point, instead of multiplying by total q = \7z'ljJ - ~2 'IjJ, as would be standard
d

procedure, the author decided to multiply by \72'IjJ, and then integrate to obtain:
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The same argument for a cascade in purely two-dimensional flow, covered at the

beginning of chapter 3, now follows. The first moment of the spectrum of total

energy still cascades to smaller wavenumbers, but total energy now includes potential

energy. The cascade is slower because at scales larger than the deformation radius,

potential vorticity is dominated by vortex stretching rather than relative vorticity,

and it is the latter that effects nonlinear scale transfer. Nevertheless, a cascade

dominated by vortex merger does indeed take place in an f-plane freely evolving

experiment we show for illustrative purposes (figure 6-24). The experiment in 6­

24 was initialized with a forced-dissipated f-plane solution from chapter 3 and run

with a wavenumber filter small-scale dissipation, resulting in only two percent loss

of total eddy energy over the integration. There is no asymmetry between cyclones

and anticyclones in either the initial or final state. In the next section we initialize

1.5 layer experiments with asymmetric vortex solutions and hyperviscosity as small­

scale dissipation.

Freely decaying turbulence in the equivalent barotropic model has been examined

previously (Larichev and McWilliams 1991). In that paper the quadratic invariant

was developed through multiplication of the full potential vorticity, and it was noted

that it was difficult to use this invariant in a cascade argument. They postulated

that the potential energy spectrum would show a cascade. Here we have proven a

cascade in the total energy spectrum. Larichev and McWilliams (1991) also noted

the slowdown of the cascade as compared to cascades in purely two-dimensional

turbulence, but concluded that a slow cascade to large scales does take place. They

presented results from several experiments, with different values of Rd. The integra­

tion presented here is much longer than any of theirs was, thus allowing the cascade

to proceed to finality.
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Figure 6-24: Results of a 256 squared wavenumber filter f-plane freely evolving one­
layer QG experiment with a deformation radius present. Eddy length scales are
measured as reciprocals of moments of energy spectra.
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6.4.2 Freely decaying equivalent barotropic turbulence ini­

tialized by vortex solutions

Through initialization of a one-layer experiment with the top layer streamfunction

of the nominal vortex experiment, we can study how vortices evolve in the absence of

forcing, dissipation, and interactions with a bottom layer. First we present results

from an f-plane experiment (figure 6-25). In this case, 41 percent of the initial

eddy energy has been lost. This experiment is still ongoing-it seems to be heading

towards a state dominated by one large cyclonic vortex. Figure 6-26 indicates that

the cascade takes place more quickly on a beta plane ((3 = 116. 2 • 10-11 m-1

s-1, as in the nominal forced-damped vortex solution). Here 26 percent of the

initial energy is lost. Very similar results to the beta plane result were obtained

in an experiment in which the total background PV gradient was set to equal the

total upper layer mean PV gradient in the nominal forced-dissipated experiment.

The presence of background PV gradients in one-layer freely decaying experiments

seems to accelerate the cascade towards fewer vortices and larger scales. Note that

the presence of gradients in one layer, even if they are different in the x and y

directions (as in the experiment we explained but did not show), does not generate

either energy or enstrophy, so the argument we gave in the preceding section for a

cascade in total energy length scale is unchanged.

6.4.3 Two-layer freely decaying turbulence initialized by vor­

tex solutions

In this section, we report on two-layer freely-decaying experiments initialized with

the nominal vortex solution. Figures 6-27 and 6-28 display the f-plane results.

Barotropization takes place, but the baroclinic mode retains sufficient energy to

prevent the cascade to larger scales from taking place rapidly. Forty-seven percent

of the initial energy is retained.
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Figure 6-25: Results of a 128 squared hyperviscous f-plane freely decaying one-layer
experiment with a deformation radius present, initialized with the top layer nominal
vortex solution.
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Figure 6-26: Results of a 128 squared hyperviscous freely decaying one-layer QG
experiment with a deformation radius present, initialized with the top layer nominal
vortex solution, and run on a beta plane. (Beta has the same value as in the nominal
vortex experiment, that is, I~. 2 • 10-11 m- I S-l)
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Figure 6-27: Results of a 128 squared hyperviscou8 freely decaying f-plane two-layer
experiment, initialized with the nominal vortex solution.
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Figure 6-28: Results of a 128 squared hyperviscous freely decaying f-plane two-layer
experiment, initialized with the nominal vortex solution.

Freely decaying results on a beta-plane (where beta takes on the same value as in

the nominal vortex experiment) are shown in figure 6-29. This experiment retained

eighty percent of its total energy. Barotropization and the inverse cascade are rapid

and nearly complete, and the vortices have disappeared.

An interesting contrast is provided in the next experiment, shown in figure 6-30.

Here the four background mean PV gradients-one in the x direction and one in the y

direction, in each layer-equal those in the nominal forced-dissipated case. However,

they are set as planetary beta-like terms, so they do not generate energy as do shear

gradients. It is run for the same amount of time as the preceding experiment, but

only thirty percent of the energy is retained. Energy decay (not shown) shows no sign

of stopping, whereas it had clearly stopped in the beta-plane case. The same number

of coherent cyclones remains, and the inverse cascade and barotropization processes

are held at bay. This experiment probably behaves differently because the presence
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Figure 6-29: Results of a 128 squared hyperviscous freely decaying beta plane (where
beta takes on the same value as in the nominal vortex experiment) two-layer exper­
iment, initialized with the nominal vortex solution as in 6-27.
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of different betas in the lower and upper layers generates enstrophy. In that regard,

this particular experiment is analogous to experiments with bottom topography,

which also introduces betas that are different in the two layers, generates enstropy,

and can halt cascades in freely evolving turbulence (Rhines 1977; LaCasce 1996).

In the present experiment twenty seven percent of the initial potential enstrophy is

retained. In contrast, the beta plane experiment retained less than one percent of its

initial enstrophy. It remains to be seen whether this experiment will have any bearing

on the halting of the cascade in the forced-dissipated case. Layer PV gradients

are equal in the two cases. But there is a difference between an imposed "beta­

like" background gradient (as we have done here) and a shear-induced gradient-for

example, the latter, unlike the former, can generate energy.

6.4.4 Two-layer turbulence initialized by vortex solutions

and dissipated by bottom Ekman friction

Figure 6-31 shows the results of a two-layer f-plane integration initialized with the

nominal vortex solution and damped by a bottom Ekman friction (dissipation time

193 days) in addition to hyperviscosity. The vortices decohere under the influence of

Ekman friction, and then undergo a very slow cascade to larger and fewer features.

The final solution does not retain the initial asymmetry. Even when background PV

gradients are set up in the way most likely to maintain vortices in the freely decaying

case, that is, equal to those in the forced-dissipated case, vortices disappear under

the influence of Ekman friction (figure 6-32).

