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Equations are derived for analyzing the performance of channel estimate based equalizers. The
performance is characterized in terms of the mean squared soft decision error (�s

2) of each equalizer.
This error is decomposed into two components. These are the minimum achievable error (�o

2) and
the excess error (��

2). The former is the soft decision error that would be realized by the equalizer
if the filter coefficient calculation were based upon perfect knowledge of the channel impulse
response and statistics of the interfering noise field. The latter is the additional soft decision error
that is realized due to errors in the estimates of these channel parameters. These expressions
accurately predict the equalizer errors observed in the processing of experimental data by a channel
estimate based decision feedback equalizer �DFE� and a passive time-reversal equalizer. Further
expressions are presented that allow equalizer performance to be predicted given the scattering
function of the acoustic channel. The analysis using these expressions yields insights into the
features of surface scattering that most significantly impact equalizer performance in shallow water
environments and motivates the implementation of a DFE that is robust with respect to channel
estimation errors. © 2005 Acoustical Society of America. �DOI: 10.1121/1.1907106�

PACS numbers: 43.60.Dh, 43.60.Mn, 43.30.Re �EJS� Pages: 263–278

I. INTRODUCTION

The use of adaptive coherent equalizers for high rate
underwater acoustic communications is increasingly com-
mon for a large number of applications. The ability to quan-
titatively relate the performance of different equalizers to
prevailing environmental conditions is important for a num-
ber of reasons. First, it allows the relative performance char-
acteristics of different techniques and configurations to be
compared and realistic system trade-offs made in the selec-
tion and demodulation of demodulation algorithms. Second,
it can highlight the factors limiting equalizer performance to
guide future research and development efforts. Finally, with
the field moving rapidly toward the development of under-
water acoustic communications networks using coherent
modulation and demodulation techniques, performance pre-
dictions as a function of environmental conditions and net-
work topology will be an important input to dynamic net-
work control algorithms.

The paper presents the development and interpretation
of quantitative expressions for the performance of three types
of channel estimate based adaptive coherent equalizers.
Channel estimate based equalizers are those that calculate
their filter weights based upon estimates of the time-varying
impulse response of the acoustic channel between the trans-
mitter and receiver and the statistics of the ambient noise
field. Figure 1 shows the basic structure of channel estimate
based equalizers. The three types of equalizers considered
here are the channel estimate based decision feedback equal-
izer �CE-DFE� �Stojanovic et al.1�, the linear MMSE equal-
izer �L-MMSE�, and the passive time-reversal equalizers �P-

TR� �Rouseff et al.,2 Flynn et al.3�. In Stojanovic et al.4

expressions were developed for the total error achieved by a
CE-DFE that either has perfect knowledge of the channel
impulse response or perfect knowledge of the second-order
statistics of the channel impulse response estimation errors.

The expressions developed here are new in that they
separately quantify the equalizer errors that are due to the
realization of the channel impulse response and the ambient
noise and the degradation in performance that is due to the
equalizer having imperfect estimates of the channel impulse
response. This leads to new insights into the factors that can
limit equalizer performance and the characteristics of equal-
izers that are robust with respect to channel estimation errors.
The expressions also allow the performance of the CE-DFE,
L-MMSE, and P-TR equalizers to be compared within a
common framework when each equalizer has the same infor-
mation regarding the channel impulse response and the sta-
tistics of the ambient noise field. This work is an expansion
of the work originally presented in Preisig.5 This work also
presents the results of the processing and analysis of field
data collected during the SPACE02 experiment. The
SPACE02 experiment was conducted 5 km South of Mar-
tha’s Vineyard, MA in the Fall of 2002. It focused on inves-
tigating the impact of surface processes on high frequency
acoustic propagation and communications in shallow water
environments.

The organization of this paper is as follows. Section II
outlines notation as well as the expressions for the modeled
channel impulse response and the equalizer filter coeffi-
cients. Similar expressions with varying notations for the fil-
ter coefficients of channel estimate based equalizers can be
found in Stojanovic et al.4 and standard communications
textbooks. Section III presents and discusses the derivationa�Electronic mail: jpreisig@whoi.edu
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of the expressions for the errors achieved by the channel
estimate based equalizers given an estimate of the channel
impulse response and the statistics of the ambient noise field
and channel estimation errors. Section IV describes the algo-
rithm �the exponentially weighted least-squares estimator�
used to estimate the channel impulse response and presents a
new expression predicting its performance. Section V de-
scribes the relevant characteristics of the SPACE02 experi-
ment during which the data analyzed here was collected.

Section VI presents and analyzes the results achieved
when processing communications signals from the SPACE02
experiment with CE-DFE and P-TR equalizers. Predictions
of equalizer performance using the expressions derived in
Secs. III and IV are shown to closely match the observed
performance of the equalizers. Two methods of performance
prediction are shown. The first method �Sec. VI A� uses es-
timates of the statistics of the channel estimation error cal-
culated directly from the processed signals. The results of
these predictions validate the expressions derived in Sec. III.
The second method �Sec. VI B� uses estimates of the statis-
tics of the channel fluctuations to predict the statistics of the
channel estimation errors as described in Sec. IV. These pre-
dicted statistics of the channel estimation errors are then used
to predict equalizer performance. It is this later approach that
must ultimately be fully developed to allow equalizer perfor-
mance to be rigorously related to environmental conditions.
Finally, the performance of CE-DFE and P-TR equalizers is
compared in Sec. VI C and a CE-DFE with improved robust-
ness with respect to channel estimation errors is presented in
Sec. VII. Section VIII presents conclusions of the paper.
Derivations of expressions presented in the body of the paper
and the method used to estimate channel scattering functions
are described in the appendices.

Throughout this paper, boldface uppercase letters denote

matrices, boldface lowercase letters denote vectors �all vec-
tors are assumed to be column vectors�, and lowercase letters
denote scalar quantities. The superscripts t, *, and h denote
transpose, complex conjugate, and Hermitian �complex con-
jugate transpose�, respectively. For any square matrix Q, the
notation QM denotes the conjugate symmetric part of Q. That
is,

QM �
Q�Qh

2
.

The symbols I and 0 denote the identity matrix and the ma-
trix or vector of all zeros, respectively. When necessary, the
size of the matrices or vectors will be explicitly denoted
�e.g., 0N�M for a matrix of all zeros with N rows and M
columns�. The caret denotes the estimate of the quantity un-

der the caret �e.g., g̃̂ denotes the estimate of g̃�.

II. CHANNEL AND EQUALIZER MODEL

All data processing, analysis, and modeling in this paper
is done with respect to a sampled baseband received signal.
�See Sec. V for a description of this baseband signal.� Thus
all discussion is with respect to discrete time signals and
processes. The acoustic channel is modeled as a time-
varying, discrete time system described by the complex base-
band time-varying impulse response. �See Proakis6 and Van
Trees7�. The received signal at time n is given by

u�n�� �
m��Na

Nc�1

g*�n ,m�d�n�m��v�n� , �1�

where g�n ,m� is the baseband complex time-varying im-
pulse response relating the input signal at time (n�m) to the
output signal at time n, d�n� is the complex baseband trans-
mitted data, and v�n� is complex baseband observation
noise. The quantities Na and Nc denote, respectively, the
number of acausal and causal taps in the impulse response.8

This equation can be put into the vector form of

u�n�� g̃h�n�d̃�n��v�n� . �2�

where

g̃�n���g�n ,Nc�1� , . . . ,g�n ,0� , . . . ,g�n ,�Na�� t,

and

d̃�n���d�n�Nc�1� , . . . ,d�n� , . . . ,d�n�Na�� t

are samples of the impulse response and transmitted data
symbols, respectively. In this section, the received signal is
assumed to be sampled at the transmit symbol rate. The ex-
tension of the analysis to fractionally spaced systems is con-
ceptually straightforward, but the notation is cumbersome.
The final results of the analysis are equally applicable to
symbol rate and fractionally spaced systems. Note that the
experimental data presented in this paper were fractionally
sampled at a rate of 2 samples/symbol �See Sec. V�.

The equalizers considered here �Fig. 1� each consist of a
linear, finite impulse response �FIR� feedforward filter that
filters the received signals and, in the case of the CE-DFE, a
FIR feedback filter that filters and feeds back estimates of the
transmitted data symbol. The output of the filter is the soft

FIG. 1. The structure of channel estimate based coherent equalizers. The
received signal, u�n� , is processed to generate estimates of the time-varying
impulse response of the channel between the transmitter and each receive
hydrophone. The impulse response estimates are used to compute the equal-
izer filter weights. These filter weights are used to implement the equalizer
and estimate the desired data symbol. Two different types of equalizers are
shown. The upper equalizer is a channel estimate based decision feedback
equalizer �CE-DFE� and the lower equalizer is a linear equalizer. The feed-
forward weights for both filters are denoted here as hff and the feedback
weights for the CE-DFE are denoted here as hfb . In this paper, two different
linear equalizers are considered. The first is the linear minimum mean
squared error �L-MMSE� equalizer. The filter weights for this equalizer are
denoted in the text as hlin . The second is the passive time-reversal �P-TR�
equalizer. The filter weights for this equalizer are denoted in the text as htr .
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decision estimate, d̂ s�n� , of the transmitted data symbol,
d�n� . The estimate d̂ s�n� is the input to a decision device
that generates the final estimate, d̂�n� , of the transmitted
data symbol.

