Ocean surface wind and wave monitoring at Typhoon Fung-Wong by HFSWR OSMAR071

LI Lun¹, WU Xiongbin¹, LI Yan², LONG Chao¹, LIU Bin¹, XIU Xing'an¹, CHEN Min³, XUE Chaoying³

1. Electronic Information Institute of Wuhan University, Wuhan 430079, China;
2. State Key Laboratory of Marine Environment Science/ Xiamen University, Xiamen 361005, China;
3. International school of Software of Wuhan University, Wuhan 430079, China

Abstract: This paper provides wind and wave observation results detected by high frequency surface wave radar OSMAR071 during Typhoon Fung-Wong. Methods for extracting ocean surface parameters from HFSWR sea echo are introduced. The Stew- art Barnum and Maresca SBM method combined with multi-beam sampling method is used to invert wind direction. A modified Barrick’s model is proposed to obtain significant wave height and the SMB formulation is used to extract wind speed information. Compared with buoy data of wind and wave, radar inversion results show good agreement with in-situ observations. The root-mean-square error RMSE of significant wave height, wind speed and wind direction between radar-derived and those from the buoy are 0.48 m, 3.5 m/s, 27.7°, and the coefficients of determination (R²) are 0.72, 0.60 and 0.97, respectively. Factors affecting detecting accuracy are also discussed in this paper.

Key words: typhoon, high frequency surface wave radar (HFSWR), OSMAR071, significant wave height, wind field

CLC number: P716.22 / TN958.93

Introduction

As China is located at western bank of the Pacific Ocean, the typhoon is a frequent issue. With the varieties of global climate, the frequency of typhoon and typhoon-caused disasters all present trends of escalation. At present, the typhoon surveying methods are limited, mainly by in-situ observations, from numerical simulations and remote sensing. It is difficult and expensive to measure typhoon by buoy, dives tools or research ship, and also limited partial spot or on-line data of special time can be obtained, which cannot reflect the real sea state of large area and cannot satisfy the oceanographic engineering and the marine forecasting demands. The numerical simulation results cannot completely represent the spatial structures of the sea wind or wave field. Study of typhoon is restricted by the limited typhoon observation methods. With more than 40 years’ development, High Frequency Surface Wave Radar (HFSWR) operated in the HF band (3—30 MHz), employs the ground wave mode of radio wave propagation where the radar signal is guided by a good conducting surface such as the ocean surface to follow a path that essentially matches the Earth’s curvature. It is capable of all-weather remote sensing of large area ocean surface dynamics with relatively high precision (Barnes, 1998). Its capability of currents detection has been considered satisfying the requirements for routine marine observations while its wind and wave measurements cannot provide engineering applications (Barrick, 2008; Wu, et al., 2003; Liu, et al., 2007). Observation ocean surface wind and wave field at typhoon by HFSWR is a new remote sensing technology. OSMAR071 is the latest product of Ocean State Monitor and Analysis radar (OSMAR) series of HFSWR which is developed by the Radiowave Propagation Laboratory (RPL) of Wuhan University. It demonstrates high signal quality and engineering reliability compared with the prototype OSMAR and offers a good platform for the study of extracting ocean wave parameters from the second-order spectra of sea echoes. Recently, OSMAR071 system has made certain breakthrough in the wind and wave survey. Compared with buoy in-situ observations in nearly half one year time, results show that the RMSE difference between radar-derived significant wave heights and those from the buoy is 0.39 m and the coefficients of determination between the two series is 0.67 (Wu, et al., 2003). From 2008-07-28 to 2008-07-29, Typhoon Fung-Wong came across the north of Taiwan Straits, and the OSMAR071 observation sites located at Longhai and Dongshan in Fujian Province
of China went through the terrible disaster and got all the on
time current, wind and wave data of the sea area at the typhoon
duration. This paper presents the wind and wave measurement
at Typhoon Fung-Wong, and compares the results with in-situ
observations.

