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results have been obtained on a class of model

0 Introduction

which is dual to the classical Lundberg risk model.

In insurance mathematics some interesting See Refs. 16 . In this model the surplus at
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time t is

U(t) = u-ct+S(1) (1)
where w is the initial surplus ¢ the constant rate at
which expenses are paid out and { S(¢) =0} is the
aggregate positive profits process. Thus process (1)
can describe a class of companies whose inherent
business involves a constant flow of expenses while
profits arrive occasionally due to some contingent
events.

In resent years quite a few papers have discussed
risk models with tax payments of loss-carry forward
type. Albrecher et al. 7 investigated how the loss—
carry forward tax payments affect the behavior of the
dual process ( 1) with general inter-innovation times
and exponential innovation sizes. In their model the
company pays tax at rate y € 0 1) on the excess of
each new record high of the surplus over the previous
one. Obviously a new record high can only be
achieved by an innovation and hence tax payments only
occur at the innovation times. More results can be found
in Refs. 845 .

Following their work we now consider the dual
model with tax payments according to a loss-carry
forward system and dividends under a threshold
strategy. There are three motivations for why the
study of our objective model is relevant. Firstly the
tax payments of any company are necessary but the
should not lead to

amount of tax payments

bankruptcy so we investigate a class of risk model
with tax payments according to a loss-carry forward
system. Secondly a barrier strategy distributes all
excess surplus to shareholders immediately and
always caps the surplus at barrier level b( b >0) .
Under the
dividends

cause liquidity problems in the future. In a threshold

strategy shareholders can get big

but which may not be realistic and may
strategy excess surplus is paid at a constant rate but

not in a single “burst”. Comparing the two
strategies with barrier and threshold level both equal
to the same b the ruin time under the threshold
strategy is longer and shareholders may prefer a
threshold strategy. Finally the dividend problem of

the barrier strategy in dual risk model can be seen as a

the threshold

dividend rate o equals to 0 and the tax payments rate y

special case of our study that is

equals to 0.

In our model {S(¢) t=0} are assumed to be a

n

N(t)
pure jump process defined as S( ) = 2 Y, with the
n=1

innovation number process N ( t) being a renewal
process whose inter-innovation times T,(i=1 2 --*)
have common distribution F. We also assume that the
innovation sizes { ¥, i1 =1} independent of { T, i =
1} form a sequence of i.1i.d. exponentially distributed
random variables with exponential parameter 8 ( 8 >
0) . The loss-carry forward system assumes that the
company pays tax at rate y € 0 1) on the excess of
each new record high of the after-tax surplus over the
previous one. Furthermore when the after-tax surplus
is lower than a threshold level b no dividends are
paid; when the surplus is higher than b the company
pays dividends at a constant rate o causing the
surplus to decrease more quickly. The surplus process
{R,,(t) t=0} with initial principal R, ,(0) =u can
be expressed as

dR, (1) =

- cdt + dS(#) I(RV W) +dS() < max By (9} T

D =s<t

E (1 =y (R,,(¢7) +dS(2) -

0 Orrsl?z(t Ry (5)) x I{Ry W) #dS(0) = max Ry ()
|:| =s<t

E R, (1) =0b;

0 (¢ - a) de +dS( 1) l(k7 1) +dS(0) < max Ry (9} T
|:| =s5<t

g (1 -y (R,,(¢7) +dS(2) -

E [nax R, (8)) x I{Ry WE) +dS() = max Ry (9
0 R, (1) <b

(2)

where 1, is the indicator function of event A and R, ,
(t7)

practical consideration

is the surplus immediately before time t. For
we assume that the positive
safety loading condition

¢ < E(Y,) /E(T)) (3)
holds all through this paper.
defined as T, , =inf{t=0: R (1) <O} with T, , =
if R, ,(#) >0 for all 1=0.

The time of ruin is
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For initial surplus u >0 we denote by V. (u b)

the present value of all dividends until ruin

V.(u b) :j

where D( t) is the aggregate dividends paid from time O

B b
e dD( 1) (4)

0

tot and 8 >0 is the discount factor. It needs to be
mentioned that we shall drop the subscript y whenever
v is zero.

