Angewandte Chemie

Supporting Information
© Wiley-VCH 2013

69451 Weinheim, Germany

Umpolung of Hemiaminals: Titanocene-Catalyzed Dehydroxylative Radical Coupling Reactions with Activated Alkenes**
 Xiao Zheng,* Xi-Jie Dai, Hong-Qiu Yuan, Chen-Xi Ye, Jie Ma, and Pei-Qiang Huang

anie_201210088_sm_miscellaneous_information.pdf

Table of Contents

General S-2
TMSCI-Promoted Chlorination of Hemiaminal 1 in THF- \boldsymbol{d}_{8} S-3
Titanocene-Catalyzed Cross Coupling of Hemiaminals with Activated S-5
Alkenes
Total Synthesis of (\pm)-9,10-diepi-Stemoamide S-18
Reference S-23
NMR Spectra S-24

General. Infrared spectra were measured with a Nicolet Avatar 360 FT-IR spectrometer using film KBr pellet techniques. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} on a Bruker Av400 or 500 spectrometer with tertramethylsilane (TMS) as an internal standard. Chemical shifts are expressed in δ (ppm) units downfield from TMS. Mass spectra were recorded by Bruke Dalton Esquire 3000 plus LC-MS apparatus (ESI direct injection). HRMS spectra were recorded on a QSTAR Pulsar/LC/MS/MS System, ESI-QTOF instrument (Applied Biosystem, Canada). Melting points were determined on a Yanaco MP-500 melting point apparatus and are corrected.

Materials. THF used in the reactions were dried by distillation over metallic sodium and benzophenone; dichloromethane were distilled over CaH . Silica gel (Zhifu, 300~400 mesh) was used for column chromatography, eluting (unless otherwise stated) with ethyl acetate/ hexane mixture. The $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ and Mg used in this study are commercially available.

TMSCl-promoted chlorination of hemiaminal 1 in THF- $\boldsymbol{d}_{8}{ }^{1}$

Bn
yhq a-74 C13
2011.09 .13
THF-D8 100 M
THF-D8 100M

yhq a-74 +4 eq TMSCl 10 min C 13
2011.09 .13
THF-D8 100 M

Titanocene-catalyzed Cross Coupling of Hemiaminals with Activated Alkenes

General procedure for the cross-coupling of hemiaminals with α, β-unsaturated compounds: To a suspension mixture of titanocene dichloride ($3.1 \mathrm{mg}, 0.0125 \mathrm{mmol}$) and Mg (chips: $60.0 \mathrm{mg}, 2.5 \mathrm{mmol}$ or powder: $24.0 \mathrm{mg}, 1.0 \mathrm{mmol}$) in anhydrous THF $(1.5 \mathrm{~mL})$ was added dropwise $\mathrm{TMSCl}(0.25 \mathrm{~mL}, 2.0 \mathrm{mmol})$ at room temperature under N_{2}. The mixture was stirred until it turned green (about 10 min). A solution of a hemiaminal (0.5 mmol) and an α, β-unsaturated compound (1.0 mmol) in anhydrous THF (1.0 mL), then t-BuOH ($0.2 \mathrm{~mL}, 2.0 \mathrm{mmol}$) were added subsequently. The color of the mixture turned to orange. The reaction mixture was stirred for $2 \sim 3 \mathrm{~h}$ until the color turned back to light green, filtered, washed with EtOAc (15.0 mL). The filtrate was washed with brine (5.0 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford the desired cross-coupling products $\mathbf{2 a \sim 2 k}$ and $\mathbf{6 a \sim} \mathbf{6 e}$. In some cases, the byproducts 3,4 and 7 were isolated as side products.

1-Benzyl-5-[2-(methyloxycarbonyl)ethyl]pyrrolidin-2-one (2a)

Following the general procedure, the cross-coupling of hemiaminal $\mathbf{1}$ with methyl acrylate afforded $\mathbf{2 a}^{2}$ in 93% yield as a colorless oil. IR (film) $v_{\max } 3050,2944,2869$, $1738,1679,1489,1434,1413 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.62-1.76(\mathrm{~m}, 2 \mathrm{H})$, 2.02-2.16 (m, 2H), 2.17-2.34 (m, 2H), 2.35-2.54 (m, 2H), 3.46 (dddd, apparent tdd, J $=8.2,5.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5)$, 3.65 (s, 3H, OMe), 3.97 (d, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}$), 4.99 (d, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}$), 7.22-7.36 (m, $5 \mathrm{H}, \mathrm{Ph}-\mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 23.4,27.7,29.0,30.0,44.0,51.7,55.9,127.4,128.0$ (2C), 128.6 (2C), 136.5, 173.0, 174.9; MS (ESI, m / z): $284\left(\mathrm{M}+\mathrm{Na}^{+}, 100 \%\right)$. HRMS calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NNaO}_{3}\right]^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right):$284.1257; found: 284.1259.

1-Benzyl-5-[2-(tert-butyloxycarbonyl)ethyl]pyrrolidin-2-one (2b)

Following the general procedure, the cross-coupling of hemiaminal $\mathbf{1}$ with tert-butyl acrylate afforded $\mathbf{2 b} \mathbf{b}^{3}$ in 93% yield as a colorless oil.

1-Benzyl-5-[2-(methyloxycarbonyl)propyl]-pyrrolidin-2-one (2c)

Following the general procedure, the cross-coupling of hemiaminal $\mathbf{1}$ with methyl methacrylate afforded $\mathbf{2} \mathbf{c}^{3}$ as an inseparable diastereomeric mixture (diastereomeric ratio: $=55: 45$) in a combined yield of 91%.