For a linear equalizer �e.g., the L-MMSE and P-TR
equalizers� the soft decision estimate of the transmitted data
symbol, d̂ s , is given by

d̂ s�n��hh�n�u�n� , �3�

where h�n� is a vector of the feedforward filter coefficients
at time n and

u�n���u�n�Lc�1� , . . . ,u�n� , . . . ,u�n�La�� t. �4�

Here, Lc and La denote the number of causal and
acausal taps, respectively, of the feedforward filter. The no-
tation hlin and htr will be used to denote the filter coefficient
vectors for the L-MMSE and P-TR equalizers, respectively.
For the CE-DFE, d̂ s is given by

d̂ s�n��hff
h�n�u�n��hfb

h �n�d̂fb�n� . �5�

Here, hff and hfb are vectors of the coefficients of the
CE-DFE feedforward and feedback filters, respectively. For a
feedback filter of length L fb symbols, d̂�n� is a vector of
estimates of past transmitted data symbols given by
d̂f b�n��� d̂�n�L f b� , . . . , d̂�n�1�� t. The span of the feed-
back filter should be less than or equal to the causal delay
spread of the convolution of the channel impulse response
and the feedforward filter. Therefore, L fb�Lc�Nc�2.9

Combining Eqs. �2� and �4� yields

u�n��G�n�d�n��v�n� , �6�

where

d�n���d�n�Lc�Nc�2� , . . . ,d�n� , . . . ,d�n�La�Na�� t

and

v�n���v�n�Lc�1� , . . . ,v�n� , . . . ,v�n�La�� t.

G�n� is the channel impulse response matrix with the ith
row composed of g̃h�n�Lc�i� packed with leading and
trailing zeros to position it in the appropriate columns of the
matrix with respect to the elements of the vector d�n� .

The notation presented thus far has been specific to
single channel equalizers. Multichannel equalizers are ac-
commodated within this notation by stacking the feedfor-
ward filter coefficient vector for each channel into a single
larger vector, stacking the received signal vector, u, for each
channel into a single larger vector, and stacking the impulse
response matrix, G, for each channel into a single matrix
with the same number of columns as the original matrix but
a greater number of rows.

It is instructive to represent G using its column vectors
indexed in the following manner:

G�n���g�Nc�Lc�2 � , . . . ,g1 ,g0 ,g�1 ,. . . ,g��Na�La�� , �7�

The dependence of the columns of G�n� on the time index n
will now be suppressed for notational convenience. Note that
the rows of G are composed of the appropriately positioned
versions of the impulse response vector g̃h. In this way, each

row of G relates a subset of the elements of the transmitted
data vector d�n� to the corresponding element of the re-
ceived signal vector u�n� . In contrast, the vector gi denoting
a particular column of G is a replica vector for the data
symbol d�n�i� in the received signal vector u�n� . That is, it
specifies the contribution of one transmitted data symbol
symbol d�n�i� to the entire received signal vector.

Partition the transmit data symbols in d�n� into three
groups: dfb�n���d�n�L fb� , . . . ,d�n�1�� t, d�n� , and do�n�
which is composed of the remaining elements of d�n� . Par-
tition the columns of G�n� into three similarly defined sets:
Gfb , g0 , and Go . Then Eq. �6� can be rewritten as

u�n��g0d�n��Gfbdfb�n���v�n��Godo�n� �. �8�

The first term is the portion of the received signal vector,
u�n� , that corresponds to the transmitted data symbol to be
estimated, d�n� . The second term is the portion of u�n� that
can be canceled by the output of the feedback filter in a
CE-DFE, and the terms in the parentheses represent an ef-
fective observation noise that the feedforward filter must try
to eliminate. Assuming that the data sequence is a zero-
mean, white sequence with a variance of one,10 the data se-
quence is independent of the channel impulse response and
v�n� , and that v�n� is a zero-mean sequence with covariance
Rv that is independent of the channel impulse response, the
effective noise correlation matrix, Q, can be written as

Q�Rv�GoGo
h . �9�

With the model and quantities so defined, a number of
approaches can be used to calculate the optimal filter coeffi-
cients. One such approach is given in Stojanovic et al.4 In
that paper, the effective noise correlation matrix, denoted
with the symbol R, includes the impact of channel estimation
errors. Therefore, the calculated filter coefficients and subse-
quent error analysis are valid for the case where the DFE has
accurate knowledge of both the noise statistics and the
second-order statistics of the channel estimation errors. For
the filter calculation and performance analysis presented
here, there is no assumption that the DFE knows the statistics
of the channel estimation errors.

The filter coefficients for the three equalizers are calcu-
lated using estimated quantities for Rv , G, and therefore Q.
In the following expressions, these estimated quantities are
denoted by the caret �e.g., R̂v). The filter coefficient vectors
for the L-MMSE and CE-DFE equalizers are selected to
minimize the mean squared soft decision error (E� �d̂ s�n�
�d�n��2�) assuming that the estimates of Rv and G are ac-
curate and that the statistical assumptions stated in the para-
graph before Eq. �9� hold. The expressions for these filter
coefficient vectors are

hff�
Q̂�1ĝ0

1� ĝ0
hQ̂�1ĝ0

, hfb��Ĝfb
h hff , �10�

hlin�
�Q̂�ĜfbĜfb

h ��1ĝ0

1� ĝ0
h�Q̂�ĜfbĜfb

h ��1ĝ0

. �11�

The P-TR equalizer is a normalized matched filter so its co-
efficients are given by
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htr�
ĝ0

ĝ0
hĝ0

. �12�

See Appendix A for a derivation of Eqs. �10�–�12�.

III. EQUALIZER PERFORMANCE PREDICTIONS

Here, equalizer performance is characterized in terms of
the variance of the soft decision error �s�( d̂ s�n��d�n�).
This error will depend on both the estimate of the channel
impulse response as well as the error in this estimate. For the
analytical results presented here, it is assumed that correct
values of the transmitted signal are used to estimate the
channel impulse response and as the input to the feedback
filter of the CE-DFE. The experimental data were processed
in this same manner. That is, the equalizers were run in a
‘‘training mode.’’ The impact of the decay in the quality of
the channel estimate resulting from using incorrect signal
decisions in the estimation algorithm or the feedback of in-
correct signal decisions has not been treated here. Thus, the
observed and predicted values of the variance of the soft
decision error are lower bounds on what could actually be
achieved.

Let the true channel impulse response matrix be given
by

G�n��Ĝ�n��EG , �13�

where EG is the error in the estimate of the channel impulse
response matrix. Then for the CE-DFE, combining Eqs. �5�
and �8� results in

d̂ s�n��hff
h�n��g0d�n��Gfbdfb�n��v�n��Godo�n� �

�hfb
h �n�d̂fb�n� .

Then, substituting in Eqs. �10� and �13�, the soft decision
estimate can be written as

d̂ s�n��hff
h�n�� ĝ0d�n��v�n��Ĝodo�n� ��hff

h�n�

��Ĝfbdfb�n��Ĝfbd̂fb�n� ��hff
h�n�EGd�n� .