The rest of this paper is organized as follows. In
Section 1  analytical expressions of the expected
discounted dividends are derived in terms of the
corresponding quantity without tax. In Section 2 for
Erlang( 2) distributed inter-innovation times explicit
expressions of the expected discounted dividends are

given.

1 Main results and proofs

For certain common distributions F;, ( the density
function f;, ) of T,(i =1 2
integro-differential equations for V( u b) .

V(u b) satisfies the

*)  one can derive

Lemmal.1 ForO<u<b

following integral equation:
u/(c-a)
V(u b) =L e 'fy (1) dt *

©

L V(u-(c-a)t+y b)Be™dy(5)
V(u b)

For u=1b satisfies the following integral

equation:
(u-b) /c

V(u b) =L fr (1) de +

* -6t _ -By ' =85
{L e V(u—-ct +y b)Be dy+Lae ds} +

(u=b) /e+b/( c-a)

f( u-b) /¢

©

L e V(b —(c-a)(t—(u=-0b)/c) +y b)Be dy +

Sr (1) di+

o: (u=b) /e
[, (o def e ds (6)
Proof Consider the infinitesimal interval from 0
to di. By conditioning on the occurrence of the first
claim one obtains that when 0 <u <b
Wu b) =
e{(P(T, >dt) *E, V(u-(c-a)dt b) +
P(T, <dt) “E, (u-(c—-—a)dt+Y, b) }.

Notice that the first term in the brace above equals to

zero then using
P(T, >di) =1 - Adt +o(dt)
P(T, <di) = Adi + o( dt)

we can get Eq. (5) .

Through a similar analytical approach to those
used above one can derive Eq. ( 6) . O

Furthermore  using the result that ruin is
immediate and no dividend is paid when u =0 and the
we have the

continuity of V(u b) at u = b

boundary conditions
V(0" b) =0 V(b b) =WVb"b) (7)
Let us assume that the i. i. d innovation waiting
have a generalized  Erlang( n)

times common

distribution i.e. the T,%s are distributed as the sum of
n independent and exponentially distributed random
variances which are denoted by S, =7, + 71, + *** +7,
with 7, having exponential parameters A, >0.

The following Lemma 1.2 gives the integro—
differential equations for V( u b) when T,s have a
generalized Erlang( n) distribution.

Lemma 1.2 Let I and D denote the identity
operator and differentiation operator respectively. Then

the expected discounted dividend payments V( u b)

satisfies the following integro-differential equation

n

[1

k=1

(1 +%)1+C;—k“p]v<u b) =

®©

L Wu+y b)Be™dy 0 <u<b(8)

and
[(1+£)I+—D]V(u b) =
k=1 /\k k
LV(u+y byBe™dy + B, u=b(9)
with
; o«
B, = Z) k=12
' ;)\£+8-=i+1(1+ ) "

(10)
In addition the boundary conditions for V( u b) are as

follows:
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() “";"‘D]WO*“:O] (1

with Eq. (5) .

Proof We follow Ref. 16 and rewrite V( u b)

as V,(u b) when T, iSn

i

=S, , with S; =0 in the
surplus process (2) with y =0. Thus we have V,(u

b) =V(u b). When O <u<b
Vilu b) =
u/(c=a)
J(; Ao MY (u = (e —a)t b)de (13)
k=12n-1
and
V(ub) =
W/ e-a) =
L )\nef()‘"“s)’dtL Wu—-(c-a)t+y b)Be™dy
(14)
Let u—(c—a)t=x by changing variables in Eq. (13)

and Eq. (14) one gets that when 0 <u <b
_ LA (Ap+d) i
V.(u b) _Lc—ae Vk+1(x b)dx} (15)
k=12 n-1
and
toA, Ap+8) o By
V.(u b) _Lc—ae dxf Vix +y b)Be™dy

(16)
15) and Eq. ( 16)

with respect to u and calculating carefully one gets

Now differentiating both sides of Eq. (

Viu(u b) =[(1+%)I+ D]V (ub)
Ek=12--n-1
(17)
and
[(1+)\@)I+C_QD]V,L(ub) =

n

®©

J(; Wu +y b)Be™dy (18)
Combining Eq. (17) with Eq. (18)
for (u b) on (0 b).