1-Benzyl-5-(2-cyanoethyl)pyrrolidin-2-one (2d)

Following the general procedure, the cross-coupling of hemiaminal $\mathbf{1}$ with acrylonitrile afforded $\mathbf{2 d}{ }^{3}$ in 94% yield as a colorless oil.

1-Benzyl-5-(3-oxopentyl)pyrrolidin-2-one (2e)

Following the general procedure, the cross-coupling of hemiaminal $\mathbf{1}$ with ethyl vinyl ketone afforded $\mathbf{2 e}$ in 64% yield as a colorless oil. IR (film) $v_{\text {max }}: 3030$, 2973, 2937, 1712, 1684, 1496, 1445, 1418, 1374, 1255, $1114 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.50-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.88-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.46(\mathrm{~m}$, 6 H), 3.39 (dddd, apparent tdd, $J=8.3,5.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.87(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.27(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.7, 23.5, 26.3, 30.1, 35.9, 36.7, 44.1, 56.2, 127.4, 128.0 (2C), 128.6 (2C), 136.6,
175.0, 210.0; MS (ESI, m / z): $282\left(\mathrm{M}+\mathrm{Na}^{+}\right)$; HRMS calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NNaO}_{2}\right]^{+}(\mathrm{M}+$ Na^{+}): 282.1465; found: 282.1473 .

1-Benzyl-5-(4-oxopentyl-2-yl)pyrrolidin-2-one (2f)

Following the general procedure, the cross-coupling of hemiaminal $\mathbf{1}$ with (E)-pen-3-en-2-one afforded $2 f$ as an inseparable diastereomeric mixture (diastereomeric ratio: $=56: 44$) in a combined yield of 45%. IR (film) $v_{\text {max }}: 3029$, 2963, 1682, 1421, 1359, 1260, $1168 \mathrm{~cm}^{-1}$; MS (ESI, m / z): $282\left(\mathrm{M}+\mathrm{Na}^{+}\right)$. HRMS calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NNaO}_{2}\right]\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 282.1465 ; found: 282.1465.

Major diastereoisomer (data read from spectrum of the diastereomeric mixture): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.78(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.53-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.73-2.08(\mathrm{~m}$, 2 H), 1.96 ($\mathrm{s}, 3 \mathrm{H}$), 2.11-2.41 (m, 3H), 2.44-2.56 (m, 1H), 3.34-3.42 (m, 1H), 3.89 (d, J $=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.28(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.3,18.6,28.8,30.2,30.4,42.7,44.4,61.0,127.5,128.3$ (2C), 128.64 (2C), 136.4, 175.5, 207.1.

Minor diastereoisomer (data read from spectrum of the diastereomeric mixture): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.70(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.53-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.73-2.08(\mathrm{~m}$, $2 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 2.11-2.41(\mathrm{~m}, 3 \mathrm{H}), 2.44-2.56(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J$ $=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.28(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.0,17.8,28.5,30.2,30.5,44.0,46.8,59.3,127.5,128.2$ (2C), 128.57 (2C), 136.3, 175.2, 206.7.

1-Benzyl-5-[2-(N-methoxy- N-methylaminecarbonyl)ethyl]pyrrolidin-2-one (2g)

Following the general procedure, the cross-coupling of hemiaminal $\mathbf{1}$ with N-methoxy- N-methylacrylamide afforded $\mathbf{2 g}$ in 55% yield as a colorless oil. IR (film) $\nu_{\text {max }}: 3029,2937,1681,1420,1256,1174 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
1.57-1.69 (m, 2H), 1.94-2.09 (m, 2H), 2.18-2.48 (m, 4H), 3.09 (s, 3H), 3.43 (dddd, apparent tdd, $J=8.3,5.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}$, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.27(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.4,26.8$, 27.2, 30.1 (2C), 44.0, 56.2, 61.2, 127.4, 128.0 (2C), 128.5 (2C), 136.6, 175.0; MS (ESI, m / z): $313\left(\mathrm{M}+\mathrm{Na}^{+}\right)$; HRMS calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{3}\right]^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right): 313.1523$; found: 313.1523 .

(E)-1-Benzyl-5-[4-(methyloxycarbonyl)but-2-enyl]pyrrolidin-2-one (2h)

Following the general procedure, the cross-coupling of hemiaminal $\mathbf{1}$ with (E)-methyl penta-2,4-dienoate afforded $\mathbf{2 h}$ in 62% yield as a colorless oil. IR (film) $V_{\max }: 3029,2951,1736,1682,1436,1420,1250,1168 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}) $\delta 1.62-1.73$ (dddd, $J=4.8,6.0,8.4,13.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.90-2.02 (dddd, $J=7.1$, $8.0,9.8,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.44(\mathrm{~m}, 3 \mathrm{H}), 2.95(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, 3.42 (ddd, $J=4.4,7.7,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}$, $J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{ddd}, J=15.3,7.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.53$ (ddd, $J=15.3,7.5,6.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.11-7.27 (m, 5H, Ph-H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.1,29.9$, 35.7, 37.6, 44.0, 51.7, 56.1, 125.9, 127.3, 127.8 (2C), 128.3, 128.5 (2C), 136.5, 171.8, 175.1; MS (ESI, m / z): $310\left(\mathrm{M}+\mathrm{Na}^{+}\right)$; HRMS calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NNaO}_{3}\right]^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 310.1414; found: 310.1410.