Assuming that the past symbol decisions that are inputs to
the feedback filter are accurate, the second term equals zero
and this becomes

d̂ s�n��hff
h�n�� ĝ0d�n��v�n��Ĝodo�n� �

�hff
h�n�EGd�n� . �14�

Subtracting d�n� from both sides of Eq. �14� yields the fol-
lowing expression for the soft decision error of a CE-DFE:

�s�n���hff
h�n�� ĝ0d�n��v�n��Ĝodo�n� ��d�n� �

�hff
h�n�EGd�n� . �15�

Similarly, the expression for the soft decision estimate for the
L-MMSE and P-TR equalizers can be written as

d̂ s�n��hh�n�� ĝ0d�n��v�n��Ĝodo�n��Ĝfbdfb�n� �

�hh�n�EGd�n� , �16�

where h�n� is the appropriate filter coefficient vector (hlin�n�
or htr�n�). Subtracting d�n� from both sides of Eq. �16�
yields the following expression for the soft decision error of
the L-MMSE and P-TR equalizers:

�s�n���hh�n�� ĝ0d�n��v�n��Ĝodo�n��Ĝfbdfb�n� �

�d�n� ��hh�n�EGd�n� . �17�

Under the assumption that the estimate of the channel
impulse response is a minimum mean squared error estimate,
the error matrix EG is uncorrelated with the estimated chan-
nel impulse response matrix and the received signal and the
expectation of EG conditioned on Ĝ equals zero. Under these
conditions, the first and second terms in these expressions
are uncorrelated. The variance of the first term represents the
minimum achievable error �MAE� of the equalizer and is
denoted by �o

2. This is the error that will be achieved by the
equalizer given that it has perfect estimates of the channel
impulse response and the noise statistics. This error depends
on the static structure of the channel impulse response and
the statistics of the ambient noise but not on the dynamics of
the channel impulse response fluctuations. The variance of
the second term is the excess error and is denoted by ��

2.
This error is the additional soft decision error that is due to
errors in estimating the channel impulse response. The vari-
ance of the soft decision error is given by �s

2��o
2���

2.
The MAE can be calculated by substituting the appro-

priate expressions for the equalizer coefficients into the first
term in Eqs. �15� and �17� and calculating the variance of the
resulting term. For the three different equalizers, the variance
of the MAE is given by

�oDFE

2 �
1

1� ĝ0
hQ̂�1ĝ0

, �18�

�o lin

2 �
1

1� ĝ0
h�Q̂�ĜfbĜfb

h ��1ĝ0

, �19�

�o tr

2 �
ĝ0

h�Q̂�ĜfbĜfb
h �ĝ0

� ĝ0
hĝ0�2

. �20�

See Appendix A for a derivation of these expressions for the
variance of the MAE for each type of equalizer.

Comparing Eqs. �18�, �19�, and �20�, it can be shown
that

�oDFE

2 ��o lin

2 ��o tr

2 .

Furthermore, it can be shown that �oDFE

2 and �o lin

2 will always

decrease when the number of received signal channels or the
length of the feedforward of feedback filters is increased.

The reduction in MAE when comparing the MAE of the
L-MMSE equalizer to the P-TR equalizer is due to the
MMSE adaptation of the former equalizer while the reduc-
tion in MAE when comparing the CE-DFE to the L-MMSE
equalizer is due to the cancellation of the interference energy
associated with the ‘‘replica vectors’’ corresponding to the
columns of Gfb . For all three equalizers, the MAE can be
evaluated in terms of the quadratic product of the replica
vector associated with the data symbol being estimated, g0 ,
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and a matrix determined by the observation noise and the
outer product of a subset of the columns of G (Go for the
CE-DFE, Go and Gfb for the L-MMSE and P-TR equalizers�
that are the replica vectors of interfering data symbols. The
structure of the channel impulse response matrix impacts the
minimal achievable error through these replica vectors.

The variance of the excess error is the variance of the
second term in Eqs. �15� and �17�. For the three different
equalizers, this yields a common form of

��DFE

2 �hff
hREG

hff , �21�

�� lin

2 �hlin
h REG

hlin , �22�

�� tr

2 �htr
hREG

htr , �23�

where REG
�E�EGEG

h �Ĝ� . Thus the sensitivity of each equal-
izer to channel impulse response estimation errors is deter-
mined by the magnitude squared of the vector of the equal-
izer’s feedforward filter coefficients and the projection of
these coefficient vectors on the eigen-structure of REG

. In the
special case where REG

is a scalar times the identity matrix,
the sensitivity of each equalizer to channel estimation errors
is proportional to the magnitude squared of the feedforward
filter weight vector.

The soft decision error expressions derived in this sec-
tion and used in Sec. VI B assume that the statistics of the
channel and data estimation errors are conditioned upon the
channel estimate. Thus, the channel estimate is considered to
be a deterministic quantity and the actual channel realization
a stochastic quantity. This approach is taken for several rea-
sons. First, it yields results that offer better insight into the
functional dependence of equalizer performance on the de-
terministic channel structure and the rate of fluctuation of the
channel impulse response than do methods that condition the
statistics on the true channel state. Second, unconditional
statistics �i.e., conditioned on neither the channel impulse
response nor the estimate of the channel impulse response�
would not clearly highlight some aspects of the relationship
between important physical processes and the performance
of the algorithms considered here. An example of such a
relationship is the cyclic nature of the soft decision error and
the relationship of the time scale of the fluctuation to the
dominant surface wave period discussed in Sec. VI A. Third,
the expressions presented here can be used to aid in the op-
timal dynamic configuration of channel estimate based
equalizers given channel estimates and estimates of the chan-
nel dynamics. In this case, these conditional statistics would
be the appropriate ones to use. Finally, the experimental re-
sults presented here indicate that the resulting expressions
yield results that are relatively accurate to within the limits
of our ability to predict the correlation matrix REG

.

IV. CHANNEL ESTIMATION AND ERROR

The excess error exhibited by any channel estimate
based equalizer depends upon the quality of the channel es-
timate. For the analysis and results presented here, the chan-
nel estimation algorithm is the exponentially weighted least
squares algorithm. While this algorithm does not yield mini-

mum mean squared error estimates of the channel impulse
response and therefore results in a violation of the assump-
tion that the channel esimates and estimation error are uncor-
related, the analysis of experimental data in Sec. VI indicates
that the assumption is sufficiently valid for the prediction of
excess error.

With the exponentially weighted least squares algorithm,
the estimate of the channel impulse response is given by

ĝ̃�n��arg min
g̃

�
m�0

n

	n�m�u�m�� g̃hd̃�m��2, �24�

where 	 is a constant ‘‘forgetting factor’’ between zero and
one. Assume that the channel impulse response, g̃�n� , is a
zero-mean, wide-sense stationary random process with cor-
relation matrix Rg̃, g̃�m��E� g̃�n� g̃h�n�m�� . Then, the error

correlation matrix R� ,��1��E�( g̃̂�n�� g̃�n�1�)( g̃̂�n�� g̃�n
�1�)h� is given by

R� ,��1��
1

2
 �
�



 �e� j��1�2

�1�	e� j��2
Sg̃, g̃���d�

�
�1�	�

�1�	�
�v

2I, �25�

where

Sg ,g���� �
m���

�

Rg̃, g̃�m�e� j�m �26�

is the spectral correlation matrix for the time-varying chan-
nel impulse response vector g̃�n� . Here, the observation
noise correlation matrix Rv is assumed to equal �v

2I and the
data symbol variance is assumed equal to one as stated pre-
viously. The first term in Eq. �25� is the lag error resulting
from the time variation of the channel while the second term
is the error variance due to the observation noise. See Ap-
pendix B for a derivation of Eq. �25�. While experimental
data will show that the channel does not exhibit the behavior
of a stationary random process, this model is useful for pre-
dicting the algorithm dependence on channel behavior over
short time periods.

Note that the total mean squared channel estimation er-
ror equals the trace of the error correlation matrix. Thus, it is
the diagonal elements of this matrix that determine the total
mean squared estimation error, and through Eq. �25�, this
depends on the diagonal elements of the spectral correlation
matrix. These diagonal elements are the channel scattering
function �See Proakis6 and Van Trees7� defined as a function
of delay and Doppler. Figure 2 shows schematically the cal-
culation of the first term in Eq. �25� from the channel scat-
tering function.

The error correlation matrix REG
required for the calcu-

lation of ��
2 is related to the error correlation matrix R� ,��1�

defined in Eq. �25�. The matrix is reasonably approximated
by a Toeplitz matrix with each element of the ith diagonal of
REG

equal to the sum of the elements along the ith diagonal
of R� ,��1� . That is, the terms on the ith diagonal of REG

represent the sum of the correlations between the error in
estimating all pairs of taps of the channel impulse response
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separated by a delay of i samples. For wide-sense stationary,
uncorrelated scattering �WSSUS� channels, R� ,��1� is a di-
agonal matrix thus resulting in REG

equaling the trace of
R� ,��1� times the identity matrix. Therefore, evaluation of
Eqs. �21�–�23� for this case shows that the excess error for

each equalizer equals the trace of R� ,��1� times the magni-
tude squared of the feedforward filter coefficient vector for
each equalizer. Furthermore, for the case of the WSSUS
channel the matrix REG

can be completely determined from
the scattering function of the channel.

This result is independent of the distribution of the chan-
nel estimation error among the taps of the channel impulse
response vector. While these correlation matrices are not
conditioned upon the channel estimate �or equivalently, the
calculated feedforward filter weights� as required to properly
evaluate Eqs. �21�–�23�, they do lend insights into the chan-
nel and equalizer characteristics that impact robustness with
respect to channel estimation errors. Analysis of data in Sec.
VI indicates that in some cases the uncorrelated scattering
assumption is sufficiently valid to allow for accurate predic-
tion of the excess error and in other cases the full correlation
matrix REG

is needed.