The previous experiments indicate that vortices quickly disappear in the presence

of Ekman friction, if there is no forcing. Figure 6-33 displays results of a beta-plane

experiment initialized with the nominal vortex solution, in which a westward shear

is imposed and adjusted so that ~~ = O. Thus, there is a source of energy, but not

a strong one. There is still a signature of the vortices after a long integration, unlike

in the previous two cases. Vortex disintegration under Ekman friction can be held
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Figure 6-30: Results of a 128 squared hyperviscous freely decaying two-layer exper­
iment, initialized with the nominal vortex solution, in which the layer PV gradients
are set to equal those in the nominal forced-dissipated solution.
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Figure 6-31: Results of a 128 squared hyperviscous f-plane two-layer experiment,
initialized with the nominal vortex solution and dissipated with a 193.4 day bottom
Ekman friction.
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Figure 6-32: Results of a 128 squared hyperviscous two-layer experiment, initialized
with the nominal vortex solution and dissipated with a 193.4 day bottom Ekman
friction. Here layer PV gradients equal those in the nominal forced-dissipated solu­
tion.
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at bay for a long time with even a weak shear. From the forced-dissipated results

we know that a strong shear will maintain vortices indefinitely. This indicates that

extraction of energy from the mean shear via baroclinic instability is an essential

feature of the vortex regime.

6.5 Dominant balance of the vortex solutions

In the last section we learned that the vortices we examine in this chapter, like

other QG solutions, tend to cascade to the barotropic mode and to larger scales

(albeit, very slowly in some cases) in the absence of forcing, Ekman friction, and

of background PV gradients which are unequal between layers. We also learned

that vortices disappear under the action of Ekman friction, unless it is balanced by

forcing. In this section we perform a preliminary investigation of the dynamics of

the vortex regime with the nominal forcing and dissipations present. We begin with

figure 6-34, which displays scatter plots of nondimensional WI versus ql for three

of the vortex solutions. All show a tight correlation between the two quantities.

Scatter plots of WI and ql for four other solutions examined in this thesis are shown

in 6-35. The relationship between WI and ql is clearly weaker in these other cases.

Figures 6-36 through 6-42 show contour plots of WI, ql, and J (WI, ql) for the same

seven experiments. The isolated nature of '1/)1 and ql in the vortex solutions shows

up in the Jacobian as well. The Jacobians of the other solutions are less isolated and

orderly in appearance. The organization and coherence in the Jacobian of the vortex

solution compared with the other solutions in this dissertation is the likely reason

that the vortices persist as coherent features longer than structures in other parts of

the thesis. It also is the likely reason that the inverse cascade is absent in the vortex

solutions; the Jacobian in the vortex case keeps the structures coherent rather than

scatters energy into and out of them. The Jacobians of the R(3 = 12 experiment in

figure 6-40 and of the viscous f-plane solutions in figure 6-42 show some amount of
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Figure 6-33: Results of a 128 squared hyperviscous two-layer beta plane (where
beta is the same as in the nominal vortex experiment, that is, nominal beta over 16)
experiment, initialized with the nominal vortex solution and dissipated with a 193.4
day bottom Ekman friction, in which a westward shear is adjusted so that ~~ = o.

243



organization, consistent with the persistent fronts seen in those solutions. The fact

that '1/;1 and ql are not well correlated in those cases may be related to the fact that

these fronts undergo large meanders over time. In that sense, these fronts are less

stable features than the vortices.

The caption of each figure lists a quantity which we call the "cancellation ratio" ,

defined by:

< (u Oq, +V OQ1)2 >
1 ax 1 Bycancellation ratio = ----,,-=----=-';,---

< (Ul ~;: )2 + (VI ~~ )2 >'
(6.2)

where brackets denote a spatial average over the domain for the snapshot in question.

A small cancellation ratio means that the sum of the individual terms in the Jacobian

is small compared to the individual terms themselves, meaning that a dominant

nonlinear balance of the form J( '1/;, q) "" 0 is likely. The ratio is less than one for all

of the experiments but is smallest in the vortex solutions. Only the viscous f-plane

experiment has a cancellation ratio that approaches that of the hyperviscous vortex

solution, which in turn has a cancellation ratio an order of magnitude larger than

that of the wavenumber filter solutions. The greater degree of cancellation in the

wavenumber filter solutions is likely due to their more circular nature.
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Figure 6-34: Scatter plots of nondimensional upper layer fluctuation PV versus
streamfunction, for three of the vortex solutions. Recall that the 128 squared filter
result has not yet equilibrated.
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Figure 6-35: Scatter plots of nondimensional upper layer fluctuation PV ver­
sus streamfunction, for the hyperviscous f~plane experiment from section 5.3, two
wavenumber filter 5 = 0.2 f-plane bottom-friction solutions from chapter 3, and the
R(3 = 12 experiment from section 5.3.
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Figure 6-36: Contours of 1/;1, ql, and J(7/)I, ql) for snapshot of 128 squared hyper­
viscous nominal vortex solution. The "cancellation ratio" (see text for details) is
0.0018.
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Figure 6-37: Contours of 1/;1, ql, and J(1/;1 , ql) for snapshot of 128 squared unequili­
brated wavenumber filter vortex solution. The cancellation ratio is 0.00015.
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Figure 6-38: Contours of 'l/Jl' ql, and J( 'l/Jl' ql) for snapshot of 64 squared wavenumber
filter vortex solution. The cancellation ratio is 0.00023.
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Figure 6-39: Contours of 1/;1, ql, and J('I/)I, ql) for snapshot of 128 squared hyper­
viscous 193.4 day bottom friction ij = 0.2 f-plane solution from section 5.3. The
cancellation ratio is 0.0615.
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Figure 6-40: Contours of '!/Jr, qr, and Je1h, qr) for snapshot of 256 squared wavenum­
ber filter R(3 = 12 solution from section 5,3, The cancellation ratio is 0,206,
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Figure 6-41: Contours of 1/J1' q1, and J (7/)1, q1) for snapshot of 256 squared wavenum­
ber filter 1451 day bottom friction (j = 0.2 f-plane solution from chapter 3. The
cancellation ratio is 0.0772.

252



Psi1

-'.--...,_..._--

J(psi1 ,q1)

q1

Figure 6-42: Contours of 'l/JI' ql, and J('I/)I, ql) for snapshot of 256 squared wavenum­
ber filter 0.7 day bottom friction ij = 0.2 f-plane solution from chapter 3. The
cancellation ratio is 0.0206.
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The tightness of the 1/;1/g1 scatter plots, and the small cancellation ratios, for

the vortex experiments point towards the possibility of a balance dominated by the

Jacobian. To establish this more firmly we compare terms in the upper layer PV

equation. Figure 6-43 plots J(1/;1, g1) alongside J(1/;1, gil and J(1/;1, g1), and °St',
the last having been calculated from the small-scale dissipation minus the three

Jacobians. Isolated coherent structures are evident in all three Jabobians, as well as

the tendency term, which strongly resembles -J(1/;1' g1)' Rms values of these terms

are tabulated in table 6.1, which indicates that the dominant balance in the upper

layer is:

(6.3)

This is reminiscent of modon/soliton solutions (c.f. Stern 1975; Larichev and Reznik

1976; Flierl et al. 1980). Dissipation and terms involving the mean flow enter in at

higher order. Lower layer fields 1/;2, g2, and J(1/;2, g2) are contoured in figure 6-44

alongside a scatter plot of 1/;2 and g2. Table 6.2 demonstrates that a similar balance

holds in the lower layer:

(6.4)

The scatter plot of g2 versus 1/;2 indicates that there is not a close relationship

between these quantities. Thus U2 ~~ and V2 ~~ are smaller than J(1/;2, g2). The

individual terms in the Jacobian are not organized to cancel each other out as in

the top layer. However, the Jacobian is still organized and coherent in the lower

layer. This is because g2 is dominated by (1~~)R~ and hence is still vortical. Since

1/;2 is small, the lower layer Jacobian is large in regions in which the gradients of g2

are large-i.e. in the vortices.