1-Benzyl-5-[4-(ethyloxycarbonyl)prop-2-enyl]pyrrolidin-2-one (2i)

Following the general procedure, the cross-coupling of hemiaminal $\mathbf{1}$ with ethyl buta-2,3-dienoate afforded $\mathbf{2 i}$ in 72% yield as a colorless oil. IR (film) $v_{\max }: 3457$, 3064, 3031, 2981, 1733, 1689, 1496, 1444, 1417, 1239, 1158, $1032 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.17(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.69-1.79(\mathrm{~m}, 1 \mathrm{H}), 2.01-2.14(\mathrm{~m}, 1 \mathrm{H})$, 2.33 (ddd, $J=4.8,10.0,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.45$ (ddd, apparent dt, $J=17.2,8.7 \mathrm{~Hz}, 1 \mathrm{H}$),
$2.87(\mathrm{~s}, 2 \mathrm{H}), 3.63(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=3.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 4.99(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 7.13-7.27(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{Ph}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.1,23.6,29.6,37.4,44.2,61.0,61.6,116.6$, 127.5, 128.4 (2C), 128.5 (2C), 136.5, 140.2, 170.8, 175.2; MS (ESI, m / z): 310 (M + Na^{+}); HRMS calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NNaO}_{3}\right]^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 310.1414; found: 310.1416.

1-Benzyl-5-[(2-oxotetrahydrofuran-3-yl)methyl]pyrrolidin-2-one (2j)

Following the general procedure, the cross-coupling of hemiaminal $\mathbf{1}$ with 3-methylenedihydrofuran- $2(3 \mathrm{H})$-one afforded $\mathbf{2 j}$ as an inseparable diastereomeric mixture (diastereomeric ratio: $=56: 44$) in a combined yield of 92%. IR (film) $v_{\max }$: $3500,3029,2927,1767,1682,1495,1446,1420,1375,1254,1214,1174,1023, \mathrm{~cm}^{-1}$; MS (ESI, m/z): $296\left(\mathrm{M}+\mathrm{Na}^{+}\right)$. HRMS calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NNaO}_{3}\right]^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 296.1257; found: 296.1263.

Major diastereoisomer (data read from spectrum of the diastereomeric mixture): ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl3) $\delta 1.41$ (ddd, $J=6.7,9.0,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.56-1.74(\mathrm{~m}, 2 \mathrm{H})$, 1.77-1.98 (m, 1H), 2.00-2.52 (m, 5H), $3.73(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.02-4.11 (m, 1H), 4.20-4.28 (m, 1H), $4.84(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.28(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{Ph}-\mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.0,29.8,29.9,33.7,35.7,44.3,55.6,66.3$, 127.5, 127.9 (2C), 128.6 (2C), 136.4, 174.9, 178.4.

Minor diastereoisomer (data read from spectrum of the diastereomeric mixture): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.56-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.98(\mathrm{~m}, 1 \mathrm{H}), 2.00-2.52(\mathrm{~m}, 6 \mathrm{H})$, $3.33(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-4.11(\mathrm{~m}, 1 \mathrm{H}), 4.20-4.28(\mathrm{~m}, 1 \mathrm{H}), 4.99(\mathrm{~d}$, $J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.28(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ph}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.6,28.9$, $29.9,33.6,35.6,44.0,54.9,66.3,127.6,127.9$ (2C), 128.6 (2C), 136.1, 174.7, 178.5.

1-Benzyl-5-(5-oxotetrahydrofuran-3-yl)pyrrolidin-2-one (2k)

Following the general procedure, the cross-coupling of hemiaminal $\mathbf{1}$ with furan- $\mathbf{2 (5 H}$)-one afforded $\mathbf{2 k}$ as an inseparable diastereomeric mixture (diastereomeric ratio: $=58: 42$) in a combined yield of 62%. IR (film) $v_{\max }: 3458,3030,2921,1776$, 1682, 1495, 1417, 1262, 1177, $1025 \mathrm{~cm}^{-1}$; MS (ESI, m / z): $282\left(\mathrm{M}+\mathrm{Na}^{+}\right)$. HRMS calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NNaO}_{3}\right]^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 282.1101; found: 282.1108.
Major diastereoisomer (data read from spectrum of the diastereomeric mixture): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.58-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.98-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{dd}, J=9.2$, $18.2 \mathrm{~Hz} 1 \mathrm{H}), 2.35-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.78-2.91(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.96(\mathrm{~m}$, $1 \mathrm{H}), 4.02(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=8.2,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=15.3 \mathrm{~Hz}$, 1H), 7.11-7.16 (m, 2H, Ph-H), 7.19-7.30 (m, 3H, Ph-H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.0,28.7,29.7,36.8,45.0,58.4,69.6,127.6,128.8$ (2C), 128.9 (2C), 136.0, 175.3, 175.7.

Minor diastereoisomer (data read from spectrum of the diastereomeric mixture): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.58-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.98-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.53(\mathrm{~m}, 2 \mathrm{H})$, 2.57 (dd, $J=9.8,18.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.91(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.96(\mathrm{~m}$, $2 \mathrm{H}), 4.13(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.16(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{H})$, 7.19-7.30 (m, 3H, Ph-H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 19.6, 29.7, 31.0, 36.0, 45.1, 59.0, 67.7, 127.8, 128.8 (2C), 128.9 (2C), 136.1, 175.5, 175.9.

1-Benzyl-1,5-dihydropyrrol-2-one (3)

Byproduct 3^{4} : a colorless oil. IR (film) $v_{\max } 3030,2930,1735,1673,1496,1452,1358$, 1247, 1168, $1077 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.87(\mathrm{~s}, 2 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 6.23$ $(\mathrm{dt}, J=1.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dt}, J=1.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.35(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 45.9,52.2,127.5,127.9,128.0$ (2C), 128.7 (2C), 137.2, 142.8, 171.4; MS (ESI, m / z): 174, ($\mathrm{M}+\mathrm{H}^{+}$).