V. THE SPACE02 EXPERIMENT

The experimental data presented in this paper were col-
lected during the Surface Processes and Acoustic Communi-
cations Experiment �SPACE02� that took place at the Air Sea
Interaction Tower of the Martha’s Vineyard Coastal Obser-
vatory in the Fall of 2002. A side view of the relevant portion
of the experiment and associated physical parameters are
shown in Fig. 3. A reference hydrophone was deployed at the
same depth as and approximately 1 m from the source trans-
ducer to monitor signal transmissions. The sound speed dur-
ing the experiment was estimated to be approximately 1485
m/s during the time that the data were collected. The signal
transmission and data acquisition systems were both driven
by a common sampling clock resulting in no clock drift be-
tween the two systems. This enabled reliable and precise
timing of signal transmissions and receptions. Thus, given

FIG. 2. Graphic representation of the use of a scattering function to predict
the lag error �i.e., the first term in Eq. �25�� that is achieved by an exponen-
tially weighted least-squares algorithm used in estimating the time-varying
channel impulse response. �a� An estimated scattering function of the chan-
nel encountered during the SPACE02 experiment. See Sec. V and Appendix
C for descriptions of the experiment and the method used to estimate the
scattering function, respectively. This panel is shown in log scale and the
range of the color scale is 16 dB. The delay axis is shifted so that a delay of
zero corresponds to the peak of the direct path arrival. For each delay tap of
the sampled impulse response �the vertical axis on the upper panel�, the lag
error associated with estimating that tap is a weighted integral across Dop-
pler of the scattering function evaluated at that delay. �b� The weighting
function for different values of the exponential weighting factor 	. The
bottom curve corresponds to the lowest value of 	 �	�0.9933� with succes-
sively higher curves corresponding to successively higher values of 	. The
top curve corresponds to a value of 	�0.999. For this figure, a least-squares
algorithm update rate of 11.16 kHz is assumed. Note that as 	 increases thus
increasing the ‘‘averaging interval’’ of the least-squares estimation algo-
rithm, the weighting which determines the contribution of energy at each
Doppler frequency to the estimation error increases. Thus, energy at low
Doppler frequencies that has an insignificant contribution to the estimation
error at low values of 	 can make a significant contribution to the estimation
error at the highest values of 	.

FIG. 3. Side view of the SPACE02 experiment. A source transducer was
mounted 6.25 m above the bottom on top of a rigid tripod. The transducer
was spherical and had an omni-directional beampattern. A receive hydro-
phone array was mounted on top of a rigid tripod that was 2 m tall. This
vertical, linear array consisted of eight hydrophones with variable spacing
and a total aperture of 2.1 m. Data presented in this paper were collected on
the center four hydrophones of the array. The spacing between these hydro-
phones �from bottom to top� was 6.4, 3.7, and 8.4 cm yielding a total
aperture of 18.5 cm. The lowermost of the hydrophones was 2.7 m above the
bottom. In all cases where results are shown from processing data from just
one hydrophone, the hydrophone used is the lowermost of the four. The
horizontal range from the transducer to the hydrophone array was 238 m.
The bottom was flat in the area of the experiment. The water depth was
approximately 16 m during the experiment.
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the fact that the source transducer and receive hydrophones
were deployed on rigid tripods, all fluctuations or drifts in
the received signal relative to the transmitted signal can be
attributed to environmental fluctuations.

The transmit and receive signals were sampled at a rate
of 44.6428 kHz. Transmit signals were generated with a cen-
ter frequency of 14 kHz, and were prefiltered to provide an
approximately flat system frequency response over a band-
width of approximately 12 kHz. The signals were transmitted
at 56 s intervals with approximately 53.2 s of continuous
transmission during each interval. The data presented here
are from transmissions of a binary phase shift keyed signal
modulated by continuous repetitions of a 4095 point maxi-
mum length shift register sequence �m-seq� �see Proakis6�.
The symbol rate of these data was 11160.7 symbols/s. The
received signals were modulated to baseband, low pass fil-
tered, and downsampled by a factor of 2 to yield a baseband
sample rate of 22.3214 kHz or 2 samples per symbol. This
baseband signal was the input to subsequent channel estima-
tion, scattering function estimation, and equalization algo-
rithms.

Data processed here were collected during two different
56 s transmission intervals. The data sets from these two
intervals will be referred to as data set 331 and data set 334.
The main difference between the two intervals is that signifi-
cant wave height during the interval corresponding to data
set 331 was 0.3 m �very calm conditions� while the signifi-
cant wave height during the interval corresponding to data
set 334 was 3.0 m �very rough conditions�. Channel impulse
response estimates made using these data are shown in Fig.
4.

VI. EQUALIZER PERFORMANCE ANALYSIS

The data from the SPACE02 experiment was processed
using CE-DFE and P-TR equalizers to compare observed
and predicted performance. As described previously, the
equalizers were run in ‘‘training’’ mode. That is, the channel
estimation algorithm was given perfect estimates of the
transmitted data with which to estimate the channel impulse
response. In addition, the data symbols fed back through the
feedback filter of the CE-DFE were the true data symbols
rather than the estimated data symbols. Note that in channel
estimate equalizers, the most up-to-date channel estimate
available for calculating filter weights would be the one that
could be estimated using data symbols that were demodu-
lated up to that time. This lag between the channel estimate
and the data symbols being estimated by the equalizer was
enforced in all processing.

In all cases, the length of the impulse response estimate
was 175 symbols �350 baseband samples� corresponding to a
delay spread of 15.7 ms. The channel estimation algorithm
used exponential weighting factors of 	�0.9966 and
	�0.9933, respectively, for data sets 331 and 334. The algo-
rithms updated estimates at the symbol rate yielding effective
averaging intervals, defined as 1/�1�	�, of 294 and 149 sym-
bols, respectively. This channel length and these exponential
weighting factors offered the best compromise between
tracking enough of the channel impulse response to account
for the total energy in the received signal and keeping the

FIG. 4. Intensity of the estimates of the time-varying impulse response of
the channel between the transducer and the lowermost of the hydrophones
from which data is presented. The estimates were made using exponentially
weighted least-squares algorithms. These estimates use data from two dif-
ferent 53.2 s transmission sequences. �a� The estimates made using data
collected during a period when the significant wave height was 0.3 m. This
is referred to in the paper as data set 331. �b� The estimates made using data
collected during a period when the significant wave height was 3.0 m. This
is referred to in this paper as data set 334. In �a� and �b�, the levels are
represented in dB relative to the mean intensity of the direct path arrival
during the period. The delay axis has been shifted so that a delay of zero
corresponds to the peak of the direct path arrival. The direct and first bottom
bounce arrivals make up the thick solid orange line at the bottom of �a� and
�b�. The white tic marks at the right edge of �a� and �b� represent the
predicted arrival time of each successive arrival as labeled on the right-hand
side. In order from bottom to top these are the surface, surface/bottom,
bottom surface, bottom/surface/bottom, and surface/bottom/surface arrivals.
The estimates shown in �a� show a stable arrival pattern and close agreement
between predicted and actual arrival times. The estimates in �b� show a
highly variable arrival pattern. The arrival time predictions were made as-
suming two-dimensional propagation in the vertical plane joining the source
and receiver and assuming a flat sea surface and bottom. Deviations from
this assumption for an arrival due to scattering from a location other than the
nominal specular reflection point will almost always result in a greater delay
of the arrival �the one exception is the scattering from the trough of a wave
at which the sea surface is below the assumed sea surface level�. Thus, the
predicted arrival times represent the earliest expected arrival time for a
particular path. While the estimates in �b� do not line up with the predicted
arrival times, the data and the predicted arrival times for the surface and
surface/bottom/surface arrivals support this interpretation and represent the
earliest arrival times for the single and double surface bounce arrivals, re-
spectively.
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estimated channel length small enough to enable tracking of
rapid channel fluctuations. The lower value of 	 for process-
ing data set 334 was required to enable better tracking of the
rapid channel fluctuations. The ability of this trade-off to
enable improved overall performance was due in part to the
very high signal-to-noise ratio �SNR� of the data set.

The observed SNR was 41 dB. However, the cut off of
the estimated impulse response at a delay spread of 15.7 ms
resulted in some late arriving energy due to the tail of the
channel impulse response appearing as ambient noise from
the perspective of the channel estimation and equalization
algorithms. When accounting for this energy as part of the
ambient noise, the effective SNR dropped to 18.7 dB. In
calculating the CE-DFE coefficients, it was assumed that the
ambient noise correlation matrix had the form of Rv��v

2I,
where �v

2 was based upon either the observed ambient noise
level or the observed ambient noise level plus the late arriv-
ing energy from the tail of the channel impulse response.
These two values are denoted as �va

2 and �vt
2 , respectively.

