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Abstract – Traditionally, state estimation is applied to 

transmission networks to improve security and redundancy 
of the measurement system. This paper describes the appli-
cation of state estimation to distribution networks in order 
to extend observability of the network. Key features of this 
application are that the network is active, minimal real 
measurements are available and there is minimal commu-
nications infrastructure. This paper presents results from a 
field trial which manages voltage levels in an 11 kV distri-
bution network with distributed generation. The paper 
highlights the problems associated with this application 
and presents some solutions. 

Keywords: State Estimation, Distributed Genera-
tion, Active Networks, Minimal Measurements 

1 INTRODUCTION 

1.1 Background 
As part of their commitments to meeting the require-

ments of the Kyoto agreement on climate change, gov-
ernments and power utilities around the world are at-
tempting to increase the proportion of electrical power 
generated from renewable sources. The size of this gen-
eration is such that it is usually more economic to con-
nect to the power system at lower distribution voltages. 
The type of the generation (e.g. landfill gas, wind, small 
scale hydro) often leads to it being distributed away 
from primary substations, for practical and economic 
reasons. 

The penetration of distributed generation is currently 
limited by the passive operating methods of distribution 
networks. In the UK, at 11 kV, the size of connected 
generation is often restricted by the potential to exceed 
voltage limits. When connections are granted, output 
may be curtailed at times of low network load. At 33 
kV, limitations are often due to line capacity limits. In 
both of these circumstances, increased distributed gen-
eration output may be possible under favourable net-
work conditions, however the lack of measurement and 
control infrastructure precludes this. 

1.2 Aims 
The work reported here is part of a project with aims 

to increase the amount of renewable generation con-
nected in the distribution network through the use of 
active control techniques. It must meet the technical and 
commercial requirements of independent generators and 
distribution network operators (DNOs). In the UK, an 

independent generator requesting a connection may pay 
some or all of the cost of upgrading the network infra-
structure. 

The resulting requirements can be summarised as: 
� Ensure that all regulatory requirements of the DNO 

are met. 
� Ensure that all plant limits are respected. 
� Work with existing measurement and communica-

tions infrastructure. 
� Minimise changes to existing operating methods. 

1.3 Paper Organisation 
This paper concerns the application of state estima-

tion in the scenario described above. Theory appropriate 
to this application is stated in section 2. Section 3 de-
scribes the trial application and presents initial results. 
In section 4 these results are analysed and solutions are 
proposed. 

2 STATE ESTIMATION 

2.1 Normal Form of Basic Equations 
Weighted least squares state estimation as presented 

in [1] aims to minimise the cost function 
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where ∆z = z - h(x), z is a vector of measurements nor-
malised by their respective standard deviations, h(x) is 
the equations defining the normalised measurements in 
terms of the state and x is the state vector for the system. 
∆z is the vector of measurement errors and has a stan-
dard Gaussian distribution n(0,1). The solution occurs 
when 

0).()( T =∆=∇ zxHxJ  (2) 

where H(x) is the Jacobian matrix of h(x). The overde-
termined non-linear system (2) can be linearised and 
solved iteratively leading to a state estimate x̂ . 

G.∆x ≅ HT.∆z (3) 
xk := xk + ∆x (4) 

where  

G = HT.H (5) 



 

When applied to transmission systems, real and 
imaginary parts can often be decoupled leading to a 
linear system that can be solved analytically. This option 
is not appropriate on distribution systems due to lower 
line impedance angles. 

2.2 Solution Methods 
Equation (3) can be solved using Gaussian elimina-

tion with pivoting. However, loss of significance due to 
the wide magnitudes of values in the Jacobian matrix H, 
which is squared in (5), can cause errors and poor con-
vergence of the estimator. 

The gain matrix G can be factorised to improve nu-
merical stability. Since G is symmetric positive definite, 
Cholesky factorisation can be used to factorise G = 
UT.U where U is upper triangular. Equation (3) is then 
solved in two direct substitution steps. 