1-Benzyl-5-tert-butyloxypyrrolidin-2-one (4)

Byproduct 4: a white solid. Mp $88-90^{\circ} \mathrm{C}(\mathrm{EtOAc} / \mathrm{Hex}=1: 8)$. IR (film) $\boldsymbol{v}_{\max } 3026$, 2928, 2876, 1644, 1492, 1455, 1336, 1260, $1078 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.2(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}), 1.91$ (dddd, $J=1.6,3.5,9.7,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.19$ (dddd, $J=6.2,8.0$, $9.9,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{ddd}, J=3.5,9.9,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{ddd}, J=8.0,9.7,17.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.96$ (d, $J=15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}), 4.94$ (dd, $J=1.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=$ $15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}$), 7.18-7.38 (m, 5H, Ph-H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.4$ (3C), 28.6, 28.7, 42.7, 73.7, 82.2, 127.2, 127.5 (2C), 128.4 (2C), 137.2, 174.8; MS (ESI, m / z): $270\left(\mathrm{M}+\mathrm{Na}^{+}, 100 \%\right)$. HRMS calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NNaO}_{2}\right]^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 270.1470; found: 270.1472 .

1-(Benzyloxycarbonyl)-2-[2-(methyloxycarbonyl)ethyl]pyrrolidine (6a)

Following the general procedure, the cross-coupling of hemiaminal 5 with methyl acrylate afforded $\mathbf{6 a}$ in 81% yield as a colorless oil. IR (film) $v_{\max } 3025,2945,2868$, 1733, 1699, 1438, $1412 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.56-1.62(\mathrm{~m}, 1 \mathrm{H})$, $1.64-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.92(\mathrm{~m}, 4 \mathrm{H}), 2.18-2.38(\mathrm{~m}, 2 \mathrm{H}), 3.28-3.35(\mathrm{~m}, 1 \mathrm{H})$, 3.36-3.47 (m, 1H), $3.55\left(\mathrm{~s} \mathrm{br}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.78-3.82(\mathrm{~m}, 1 \mathrm{H}), 5.05\left(\mathrm{~s} \mathrm{br}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right)$, 7.19-7.32 (m, 5H, Ph-H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.5,29.5,30.3,30.9,46.4$, 51.5, 57.0, 66.6, 127.8 (2C), 128.4 (3C), 136.9, 155.1, 173.6; MS (ESI, m / z): 314 (M $\left.+\mathrm{Na}^{+}, 100 \%\right)$. HRMS calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NNaO}_{4}\right]^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right): 314.1363$; found: 314.1363.

1-(Benzyloxycarbonyl)-2-[2-(tert-butyloxycarbonyl)ethyl]pyrrolidine (6b)

Following the general procedure, the cross-coupling of hemiaminal $\mathbf{5}$ with tert-butyl acrylate afforded $\mathbf{6} \mathbf{b}^{5}$ in 86% yield as a colorless oil.

1-(Benzyloxycarbonyl)-2-(2-cyanoethyl)pyrrolidine (6c)

Following the general procedure \mathbf{A}, the cross-coupling of hemiaminal 5 with acrylonitrile afforded $\mathbf{6 c}{ }^{5}$ in 71% yield as a colorless oil.

(Z/E)-1-(Benzyloxycarbonyl)-2-[2-(ethyloxycarbonyl)ethenyl]pyrrolidine (6d)

Following the general procedure, the cross-coupling of hemiaminal $\mathbf{5}$ with ethyl propiolate afforded $\mathbf{6 d}{ }^{5}$ in 74% yield (E-isomer: $41 \%, Z$-isomer: 33%).

1-(Benzyloxycarbonyl)-2-[2-(ethylcarbonyl)ethyl]pyrrolidine (6e)

Following the general procedure, the cross-coupling of hemiaminal 5 with ethyl vinyl ketone afforded $\mathbf{6} \mathbf{e}^{6}$ in 80% yield as a colorless oil. IR (film) $\nu_{\text {max }}: 3028$, 2949, 1733, 1695, 1408, $1412 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.01(\mathrm{t}, J=4.0 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}), 1.55-1.73 (m, 2H), 1.75-1.95 (m, 4H), 2.20-2.50 (m, 4H), 3.30-3.40 (m, 1H), 3.40-3.50 (m, 1H), 3.80-3.92 (m, 1H), 5.09 (d, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}), 5.15$ (d, $J=$ $12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}$), $7.25-7.42(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.7$, 23.3, 28.5, 30.4, 35.6, 39.1, 46.3, 56.9, 66.6, 127.8 (2C), 128.2, 128.3 (2C), 136.8,
155.1, 211.0; MS (ESI, m / z): $312\left(\mathrm{M}+\mathrm{Na}^{+}, 100 \%\right)$.

General procedure for the cross-coupling of hemiaminals 8, 10 and 12 with α, β-unsaturated compounds:

To a cooled ($-20^{\circ} \mathrm{C}$) solution of 1-benzylsuccimide ($385 \mathrm{mg}, 2.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(15 \mathrm{~mL})$ was added dropwise a solution of alkyl/ aryl magnesium bromide in $\mathrm{Et}_{2} \mathrm{O}$ ($1.5 \mathrm{M}, 3.3 \mathrm{~mL}, 5.0 \mathrm{mmol}$). The mixture was stirred for 4 h at $-20^{\circ} \mathrm{C}$. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. After extraction with ethyl acetate $(3 \times 10 \mathrm{~mL})$, the combined organic layers were washed with brine (4 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was filtered through Silica gel (zhifu, 100-200 mesh) to afford the crude hemiaminals 8, 10 and 12 which were used in the next step without further purification.