Table 6.3 shows that the mean flow terms are nearly as large as J(1/;1, g1) in the

f-plane solution having the same Ekman friction as the nominal vortex experiment.
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Thus the balance in equation 6.3 does appear to be unique to the vortex regime. In

the f-plane case the presence of forcing at lowest order explains the lack of persistent

features.

Term Rms Value over Domain

Ul~ 48.24
V aq1 48.341 O'!l

J(1/Jl' ql) 2.87
-·aq1 0.31UI7');:;
--11.91 0.13VI O'!l

J(1/Jl' qr) 0.34

Ul~ 0.08
VI i[g1 0.19

O'!l

J (1/Jl, ql) 0.20
-zi \lOql 0.065

OQ1 2.87At

Table 6.1: funs value of terms in upper layer PV equation for a snapshot of the
nominal 128 squared hyperviscous vortex solution.

The size of the hyperviscous terms in tables 6.1 and 6.2 is not negligible. This,

along with the fact that vortex solutions are very sensitive to details of the small­

scale dissipation, cause concern that there might be a large amount of energy near

unresolved scales. These concerns were reduced by figures such as 6-45, which plots

the upper layer kinetic energy spectrum for the snapshot of the nominal vortex

solution. There is not a pile-up of energy at the smallest scales. Spectra of other

vortex solutions have been inspected, and no signs of a blue spectrum at small scales

have been found. In the nominal solution, bottom Ekman friction accounts for 83

percent of the energy dissipation. A preliminary investigation of other 0 = 0.2
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J(psi1 ,q1)
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Figure 6-43: Contours of various terms in the upper level PV equation for a snapshot
of the nominal 128 squared hyperviscous vortex solution.
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Figure 6-44: Contours of W2, q2, and J( W2, q2) for a snapshot of the nominal 128
squared hyperviscous vortex solution. The lower right panel displays a scatter plot
of q2 versus "1/)2
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I Rms Value over DomainTerm

U2~ 0.44
dq2 0.44V2 av

J(W2, q2) 0.66
U2"'!jE- 0.033

·clQ2 0.003V2 a'l/
J (W2 ,q2) 0.033

U2~ 0.0015
V2 CZ92 0.0172av

J(W2, q2) 0.0172
-l-;''\J6 q2 0.0135

-R2V2 W2 0.0139

C!J!t 0.66

Table 6.2: Rms value of terms in lower layer PV equation for a snapshot of the
nominal 128 squared hyperviscous vortex solution.

vortex runs indicates that 83 percent is a consistent figure. Apparently small-scale

dissipation plays a non-negligible role in energy dissipation of the vortex regime.

6.6 Comparison to the coherent vortices of earlier

studies

Coherent vortices have been studied extensively in freely decaying two-dimensional

turbulence (MeWilliams 1984), and in freely decaying equivalent barotropic tur­

bulence (c.f. Larichev and McWilliams 1991 and references therein). McWilliams

(1984) noted that it is difficult to find coherent vortices in one-layer forced-dissipated

flows. The fronts in the highly viscous f-plane regime of chapter 3, and the jets in

the large R(3 regime of chapter 5, are coherent structures, but not as remarkable as
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Term I Rms Value over Domain
U aql 0.231A",
v dql 0.231 8v

J('l/Jl ,ql) 0.08
-·aql 0.056Ul71",

J('l/Jl ,ql) 0.056
v aql 0.0271 8v

J( 'l/Jl' ql) 0.027
-vVOql 0.01

dql 0.085""At

Table 6.3: Rms value of terms in upper layer PV equation for a snapshot of the
hyperviscous 128 squared f- plane solution having the same value of Ekman friction
as the nominal 128 squared hyperviscous vortex solution.

the vortices of the current chapter. As discussed earlier, it is possible in a two-layer

forced-dissipated system to have strongly nonlinear features such as coherent vor­

tices reside in the layer without Ekman dissipation. Another distinguishing aspect

of the present vortices is that they require a nonzero beta to exist, unlike those in

McWilliams (1984) and Larichev and McWilliams (1991).

The presence of Rd in the equivalent barotropic system slows cascades down

considerably compared to those in two-dimensional turbulence. Cascades take place

through vortex merger in both cases, but vortex interaction ranges are smaller in

the equivalent barotropic case, because of the introduction of the Rd scale. The

two-layer forced-dissipated problem presented in this chapter also has a deforma­

tion radius. Thus the vortices we found here merge slowly when put into a freely
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Figure 6-45: Log-log plot of nondimensional upper layer kinetic energy spectrum for
snapshot of nominal 128 squared hyperviscous vortex solution. An x-axis value of
1.8 corresponds to a wavelength A equal to Rd. A value of 1 corresponds to a length
scale of Rd , where length scale is defined as 2:'
decaying problem. The addition of forcing and dissipation can halt the cascade

process completely.

A characteristic of the present vortices, as well as of modon/soliton solutions, is

a close relationship between streamfunction 1/J and potential vorticity q (at least in

the upper layer). A close 1/J/ q relationship is also characteristic of the end state of

equivalent barotropic turbulence (figure 6-46), in which q ~ - ~21/J when Leddy» Rd·
"

The relationship between 1/J and q is much less tight in vortices formed in two-

dimensional turbulence (figure 6-47).

Cyclone/anticyclone asymmetry also distinguishes the vortices presented in this

chapter from those in freely evolving two-dimensional and equivalent barotropic

turbulence of earlier studies. Cyclone/anticyclone asymmetry does exist in nature­

for instance, on Jupiter. Asymmetry is known to exist in freely evolving shallow­

water turbulence (c.f. Polvani et al. 1994 and references therein). It was commonly
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Figure 6-46: Scatter plots of nondimensional PV versus streamfunction for the freely
evolving equivalent barotropic solution experiment depicted in figure 6-24.
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Figure 6-47: Scatter plots of nondimensional PV versus streamfunction for the freely
evolving two-dimensional turbulence solution experiment depicted in figure 3-1.

thought not to occur in QG. Now we know that it can. The cause of asymmetry

in shallow-water is still not fully explained, long after its discovery (c.f. Kuo and

Polvani 2000). QG systems are simpler than shallow-water systems, so there is hope

that explaining the cause of the asymmetries in the present experiments will be

easier than in the shallow-water case. On the other hand, the present experiments

are done on a beta-plane rather than an f-plane, and are forced-dissipated rather

than freely evolving. These are complicating factors for the present experiments.