For the fractionally spaced equalizer used here, the sampled
ambient noise is not white because the downsampling filter
limits its bandwidth to approximately one half of the full 2

rad/sample of available bandwidth. Thus the model of Rv
��v

2I is not valid in the MAE expressions. However, at the
SNRs observed here, this inaccuracy in the ambient noise
model is not expected to significantly affect the results.

The prediction of equalizer performance required esti-
mating both the MAE and the excess error. The excess error
calculations required estimates of the error correlation ma-
trix, REG

. These estimates were made using two different
methods. The first was to calculate a running average of the
correlation matrix of the residual prediction error of the input
signal to the feedforward equalizer. That is

eff�n��u�n��û�n��u�n��Ĝ�n�d�n� . �27�

This can be rewritten as

eff�EGd�n��v�n� . �28�

Assuming that the observation noise is independent of the
channel estimation error and the transmitted data symbol and
that d�n� is a white, unit variance data sequence yields

Reff
�REG

�Rv . �29�

Thus, subtracting the assumed Rv from the estimated Reff

yields an estimate of REG
. Results generated using this

method are shown in Sec. VI A.
The second method of estimating REG

was to estimate
the channel scattering function as described in Appendix C.
The scattering function estimates were used to calculate the
diagonal elements of R� ,��1� using Eq. �25�. The estimate of
REG

then equals the trace of this matrix times the identity
matrix. Recall that this method assumes that the channel
fluctuations are well modeled as a WSSUS process and the
off-diagonal elements of R� ,��1� therefore equal zero. Re-
sults generated using this method are shown in Sec. VI B.

The presentation of the experimental data here serves
several purposes. The results in Sec. VI A provide experi-
mental verification of the error expressions derived in Sec.

III and quantify the relative contributions of MAE and ex-
cess error to the soft decision error for the conditions en-
countered. They also offer some insight into the factors that
limit equalizer performance which motivates the modifica-
tion of the CE-DFE presented in Sec. VII. The results in Sec.
VI B verify the applicability of Eq. �25� to predicting channel
estimation error and is a further step in the development of
quantitative expressions for predicting the performance of
equalizers given knowledge of environmental conditions. Fi-
nally, the results generated using the CE-DFE and P-TR
equalizers are compared which quantifies the improvement
realized by the MMSE filter coefficient optimization and
DFE structure of the CE-DFE when operating with only a
small hydrophone array aperture as is the case here.

A. CE-DFE performance prediction from the residual
prediction error correlation matrix „Reff

…

Figure 5 shows the predicted and observed estimation
errors when processing data set 334 with a one channel CE-
DFE. There is close agreement between the observed and
predicted soft decision error. For this figure, the assumed
noise level was �vt

2 . These data show a rough balance be-
tween the MAE and excess error. For comparison, the data
were also processed with an equalizer that assumed a noise
level of �va

2 . The result of this processing showed a 3 dB
increase in excess error but a 2.5 dB drop in MAE. Had the
channel fluctuations been slower allowing for the estimation
of a larger portion of the channel impulse response, this
MAE figure would more accurately represent the true MAE
for the equalizer. Thus, in this case, the performance of the
equalizer is dominated by the excess error, that is the ability
to track the channel.

A striking feature of the data in Fig. 5 is the periodic
structure of the fluctuations in the error. The minimum soft
decision error in each period is between �5 and �6 dB. By
comparison, the processing of data set 331 �data collected
during relatively calm conditions� yielded a soft decision er-
ror of �6.1 dB. This indicates that even in periods of rough
surface conditions, the channel cycles periodically between
conditions of a high rate of fluctuation and low rate of fluc-
tuation. The time scale of this cyclic behavior matches that
of the dominant surface waves measured during this time
interval. In addition, the conditions during a low rate of
channel fluctuations are close to as good as those encoun-
tered during calm surface conditions. This conclusion is fur-
ther supported by the analysis in Sec. VI B.

Figure 6 shows comparable data for a four channel CE-
DFE processing data set 334. Again, there is close agreement
between the observed and predicted soft decision error. In
this case, the error is dominated by the excess error. A feature
of the data present in Fig. 6 and to a certain extent in Fig. 5
is that the periodic nature of the soft decision error is due
primarily to fluctuations in the excess error and not the
MAE. In fact, the MAE is relatively constant indicating that
the MAE is somewhat insensitive to the particular realization
of the channel encountered. Figure 7 shows the bit error rates
achieved by the one and four channel equalizers.
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B. Performance prediction using channel scattering
functions and the influence of surface
scattering

While the use of the observed residual prediction error
correlation matrix to predict equalizer performance is effec-
tive for understanding the factors limiting performance in a
postexperiment data analysis scenario, it is less valuable for
the purposes of predicting system performance ahead of
time. The capability to predict communications system per-

formance ahead of time based upon assumed or measured
environmental conditions is highly desirable for future work
on system trade-off studies or the configuration of commu-
nications networks. A step in this direction is to be able to
predict performance based upon the channel scattering func-
tion. The channel scattering function is sufficient to calculate
the diagonal elements of the channel estimation error corre-
lation matrix, REG

. In some cases, these diagonal elements
are adequate to yield accurate predictions of equalizer per-

FIG. 5. The predicted and measured data estimation errors are shown for a
one channel CE-DFE processing data set 334. All errors are shown in dB
relative to the data symbol variance of �d

2�1. �a� The predicted MAE �solid
gray line� and excess error �dashed black line�. The excess error was calcu-
lated using a running average of the full autocorrelation matrix of the feed-
forward filter residual prediction error. The average used an exponential
weighting with an exponential weighting factor of 	�0.999. Note that the
levels of the two different errors are commensurate with the excess error
exceeding the MAE during times of rapid channel fluctuations and the re-
verse being the case at times with no rapid channel fluctuations. �b� The
predicted �dashed black line� and observed �solid gray line� soft decision
errors. The predicted error shown here is the sum of the predicted MAE and
excess error shown in �a�. Note the periodic nature of the equalizer soft
decision error performance. The data in �a� indicate that the primary source
of the periodic variability is the excess error. In addition, the periodicity is in
line with the dominant surface wave period of 8.5 s that was measured
during the time that these data were collected. Note that the predicted soft
decision error consistently exceeds the observed error by up to 1 dB.

FIG. 6. The predicted and measured data estimation errors are shown for the
four channel CE-DFE processing data set 334. All errors are shown in dB
relative to the data symbol variance of �d

2�1. �a� The predicted MAE �solid
gray line� and excess error �dashed black line�. The excess error was calcu-
lated using a running average of the full autocorrelation matrix of the feed-
forward filter residual prediction error. The average used an exponential
weighting with an exponential weighting factor of 	�0.999. Note that the
excess error is slightly greater than that shown in Fig. 5�a� for the one
channel CE-DFE while the MAE is significantly less than the MAE for the
one channel CE-DFE. The limiting factor in this four channel case is the
excess error due to a combination of channel estimation errors and a lack of
robustness with respect to such errors rather than the MAE which reflects
the static channel structure and the ambient noise. �b� The predicted �dashed
black line� and observed �solid gray line� soft decision errors. The predicted
error shown here is the sum of the predicted MAE and excess error shown
in �a�. The data here exhibit the same periodicity as that exhibited by the
data shown in Fig. 5.
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formance. In these cases, a predicted channel scattering func-
tion based upon acoustic propagation and scattering models
would be the input to the prediction process. In the cases
where the diagonal elements of REG

are not sufficient to
yield accurate performance predictions, additional work
needs to be done.

Figure 8 shows the predicted and observed channel and
data estimation errors for a one channel CE-DFE processing
data set 334 with an estimated noise level of �vt

2 . The pre-
dictions in these cases were made using estimates of the
channel scattering function and show close agreement with
the observed errors. In other cases the agreement was not
close. When processing data set 334 with a one channel CE-
DFE using an estimated noise level of �va

2 , the predictions of
the excess error were 11–16 dB above the values shown in
Fig. 5. This resulted in an overprediction of the soft decision
error by up to 15 dB. In the case of the four channel CE-DFE
processing data set 334, the excess error predictions made
using only the diagonal elements of REG

resulted in a lower
excess error than shown in Fig. 6 and an underprediction of
the soft decision error by approximately 2 dB. Thus, addi-
tional work needs to be done with respect to predicting the
channel estimation error correlation matrix REG

from a priori
information.

The channel scattering function approach is also useful
for determining which channel fluctuations most signifi-
cantly contribute to the degradation of performance by the
equalizers. Figure 9 shows a prediction of the estimation
error for each tap of the channel impulse response as a func-
tion of time in data set 334. These channel estimation errors
are the cause of the degradation of equalizer performance.
The data clearly show a periodic structure to the increase in
channel estimation errors that results in an increased excess

error, soft decision error, and bit error rate in Figs. 5–8. The
errors are largest for the single surface bounce paths reflect-
ing higher energy levels of these arrivals and/or a higher rate
of fluctuation for these arrivals.