To a suspension mixture of titanocene dichloride ($3.1 \mathrm{mg}, 0.0125 \mathrm{mmol}$) and Mg (chips: $60 \mathrm{mg}, 2.5 \mathrm{mmol}$ or powder: $24 \mathrm{mg}, 1.0 \mathrm{mmol}$) in anhydrous THF (1.5 mL) was added dropwise TMSCl $(0.25 \mathrm{~mL}, 2.0 \mathrm{mmol})$ at room temperature under N_{2}. The mixture was stirred until it turned green (about 10 min). A solution of a hemiaminal $(0.5 \mathrm{mmol})$ and an α, β-unsaturated compound (1.0 mmol) in anhydrous THF $(1.0 \mathrm{~mL})$, then t - $\mathrm{BuOH}(0.2 \mathrm{~mL}, 2.0 \mathrm{mmol})$ were added subsequently. The color of the mixture turned to orange. The reaction mixture was stirred for $2 \sim 3 \mathrm{~h}$ until the color turned back to light green, filtered, washed with EtOAc $(15.0 \mathrm{~mL})$. The filtrate was washed with brine (5.0 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford the desired cross-coupling products 9a~9c, 11a~11c, 13a~13c.

1-Benzyl-5-methyl-5-[2-(methyloxycarbonyl)ethyl]pyrrolidin-2-one (9a)

Following the general procedure, with methyl magnesium iodide as Grignard
reagent, the cross-coupling of hemiaminal $\mathbf{8}$ with methyl acrylate afforded 9a in 82% yield as a colorless oil. IR (film) $\nu_{\max }: 3029,2967,1736,1682,1404,1299,1198 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.90(\mathrm{~m}, 4 \mathrm{H}), 1.99$ (ddd, $J=5.6$, $10.3,16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{ddd}, J=6.3,10.0,16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.44(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{~s}$, $3 \mathrm{H}), 4.23(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.26(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}-\mathrm{H})$; ${ }^{13}{ }^{2}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.4,28.8,29.6,30.7,34.0,42.9,51.7,63.1,127.1$, 127.9 (2C), 128.4 (2C), 138.5, 173.2, 174.9; MS (ESI, m / z): 298 ($\mathrm{M}+\mathrm{Na}^{+}, 100 \%$); HRMS calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{KNO}_{3}\right]^{+}\left(\mathrm{M}+\mathrm{K}^{+}\right): 314.1153$; found: 314.1160.

1-Benzyl-5-methyl-5-[2-(tert-butyloxycarbonyl)ethyl]pyrrolidin-2-one (9b)

Following the general procedure, with methyl magnesium iodide as Grignard reagent, the cross-coupling of hemiaminal $\mathbf{8}$ with tert-butyl acrylate afforded $\mathbf{9 b}$ in 77% yield as a colorless oil. IR (film) $\nu_{\max }: 3036,2975,2932,1727,1686,1496,1403$, $1367,1155 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.03(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}), 1.64-1.75$ $(\mathrm{m}, 3 \mathrm{H}), 1.80-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.97-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.42(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{~d}, J=15.3$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.42 (d, $J=15.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.11-7.27 (m, 5H, Ph-H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 26.3,27.9(3 \mathrm{C}), 29.6,30.2,30.7,34.0,42.8,63.1,80.4,127.0,127.8$ (2C), 128.3 (2C), 138.5, 172.0, 174.8; MS (ESI, m / z): $340\left(\mathrm{M}+\mathrm{Na}^{+}, 100 \%\right)$; HRMS calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NNaO}_{3}\right]^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right): 340.1883$; found: 340.1884.

1-Benzyl-5-methyl-5-(2-cyanoethyl)pyrrolidin-2-one (9c)

Following the general procedure, with methyl magnesium iodide as Grignard reagent, the cross-coupling of hemiaminal 8 with acrylonitrile afforded 9c in 84\% yield as a colorless oil. IR (film) $v_{\text {max }}: 3030,2969,2934,2246,1682,1405,1358$, $1168 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.80(\mathrm{~m}, 3 \mathrm{H}), 1.84-1.93$ $(\mathrm{m}, 2 \mathrm{H}), 2.00-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{ddd}$, apparent dt, $J=9.3,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{~d}, J=$
$15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.24(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.0,25.7,29.2,30.2,34.8,42.8,62.7,118.9,127.5,127.8$ (2C), $128.6(2 \mathrm{C}), 138.0,174.6$; MS (ESI, m / z): $265\left(\mathrm{M}+\mathrm{Na}^{+}, 100 \%\right)$; HRMS calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}\right]^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right):$265.1311; found: 265.1318.

1-Benzyl-5-ethyl-5-[2-(methyloxycarbonyl)ethyl]pyrrolidin-2-one (11a)

Following the general procedure, with ethyl magnesium bromide as Grignard reagent, the cross-coupling of hemiaminal 10 with methyl acrylate afforded 11a in 81% yield as a colorless oil. IR (film) $v_{\text {max }}: 3029,2966,1736,1681,1408,1303,1197$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.65(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\mathrm{dq}$, apparent $\mathrm{q}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{dq}$, apparent $\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.66-1.80(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.90(\mathrm{~m}$, $2 \mathrm{H}), 2.00-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.37$ (ddd, $J=2.0,7.5,9.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 4.19(\mathrm{~d}, J=$ $15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.38$ (d, $J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.23$ (m, 3H, Ph-H), 7.26-7.32 (m, 2H, $\mathrm{Ph}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 7.7,26.5,28.3,30.0,32.1,33.5,43.1,51.6$, 66.4, 127.2, 128.38 (2C), 128.40 (2C), 138.3, 173.3, 175.5; MS (ESI, m / z): 312 (M + $\left.\mathrm{Na}^{+}, 100 \%\right)$; HRMS calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NNaO}_{3}\right]^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right): 312.1570$; found: 312.1573 .