2 METHOD

2.1 OSMAR071 system

OSMAR071 applies the Frequency Modulated Interrupted
Continuous Wave (FMICW) waveform with 30 kHz bandwidth.
A three-element Yagi-Uda antenna serves as transmitting antenna
and an 8-element non-lineable receiving array as the radar antenna
filed (Fig. 1). The major characteristic parameters of OSMAR071
are shown in Table 1. Array amplitude and phase correction is ob-
tained by real-time software calibration. A Fast Flourier Transform
(FFT) process is used by every pulse-repetition-interval PRI which
we call a snapshot to produce a Range spectrum. After coherent
accumulation at the same range, a second FFT is used to produce
Range Doppler Power Spectrum. Fig. 2 shows the measured Range
Doppler Power Spectrum contains two nearly symmetrically located first-order peaks,
second-order continuous spectral points, the obvious distance belt
distributed ionosphere reflection echo, the obvious frequency belt
distributed radio frequency interference, ship echo and the noise
floor. The Multiple Signal Characteristic (MUSIC) algorithm is
applied to discern the direction of arrival (DOA) of sea echoes.
The Digital Beam Forming (DBF) is used to obtain the direction of
Range Doppler Power Spectrum.

2.2 OSMAR071 ocean surface parameters inversion

Based on the first-order sea echo radar cross section (RCS)
derived by Barrick, the ocean surface current can be extracted
by the dispersion relation of gravity wave in deepwater. The
radial current can be obtained by one shore-based radar. As
two radars detecting the same area from different directions at
the same time, vector current can be synthesized. Several field
experiments show that the ocean surface current information ex-
tracted from OSMAR series HFSWR can be applied in routine
observations (Wu, et al., 2003).

The difference between the positive and negative first order sea
echo Doppler spectrum peaks have close relationship with the wind
direction which is formulated as a SBM model derived by Stewart
and Barnum (1975):

$$R_d = \tan^\prime(\frac{\theta_w}{2})$$

(1)

where R_d is the ratio of the positive and negative first order wave
energy, s is the value of spreading parameters which determines
the wind energy disperse degree, θ_w is the wind direction from
radar beam direction. The wind direction obtained by Eq. (1) is
$\phi_0 = \phi_s \pm 2 \operatorname{arctan}(10^{s/15})$, where ϕ_s is the radar beam direction.
The symbol “±” indicates the ambiguity in the deduced wind di-
rection. The same wind direction to the radar beam direction is
equivalent to the first order energy which causes the wind direc-
tion ambiguity. Finding wind direction by multi-beam sampling
method proposed by Heron and Rose(1986) can be used to avoid
wind direction ambiguity which assumes that the ocean wave
spectral in the observation area is a uniform distribution approx-
imately and by using different radar beam azimuths to observe
corresponding ratios R_d. The ambiguity removal by switching
radio beam direction relies on the assumption of an approxi-
mately uniform wind direction over area of ocean being observed.

Fig. 3 gives the principle diagram of obtain wind direction by
tree radar beam directions.

The significant wave height information can be extracted
from the continuous second order sea echo Doppler spectrum.
In 1977, Barrick proposed a significant wave height inversion model which demonstrates robust applicability. A modified Barrick’s model is proposed by Wu and Li (2009) to invert significant wave height from OSMAR071.

\[h = \alpha \left(R - \beta \right)^\gamma \]

where \(R \) is the direct ratio of second-order power to that of the first-order power, \(\alpha, \beta \) and \(\gamma \) are parameters of OSMAR071 which are 1.43, 0.71, and 0.4 using dataset from half one year experiments. The detailed description can be found in Wu, et al. (2009).

Proposed by Sverdrup and Munk and modified by Breschneider, the SMB function gives the principle relationship of wind speed and significant wave height (Dexter & Theodore, 1982) from which we can obtain wind speed by nonlinear iteration:

\[\frac{gH_s}{\nu_{10}^2} = 0.26 \tan h \left(\frac{1}{f_p \nu_{10}} \sigma_0 \left(3.5g \right)^{1/2} 10^2 \right) \]

where \(H_s \) is ocean significant wave height, \(f_p \) is the peak frequency of ocean wave non-directional spectral, \(U_{10} \) is the wind speed at 10 m above sea surface and \(g \) is acceleration of gravity which equals to 9.8 m/s².