The errors for the single surface bounce paths are also
highly localized in delay and time indicating their depen-
dence on conditions in a fairly localized scattering region of
the ocean surface. The single surface bounce path errors in
the period of high error in the interval of 25–30 s also show
a pattern that is characteristic of the surface wave focusing
phenomenon reported in Preisig et al.11 Interestingly, the in-
crease in excess error during this period shown in Figs. 5 and
6 shows a distinctive double hump that may be a result of
this surface wave focusing.

Comparing the high error region around a time of 50 s in
Fig. 9 with the expanded view of the channel impulse esti-
mates shown in Fig. 10 confirms that this region corresponds
to a high intensity arrival with a rapidly increasing delay.
This analysis indicates that a potential area for the improve-
ment of future channel estimate based equalizers is the im-
provement of techniques for tracking these rapidly moving
impulse response arrivals. While the improvement of the
ability to estimate the channel impulse response is one ap-
proach to improving equalizer performance, another ap-
proach is to improve the robustness of these equalizers with
respect to channel estimation errors. Such an approach is
presented in Sec. VII.

C. Comparison of adaptive channel estimate decision
feedback and passive time reversal equalizers

A passive time reversal equalizer was used to process
data set 334 using both one and four channels of data. In
both cases, the performance of the equalizer is dominated by
the MAE. For the one channel case, the MAE was 4.14 dB
resulting in a soft decision error of 4.24 dB and a bit error
rate of 0.2. For the four channel processing, the MAE was
2.54 dB, the soft decision error was 2.58 dB, and the bit error
rate was 0.17. The predicted and observed soft decision er-
rors in both cases showed excellent agreement.

The error of the P-TR equalizer in this case is com-
pletely dominated by the MAE despite the observed large
errors in estimating the channel impulse response showing in
Fig. 8�a�. This result is not surprising since the passive time
reversal equalizer relies on near orthogonality of the replica
vector for the data symbol to be estimated (go) and the re-
maining columns of the channel impulse response matrix �G�
in order to achieve interference cancellation. This orthogo-
nality is difficult to achieve with no spatial aperture �the one
channel case� or the 18.7 cm aperture available in the four
channel case. However, the results shown in Flynn et al.3

indicate that the performance of passive time reversal sys-
tems improves substantially as a significantly wider aperture
and more channels of data are available.

VII. ROBUST DECISION FEEDBACK EQUALIZATION
USING RESIDUAL PREDICTION ERRORS

The results in Sec. VI show that the excess error result-
ing from channel estimation errors and the sensitivity of a

FIG. 7. Bit error rate for the processing of the data set 334 by the one �solid
gray line with circles� and four �dashed black line with asterisks� channel
CE-DFEs. These bit error rates were calculated over 1230 symbol intervals
corresponding to a time interval of 0.1102 s. Thus, the minimum error rate
shown is 0.000 81, which corresponds to one demodulation error in a single
averaging block. Points in time where successive marks �asterisks for the
four channel data� are not connected by lines indicate periods where there
were no demodulation errors in a block. The data for both equalizers show
periodic increases in bit error rate corresponding to the increases in soft
decision error shown in Figs. 5 and 6.
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traditional CE-DFE to those errors is a major contributor to
the overall soft decision error. Thus, a significant perfor-
mance improvement can be expected by improving the ro-
bustness of the CE-DFE with respect to channel estimation

FIG. 8. Comparison of predicted and observed estimation errors for the
channel estimation algorithm and the one channel CE-DFE processing data
set 334. �a� The predicted �dashed black line� and observed �solid gray line�
received signal residual prediction error achieved by the exponentially
weighted least-squares algorithm used to estimate that time-varying channel
impulse response as shown in Fig. 1. The errors are shown in dB relative to
the mean received signal level over the data set. The channel estimate was
updated at the symbol rate of 11 161 symbols/s and the exponential weight-
ing factor was 	�0.9933. The prediction of the residual prediction error is
calculated using Eq. �25� and equals the trace of the calculated error corre-
lation matrix. Note that in the periods of slow channel fluctuations when the
error is low, the predicted error closely matches the observed error. How-
ever, the predicted error is significantly below the observed error in times of
rapid channel fluctuations. It is believed that this is due to the inability to
accurately estimate the channel scattering function during times when the
channel is not only changing rapidly but the channel scattering function is
changing rapidly as well. Such a situation has been shown to exist in some
situations where signals are scattered off of surface gravity waves �Preisig
et al..11�. The analysis shown in Figs. 9 and 10 indicates that it may exist
here as well. �b� The predicted �dashed black line� and observed �solid gray
line� soft decision error achieved by the CE-DFE processing data set 334.
All errors are shown in dB relative to the data symbol variance of �d

2�1.
While the predicted and observed errors show close agreement, the pre-
dicted error is based upon an underprediction of channel estimation error as
evidenced by the data shown in �a�. This indicates that the prediction of soft
decision error itself overestimates the error as discussed in the text and is
consistent with the data shown in Fig. 5�b�.

FIG. 9. The predicted estimation error for each tap of the time-varying
channel impulse response for the time period corresponding to data set 334.
The errors are shown in dB relative to the mean intensity of the direct path
arrival. The delay axis has been shifted in the same manner as Figs. 4 and 10
so that a delay of zero corresponds to the peak of the direct path arrival.
These predicted errors are calculated based on estimates of the channel
scattering function as was the case for the data shown in Fig. 8�a�. The white
tic marks on the right axis correspond to modeled arrival times for succes-
sive propagation paths as described in the caption of Fig. 4. The data clearly
show the periodic nature of the increase in channel estimation errors. In
addition, the data show moderate coincidence between the time at which the
single surface bounce arrivals �the first four arrivals� show high errors and
the periods of time at which later arrivals show high error. The most intense
sources of error are the single surface bounce arrivals. The coherent steep
diagonal structure in the time/delay plane of these errors indicates that they
are caused by a single scattered path with a scattering point that is moving
rapidly in space resulting in a rapid rate of change of the propagation path
length.

FIG. 10. An expanded view of the intensity of the channel estimates for data
set 334 shown in Fig. 4�b�. Note the rapid increase in delay of the arrival
between the bottom/surface and bottom/surface/bottom marks at around the
time of 50 s. The time and delay of this arrival corresponds to the largest
source of channel estimation error shown in Fig. 9 and supports the conclu-
sion that the surface scattered arrivals with rapid rates of change of their
propagation path lengths comprise a large source of channel estimation error
in the data shown here.
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errors. The work presented in Stojanovic et al.4 showed that
the MMSE CE-DFE equalizer given knowledge of the statis-
tics of the channel estimation errors is one that calculates the
filter weights by accounting for these estimation errors in an
assumed noise correlation matrix. However, the estimation of
the statistics of the channel estimation errors was not ad-
dressed.

The residual prediction error of the input signal to the
feedforward filter defined in Eq. �27� can be calculated di-
rectly by the equalizer and used to estimate the required as-
sumed noise correlation matrix. The equalizer using this ap-
proach is referred to here at the residual prediction error DFE
�RPE-DFE�. The data presented here indicate that this is an
effective way of implementing the robust CE-DFE derived in
Stojanovic et al.4 and results in a significant performance
improvement.

The sample effective noise correlation matrix is this ex-
ample was calculated as

R̂eff
�n�� �

m�0

n

	e
n�meff�m�eff

h�m� �30�

with an exponential weighting factor of 	e�0.999. This ef-
fective noise correlation matrix was used in the place of Rv
to estimate the matrix Q in Eq. �9�. The resulting Q was used
in Eq. �10� to calculate the RPE-DFE filter coefficients.

Figure 11 shows the soft decision error and bit error
rates achieved by one and four channel RPE-DFEs process-
ing data set 334. The results show the approach improves the
robustness of the equalizer but does not completely eliminate
the sensitivity to channel estimation errors. A computation-
ally simpler approach was also tried in which R̂eff

�n� was
assumed to be the identity matrix times the mean value of the
diagonal elements of R̂eff

�n� as defined in Eq. �30�. This
approach yielded some performance improvement but not
nearly as much as that indicated by the data in Fig. 11. This
indicates that it is important to properly account for not only
the level of the residual prediction error but also the eigen-
structure of the residual prediction error correlation matrix.