Using a similar approach we have for u=b

we can derive Eq. (8)

u=b
V(u f Ao MY (et b)di +

fg (,-a)\ke (A+0) rVAH(b (¢ -a) (t _L_Z’) b)dt

fork=12 - n-1 and
u=b

V (u b) =L’mpﬂﬁwmx

®©

V(u—ct +y b)Be™™dy + at} +

0

[
{LwV(b -(c-a) (t —u;b)+y b)Bef'B”dy+

a”_b} (20)

c

A+81dtx

(19) and
Eq. (20) (let u —ct =x) and then differentiating them

Again by changing variables in Eq.

with respect to u  we obtain for u=b
Vealwd) = [(1+ 2)r+ En]viu v } o)
k=12 n-1
and
[b+iy+i4KWb)=
A, A,

J: V(u+y b)Be™dy +
Using Eq. (21) and Eq. (22)
for V(u b) on b o).
ruin is immediate and V( u b) is continuous at b we
11) and Eq. (12) .

L]

we can now

o
22
A, +0 (22)
we obtain Eq. ( 10)
Finally

n

since when u =0
have the boundary conditions Eq. (

With the preparations made above
derive analytical expressions of the expected discounted
dividend payments V., (u b) for the surplus process
{R,,(t) t=0}. We claim that the process { R ,( t)
t=0} shall up-eross the initial surplus level u at least
once to avoid ruin.

Now let

glw) © = B, e (23)
denote the Laplace transform of the first upper exit
time 7, which is the time until the risk process { R,
(t) t>0} starting with initial capital u reaching a
new record high for the first time without leading to

ruin before that event. u) : =lim

In particular g, ( n
5l

gs ((uw) is the probability that the

{R,(1)

ruin.

process

£ >0} reaches a new record high before

We have mentioned that D(t) is the aggregate
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dividends paid from time O to ¢ of the risk process
B
{R,,(1) =0} and V,(u b) = E, j e dD( 9)
0
denotes the expected discounted total sum of dividends
until ruin. Obviously the trivial bounds 0<V, (u b)

S% always hold.

In the following theorem we are to derive the
analytical expressions of V. (u b) in terms of V(u b) .

Theorem 1.1 When O <u <b we have
V(b b) g )) de
g (u)e ' °

and when u=0b we have

V(ub) = (24)

L“ -, at
V(u b)) = g e

B 1—g(1)) e
A(S) (go(5)) e TN (25)

where
o o= (&ly B i
A(w) (&uo+1-¢1‘%””)w b) +
(0 W ) - () -
Y Y
fﬁe-ﬂ“-” V(x b) dx — V{u b) (26)

Proof When O <u <b considering the fact that
the process { R, ,(t) t=0} shall up-cross the initial
level u or else there will be no dividends paid to the
considerations

shareholders.  Implementing  these

we have

V.,(u b) b T—

= g,(u) —L 71Vy(u+xb)dx]
0<uc<d

(27)

Changing variables y = u + x in Eq. (27) and then

differentiating it with respect to u yields

Vi(ub) = ?EZ; V(ub) +
Tgwuum_r%ggwnwbﬂﬁ)
0% Y

Solving the ordinary differential equation of first order
we arrive at Eq. (24) .

When w = b  since the surplus process
{R,,(t) t=0} will either reach a new record high
before ruin or never reach a new record high until ruin

in the latter case the sample paths of {R () t=0}

will coincide with those of { R, ( ¢)

conditioning on the two cases we obtain

t=0}. By

Vi(wb) = E, [ e™dD()1 o, +
% b
E, [ etdan(nt, g, o+

b
Eu eialdD( t) 1-r >T. =
o w>Ty

E, [edn(n)1 ;

o T <T7,1

u

© _B
gs(u) Le "V (u+x b)dx +
o 1 —vy 4
! -8t
Eu J()e dD( t) 17'u>Tyb =

E, j e dn( 1) 1 N

Tu>Ty

gs(u )0 % ery(u+x b) dx +

v m
-5t _ U _
E, [ ean() -E, [eMan()1,

W) [ e v

Wub) +glw) [ -

u+x b)dx =

48— "V(u+x b) dx -

u) J:ﬁef&V(u +x b) dx (29)

Differentiating Eq. (29) with respect to u yields

W) jx/;e-ﬁ“-” Wx b)dv + V{u b)