3 REMOTE MEASURING RESULTS AND ANALYSIS

3.1 Description of Typhoon Fung-Wong

Fung-Wong is the typhoon No.8 of the western north Pacific, generated in the east of Taiwan province over the ocean (130.6°E, 21.6°N) at 14:00, 2008-07-25. Then, it moved to the northwest steadily, intensified into severe tropical storm at 16:00, 2008-07-25, and then strengthened into typhoon in the afternoon while moving steadily to the west, and at 20:00 July 27 transformed into severe typhoon whose biggest wind power reached 45 m/s near the center. Around 6:30, 2008-07-28, it landed on Hualian in Taiwan province, and landed again on Donghai Town of Fuqing in Fujian province. It faded when entered into Shandong province.

3.2 Remote sensing of ocean surface wind and wave

OSMAR071 was located in Longhai in Fujian province which was in the radius of the gust of 7. During the Typhoon Fung-Wong landed on the Taiwan Straits and Fuqing of Fujian Province, the working frequency of radar was 7.82 MHz, while the corresponding resonant first-order scattering wave length was 19 m, and the Bragg frequency was 0.28 Hz. The range and azimuth resolution of the radar was 5 km and 5°, respectively. By weighted averaging the Doppler spectrum of the 3 (range cell)×3(azimuth cell) = 9 grid points, the wind and wave parameter inversion of the central grid point can thus be performed. Fig. 4 and Fig. 5 show the distribution of ocean surface wind and wave fields at 00:00, 6:00, 12:00, 18:00, 2008-07-28, respectively. In Fig. 4, the wave height of the northeast on the illuminated sea area of the radar was relatively high, which is consistent to the fact that the center of the typhoon was just in the northeast of the illuminated area. The tendency that the detected wave length ascended first and then descended is exactly in line with the time when the typhoon first landed on Taiwan Straits and then Fuqing of Fujian Province. Since typhoon is in low pressure, that is, the central air ascends and the sideward will complement the vacancy, the air turns out to be in a way of counterclockwise cyclone influenced by the deflecting force of earth rotation. The radar station was located in the southwest of the typhoon center, so during the typhoon center moving across northern Taiwan Straits, the wave direction of the illuminated area transformed from north to northwest, which is consistent with the features of wind direction displayed in Fig. 4. Besides, the features of wind velocity in Fig. 5 agree with those of wave height.

3.3 Analysis of measuring accuracy

The qualitative analysis in Section 3.2 indicates some insights. The ocean surface remote sensing results of OSMAR071 have satisfied the varying features of ocean surface wind and wave fields. In order to qualitatively verify the OSMAR071’s measuring accuracy of wind and wave, results of radar’s observations are compared to the wind and wave data of the big buoy in-situ observation nearby. Fig. 6 and Fig. 7 are comparisons and scatter diagrams of valid wave height time series by the radar and the buoy respectively during the Typhoon Fung-Wong. The correlation coefficient and the root mean square error (RMSE) are 0.79 and 0.48 m, respectively. Fig. 8 is the comparisons of time series of wind direction and wind velocity. Fig. 9 shows the scatter diagram of wind vector. The correlation coefficient and RMSE of wind direction are 0.97 and 2.7°, respectively. The correlation coefficient and RMSE of wind velocity are 0.6 and 3.5 m/s, respectively. The buoy went wrong since 12:00, 2008-07-29, so the real data of wind velocity was inaccessible.

According to the comparison results, the radar remote measuring results of the typhoon coincide with the buoy observation results, but there remains variance to some extent, and the reasons of the variance mainly lie in several respects:(1) Two detecting methods
Fig. 5 Detected ocean surface wind field during Typhoon Fung-Wong by OSMAR071