6.7 Chapter summary

The vortex regime uncovered in the last chapter was investigated more thoroughly

in the present chapter. The first subject discussed was sensitivity to small-scale

dissipation. The vortices are more sensitive to small-scale dissipation than are the

other solutions presented in this thesis. Under the action of a wavenumber filter,

energy increases greatly when resolution increases from 64 squared to 128 squared,

so much so that equilibration was not reached in feasible times. In order to obtain

128 squared solutions which equilibrated rapidly, we opted for hyperviscosity as
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our small-scale dissipation in the vortex regime. After some searching, a nominal

hyperviscosity was chosen, which was used to generate the 128 squared hyperviscous

results presented in this chapter (note: and some of the chapter 5 results also).

Hyperviscosity provides some damping at Rd scales in the upper layer, which is

evidently neccessary for rapid equilibration.

Having chosen a nominal hyperviscosity, we then explored vortex dependence

on other parameters. We further discussed dependence on magnitude of R{3 =

rlaneta~y beta d' t for a fixed magnitude and angle of (westward) shear, which was
upper ayer sear gra ~en

presented but not much discussed in chapter 5. It seems that vortices emerge when

beta is nonzero but smaller than the magnitude of the upper layer shear-induced PV

gradient. However, it was shown that vortices can also be generated from a zonal

flow on an f-plane with a topographic beta which is oriented at right angles to the

shear gradient. In this case there is no beta in the upper layer to compare the shear

gradients with. The topographic case shares with nonzonal flows on a beta plane the

fact that layer PV gradients are non-colinear, but that is apparently not the criterion

for existence of vortices either, since they were found in purely (westward) zonal

flows on a beta plane, in which layer gradients are co-linear. Obviously there is still

some confusion as to the criterion for vortex solutions to exist. Vortex behavior was

also explored as a function of angle. Vortices can be generated by purely westward

shear, as well as purely southward shear-although in the latter case, they exist

with a wavenumber filter but not with our nominal hyperviscosity. By symmetry

arguments, we know that vortices will also exist for shears that are between westward

and northward. So far, no vortex solutions have been found for flows in which

the zonal shear is eastward. The governing equations are not invariant under the

transformation 11 -+ -11 because of the presence of {3. Ekman friction was also

varied from the value in the nominal experiment. Vortices exist for a wide range

of Ekman frictions, although they disappear if the friction term becomes as large

as the nonlinear term in the lower layer PV equation. As Ekman friction reduces,
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vortex fields generally gain energy and become more barotropic. However, their

length scale does not change, so it is not clear that this is a manifestation of the

inverse cascade to the barotropic mode and to larger scales present in the f- plane

results of chapter 3. Vortex size changes very little in the experiments performed in

this chapter, despite the variations in beta, angle, friction, and energy encountered.

Upper layer length scale, as measured by the reciprocal of the centroid of kinetic

energy, is between 1.1 to 1.3 Rd for all vortex experiments. The Rhines scale does

not enter into the problem, contrary to expectations for beta-plane turbulence.

Most of the vortex solutions were generated with fj = 0.2, but vortices were

also found with fj = 1. Their energy is considerably less for the same amount of

shear, but comparable when shear is increased so that the upper layer PV gradients

are equal. Attempts to generate or sustain vortices with symmetric Ekman friction

failed; the vortices seem to prefer to exist in a nearly inviscid layer.

A nonzonal background flow on a beta plane breaks the symmetry between cy­

clones and anticyclones commonly thought to be ubiquitous in QG. If the nominal

solution (cyclones) is inverted and used as an initial condition, the resulting anti­

cyclones equilibrate to a state of lower energy. Various fields were used to initialize

the nominal parameters; in all cases, either a high energy state of cyclones or a low

energy state of anticyclones emerged. The exact value of the equilibrated energy,

as well as the number of vortices, varies; there may be a multiplicity of possible

states around these two basic ones. For a flow that is northwestward rather than

southwestward, the high energy state is anticyclonic.

Freely decaying experiments initialized by the nominal vortex solution generally

undergo an inverse cascade to the barotropic mode and to large horizontal scales,

the exception being an experiment in which background PV gradients are set to

equal the total mean PV gradients (planetary plus shear-induced) in the nominal

forced experiment. The presence of different gradients in the two layers produces

enstrophy and holds the inverse cascade at bay. Upper layer vortices disappear
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under the action of bottom Ekman friction, unless there is also a forcing present.

This indicates the importance of baroclinic instability in the maintenance of the

vortex regime.

Next it was shown that streamfunction and PV have a closer relationship in

the vortex solutions than in other solutions presented in this thesis. The dominant

balance in both layers is ~i + J( "1/), q) "" 0, unlike, for instance, the f-plane solution

having the same value of Ekman friction, in which J(7/J, q) and J(7/J, q) are nearly

as large as J ('1/), q). Since forcing enters in at higher order in the vortex regime,

structures persist longer than in other regimes. Other solutions have a much less

organized J(7/J, q) field, meaning that the Jacobian scatters energy into and out of

structures instead of keeping them coherent as in the vortex regime.

In the final section of this chapter differences between the present coherent vor­

tices and those of earlier studies were discussed. The neccessity of nonzero (3, the

forced-dissipated nature, and cyclone/anticyclone asymmetry distinguish the present

vortices from those previously studied in freely evolving two-dimensional and equiv­

alent barotropic turbulence.

Many unanswered questions remain about the vortex solutions. Their sensitivity

to small-scale dissipation requires more explanation. We have indications that the

ratio RfJ = flaneta;.y beta d" t should be nonzero but less than one for vortices
npper ayer s ~ear gra ten

to emerge, but we have not developed a precise criterion. We do not know why

they prefer westward shear flows over eastward ones. We know that Rd sets the

scale of the vortices, but not the reason why. We do not know why the vortex

solutions are monopolar. Given that they are, we do know that there should be a

symmetry-breaking between states of cyclones and one of anticyclones. Why the

asymmetry manifests itself as a difference in energy levels, is unknown. We know

that the dominant balance is a modon/soliton type solution, and we also know that

small but nonzero beta, friction in the bottom layer only, and baroclinic instability

are essential ingredients for producing these vortices. But we have not yet exploited
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these facts to develop a coherent theory for them,

The vortices exist when shear-induced PV gradients are comparable to planetary

beta, As discussed in chapter 5, the PV maps of Keffer (1985) indicate that this

may be the regime most appropriate for the mid-ocean, Finally, we note that the

vortices are strongly baroclinic and at the deformation scale, despite being highly

energetic, In this qualitative sense they match the mid-ocean eddy field better than

any of the other solutions presented in this dissertation, and are unusually baroclinic

and compact for flat-bottom QG solutions, In fact they generally have too much

energy and too much baroclinic energy in comparison to observations,
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Chapter 7

Conciusions

7.1 The central question and approach of the dis­

sertation

The central question of this dissertation is whether local baroclinic instability of

the weak gyre flows of the ocean interior contributes significantly to the production

of mid-ocean eddies. We attempt to answer this question with idealized models of

two-layer geostrophic turbulence, forced by an imposed, horizontally homogeneous,

vertically sheared mean flow, and dissipated through Ekman friction. The disserta­

tion focuses on processes that control the following characteristics of the mid-ocean

eddy field: 1) eddy kinetic energy is roughly equipartitioned in the vertical between

the barotropic and first baroclinic modes (d. Wunsch 1997), 2) horizontal length

scales of the eddies appear to correlate better with the first baroclinic mode defor­

mation radius (Rd ) than with larger cascade scales (Stammer 1997), and 3) eddy

kinetic energy is much larger than kinetic energy of the mean flow (c.f. Gill et al.