1-Benzyl-5-ethyl-5-[2-(tert-butyloxycarbonyl)ethyl]pyrrolidin-2-one (11b)

Following the general procedure, with ethyl magnesium bromide as Grignard reagent, the cross-coupling of hemiaminal $\mathbf{1 0}$ with tert-butyl acrylate afforded 11b in 72% yield as a white solid. $\mathrm{Mp} 79-80^{\circ} \mathrm{C}\left(\mathrm{EtOAc} / \mathrm{Hex}=1: 3\right.$); IR (film) $v_{\text {max }}: 3028$, 2972, 2929, 1727, 1682, 1587, 1407, 1366, $1152 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $0.65(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}), 1.40(\mathrm{dq}$, apparent $\mathrm{q}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{dq}$, apparent $\mathrm{q}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.65-1.81(\mathrm{~m}, 5 \mathrm{H}), 1.93-1.99(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.40(\mathrm{~m}, 2 \mathrm{H})$, $4.19(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.23(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}-\mathrm{H})$,
7.29-7.31 (m, 2H, Ph-H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.7, 26.6, 28.0 (3C), 29.7, $30.0,32.1,33.6,43.1,66.4,80.4,127.2,128.38$ (2C), 128.44 (2C), 138.4, 172.2, 175.6; MS (ESI, m / z): 354 ($\mathrm{M}+\mathrm{Na}^{+}, 100 \%$); HRMS calcd for $\left[\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NNaO}_{3}\right]^{+}(\mathrm{M}+$ Na^{+}): 354.2040; found: 354.2041.

1-Benzyl-5-ethyl-5-(2-cyanoethyl)pyrrolidin-2-one (11c)

Following the general procedure, with ethyl magnesium bromide as Grignard reagent, the cross-coupling of hemiaminal 10 with acrylonitrile afforded 11c in 83\% yield as a colorless oil. IR (film) $v_{\text {max }}: 3030,2968,2934,2246,1678,1496,1409$, 1358, $711 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.72(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$), $1.48(\mathrm{dq}$, apparent $\mathrm{q}, ~ J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{dq}$, apparent $\mathrm{q}, ~ J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.81(\mathrm{~m}, 4 \mathrm{H})$, $1.83-1.98$ (m, 2H), 2.39 (ddd, $J=2.1,7.5,9.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.66(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.32(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.5,11.6,26.2,29.7,31.5,34.8,43.1,66.1,119.0,127.8,128.4$ (2C), 128.8 (2C), 137.9, 175.4; MS (ESI, m / z): $279\left(\mathrm{M}+\mathrm{Na}^{+}, 100 \%\right)$; HRMS calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}\right]^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right): 279.1468$; found: 279.1463 .

1-Benzyl-5-benzyl-5-[2-(methyloxycarbonyl)ethyl]pyrrolidin-2-one (13a)

Following the general procedure, with benzyl magnesium chloride as Grignard reagent, the cross-coupling of hemiaminal 12 with methyl acrylate afforded 13a in 75% yield as a white solid. $\mathrm{Mp} 98-99{ }^{\circ} \mathrm{C}\left(\mathrm{EtOAc} / \mathrm{Hex}=1: 3\right.$); IR (film) $v_{\text {max }}: 3062$, 3028, 2950, 1737, 1682, 1495, 1435, 1404, 1304, 1198, $1170 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.47-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.73-2.10(\mathrm{~m}, 6 \mathrm{H}), 2.58(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.83$ (d, $J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 4.16(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H})$, 6.95-7.02 (m, 2H, Ph-H), 7.12-7.25 (m, 6H, Ph-H), 7.29-7.36 (m, 2H, Ph-H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 26.9,28.2,29.4,33.4,43.6,44.0,51.6,66.7,127.0,127.2$,
128.3 (2C), 128.4 (2C), 128.5 (2C), 130.0 (2C), 135.7, 138.4, 173.1, 175.8; MS (ESI, $m / z): 374\left(\mathrm{M}+\mathrm{Na}^{+}, 100 \%\right)$; HRMS calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NNaO}_{3}\right]^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right): 374.1727$; found: 374.1730.

1-Benzyl-5-benzyl-5-[2-(tert-butyloxycarbonyl)ethyl]pyrrolidin-2-one (13b)

Following the general procedure, with benzyl magnesium chloride as Grignard reagent, the cross-coupling of hemiaminal $\mathbf{1 2}$ with tert-butyl acrylate afforded $\mathbf{1 3 b}$ in 68% yield as a colorless oil. IR (film) $\nu_{\max }: 3435,3029,2976,2929,1727,1683,1495$, $1455,1404,1367,1314,1151 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.29(\mathrm{~s}, 9 \mathrm{H})$, 1.48-1.68 (m, 2H), 1.68-1.83 (m, 3H), 1.89-2.01 (m, 2H), 2.01-2.11 (m, 1H), $2.59(\mathrm{~d}$, $J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=$ $15.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-7.03$ (m, 2H, Ph-H), 7.13-7.26 (m, 6H, Ph-H), 7.31-7.36 (m, 2H, Ph-H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.1,28.0$ (3C), 29.5, 29.8, 33.8, 43.6, 44.0, $66.8,80.5,127.0,127.3,128.4$ (2C), 128.48 (2C), 128.53 (2C), 130.1 (2C), 135.9, 138.6, 172.0, 175.9; MS (ESI, m / z): $416\left(\mathrm{M}+\mathrm{Na}^{+}, 100 \%\right)$; HRMS calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{NNaO}_{3}\right]^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right): 416.2196$; found: 416.2208.