Fig. 4 Detected ocean surface wave height during Typhoon Fung-Wong by OSMAR071
are different in the sampling modes spatially and temporally. Radar averages the wave field data during from several square kilometers during tens of minutes, while buoy samples from the local wave height, which results in the variance. (2) Radar observation results are easily interfered by the complex electromagnetic environment (radio frequency interference (RFI)), hard targets such as ships on the sea, and ionosphere echo. (3) In high sea states, the strong high-order nonlinearity can make the edge between the first-order and the second-order sea echo spectrum blur and difficult to distinguish. (4) The inversion of valid wave height and wind velocity by HFSWR has depended on the SNR of second-order spectrum in the Radar echo spectrum to a large extent. The antenna’s sidelobe and beam will affect the second-order spectrum. (5) During processing the echo spectrum, the average number of grid points, analysis of FFT spectrum and noise of the echo spectrum will definitely affect the inversion of wind and wave parameters. (6) The inversion model of wind direction is a binary nonlinear function, and the accuracy of wind direction measuring can be influenced by the error of the positive and negative first-order energy ratio and the error of extended wind direction factor. Several data of radar beam direction have been used to eliminate ambiguous wind directions in the study. In fact, the extended wind direction factor varies from different beam directions. And the low SNR, external RFI and the echo of hard targets like ships can also cause selecting fuzziness, leading to misjudgments. All these facts can affect the inversion accuracy of wind direction. In Fig. 9, at 21:00, 2008-07-28, there is an abnormal point resulted from ambiguous judgement of wind direction. From the sea echo Doppler spectrum, we can see fairly severe spectrum splitting, and it is possible that the echos of hard
targets like ships polluted the first-order sea echo, which leads to wind direction misjudgement. In Fig. 9, the deviation becomes larger when the wind velocity measured by the buoy is smaller, because after 4:00, 2008-07-29 the buoy went wrong, which leads to unreliability of the data. In fact, it is a prevailing phenomenon of the foreign radars in low frequency that smaller wind velocity produces the larger errors. Its main reasons involve: (1) HFSWR measures the parameters of dynamics through remote sensing the resonant wave, and the wavelength of resonant wave is half that of radio wave. Between 7.5 and 8.5 MHz, the wavelength of resonant sea wave is about 20 m, and the wave fails to get sufficient energy to develop so that the echo is relatively weak and of poor stability, which leads to poor results. (2) The mechanism of HFSWR remote sensing of the ocean indicates that a lower radio wave frequency is suitable for detection of high sea states, while a high radio wave frequency is suitable for detection of low sea states. Consequently, part of the wind and wave detection problems in low sea states can be solved through matching the high and low end frequency to remote measure the sea surface simultaneously. But the attenuation of a high end frequency is severe, which results in the reduction of detection range and restriction of illuminated areas. (3) Another reason of the increase of observation errors with small wind velocity is unscientific, that is, when the wind and wave is small, a large number of inshore fishermen head out with their vessels among which themselves and the HF radio wave communication can cause interference and decrease the accuracy of the results.

4 CONCLUTION

The ocean wave spectra scope detected by HFSWR is limited by the applied radio wave frequency. In high sea conditions the low radio frequencies are needed in order to make wave measurements whereas in low sea conditions, higher radio frequencies are required. The OSMAR071 operates at 7.5—8.5 MHz which belongs to low radio frequency and the wavelength of corresponding ocean wave which can cause Bragg resonant scattering is nearly 20 m, thus radio wave at this frequency band are not sensitive to low sea condition and are suitable for high sea conditions monitoring. The sea state is relatively high at the period of typhoon which offers a proper opportunity for HFSWR wind and wave measurement study. It gives validation of wind and wave measurements from HFSWR OSMAR071 through the remote sensing at Typhoon Fung-Wong and results compared to buoy in-situ observations, which is the first time for measuring all time wind and wave at typhoon with wide spread by HFSWR in China. HFSWR which is located on the coast, measures ocean wind and wave extended to more than 100 km offshore and 200 km for wind direction measurements, which is more convenient than buoy in-situ observations. Offshore HFSWR, which is located on the coast of the ocean, easy to maintain and not influenced by inclement weather is a new remote sensing technique for ocean surface parameters observation at the period of typhoon.

Studies on extraction of waves and winds information from HFSWR is still under development. More work should be done to enhance the stability and accuracy of the wind and wave measurements. Moreover, the radar ocean echoes contain the ocean surface parameters such as wind direction, wind speed, wave height, wave direction and wave period, which can be extracted from ocean wave spectrum, and the radar range Doppler spectrum is characterized the interaction of radio wave and ocean gravity wave. Therefore, inversion the ocean wave spectrum from HFSWR range Doppler spectrum (Lipa & Barrick, 1986; Wyatt, 1986; Howell & Walsh, 1993; Hisaki, 2009), especially at the period of typhoon is the main work in the future.

Acknowledgements: Thanks to the State Key Laboratory of Marine Environment Science of Xiamen University for providing the buoy data.