(30)
The general solution of Eq. (30) can be expressed as

" (1-gg(1)) dt

_B
V(ub) =(C=[A() (&(s) e ds) -

u

£ - t) ) ar
gol ) e (31)

Furthermore due to the trivial fact that 0 < g;5( o

e <1 and V,(u b) $% we immediately have

C:J;;A(S)(ga( s)) " ‘vj -&5(1) tlts ()
Plugging Eq. (32) into Eq.(31) we obtain Eq.(25). [J
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2 Explicit results for Erlang(2) e et L
. . oy . — o o -
innovation waiting times V(u b) = ((1 + A—)(l + )T) - 1) B, =3

In this section we assume that T;s are Erlang

(2) distributed with parameters A, and A,. We also
assume that A, <A, ( without loss of generality) .

Example 2.1  Applying the operator ( I — D)
to Eq. (8) and Eq.(9) we have

(BI - D) /f[l[(l +%)1+c;—k°‘D]V(u b) =
- B ub) 0<uc<hb (33)
(8l - D) f[l[(1+k)1+p] V(ub) =

BV(ub) +BB, u=b (34)
The characterzlstic equation for Eq. ( 33) is
ﬁ—r)!:[l[(1+/\%)+

We know that Eq. (35) has three real roots say r, r,
and ry which satisfies

(35)

B>r, >0>r, >- > — >
cC - cC — o
ry > - -
cC - cC — o

With ¢ replacing ¢ —a in Eq. (34) we get the

characteristic equation of Eq. (35) whose roots are
denoted by r, rs and ry with
A, +6 A, +6

> -

c C

Ay +0

B>r, >0 >r5 >- >re >

Ay +0

a special solution of Eq. (11) we have
Wu b) =ce™ +c,e™ +c,e™ 0 <u <b (36)

and
Wu b) = cse™ +ce™ + % u=b (37)

The characteristic equation for Eq. ( 34) is

B—r)kli[l[(1+)i)+(j/\_lf"r]:ﬁ (38)

where ¢;s are arbitrary constants. With the boundary
conditions of V (u b) we know that ¢;s are
determined by

¢, +c, +¢y =0

ric, + 1,6, +15¢5 =0

b r3b

b
e, +e?c, + e, — ey — e =

)
((c—a)r, +8) e, +((c—a)r, +8) e?c, +
((¢c—a)r; +96) e”bc3 —(ers +6) er“bc5 -

(crg +8) e ey =0

r1b b r3b
re r,e rye”
c, + c, + C; —
B - B-1 B -
rse“b r(,e“b
LS - ('6 = 0.
B-rs B -

Some calculations give

o, (et o),
3 (M5

(crg +6) rs
- ,Bjrs )

(39)

c, =
] (r3 —rz)e '91(’1 Ts r@) +(r2 _rl)eerel(r3 T's r(;) +(r1 —r3) erz,jgl(rz Ts r6)
g(rl —r) ((cr5 +6) rg _(cr6 +3)r5)
o = g B - B s
? (r3 —r2) erlhgl(rl I's ra) +(r2 _rl)er3b31(r3 Ts rﬁ) +(r1 _73) erzbel(rz Ts rs)
g(rz _r) ((cr5 +8) rg _(crﬁ +6)r5)
. = o B - B -5
’ (ry =1,) e’lbel(rl rs re) +(r, _71)er3b91(73 rs rg) +(r, —r3) er2b01("2 rs Te)
_%((rz _rl) erzbaz( T3 ra) +(r3 —r2) erlbez(rl r6) +(r1 —r3) erzbez(rz rﬁ))
cs = —
’ (r3 ) (riems)t 01(r1 s rs) +(r2 _rl) e(Iﬁl’i)bel(ﬁ Ts rs) +(r1 —r3) e(rZHS)bel(rz Ts r6)
%((rz -r) embgz( ryrs) +(ry = 1,) erlbaz(rl rs) +(r —r3) erz})ez(rz rs))
c, =
° (r3 ) (rivre [)gl(rl Ts rﬁ) +(’2 _rl) e(r3+r6)b61(r3 I's r6) +(r1 —r3) e(r2+r6)b‘91(72 Ts re)

OOooOOooOooooooooooooogoo
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