1974).

Linear baroclinic instability theory predicts that fluctuation length scales will

be near Rd , and that substantial energy will be in the baroclinic mode. However,
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Rhines (1977) demonstrated that nonlinear effects (which will be important when

the ratio of eddy to mean kinetic energy is larger than one) shift eddy energy into

the barotropic mode and into large horizontal scales, in freely-evolving turbulence.

Salmon (1978; 1980) and Larichev and Held (1995) found similar tendencies in

two-layer forced-dissipated turbulence-but all three of these studies had equal layer

depths, which is representative of a uniform stratification. We expect two-layer

models with a thin upper layer, which represents a surface-trapped, thermocline­

like stratification, will have enhanced eddy baroclinicity (and, associated with that,

horizontal scales near Rd ) for two reasons. The first is that nonlinear interactions

within the baroclinic mode project onto the baroclinic mode if and only if layer

depths are unequal. The second is that the baroclinic mode is weakly damped if

stratification is surface-trapped and friction occurs at the bottom. In chapters 3 and

4, with these considerations in mind, we perform and examine four sets of forced­

dissipated runs on an f-plane. Two of them have Ekman friction in the bottom layer

only and are contrasted in their values of the parameter (j = Z:. One bottom-friction

set has (j = 0.2 (surface-trapped stratification), while the other has (j = 1 (uniform

stratification). Two other sets of forced-dissipated runs were run with the same

values of (j but with equal Ekman damping rates in the two layers, which we refer

to as symmetric friction. Surface-trapped stratification enhances eddy baroclinicity

only through the nonlinear projection mechanism in this case, which therefore serves

as an important contrasting example.

On the f-plane, arbitrarily small shears are baroclinically unstable. However,

weak zonal shears are stable in the presence of planetary beta, which would seem

to indicate that it is difficult to produce eddies from the weak mean flows typical

of the mid-ocean. It has been known for some time, from linear instability theory,

that nonzonal flows are unstable even in the presence of (3, and the presence of

continental boundaries forces mid-ocean mean flows to be nonzonal. In chapter 5,

a nonlinear equilibration study is performed to ascertain whether the nonzonality
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inherent in ocean gyres could explain the fact that mid-ocean eddy kinetic energies

are much larger than the mean flow kinetic energy, despite the fact that mid-ocean

mean flows are weak and planetary beta is present. Energy is studied as a function

of angle for a fixed magnitude of planetary beta and weak mean shear, such that

Rp = rlaneta~y beta d. t = 6. In this case the zonal experiment does not meet
upper ayer s em· gra ~en

the Charney-Stern criterion for baroclinic instability. A second set of experiments

is performed in which shear angle is held fixed but (3 (thus Rp) is varied. This set

uncovered a vortex regime which is investigated extensively in chapter 6.

7.2 Major results of the dissertation

In chapter 3, it is found that, for a fixed amount of total eddy energy, the symmet­

ric friction 5 = 0.2 experiments generally retain slightly more kinetic energy in the

baroclinic mode than do the 5 = 1 experiments. The offset is substantially larger

between 5 = 0.2 and 5 = 1 experiments with bottom friction, implying that the

weak damping of the baroclinic mode exerts a stronger control on eddy baroclinic­

ity then does the nonlinear projection mechanism. In bottom friction experiments,

two regimes exist, delineated by the value of (11~)'f1.;R~' which scaling suggests is the

approximate ratio of nonlinear to friction terms in the lower layer PV equation. (In

this expression, U1 is the upper layer rms eddy velocity, £2 is the lower layer eddy

scale, and R2 is the coefficient of bottom Ekman friction). When friction dominates,

bottom layer velocities go to zero, which implies the relationship ~~~~ = ~. When

nonlinear terms are larger, eddies barotropize as in previous studies. Thus, ~~ is

an upper bound on the baroclinicity ratio for bottom friction experiments, meaning

that it is possible for the baroclinic mode to retain more kinetic energy than the

barotropic mode when stratification is surface-trapped, bot not when stratification

is uniform. Mid-ocean current meter data indicates that the baroclinic mode gener­

ally has somewhat more kinetic energy than does the barotropic mode. Therefore,
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the surface-trapped nature of oceanic stratification, and the bottom-trapped nature

of the dissipation, may exert a strong control on the partition of kinetic energy be­

tween modes. The (j = 0.2 bottom friction experiments with 145, 193, and 290 day

dissipation times have the most realistic ratios of eddy to mean kinetic energy (21,

27 and 49, respectively). The baroclinicity ratios ~~:~ for these are 1.5, 1.1, and

0.7, respectively. The first of these compares well with the meter data of Wunsch

(1997), while the last is not quite baroclinic enough. Top layer length scales of these

experiments, measured as 2~ of the wavelength of maximum kinetic energy, vary

from about 1.5Rd to 2Rd , which compares well with the Stammer (1997) altimeter

estimates. When measured as inverses of the centroids of kinetic energy, top layer

eddy length scales for these experiments range from 1.1Rd to 1.3Rd • Thus, the (j =

0.2 bottom friction f- plane experiments having the most realistic ratios of eddy to

mean kinetic energy have length scales and baroclinicity ratios that compare rea­

sonably well with data. In all four sets of experiments, when the ratio of lower

layer nonlinear to Ekman friction terms exceeds one, the barotropic length scale

cascades far beyond the baroclinic kinetic energy scale, which remains near Rd , as

anticipated from the association of the baroclinic mode with the deformation radius.

When (j = 0.2, top layer kinetic energy is dominated by the baroclinic mode while

the barotropic mode is more important in the lower layer. Hence the top layer eddy

scale is smaller than that of the bottom layer in the (j = 0.2 experiments, which is

consistent with the findings of Mercier and de Verdiere (1985). Finally, we note that

a cutoff value of friction exists in the symmetric friction case; an equilibrated eddy

field does not exist as friction is increased beyond this cutof!' value. Near the stabil­

ity boundary the symmetric friction experiments exist in a state of weakly nonlinear

waves. As friction reduces, the waves become more strongly nonlinear before finally

breaking up into turbulence. There is no stability boundary for the bottom friction

experiments, which never appear wavelike.