Other decomposition techniques can improve the so-
lution method. In orthogonal transformation [2] the 
Jacobian H is factorised as H = QT.U, where Q is an 
orthogonal matrix and U is upper triangular. Equation 
(2) can then be solved directly by rewriting as 

U.∆x ≅ Q.∆z (6) 

and since U is upper triangular solved by back substitu-
tion. 

2.3 Measurements 
Measurements z used in state estimation can be of 3 

types: actual measurements, pseudo-measurements and 
virtual measurements. Actual measurements are metered 
on the system; pseudo-measurements of load are models 
of loads, usually defined as Gaussian distributions with 
their mean at half the transformer rating; virtual meas-
urements are artificial values inserted when the value is 
known, for instance zero load injections at busses known 
to have no load connected. Virtual measurements are 
usually modelled with very low standard deviation, 
hence their elements in the error vector ∆z will be 
weighted highly with respect to the other measurement 
types. 

2.4 Distribution State Estimation 
There are issues described in literature that have par-

ticular relevance when applying state estimation to dis-
tribution networks, and these are given below. They 
revolve around ill-conditioning of the gain matrix G, 
which can lead to poor convergence, or non-
convergence, of the iterative equations (3) and (4). 

It is normal in distribution state estimation to find a 
large number of load pseudo-measurements, which may 
cause problems of instability due to increased poor con-
ditioning of the gain matrix. This is discussed in [3] 
however the cause of the poor condition is not ex-
plained. 

Adjacent long and short lines (i.e. large and small 
impedances) are also a source of ill-conditioning [2]. 
This feature of state estimation can be expected to have 
an effect where there are very low impedance lines cou-

pling busses. The authors of that paper proposed an 
orthogonal decomposition method as a general approach 
to reduce the effects of ill-conditioning.  

The combination of measurements with very large 
and very small weighting factors leads to ill-
conditioning of the gain matrix G [4]. The use of virtual 
measurements with load pseudo-measurements leads to 
this situation. A reformulation of the problem as a 
minimisation with equality constraints can improve 
numerical stability. 
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where c(x) = 0 are the equality constraints, C(x) is its 
Jacobian matrix and ∆c = -c(x). 

Equality constraints are used to fix known values, e.g. 
zero injection at a non-load bus. This removes the small 
weighting factors from the H matrix, which is squared. 

Alternative approaches to distribution state estima-
tion are presented in [5, 6]. 

3 IMPLEMENTATION 

3.1 General Infrastructure Provision 
The most prevalent form of control within networks 

is automatic voltage control (AVC) applied to primary 
substation transformers. Occasionally, this is supple-
mented by reactive power control equipment and inline 
regulators. Remote operation of line switches is some-
times possible for network reconfiguration, but use of 
these for dynamic response to network conditions is not 
common. 

Available measurements within the network decrease 
substantially as the voltage level falls. In the UK, at 11 
kV primary substations busbar voltage and primary 
transformer current is usually metered, and is typically 
reported back to the control centre using analogue 
SCADA systems. Feeder currents are normally meas-
ured only for protection purposes. 

At 11 kV, remote from the substation there are usu-
ally no measurements made and there is no communica-
tions infrastructure available. Distributed generation has 
tariff metering but under the UK power system commer-
cial structure this is often not available to the network 
operator in telemetered form. 

3.2 Field Trial 
The diagram for the field trial network presented in 

this paper is given in Figure 1. The original network 
contained over 400 nodes and was simplified to 86 
nodes. The network includes one distributed generation 
site in the form of a 6x 660 kW windfarm. 

The equipment installed in the field trial adjusts the 
target voltage setpoints of transformer AVC relays so is 
sited in the principal primary substation at node 6. Exist-
ing metering and communication infrastructure is lim-
ited. Packet radio (GPRS) communications are used 
between the windfarm and the principal primary substa-



 

tion. A shielded twisted pair (STP) pilot cable carrying 
Ethernet is used between the two primary substations at 
nodes 5 and 6. 