VIII. CONCLUSIONS

Expressions for predicting the minimal achievable error
and excess error of channel estimated based linear and deci-
sion feedback equalizers have been derived and analyzed.
The analysis of experimental data verifies that the expres-
sions can accurately predict equalizer performance when the
second-order statistics of the errors in the channel impulse
response estimates are known. The data also show that the
excess error was always a significant contributor to the soft
decision error when rough sea surface conditions prevailed.
This motivates the use of residual prediction errors to esti-
mate an effective noise correlation matrix that results in an
improved robustness of the CE-DFE to channel estimation
errors. The expressions for the minimal achievable error al-
low its interpretation in terms of the projection of the replica
vector for the data symbol being estimated onto the replica
vectors for the interfering data symbols. This lends insight
into the very poor minimal achievable error exhibited by the

P-TR equalizer compared to that exhibited by the CE-DFE
when using data from a small array aperture.

An expression relating the channel estimation error for
an exponentially weighted least-squares algorithm to the
spectral correlation matrix of the channel impulse response is
presented. For the case of WSSUS channels, this allows for
the prediction of equalizer performance based upon the sta-
tistics of the fluctuations of the channel impulse response in
the form of the channel scattering function. This is an impor-
tant step toward the eventual goal of quantitatively predict-
ing equalizer performance based upon predictions or obser-
vations of environmental conditions. The analysis of data

FIG. 11. Estimation error performance with RPE-DFEs processing of data
set 334. �a� The soft decision error for the one �solid gray line� and four
�dashed black line� channel RPE-DFEs. �b� The bit error rate for the pro-
cessing achieved the one �solid gray line with circles� and four �dashed
black line with asterisks� channel RPE-DFEs. These bit error rates were
calculated over 1230 symbol intervals corresponding to a time interval of
0.1102 s. Thus, the minimum error rate shown is 0.000 81, which corre-
sponds to one demodulation error in a single averaging block. Points in time
where successive marks �circles for the one channel data, asterisks for the
four channel data� are not connected by lines indicate periods where there
were no demodulation errors in a block. Note the improvement in perfor-
mance with respect to the data presented for the standard CE-DFEs in Figs.
5 and 6. This performance improvement is particularly strong in the times
when the channel estimation error is poor. This confirms the improvement in
equalizer robustness with respect to channel estimation errors afforded by
the residual prediction error approach.
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from the SPACE02 experiment collected during rough
weather conditions shows that the equalizer performance
characterized by both the excess error and the soft decision
error is periodic with the period related to the wave period.
Surprisingly, the equalizer performance during the best times
of each period is almost as good as the performance achieved
when processing data collected during calm weather condi-
tions. If this feature proves to hold for a broad range of
shallow water environments, it may be exploitable to im-
prove the overall data throughput of underwater acoustic
communications systems.

Finally, the scattering function analysis approach shows
the distribution of channel estimation errors as a function of
delay in the channel impulse response. The analysis shows a
well-defined structure in delay and time. This structure indi-
cates that the primary contributor to the error is the rate of
change of the propagation path length for well-defined single
surface bounce arrivals. This motivates future work on im-
proving the ability of channel estimation algorithms to track
or estimate these arrivals.
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APPENDIX A: DERIVATION OF EQUALIZER
COEFFICIENT AND MAE EXPRESSIONS

The derivation of the equalizer coefficients assumes that
the estimates of the channel impulse response are accurate
�e.g., G�Ĝ� and that past symbol decisions are accurate
�e.g., dfb�n��d̂fb�n�). Therefore, the caret is dropped off of
the estimates of these quantities throughout this derivation.
Starting with the CE-DFE, let

z�n��� u�n�
dfb�n�� , �A1�

and

h�� hff

hfb
� .

Then, from Eq. �5�

d̂ s�n��hhz�n� .

The equalizer coefficients are the solution to

hopt�arg min
h

E� �hhz�n��d�n��2�G� ,

where the expectation is shown as being conditioned on G. It
is straightforward to show that

hopt�Rz ,z
�1rz ,d , �A2�

and

�oDFE

2 ��d
2�rz ,d

h Rz ,z
�1rz ,d , �A3�

where Rz ,z�E�z�n�zh�n��G� and rz ,d�E�z�n�d*�n��G� .
Recall that d�n� is a unit variance and white sequence and is
independent of v�n� . Then, substituting Eq. �8� into Eq. �A1�

and using the result to evaluate these expectations yields

rz ,d�� g0

0Lfb�1
� , �A4�

and

Rz ,z�� �g0g0
h�Q�GfbGfb

h � Gfb

Gfb
h I � , �A5�

where Q is as defined in Eq. �9�. Partition Rz ,z
�1 as follows:

Rz ,z
�1�� Ã D̃

C̃ B̃
� ,

where Ã and B̃ are square matrices with sizes La�Lc and
L fb , respectively. C̃ and D̃ are appropriately sized rectangu-
lar matrices. Then, hff�Ãg0 , hfb�C̃g0 , and �oDFE

2 �1

�g0
hÃg0 . It can be shown that

Ã��Q�g0g0
h��1�Q�1�

Q�1g0g0
hQ�1

1�g0
hQ�1g0

, �A6�

and

C̃��Gfb
h Ã. �A7�

The first equality in Eq. �A6� and the equality in Eq. �A7�
follow from the application of the matrix inversion identity
for partitioned matrices �Kailath12�. The second equality in
Eq. �A6� follows from the well-known identity for the in-
verse of a rank one update to a matrix. Using Eqs. �A6� and
�A7� to evaluate the expressions for the CE-DFE filter coef-
ficients and MAE yields

hff�Ãg0�
Q�1g0

1�g0
hQ�1g0

,

hfb�C̃g0��Gfb
h hff ,

and

�oDFE

2 �
1

1�g0
hQ�1g0

.

The derivation of similar expressions for the MMSE
Linear equalizer starts with z�n��u�n� and h�hlin ,

hopt�hlin�Rz ,z
�1rz ,d , �A8�

and

�o lin

2 ��d
2�rz ,d

h Rz ,z
�1rz ,d . �A9�

Then,

rz ,d�g0 , �A10�

and

Rz ,z�g0g0
h�Q�GfbGfb

h .

Evaluating Rz ,z
�1 yields
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Rz ,z
�1��Q�GfbGfb

h ��1

�
�Q�GfbGfb

h ��1g0g0
h�Q�GfbGfb

h ��1

1�g0
h�Q�GfbGfb

h ��1g0

. �A11�

Substituting Eqs. �A10� and �A11� into Eqs. �A8� and �A9�
gives

hlin�
�Q�GfbGfb

h ��1g0

1�g0
h�Q�GfbGfb

h ��1g0

,

and

�o lin

2 �
1

1�g0
h�Q�GfbGfb

h ��1g0

.

For the passive time-reversal equalizer, the filter coeffi-
cients are the matched filter normalized so that htrg0�1.
Therefore htr�g0 /g0

hg0 . This yields a soft decision of

d̂ s�n��htr
hu�n��d�n��

g0

g0
hg0

�Gfbdfb�n���v�n�

�Godo�n� ��,

and a soft decision error of

d̂ s�n��d�n��
g0

g0
hg0

�Gfbdfb�n���v�n��Godo�n� ��.

Evaluating the expectation of the magnitude squared of this
soft decision error yields

�o tr

2 �
g0

h�Q�GfbGfb
h �g0

�g0
hg0�2

.

APPENDIX B: DERIVATION OF EQ. „25…

The time-varying channel impulse response, g̃h�n� , is
modeled as a zero-mean, wide-sense stationary vector ran-
dom process with a correlation function

Rg̃ , g̃�m��E� g̃�n� g̃h�n�m�� .

The vector g̃�n� has dimension No�1.
The system identification problem is to estimate g̃�n�

from observations u�n� where

u�n�� g̃h�n�d�n��v�n� . �B1�

d�n� is a known zero-mean, white vector time series with
E�d�n�dh�n���Rd ,d and is independent of g̃�m� for all m
and n. v�n� is zero-mean, white observation noise with a
variance �v

2. v�n� is independent of both d�m� and g̃�m� for
all m and n. The estimate is computed as the solution to Eq.
�24�.

One form of the recursive least-squares solution to Eq.

�24� denoted by g̃̂�n� is �Haykin13�

g̃̂�n�� g̃̂�n�1��R̂d ,d
�1�n�d�n��u�n�� û�n� �*, �B2�

where

û�n�� g̃̂h�n�1�d�n� , �B3�

and R̂d ,d�n���m�0
n 	 (n�m)d�m�dh�m� . The quantity of in-

terest is the M-step state prediction error,

��n�M �n�� g̃̂�n�� g̃�n�M � , �B4�

and its error correlation matrix

R� ,��M ��E���n�M �n��h�n�M �n�� .

For the case considered here, the value of M�1 is used.
While a strict evaluation of the expressions for
REG

�E�EGEG
h �Ĝ� requires the evaluation of R� ,��M � at

multiple lags greater than one, the results achieved using
M�1 suffice to demonstrate the techniques presented in this
paper.