In chapter 4, a cascade inequality is developed from the energy and enstrophy
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equations. The inequality takes on a simple form in the case of symmetric Ekman

friction:

(7.1)

where brackets denote the time-averaging operator and the wavenumbers kET and

kEG are centroids of modal kinetic energy spectra. If correlations within brackets

are ignored, the inequality simplifies to:

which means that in the symmetric friction case, it is impossible to simultaneously

retain substantial energy in the baroclinic mode and in length scales near Rd· On

the other hand, the right-hand side of 7.1 exceeds one in [; = 1 bottom friction

experiments, and greatly exceeds one in [; = 0.2 bottom friction experiments. Thus,

the surface-trapped nature of ocean stratification and the bottom-trapped nature

of the dissipation appear to be crucial factors in allowing eddies to simultaneously

retain substantial energy in the baroclinic mode and in scales near Rd , as happens

in the actual ocean.

Chapter 5 shows that when RfJ = 6, energy is indeed a strong function of angle.

This suggests that those parts of the mid-ocean having mean flows which are nearly

meridional may generate the bulk of the mid-ocean eddy energy. The values of

eddy energy are actually far too large when compared to the actual ocean. The

meridional flow experiment has a ratio of eddy to mean kinetic energy exceeding

7000, while this ratio for the 195 degree experiment (mean shear 15 degrees south of

west) is 81. Thus it certainly is possible in these idealized experiments to generate

eddy kinetic energies much larger than the mean even for experiments in which (3

dominates the PV gradients. The angle between layer PV gradients is small in these

271



experiments, which are strongly anisotropic, much more so than is the actual mid­

ocean eddy field. A set of experiments with fixed angle and magnitude of shear, but

varying beta, and hence varying Rf3, was then conducted. When Rf3 is less than one,

the angle between layer PV gradients is large, as the Keffer (1985) maps of oceanic

potential vorticity suggest may be the case in the mid-ocean, and eddy fields become

isotropic. If, in addition, the zonal component of the mean shear is westward, vortex

solutions emerge.

The vortex regime is explored further in chapter 6. Vortices emerge for a wide

variety of shear angles and values of Ekman friction. As with the large Rf3 exper­

iments, the vortex experiments are extremely energetic. Vortex experiments with

dissipation times of 48.4 and 774 days, respectively, each have top layer length scales

of 1.3 Rd , while top layer kinetic energies are 29000 and 1400 times the mean ki­

netic energy, and baroclinicity ratios are 4.2 and 1.3. In a sense, these solutions

meet our three chosen observations of interest too well; they have too much energy

and too much baroclinic energy. The vortex solutions are monopolar and exhibit

an asymmetry in energy levels between cyclones and anticylones which is probably

unrealistic for the actual ocean. Compared to the other results in this thesis as well

as those in the existing literature, they exhibit a remarkable degree of coherence

considering that they exist in a forced-dissipated system. Thus they might serve as

a useful model for maintenance of coherent structures, such as Jupiter's Great Red

Spot, Gulf Stream Rings, atmospheric blocking events, and oceanic submesoscale co­

herent vortices (c.f. Flier11987, McWilliams 1985) in forced-dissipated geophysical

flows.

7.3 New regimes discovered in the dissertation

Three interesting regimes of geostrophic turbulence were uncovered in the course of

answering our original questions:

272



1) When the bottom Ekman friction term is larger than the nonlinear term in the

lower layer PV equation, a regime exists whose appearance is quite unlike that

seen in the "standard" f-plane geostrophic turbulence literature (c.f. Larichev and

Held 1995). Some quantities in this regime, for example, the ratio of baroclinic to

barotropic kinetic energies, and the fraction of enstrophy dissipation accounted for

by Ekman friction, can be quantitatively explained from simple arguments. Other

correlations exist in this regime which the author has not yet explained. The non­

monotonic behavior of energy with friction, and the existence of fronts in this regime

have not been explained yet either; some speculations were offered in chapter 3.

2) Eddy fields forced by nonzonal flows on a beta plane in which beta is much larger

than the shear-induced PV gradients are generally dominated by a single zonal jet

which slowly drifts throughout the domain. Jet width is narrow and apparently

unrelated to the Rhines length. We speculate that spatial inhomogeneities develop

in this regime in order to bring about divergences of eddy fluxes. These can serve

as an equilibrating mechanism for the jets, which would be difficult to equilibrate

otherwise, since they are able to extract energy from the meridional component of

the nonzonal mean flow.

3) A coherent vortex regime was explored in detail in chapter 6. Now that the

parameter space in which they exist has been delineated, fundamental questions

about their dynamics are just beginning to be explored.

7.4 Rescaling the equations for different values of

friction, shear, and beta

A general problem with our numerical results with regard to comparison to the

actual ocean is that they depend strongly on the Ekman dissipation time. We have

chosen to do experiments with a fixed 1 em s-1 mean shear flow and a fixed Rd =

50 km; for these parameters the 5 = 0.2 f-plane bottom friction experiments with
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dissipation times in the range 145 to 290 days have the most realistic ratios of eddy

to mean kinetic energy. As discussed in chapter 3, however, estimates of dissipation

times vary widely; all we can say is that 145 to 290 days is not too far out of the

range of most estimates. High resolution results were obtained with only one value of

friction in the large RfJ jet regime of chapter 5. However, 64 squared runs performed

in this regime (not included in the thesis) also showed a sensitivity to friction. The

vortex results of chapter 6 depend on Ekman friction as well.

As discussed in chapter 2, our chosen values of mean shear and Rd seem reason­

able. Our choice to do experiments with a fixed value of shear throughout the thesis

was done for pragmatic reasons, as the amount of parameter space we must study

is already quite large. Since values of mean shear are not very well known, however,

this choice might seem overly restrictive. Another point is that for our choice of

mean shear, the values of (3 that give layer PV gradients in very dillerent directions,

as indicated in the PV maps of Keller (1985), are much smaller than is realistic. We

ask now whether the governing equations can be rescaled to cover the case of larger

beta and larger shear. The governing lower layer equation having hyperviscosity as

a small-scale dissipation is used to illustrate the point (the argument with the upper

layer equation works the same way):

(7.2)

There are four terms in the equation involving (3 or a mean velocity term multiplied

by derivative operators acting on W2 or q2. There are two terms involving an Ekman

or hyperviscous dissipation multiplied by derivative operators acting on W2 or q2·

Supposing that the mean velocities, planetary beta, R2 , and v were all multiplied

by the same factor, call it 0<. Then, if the nonlinear term were not present, the
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equation would be invariant if the time variable were rescaled, so that everything

would happen a times faster. Because of the Jacobian term, the fluctuation stream­

functions (and, as a consequence, potential vorticities) must also be multiplied by a

to make equation 7.2 invariant. Thus, if (3, Ul, U2, VI, V2, "l/Jl, "l/J2, R2, and v are all

increased by a, the equation is invariant under a time scale which speeds up by the

same factor a. Suppose, for instance, that in our f-plane experiments we increased

our mean shear to 4 em S-I, a value used in Gill et al. (1974). Then the most realis­

tic ratios of eddy to mean kinetic energy would occur for experiments having Ekman

spin-down times of 36 to 72 days, rather than 145 to 290 days. (Note, though, that

values of eddy kinetic energy would be 16 times larger, far too large when compared

to observations.) Even stronger frictions, much larger than indicated by observa­

tions, would be required in order to bring about realistic eddy kinetic energies if we

were to multiply the mean by 4. Suppose instead that we wanted to know if layer PV

gradients can be at large angles to each other for realistically large values of (3. For

(3 = 2 • 10-11 m- l s-\ shear values of 8 em S-1 would create an angle larger than

90 degrees, which would lead to an isotropic eddy field, and to isotropic vortices if

the zonal component of shear is westward. This is too large a mean velocity for the

mid-ocean. More likely, as discussed earlier, is that the nominal values of shear and

beta (1 em s-\ 2 • 10-11 m-l s-l) we have chosen are realistic, and the reason that

PV gradients can turn so much with depth is that in the actual ocean, a great deal

of shear occurs over the depth of the thermocline. This is not possible to model in

two layers, which represent the thermocline by a single gradient vector.