Measurements are taken using existing VTs and CTs. 
Therefore, for current measurement this is generally 
from class 5P CTs. The RTUs calculate local vector 
quantities of voltage and current, which are communi-
cated to the principal primary substation. The VPQ 
block converts these into magnitudes of voltage and real 
and reactive power for use by the state estimator (SE 
block). The results of the state estimation are used by 
the control algorithms, described in [7, 8]. 

3.3 Initial Implementation 
The state estimation algorithm has been coded and 

compiled in MatLab (double precision floating point 
mathematics). The power flow equations used to define 
z = h(x) have been implemented in complex form. Equa-
tion (3) can be restated as 

∆x = G-1.HT.∆z (8) 

and this is implemented in MatLab directly without 
calculation of the matrix inverse G-1 by 

Dx = Gain \ (H' * Rinv * Dz) ;  (9) 

MatLab operators which may require explanation are: 
\ used to solve the matrix equation. Since the gain 

matrix is symmetric positive definite, Cholesky de-
composition with partial pivoting is used. 

 ' matrix transpose 
* matrix multiplication 

In the implementation, z and h(x) are not normalised, 
hence the inclusion of the diagonal matrix Rinv, with 
diagonal elements being the inverse of the measurement 
variances. 
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Figure 1: Diagram of trial network 



 

All nodes that have loads (as indicated in Figure 1) 
and no measurement of power injection have pseudo-
measurements of real and reactive load allocated. The 
measurement value (mean) is set to half the rated load of 
the node and 3 standard deviations are also equated to 
half the load. This is equivalent to a probability of 
99.7% for the load being between zero and the rating. 

3.4 Initial Results 
When executed on a sequence of data the state esti-

mator often failed to converge. A typical example of the 
results when convergence did occur is shown in Figure 
2. This shows voltage and power injection/load meas-
urements and estimates for each node. 

Voltage is on the left scale in per units with the line 
graph indicating the estimate and the error bars indicat-
ing the extent of 3 standard deviations of the estimate. 
The circle plots indicate the three voltage measurements 
provided to the state estimator (nodes 5, 6 and 52). The 
real and reactive load estimates are shown as bars (using 
the right scale) and the pseudo-measurements used to 
form these are indicated using square and diamond plots 
respectively. 

Features of the results that are unsatisfactory include 
� allocation of positive injection of real and reactive 

power to load nodes, 
� poor correlation of voltage estimates to actual voltage 

measurements on those nodes where they are present, 
and 

� frequent failure of the state estimator to converge. 
These are discussed in the following section. 

4 ANALYSIS OF RESULTS 

4.1 Allocation of Generation to Load Nodes 
In Figure 2, the state estimator has allocated positive 

injection of real and reactive power to a number of 
nodes that are loads. It can be seen from Figure 1 that 
this tends to be at nodes with larger values for its 
pseudo-measurements (in comparison with those on the 
same feeder). The following is proposed as explanation 
for this. 

Consider the example of Figure 3, with actual real 
power flow measurements P1 and P2 and pseudo load 
real power injection measurements PA, PB and PC. η is 
the unnormalised measurement error, i.e. ∆z = η/σ. For 
a lightly loaded network P1 + P2 will be substantially 
less than PA + PB + PC. The network model will enforce 
the measurement estimates CBA PPPPP ++=+ 21 . 

Therefore, if η1 and η2 are small, ηA, ηB and ηC will be 
large, and vice versa. 