1-Benzyl-5-benzyl-5-(2-cyanoethyl)pyrrolidin-2-one (13c)

Following the general procedure, with benzyl magnesium chloride as Grignard reagent, the cross-coupling of hemiaminal $\mathbf{1 2}$ with acrylonitrile afforded $\mathbf{1 3} \mathbf{c}^{7}$ in 81% yield as a white solid. M.p. $164-165{ }^{\circ} \mathrm{C}\left(\mathrm{EtOAc} / \mathrm{Hex}=1: 2\right.$); IR (film) $\nu_{\text {max }}: 3029$, 2928, 2245, 1681, 1495, 1454, 1403, 1356, 1151, $1083 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 1.46-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.95(\mathrm{~m}, 3 \mathrm{H}), 1.99(\mathrm{ddd}, J=3.3$, $10.0,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.08$ (ddd, $J=3.3,10.1,13.4, \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.91(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H})$, 6.98-7.05 (m, 2H, Ph-H), 7.18-7.37 (m, 8H, Ph-H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 11.6, 26.4, 29.1, 34.5, 43.6, 43.7, 66.4, 119.0, 127.4, 127.9, 128.3 (2C), 128.7 (2C), 129.0 (2C), 130.0 (2C), 135.0, 138.1, 175.7; MS (ESI, m / z): 341 ($\mathrm{M}+\mathrm{Na}^{+}, 100 \%$); HRMS calcd for $\left[\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}\right]^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 341.1624; found: 341.1630.

Total Synthesis of (\pm)-9,10-epi-stemoamide

3-Methyl-2-(trimethylsilyloxy)furan (15)

To a cooled solution (ice-bath) of 3-methyl-5 H -furan-2-one $14(2.50 \mathrm{~g}, 25.0 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(4.2 \mathrm{~mL}, 30.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added TMSOTf $(4.5 \mathrm{~mL}, 25.0$ mmol) dropwise over 15 min under N_{2}. The reaction mixture was stirred at the same temperature for 60 min , then allowed to warm to room temperature. After 30 min , the reaction mixture was diluted with petroleum ether $\left(30-60^{\circ} \mathrm{C}, 100 \mathrm{~mL}\right)$ and transferred to a separatory funnel. The top layer was decanted, and concentrated under reduced pressure (200 mbar). The residue was purified by distillation under reduced pressure (pressure: 93 mbr , temp. $85^{\circ} \mathrm{C}$) to give silyloxyfuran $\mathbf{1 5}^{8}(3.30 \mathrm{~g}$, yield: 78%) as a pale yellow oil. IR (film) $v_{\text {max }}: 3086,2955,1764,1644,1246,1096,844 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.28\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Me}_{3} \mathrm{Si}\right), 1.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}=), 6.76(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}=) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.1$ (3C), 8.4, 92.3, 113.5, 131.3, 152.7.

(\pm)-3-(4'-Methyl-5'-oxo-2',5'-dihydrofuran-2'-yl)propanal (16)

To a solution of pyrrolidine ($0.28 \mathrm{~mL}, 3.4 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(65 \mathrm{~mL})$, water (1.22 mL , $67.8 \mathrm{mmol})$, acetic acid ($0.13 \mathrm{~mL}, 2.3 \mathrm{mmol}$) and acrolein $(0.75 \mathrm{~mL}, 11.3 \mathrm{mmol})$ were added under N_{2} at $-40{ }^{\circ} \mathrm{C}$. After being stirred for 10 min , 3-methyl-2(trimethylsilyloxy)furan 15 ($2.30 \mathrm{~g}, 13.5 \mathrm{mmol}$) was added slowly. The resulting solution was stirred at $-40^{\circ} \mathrm{C}$ for 18 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel $\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{PE}\right.$ $\left.30-60^{\circ} \mathrm{C}=1: 1\right)$ to give compound $16(1.11 \mathrm{~g}$, yield: $64 \%)$ as a colorless oil. IR (film) $v_{\text {max }}: 3081,2960,2914,1753,1655,1442,1344,1208,1069 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.72-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.90\left(\mathrm{t}, J=1.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.18(\mathrm{dddd}, 1 \mathrm{H}, J=$ 4.4, 4.4, 7.3, 14.5 Hz), 2.55-2.72 (m, 2H, H-2), 4.91-4.98 (m, 1H), 6.98-7.02 (m, 1H, $=\mathrm{CH}), 9.78(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.6,25.4,38.9,79.6$, 130.5, 148.1, 173.8, 200.5; MS (ESI, m / z): $177\left(\mathrm{M}+\mathrm{Na}^{+}, 100 \%\right)$. HRESIMS calcd for $\left[\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{NaO}_{3}\right]^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right):$177.0522; found: 177.0525.