REFERENCES

“凤凰”台风期间海面风、浪的高频地波雷达OSMAR071遥感

李伦1，吴雄斌1，李炎2，龙超1，刘斌1，徐兴安1，陈珉3，薛超英3

1. 武汉大学 电子信息学院，湖北 武汉 430079；
2. 厦门大学 近海海洋环境国家重点实验室，广东 厦门 361005；
3. 武汉大学 国际软件学院，湖北 武汉 430079

摘要：介绍了OSMAR071高频地波雷达系统“凤凰”台风期间海面风、浪遥测结果。文中给出高频地波雷达OSMAR071风、浪反演算法：利用SBM模型结合多波束采样法反演风向；利用改进的Barrick模型进行有效波高的反演；利用SMB关系式进行风速反演。将雷达定点观测结果与浮标数据进行对比，表现出很好的一致性，其中有效波高相关系数为0.72，均方根误差为0.48 m，风向相关系数为0.97，均方根误差为27.7°，风速的相关系数为0.6，均方根误差为3.5 m/s。文中还对影响探测精度的因素进行了分析。

关键词：台风，高频地波雷达，OSMAR071，有效波高，风场

中图分类号：P716.22/TN958.93 文献标志码：A

1 引言

中国地处太平洋西岸，台风活动频繁。随着全球气候变化，台风爆发频率及其造成的危害都成上升趋势。目前观测台风的手段非常有限，主要以现场观测，数值模拟和无线遥感为主。对于海上台风，利用浮标、潜标和海洋调查船等工具来测量，作业困难，费用大，而且往往只能得到特定时间段的局部点、线上的数据，无法反映海域的现实情况，不能满足海洋工程和海洋预报的需求；数值模拟结果也并不能完全代表海面风场和浪场的结构。有限的台风观测手段制约了对台风的研究。

近40年发展的高频地波雷达利用短波(3—30 MHz)在导电海洋表面绕射传播衰减小的特点，采用垂直极化天线辐射电波，能超视距探测海面流场、风场和浪场参数分布，实现对海洋环境大范围、高精度和全天候的实时观测(Barnes, 1998)。目前主要地波雷达的海流探测已达到可用于常规业务化海洋观测水平(Barrick，2008；吴雄斌 等，2003；Liu 等，2007)，海浪、风参数的探测方面有待突破。利用高频地波雷达对台风期间海面风场和浪场进行观测是一种廉价低风险的遥感手段。

在武汉大学电波传播实验室研制的OSMAR系列高频地波雷达基础上改进的OSMAR071在雷达信号质量和系统工程可靠性方面比原工程样机都有了很大提高，为从雷达回波谱中提取有效波高和风速信息提供了很好的平台。近期，OSMAR071系统在风浪探测中取得了一定突破，近半年的试验观测表明雷达反演的有效波高值与浮标有效波高数据时间序列的均方根差为0.39 m，二者的相关系数为0.67(吴雄斌 等，2003)。2008年7月28日—29日，“凤凰”台风经过台湾海峡北部，福建龙海和东山站OSMAR071高频地波雷达经受住了恶劣天气的严峻
2. Study Methods

2.1 OSMAR071 System

High-frequency ground-based radar OSMAR071 system adopts linear frequency modulated continuous wave (FMICW)体制的宽波束雷达, work bandwidth of 30 kHz, the transmitting bandwidth of the pulse is 15-18 MHz. The receiving bandwidth of the pulse is 10-12 MHz, the transmitting amplitude is a non-linear array, the receiving amplitude is a linear array, the system main technical parameters are shown in Table 1. The radar uses ocean echo to perform software real-time online correction; after each periodic sweep period, the return echo is processed by fast Fourier transform (FFT) to obtain the distance spectrum, after coherent accumulation of each distance, the second FFT obtains the Doppler spectrum. Figure 2 shows the Doppler spectrum of the return echo after 1024 sweep periods. The Doppler spectrum includes Bragg frequency, near the one-way scattering, the second-order scattering, oceanic scattering, space scattering, and the base noise, etc. The Multiple Signal Characteristic (MUSIC) algorithm is used to achieve the direction of arrival (DOA) of the signal, through Digital Beam Forming (DBF) can obtain the Doppler spectrum of the covered area. The table shows the main technical parameters of the system. This radar system has achieved operation level for ocean current (Wu Xingbin et al., 2003). The distribution of Doppler spectrum of the ocean echo is closely related to the wind direction, Stewart and Barnum (1975) proposed the SBM method to give the relationship between the energy of the Doppler spectrum and the wind direction:

\[R_d = 10 \log \left| \tan (\theta_w / 2) \right| \]