The derivation of the error correlation equations relies
on a state space representation of the process g̃�n� as derived
in Sec. 1 of Appendix B. The state equation for the estima-
tion error is then derived in Sec. 2 of Appendix B. The state
equations for the process and the estimation error are com-
bined in a coupled state model in Sec. 2 a of Appendix B.
Sections 2 b and 2 c of Appendix B present the solution of
the coupled state equations for required cross-correlation ma-
trices and for R� ,��1� .

1. The state space representation of g̃†n‡

For any matrix correlation function Rg̃ , g̃�m� that corre-
sponds to a rational power spectrum, it is possible to define
another zero-mean stationary vector random process g�n�
with dimension Ng
No such that

g�n�1��Ag�n��w�n� , �B5�

g̃�n��Sgg�n� �B6�

for a selection matrix Sg , �The selection matrix Sg is an
No�Ng matrix with all elements equal to zero except for a
single element in each row that equals one�, and

Rg̃ , g̃�m��SgRg ,g�m�Sg
h �B7�

is the above-specified matrix correlation function. Here, A is
an Ng�Ng state transition matrix and w�n� is zero-mean,
white process noise with a correlation matrix Rw . w�n� is
independent of g�0� for all n
0 and is independent of v�m�
and d�m� for all n and m. Note that for M�0,

Rg ,g�M ��Rg ,g�0��AM �h. �B8�

2. The error state equation

Equations �B5� and �B6� can be manipulated and com-
bined to yield

g̃�n�1�� g̃�n��Sg�I�A�g�n��Sgw�n� . �B9�

Substituting Eqs. �B1� and �B3� into Eq. �B2� and substitut-
ing Eq. �B4� into the result yields

g̃̂�n�� g̃̂�n�1��R̂d ,d
�1�n�d�n��v*�n��dh�n���n�n

�1� �. �B10�

Subtracting Eq. �B9� from Eq. �B10�, substituting Eq.
�B4� into the result, and grouping terms results in the error
state equation
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��n�1�n���I�R̂d ,d
�1�n�d�n�dh�n� ���n�n�1��Sg�I

�A�g�n��R̂d ,d
�1�n�d�n�v*�n��Sgw�n� .

�B11�

Equation �B11� is a difference equation with a random
time-varying state transition matrix, (I�R̂d ,d

�1�n�d�n�dh�n�)
and coefficient matrix R̂d ,d

�1�n� . The direct averaging method
�Kushner14� may be used to evaluate the convergence behav-
ior of this equation in an average sense. Under the assump-
tion that these matrices vary slowly with time �i.e., 	 is close
to one�, they can be replaced by their expected values. The
resulting expression can be used to evaluate the steady state
behavior of Eq. �B11� in an average sense. Following the
convention adopted in Haykin13 and Eleftheriou et al.15

R̂d ,d
�1�n� is replaced by (1�	)Rd ,d

�1 and d�n�dh�n� is re-
placed by Rd ,d . With these substitutions, Eq. �B11� can be
rewritten as

��n�1�n��	��n�n�1��Sg�I�A�g�n���1

�	�Rd ,d
�1d�n�v*�n��Sgw�n� . �B12�

a. The coupled state equations

The state equations �B5� and �B12� can be written in
coupled form as

� g�n�1�
��n�1�n���� A 0

Sg�I�A� 	I� � g�n�
��n�n�1��

�� I 0

�Sg �1�	�Rd ,d
�1d�n�

� � w�n�

v*�n�� .
�B13�

For a stable matrix A and 0�	�1, the state transfer matrix
in Eq. �B13� is stable and the equation describes a zero-mean
stationary random process. Therefore

lim
n→�

E���n�1�n���0. �B14�

Define

R� ,g�m��E���n�1�n�gh�n�m��

and let Rg ,��m��R� ,g
h �m� . Then, taking the outer product of

both sides of Eq. �B13�, taking the expectation of both sides,
and taking the limit as n→� yields the following four equa-
tions that are satisfied by Rg ,g�0� , R� ,g�1� , Rg ,��1� , and
R� ,��1�:

Rg ,g�0��ARg ,g�0�Ah�Rw , �B15�

R� ,g�1��	R� ,g�1�Ah�Sg�I�A�Rg ,g�0�Ah�SgRw ,
�B16�

Rg ,��1��	ARg ,��1��ARg ,g�0��I�A�hSg
h�RwSg

h ,
�B17�

R� ,��1��	2R� ,��1��Sg�I�A�Rg ,g�0��I�A�hSg
h

�	R� ,g�1��I�A�hSg
h�	Sg�I�A�Rg ,��1�

�SgRwSg
h��1�	�2�v

2Rd ,d
�1. �B18�

b. Solving the coupled state equations for R�,g[1]
and Rg,�[1]

Equation �B16� can be rewritten as

R� ,g�1��	R� ,g�1�Ah�SgRg ,g�0�Ah�Sg�ARg ,g�0�Ah

�Rw�.

Substituting Eq. �B15� into the last term of this equation and
rearranging terms yields

R� ,g�1��SgRg ,g�0��Ah�I��I�	Ah��1. �B19�

Since 0�	�1 and the magnitude of each eigenvalue of A is
less than one, the matrix 	A has eigenvalues all of whose
magnitudes are less than one. Therefore �Golub et al.16�

�I�	Ah��1� �
m�0

�

	m�Am�h. �B20�

Substituting Eq. �B20� into Eq. �B19�, rearranging terms, and
substituting Eq. �B8� into the result yields

R� ,g�1���Sg� �
m�0

�

	mRg ,g�m� � �I�Ah�. �B21�

Similarly,

Rg ,��1����I�A�� �
m�0

�

	mRg ,g
h �m� � Sg

h . �B22�

c. Solving the coupled state equations for R�,�[1]

Substituting Eqs. �B7�, �B8�, �B15�, �B21�, and �B22�
into Eq. �B18� and rearranging terms yields

R� ,��1��
2

�1�	� � Rg̃ , g̃�0���1�	� �
m�0

�

	mRM g̃ , g̃�m

�1� � �
�1�	�

�1�	�
�v

2Rd ,d
�1. �B23�

3. Frequency domain expressions for Rg̃,g̃†1‡

Let the function 	1(m)�	�1	 �m� when �m�
1 and
equal 0 for m�0. Then, the lag error term �i.e., the first term�
in Eq. �B23� may be rewritten as

Rlag�1���1�	��1� 2Rg̃ , g̃�0���1

�	� �
m���

�

	1�m �Rg̃ , g̃�m� � .

This can be written in the frequency domain as

Rlag�1���1�	��1
1

2
 �
�





�2��1

�	�F�	1��Sg̃ , g̃���d� , �B24�

where F(	M) denotes the Fourier transform of the sequence
	M(m). That is,
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F�	M ��	�M �
�m�
M

	 �m�e� j�m

�
e� j�M�e j�M�	�e� j��M�1 ��e j��M�1 ��

�1�	e� j��2
.

�B25�

Evaluating Eq. �B25� for M�1, substituting the result into
Eq. �B24�, noting that �1�	e� j��2�(1�	e� j�)(1
�	e j�), and combining and rearranging terms yields

Rlag�1��
1

2
 �
�



 �e� j��1�2

�1�	e� j��2
Sg̃ , g̃���d� . �B26�

This result is seen to generalize the result presented in Lin
et al.,17 which is applicable only to channels for which the
power spectrum of the fluctuations of the channel taps is the
same for all taps. Substituting Eq. �B26� for the first term in
Eq. �B23� and recalling that it is assumed that Rd ,d�I yields
Eq. �25�.

APPENDIX C: SCATTERING FUNCTION ESTIMATION

The acoustic signals received from each of the transmis-
sions were processed to yield estimates of the time-varying
scattering function of the acoustic channel �See Proakis6 and
VanTrees7�. The received signals for the maximum length
sequence �m-seq� transmissions �see Sec. V� were modulated
to baseband, low-pass filtered, and then downsampled to a
rate of two samples per symbol. The channel scattering func-
tion was estimated by matched filtering resampled segments
of the received baseband signal with a sequence consisting of
frequency shifted versions of three repetitions of the trans-
mitted 4095 point m-seq. The resampling of the baseband
signal was necessary to account for the fact that the band-
width of the transmitted signal was too large to allow for
modeling the impact of the rate of change of the length of
individual propagation paths as a simple frequency �Doppler�
shift. Note that the wideband nature of the signal and rate of
change of the propagation path lengths results in a violation
of the wide-sense stationary channel assumption. However,
the framework of the channel scattering function when
evaluation over short time intervals is still useful for quanti-
fying and providing insight into the impact of channel fluc-
tuations on the performance of underwater acoustic commu-
nications algorithms.
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