7.5 Limitations of homogeneous turbulence mod­

els as a representation of the mid-ocean

Ocean basins typically contain several tens of eddy length scales. The mid-ocean has

therefore been considered a region in which homogeneous turbulence models might
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be applicable (c.f. Larichev and Held 1995). Having adopted the same viewpoint in

this dissertation, we now discuss some of the drawbacks of homogeneous turbulence

models as a representation of the mid-ocean.

7.5.1 Eddy feedbacks onto the mean

The actual mid-ocean mean flow is not horizontally homogeneous, meaning that

there will be divergences of eddy PV fluxes which in turn alter the mean flow. This

is an important mechanism for equilibration in weakly nonlinear channel models of

baroclinic instability (c.f. Pedlosky 1970), and it has long been known that eddy flux

divergences are important in the maintenace of the general atmospheric circulation

(d. Peixoto and Oort 1992). This mechanism was neglected in the formation of the

model used in this thesis. Our solutions equilibrate through bottom Ekman friction

(although, interestingly, flux divergences do arise spontaneously and contribute to

equilibration in the jet solutions of chapter 5). We judge the relative importance of

eddy flux divergences and bottom friction as equilibration mechanisms by estimating

spin-down timescales for the two processes.

The zonal mean PV of a zonal mean flow is altered by eddy flux divergences

through the following equation (d. Pedlosky 1987):

(7.3)

where overbars denote a zonal average. Suppose that eddies equilibrate through

bringing the mean PV gradient ~~ to zero, as in the baroclinic adjustment hypothesis

of Stone (1978); this would occur over a time:

L dilL dij
mean dy mean dy ( )

Tjeedback ~ dil d~ , 7.4
dt dy vq

where L mean is the scale over which the mean flows vary. If we scale dd as ~L1 andy mean

L dij bt··q as eddy dy' we 0 alll.
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T L~ean
feedback rv L

V eddy
(7.5)

If we take L mean ~ 1000 km (a patch of the gyre, rather than the entire gyre), v ~

10 cm s-l, and Leddy ~ 100 km, we obtain T{eedback ~ 1000 days. Note that a similar

scaling could be applied to erase the zonal gradients :,. In that case the relevant PV

flux would be ~ v.q. Following Spall (2000), in that case we might write q ~ L mean :"

leaving T{eedback ~ Lwan ~ 100 days, less by a factor of LL=ean. If L mean were instead
. v eddy

taken to be a typical basin length, say, 4000 km, the feedback times increase to

16000 and 400 days. The zonal gradients therefore could be erased in 100-400 days,

while approximately 1000-16000 days are required to erase the meridional gradients.

Frictional spin-down times are not well known-recall the discussion in chapter 3.

Some estimates are that they are substantially less than 1000 days. If so, eddies

would spin down by friction before they have a significant effect on mean flows, and

friction would be the more important equilibration mechanism. If the spin down

times are longer, the two equilibration mechanisms might be of similar importance.

7.5.2 Finite domain SIze

The assumption one makes in using homogeneous turbulence models is that they

contain many eddy lengths. Related to this, one assumes that domain size does not

affect the dynamics under examination. This was not explicitly examined in this

thesis, but should be the case as long as eddy lengths are not comparable to domain

size. Length scales of total eddy energy are comparable to domain size for both

the large friction and small friction ends of the bottom friction only experiments of

chapter 3. The same holds for the chapter 3 symmetric friction experiments. These

limiting cases helped us to probe and understand the behavior of the whole range of

forced-dissipated f-plane turbulence. However, the experiments which were held up

as being most representative of the mid-ocean had length scales substantially less
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than domain size. Thus we would not expect domain size to playa role in the most

realistic f-plane experiments. Experiments (not reported in this document) indicate

that domain size plays no role in the vortex regime of chapter 6. Preliminary results

indicate that the number of jets in the large R{3 regime of chapter 5 may depend on

domain size, but energy levels do not.

7.5.3 Doubly periodic boundary conditions

The doubly periodic boundary conditions used in this thesis undoubtedly have an

effect on the large R{3 jet regime of chapter 5. It is to be hoped that the main

conclusion of that set of experiments··that eddy energy depends strongly on the

angle of the mean shear flow when R{3 is much greater than one-would hold even in

a bounded domain. Spall (2000) demonstrates that this is probably the case. But

it seems unlikely that strong jets would exist in a bounded domain. None were seen

in the Spall (2000) calculations.

7.5.4 Spinup time

Many of the experiments in this dissertation take a long time to spin up to equilibrium­

for instance, the R{3 = 12 jet and R{3 = 0.375 vortex experiments of chapter 5 both

took about 500 years to equilibrate. While winds have been blowing over the ocean

for much longer than that, they obviously vary a great deal on shorter time scales.

The eddy field in the actual ocean does not have the space nor the time that we

have allowed for our homogeneous model to develop. Thus, one suspects that the

energies developed in the present experiments may be too high. In fact many of our

experiments have too much eddy energy, when compared to observations, and this

may be part of the reason.
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7.6 Plausibility of the local baroclinic instability

mechanism

It is possible for homogeneous baroclinically unstable flows to produce eddies for

which the ratio of eddy to mean kinetic energy is much larger than one, for which

the baroclinic mode has slightly more kinetic energy than the barotropic mode,

and for which the eddy length scale is near Rd. It is difficult to meet all of these

criterion simultaneously, in an environment which is realistic. Some of the ij = 0.2

f-plane results from chapter 3 satisfy the three conditions reasonably well, and, in

addition, are isotropic, which is also in accordance with observations. However,

the f-plane model ignores planetary beta, which stabilizes weak zonal flows. Eddy

kinetic energy much larger than the mean can be generated from nonzonal flows even

when (3 is present and larger than shear-induced PV gradients, but the eddies then

become more anisotropic (and more energetic) than in observations. The vortex

regime of chapter 6 exists when the layer PV gradients are at large angles to each

other, as suggested in the maps of Keffer (1985). Vortex solutions are isotropic, and

retain substantial energy in the baroclinic mode and in Rd scales, but they have an

unrealistic monopolar nature and exist only when the mean shear has a westward

zonal component. Some disagreement with observations can be found in all of our

model solutions. However, we have shown that it is possible for eddy fields to

extract energy from the mean, even with beta present, and we have produced some

explanations for the factors that control the energy, baroclinicity, length scales, and

isotropy of the mid-ocean eddy field. On the whole, local baroclinic instability seems

to be a plausible mechanism for mid-ocean eddy generation.