(1)

where \(R_d \) is the energy difference of the two-steps, \(s \) is the wind direction, \(\theta_w \) is the angle between the wind direction and the radar beam direction, the formula (1) solves the wind direction \(\phi_0 \) as follows:

\[\phi_0 = \phi_w \pm 2 \arctan (10^{0.08s}) \]

Heron and Rice (1986) proposed the method of using the Doppler spectrum to determine the wind direction, which is the only rational method to determine the wind direction. However, the Doppler spectrum is different when the wind direction is determined in the different area.
给出了利用3个波束消除风向模糊性的示意图。

海面回波谱中连续的二阶谱可以用来提取有效波高信息。Barrick(1977)提出了简单实用的工程应用方法。OSMAR071雷达采用改进的Barrick有效波高计算公式进行海面有效波高的反演，具体表述如下(Wu等，2009):

$$ h = \frac{c}{k_0} (R - \mu)^{\alpha} $$ \hspace{1cm} (2)

式中，R表示二阶谱能量与一阶谱能量之比，k_0为雷达波数，α、β和μ为适应OSMAR071系统的模型参数，通过半年的试验观测分别标定为1.43、0.71和0.4，具体过程见文献(Wu等，2009)。

由Sverdrup和Munk提出并由Bretscher修正的方程式SMB关系式给出了风速与有效波高之间的关系(Dexter和Theodorides，1982)，见式(3)，可以利用此关系式通过非线性迭代来求取风速。

$$ \frac{gH_s}{V_0^2} = 0.26 \tan h \left[\left(\frac{1}{fB} \right)^{1/2} \left(\frac{3.5g}{10^7} \right)^{1/2} \right] $$ \hspace{1cm} (3)

式中，H_s表示海面有效波高，f_B表示波高谱峰值频率，V_0为海面10 m处的风速，g为重力加速度，取9.8 m/s²。

3 遥测结果与分析

3.1 凤凰台风介绍

“凤凰”(FUNG-WONG)台风是2008年西北太平洋第8号台风，于(2008-07-25)下午14:00在中国台湾以东洋面(130.6°E，21.6°N)生成，随后稳定向偏西北方移动，25日16:00加强为强热带风暴，并于26日下午加强为台风并稳定西行，27日20:00加强为强台风，中心附近最大风力达45 m/s。28日上06:30前后在台湾省花莲县南部沿海登陆，并于28日晚上22:00在福建省福清市东瀚镇再次登陆，随台风继续向北偏东方向移动，进入山东省境内，强度逐渐减弱。

3.2 海面风、浪的雷达遥感

高频地波雷达OSMAR071位于福建省龙海，在"凤凰"台风7级风力半径内。在该台风进入台湾海峡至从福建福清登陆期间，雷达工作频率为7.82 MHz，对应的谐振一阶散射海浪波长为19 m，Bragg频率为0.28 Hz。雷达距离分辨率为平均有效的多普勒谱进行加权平均后的多普勒谱进行中间格点处的风、浪参数反演。图4和图5分别为2008年7月28日00:00，6:00，12:00和18:00四个时刻雷达输出的海面风、场分布，风速和波高探测距离可达100 km。

图4中雷达探测海域的东北方向波高相对较大，这与台风中心位于雷达探测海域东北方向是一致的；雷达探测波高呈先上升后下降的趋势，这与台风先进入台湾海峡，之后从福建福清登陆的时间是一致的。由于台风是低气压，中间空气上升，旁边空气补充，空气受地球自转偏向力的影响呈逆时针气旋式。雷达站位于台风中心西南方向，因此在台风中心经过台湾海峡北部期间，雷达探测海域的风向由北风逐渐向西北风转变，这与图4表现的风向特征是一致的；图5中风速表现的特征与波高特征是一致的。

3.3 探测精度分析

3.2节中的定性分析表明：OSMAR071海面探测结果符合台风期间的海面风、浪场变化特征。为了定量验证OSMAR071的风、浪探测精度，将雷达定点观测结果与附近大浮标实测风浪数据进行对比。图6和图7分别为"凤凰"台风期间雷达与浮标有效波高的时间序列对比图和散点图，二者相关系数为0.72，均方根误差为0.48 m。