These errors add towards the cost J, which is to be 
minimised. There are multiple locally optimal solutions 
to these problems. One often found by the estimator is to 
keep the measurement error small for many of the 
smaller pseudo loads (ηA and ηC), resulting in low con-
tribution to J. In order to keep η1 and η2 (with medium 
weights) to a minimum, a very low (or negative) value is 
allocated to one large load, which will have a small 
weighting value (ηB). 
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Figure 2: Results from trial using data for 10th November, 2004 at 0846 



 

As a solution it is proposed to take the power flowing 
into each load group and allocate it to the nodes of that 
group in proportion to the rating of the load at each 
node. In the example of Figure 3 the real power flowing 
into the group is P1 + P2 = 6.0 and this would be allo-
cated as PA = 1.8, PB = 3.0 and PC = 1.2. 

The actual measured values would not then be in op-
position to the pseudo-measurements. A potential prob-
lem resulting from this is that a very small load on a 
feeder would result in some extremely large weights on 
the pseudo-measurements, which may result in further 
convergence problems. Additionally, it is necessary to 
correctly match actual load flow measurements in the 
network to load groups, including distributed genera-
tion. 

It has previously been proposed to take the measured 
load for the group and distribute it to each load in the 
group in proportion to its rating, scaled according to 
load type, time of day, day of week and season [9]. In 
the UK, profiles are available for different load types. In 
order to implement this it would be necessary to esti-
mate the proportion of each load type connected at each 
point. 

A comparison has been carried out for the three types 
of model described above, termed the load invariant, 
load variant and scaled-load variant models respectively. 
The effect of these different load models on voltage 
profile was studied and results are presented in Figure 
4.  

The figure shows one feeder (nodes 15 to 22) with 
measurements for 10th November 2004 at 0846. Valid 
data was not available for the lightly loaded period over 
the Summer, which could be expected to show a more 
marked improvement. 

Case (a) is an extract from Figure 2. Case (b) shows 
a significant difference in voltage profile to (a). The 
node that was estimated as a power injection is now 
estimated as load. The voltage at node 22 (the feeder 
end) shows a difference of 0.015 pu between the two 
traces. Also, the confidence limit of the estimate, as 
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Figure 3: Example of the Effect of Pseudo Loads on State 
Estimation 

 (a) Load invariant model 
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(b) Load variant model 
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(c) Scaled-load variant model 
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Figure 4: Comparison of different models for load pseudo-
measurements 



 

indicated by the error bars is hugely reduced. In this 
application the maximum voltage on the feeder as used 
by the control software when setting limits would be 
taken as 1.015 pu for case (a) and 1.003 pu for case (b), 
a difference of 0.012 pu. 

The accuracy of the estimates will be verified by 
placing confirmatory measurements at key points within 
the system, however this is yet to occur. 

Case (c) was created by applying the following fac-
tors to each node, simulating variation of demand during 
the day. The factors were created artificially, but recog-
nised that the data was for a weekday in Autumn, that 
most nodes are domestic loads and node 22 is a single 
industrial user. The factors applied are given in Table 1. 
Comparing cases (b) and (c), the scaled-loads show 
minimal effect on estimated voltage profile, or the loads 
allocated to each node, despite a large difference in 
measured value. 

4.2 Poor Voltage Estimates 
In Figure 2 nodes 5, 6 and 52 have voltage meas-

urements. Results show that the estimates for nodes 5 
and 6 often place their confidence limits such that the 
measurement values are not within them. (The assump-
tion is made that the measurements are not bad since the 
purpose of using SE is to extend observability.) 

One reason for this is that the many load pseudo-
measurements tend to push the busbar voltages lower 
than is expected from the voltage measurements alone. 
The state estimation is attempting to resolve a number of 
opposing tendencies: voltage measurements, zero-load 
busses and load pseudo-measurements. However, the 
load flow equations are conditions which must be met. 
The solution found is a compromise, the exact nature of 
which is dependent on the relative weightings of each 
measurement by its standard deviation. 