7.7 Future work

Logical extensions to the current thesis work include:
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1) Incorporation of more realistic bottom friction schemes into the model. As dis­

cussed in chapter 3, work on bottom boundary layers suggests a quadratic law for

dissipation rather than the linear law used here. It is likely that generation and

breaking of internal waves over rough topography is also a major dissipative mech­

anism in the ocean. Both occur at the bottom, so our belief is that the baroclinic

mode will still be weakly damped under these circumstances. Analytical work (for

instance, development of a cascade inequality) would be more difficult with these

more realistic dissipations than with Ekman friction. Parameterizing the effects of

internal wave breaking is a topic of current research.

2) Incorporation of more realistic stratification-i.e., more layers. The second baro­

clinic mode, absent in the present study, typically contains about ten percent of

the water-column averaged kinetic energy (Wunsch 1997). The most energetic f­

plane results from chapter 3 are still too barotropic and too large, in comparison

to observations. The results of Fu and Flierl (1980) and Smith and Vallis (2000)

demonstrate that higher baroclinic modes transfer energy to the first baroclinic

mode, which should render the first mode more energetic. A multi-layer version

of equation 3.30 should place an upper bound on the sum of all baroclinic modal

kinetic energies, as a function of stratification. Retention of substantial energy in

the second baroclinic mode, which has a smaller deformation radius, should make

it possible for model eddy fields to remain near Rd over a larger range of Ekman

frictions. A multi-layer version of the cascade inequality would help to quantify

the effects of higher modes in this process. It would also be interesting to see if

coherent vortices would show up in the higher modes of a multi-layer model run

in the parameter regime of chapter 6. If so, perhaps this would be related to the

submesoscale coherent vortices of McWilliams (1985), which are too small to be first

baroclinic mode features.

3) Incorporation of topography-both slope and roughness-into the model. The

cascade inequality developed in this thesis can be extended to include topography.
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Eft'ects of topography on the inverse cascade in a forced-dissipated system can then

be quantified. Preliminary results suggest that sign-indefinite terms introduced by

topography do indeed act to prevent the cascade, meaning that model results may

remain baroclinic and compact over a wider range of friction values. However, as

we saw III chapter 4, sign-indefinite terms playa role that, while important, is

secondary. What is more important is that, when friction is bottom-trapped, the

sign-definite baroclinic terms are multiplied by the factor Z:. With topography

present, the cascade inequality still points towards bottom-trapped friction coupled

with surface-trapped stratification as the primary factor in producing an eddy field

that is baroclinic and near Rd at the same time. Thus, these factors will still affect

eddy characteristics even with topography present.

4) Extension to shallow-water systems. Quasi-geostrophy (QG) is often used because

of its relative simplicity. Shallow-water (SW) models are closer to the true Navier­

Stokes equations, however, and retention of extra physics in one-layer SW turbulence

has profound effects (c.f. Polvani et al. 1994). For instance, SW turbulence collects

at scales comparable to the deformation radius. This is unlike the behavior of purely

two-dimensional turbulence, which cascades to larger scales. Two-dimensional tur­

bulence does not contain any inherent length scales. The deformation scale can enter

into one-layer QG dynamics, in the equivalent barotropic system studied briefly in

chapter 6. We showed there that the inverse cascade proceeds in this system, albeit

slowly. Our theoretical argument points towards the first moment of the spectrum

of total eddy energy, rather than kinetic energy only, as the scale that will undergo

the cascade. What we have shown therefore is that the presence of a deformation

radius is not sufficient to halt the inverse cascade in one-layer QG. Why, then, is the

cascade arrested in one-layer SW turbulence? It may have to do with geostrophic

adjustment at the deformation radius in shallow-water systems (Kuo and Polvani

2000). Another possible explanation lies in the SW mass conservation equation,

which in the nondimensional form used by Polvani et al. 1994 is:
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(7.6)

where Ro is the Rossby number (typically small but not negligibly so in mid-ocean

eddy flows), L is the length scale of the eddies, h is the nondimensional perturbation

height, and 11 is the horizontal velocity. In QG models, order Rossby number terms

are dropped, leaving \7 e U = 0 as the mass conservation equation. QG is inherently

two-dimensional. Velocities are derivatives of a streamfunction, which allowed us to

make arguments analogous to Fjortoft's in the equivalent barotropic case (and in the

two-layer case, back in chapter 3). On the other hand, in SW, when L ~ Rd and the

Rossby number is nonzero, \7 eu = 0 is no longer satisfied. Shallow-water turbulence

is therefore inherently less two-dimensional at the deformation scale. Total energy

and potential enstrophy are still conserved in shallow-water turbulence:

:t II ~h11e 11dx dy = :t I E(k) dk = 0,

~Jj' ~f/ + ~ - ~)2dXdY = ~ IQ(k)dk = o.at 2 h at
However, Q(k) does not equal k 2E(k) (at least as far as the author can tell!), and

the familiar cascade arguments cannot be applied. A one-layer SW model initialized

with the same flow fields applied to the equivalent barotropic system in chapter 6

is therefore anticipated not to undergo a cascade as vigorous as in the equivalent

barotropic case. (Note that Polvani et al. 1994 used the first moment of kinetic en­

ergy as a measure of length scale. To compare to the present equivalent barotropic

results we would have to use the scale of total energy as our measure. Also, we

would need to integrate for comparable times as in the equivalent barotropic case.)

Supposing that were successful, the next logical step would be to extend the results
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to two layers. As described in chapter 3, part of the inverse cascade in freely evolving

two-layer QG flows is an energy transfer from baroclinic to barotropic modes. In

a two-layer shallow water system, the baroclinic mode mass conservation equation

would likely resemble 7.6, meaning that we would expect the fluid to stop behaving

two-dimensionally at that scale. Two-layer SW models are therefore anticipated

not to undergo the barotropization inherent in QG models. If this were true, it

would have two important consequences. First, we would have discoverered a freely

evolving fluid which retains its vertical structure and horizontal compactness, in

accordance with observations. This would complement the work done in this disser­

tation, which required forcing and dissipation to keep a two-layer QG fluid baroclinic

and near Rd. Although the ocean is forced and dissipated, both are weak, so there

would be value in finding a freely evolving fluid that better matched the observa­

tions. Secondly, as we have seen here, freely evolving models can help explain the

behavior of forced-dissipated systems, in a qualitative way. Just as the long-time

limit of freely evolving QG tends towards a state of large, barotropic eddies, so does

the forced-dissipated problem, when friction becomes very small. If indeed the ten­

dency towards barotropization and the inverse cascade is reduced in freely-evolving

two-layer SW, that would likely indicate less sensitivity to the exact value of fric­

tion used in the forced-dissipated problem. In the present work, the forced results

with small values of Ekman friction are still too large and too barotropic. Based

on the above reasoning, the author expects forced-dissipated SW systems to behave

differently.
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