图8为风速和风向的矢量序列对比，图9对应为风矢量的散点图，风向的相关系数为0.97，均方根误差为27.7°，风速的相关系数为0.6，均方根误差为3.5 m/s。7月29日12:00后由于浮标出现故障，风速数据未能获取。
李伦等："凤凰"台风期间海面风、浪的高频地波雷达OSMAR071遥感

图4 "凤凰"台风期间OSMAR071遥感的海面波高

图5 "凤凰"台风期间OSMAR071遥感的海面风场
对其所处位置上局部波高的取样，这会导致雷达所测得的结果与浮标结果之间存在一定程度的差异。(2)复杂的电磁环境(射频干扰)、海上舰船等硬目标和电离层回波等会影响雷达观测结果。(3)在高海况下，高阶非线性作用较强，使得海洋回波谱一阶谱和二阶谱的边界不易区分。(4)高频地波雷达反演有效波高和风速很大程度依赖于雷达回波谱中的二阶谱信噪比，天线的旁瓣波束会影响二阶谱。(5)回波谱处理过程中用于平均的格点数目，FFT谱分析，回波谱噪声基底的确定等都对风浪参数的反演产生一定的影响。(6)风向反演模型为二元非线性方程，正负一阶峰能量的比率误差和风向扩展因子的误差都会影响风向反演精度。文中采用多个雷达波束方向的数据来消除风向模糊性，事实上不同波束方向的风向扩展因子会有差异，而且信噪比较低、外界射频干扰、舰船等硬目标回波等都可能引起模糊性选择时出现误判，这些都会影响风向反演精度。图8中2008-07-28 21:00出现了一个风向反演异常点，是进行风向模糊性判断时误判导致的。从该海元回波多普勒谱上可以看出正负一阶谱出现较严重的谱分裂，可能是舰船等硬目标回波污染了一阶海洋回波，从而导致风向误判。
07-29上午4：00后浮标测量风速出现故障导致该时刻数据不可信引起的。事实上，在风速较小时，误差较大是低频段地波雷达普遍存在的现象，主要原因包括：(1)HFSWR是通过对谐振海浪的遥感来测量海面动力学要素的，谐振海浪的波长为雷达电波波长的一半。在7.5—8.5 MHz频段，谐振海浪的波长为20 m左右，在较小风速情况下，这种波长的海浪无法得到足够的能量，不能充分发展，其回波相对较弱，且稳定性差，导致结果偏差。(2)HFSWR海洋遥感机理表明，较低电波频率适合于高海况探测，高端电波频率适合于低海况探测，因此利用高、低端频率搭配来进行海面遥感，能解决部分低海况下的风、浪探测问题，但是高端频率电波的衰减大，导致探测距离会下降，覆盖区域有限。(3)风速较小时观测结果误差增加的另一个原因是非科学性的，即风浪小时，大量近海渔民船只出海，渔船本身及渔船间的高频无线电通信会造成干扰，降低结果的准确性。

4 结 论
高频地波雷达工作频率与其可探测的海浪频率范围直接相关，短波段低端电波频率适合于较高海况，而短波段高端电波频率适合于低海况。OSMAR071系统工作在7.5—8.5 MHz，属于短波段低频段，对应谐振海浪的波长为20 m左右，该频段电波对海况级别较低的海浪不敏感，适合于高海况海洋环境的监测。相对来说，台风期间整个探测海域的海况级别较高，为进行高频地波雷达风浪探测研究创造了良好的条件。“凤凰”台风期间相关海域海面完整实时的风、浪检测，与浮标的风浪结果的对比可以看出，三者的吻合程度高，进一步证实了OSMAR071系统探测海洋表面风、浪的能力，这也是中国首次对台风期间风速和波高的大面积实时完整观测。“凤凰”台风期间相关海域海面完整实时的风、浪检测，与浮标的风浪结果的对比可以看出，三者的吻合程度高，进一步证实了OSMAR071系统探测海洋表面风、浪的能力，这也是中国首次对台风期间风速和波高的大面积实时完整观测。"凤凰"台风期间相关海域海面完整实时的风、浪检测，与浮标的风浪结果的对比可以看出，三者的吻合程度高，进一步证实了OSMAR071系统探测海洋表面风、浪的能力，这也是中国首次对台风期间风速和波高的大面积实时完整观测。