It was found through experimentation that decreasing 
the standard deviation applied to voltage measurements 
can significantly improve the estimated voltage – as can 
be expected. However, decreasing the voltage standard 
deviation has the effect of increasing the load allocated 
to nodes 5 and 6, which are zero-load busses. In order to 
decrease this to an acceptable level the standard devia-
tion applied to the virtual measurements must be re-
duced, which increases the condition of the gain matrix 
G to a level that causes failure to converge. 

The load modelling methods described in section 4.1 
would also assist in solving this problem. 

4.3 Failure to Converge 
Ill-conditioning of the gain matrix G causing loss of 

significance during Gaussian elimination can lead to 
failure of the state estimator to converge. This is coun-
tered to some extent by pivoting the gain matrix during 
the solution process. 

The factorisation and transformation methods re-
viewed in section 2.2 can allow a poorer condition to be 
tolerated while still converging. The other approach to 
improve convergence is to decrease the condition num-
ber.  

The large number of pseudo-measurements is one 
source of ill-conditioning, due to the presence of many 
high values in the error vector. Poor scaling of meas-
urement values has been identified as another cause 
[10]. It is usual for power system problems to be evalu-
ated with a per unit base of 100 MVA. While this is 
satisfactory for transmission system state estimation, the 
above suggests that for distribution state estimation the 
base should be reduced. 

Decreasing the standard deviation of virtual meas-
urements to a level giving satisfactory estimates was 
found to be a source of poor condition. This was re-
viewed in section 2.4 and the proposed solution was to 
form the virtual measurements as equality constraints. 
This was applied to the trial network with parameters as 
given in Table 2, giving the results of Figure 5. 

The base case (case 1) shows poor voltage estimates 
and allocation of large loads to nodes 5 and 6 (zero-load 
busses) when the normal equations ((3) and (5)) are 
used. If the method of equality constraints (equation (7)) 
is applied, the allocated load is correctly reduced to zero 
– case 2. Smaller standard deviations can now be ap-
plied to the voltage measurements producing voltage 
estimates which are acceptable while allowing conver-
gence – case 3. 

Node 15 16 17 18 19 20 21 22 
Factor 0.73 0.49 0.73 0.36 0.61 0.23 0.71 0.90 

Table 1: Demand factor applied to nodes 

 Case 1 Case 2 Case 3 
Method normal constraints 
Base 1 MVA 1 MVA 
SD V 0.015 pu 0.003 pu 
SD P  0.003P + 0.0015  0.003P+ 0.0015 
SD Q  0.003Q + 0.015  0.003Q+ 0.015 
SD P,Q 
virtual 

0.001 pu 0.001 pu 

Table 2: Parameters used to evaluate method of minimisation 
with equality constraints 
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Figure 5: Evaluation of method of minimisation with equal-
ity constraints 



 

5 CONCLUSION 

The proposition is that distribution state estimation 
can be used to extend the observability of networks and 
provide satisfactory estimate of voltage with a minimum 
of actual measurements from the system. Attempting to 
do this has revealed three main issues which can be 
traced to one root cause: a large number of load pseudo-
measurements acting in contradiction to observed actual 
measurements, particularly in periods of light loading. 

Although changes in solution technique can improve 
the convergence of the state estimator, improved load 
models have the biggest effect on convergence, load 
allocation and voltage estimates. 

With respect to the accuracy of the voltage estimates 
further work is necessary to verify these estimates. To 
this end recording of measurements at key nodes within 
the network is in progress. This will allow the different 
solution methods and load models to be compared ob-
jectively against a relevant standard: the actual network 
voltage. 

To date, the load model analysis has been completed 
on a subsection of the network data. Analysis of the full 
network using valid daily demand factor profiles for 
different load types, together with an estimate of the 
composition of each load could be undertaken. How-
ever, the initial analysis has indicated that the benefits of 
doing this may be small. 

The application of satisfactory load models to dis-
tributed state estimation can be expected to cause two 
improvements: to the voltage estimate accuracy and to 
convergence. It is the latter of these that is more signifi-
cant. 
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