(\pm)-5-(3’-Hydroxypropanyl)-3-methyl-2(5H)-furanone (17)

To a solution of 3-(4-methyl-5-oxo-2,5-dihydrofuran-2-yl)propanal 16 ($450 \mathrm{mg}, 2.9$ $\mathrm{mmol})$ in THF (29.0 mL) was added a 1.0 M solution of BH_{3} in THF ($3.0 \mathrm{~mL}, 3.0$ mmol) dropwise at $-30^{\circ} \mathrm{C}$. The resulting solution was stirred for 1 h at the same temperature, and then quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: EtOAc/ Hex $=1: 1)$ to give compound $\mathbf{1 7}(420 \mathrm{mg}$, yield: $93 \%)$ as a colorless oil. ${ }^{9}$ IR (film)
$v_{\text {max }}: 3413,3079,2927,2873,1753,1658,1444,1344,1208,1045,1023 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.62-1.72(\mathrm{~m}, 3 \mathrm{H}), 1.76(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 1.82-1.89(\mathrm{~m}, 1 \mathrm{H})$, $1.90\left(\mathrm{t}, J=1.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.65-3.72(\mathrm{~m}, 2 \mathrm{H}), 4.92-4.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 7.02-7.05$ $(\mathrm{m}, 1 \mathrm{H},=\mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.6,28.0,30.0,62.1,80.9,130.0$, 148.7, 174.3; MS (ESI, m / z): 179 ($\mathrm{M}+\mathrm{Na}^{+}, 100 \%$).

(土)-1-(3-(4-Methyl-5-oxo-2,5-dihydrofuran-2-yl)propyl)pyrrolidine-2,5-dione (18)

To a suspension of alcohol $17(374 \mathrm{mg}, 2.4 \mathrm{mmol}), \mathrm{Ph}_{3} \mathrm{P}(681 \mathrm{mg}, 2.6 \mathrm{mmol})$, and succinimide ($238 \mathrm{mg}, 2.4 \mathrm{mmol}$) in THF (8.0 mL) was added DIAD ($0.55 \mathrm{~mL}, 2.6$ mmol) under N_{2} at room temperature. The resulting mixture was stirred overnight and then concentrated under reduced pressure. The residue was purified by flash column chromatography (eluent: $\mathrm{EtOAc} / \mathrm{Hex}=1: 2$) to give the cyclic imide 18 (517 mg , yield: 91%) as a colorless oil. ${ }^{9}$ IR (film) $v_{\max }$: 3079, 2941, 1752, 1697, 1438, 1404, 1344, 1252, 1210, 1162, 1112, $1027 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.53-1.62(\mathrm{~m}$, $1 \mathrm{H}), 1.63-1.82(\mathrm{~m}, 3 \mathrm{H}), 1.90\left(\mathrm{t}, J=1.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.70(\mathrm{~s}$ br, 4 H$), 3.48-3.58(\mathrm{~m}$, $2 \mathrm{H}), 4.86-4.94(\mathrm{~m}, 1 \mathrm{H}), 6.94-7.07(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.6$, 23.5, 28.2 (2C), 30.7, 38.2, 80.2, 130.4, 148.1, 173.9, 177.2; MS (ESI, m / z): $260(\mathrm{M}+$ $\left.\mathrm{Na}^{+}, 100 \%\right)$.
(\pm)-5-Hydroxy-1-(3-(4-methyl-5-oxo-2,5-dihydrofuran-2-yl)propyl)pyrrolidin-2one (19)

To a solution of cyclic imide 18 ($408 \mathrm{mg}, 1.7 \mathrm{mmol}$) in $\mathrm{MeOH}(5.0 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(650 \mathrm{mg}, 17.0 \mathrm{mmol})$ portionwise at $-10^{\circ} \mathrm{C}$. The resulting solution was stirred for 15 min at the same temperature, quenched with water $(10 \mathrm{~mL})$, extracted with cold
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: EtOAc) to give the carbinol lactam 19 (378 mg , yield: 92%) as a colorless oil. ${ }^{9}$ IR (film) $v_{\text {max }}: 3339,3072$, 2928, 1751, 1666, 1462, 1338, 1282, 1162, 1102, $1059 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (diastereomeric mixture, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.45-1.85(\mathrm{~m}, 5 \mathrm{H}), 1.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.20-2.40(\mathrm{~m}, 2 \mathrm{H})$, 2.45-2.65 (m, 1H), 3.24-3.35 (m, 1H), 3.36-3.50 (m, 1H), 4.47 and 4.49 (2s br, 1H, $\mathrm{OH}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), 4.90-4.99 (m, 1H), 5.16-5.27 (m, 1H), 6.98-7.08 (m, 1H, $=\mathrm{CH}$); ${ }^{13} \mathrm{C}$ NMR (diastereomeric mixture, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.5,23.4,23.5,28.26$, $28.30,28.9,30.69,30.74,39.4,39.8,80.7,80.9,83.2,83.5,129.9,130.0,148.9,149.0$, 174.5, 175.0; MS (ESI, m / z): $262\left(\mathrm{M}+\mathrm{Na}^{+}, 100 \%\right)$.

(\pm)-9,10-Di-epi-stemoamide (20)

A suspension of titanocene dichloride ($12.5 \mathrm{mg}, 0.05 \mathrm{mmol}$) was stirred with Mg (22 $\mathrm{mg}, 0.90 \mathrm{mmol})$ in anhydrous THF $(1.0 \mathrm{~mL})$ for 10 min at room temperature under N_{2}. The mixture was cooled with an ice-bath, and then $\operatorname{TMSCl}(50 \mu \mathrm{~L}, 0.40 \mathrm{mmol})$ was added dropwise to it. After being stirred for 30 min , a solution of carbinol lactam 19 ($24 \mathrm{mg}, 0.10 \mathrm{mmol}$) in anhydrous THF (1.0 mL) was added via a syringe pump over 4 h. The mixture was allowed to warm up to room temperature, and stirred for 10 h . The reaction mixture was filtered, and washed with EtOAc (3.0 mL). The filtrate was washed with brine (1.0 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: EtOAc) to give compound 20 (7.1 mg , yield: 32%) as a white amorphous solid. ${ }^{9,10}$ IR (film) $v_{\text {max }}$: $2936,1768,1680,1459,1430,1381,1299,1254,1193,1139$, $1008 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.38(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 1.54-1.69(\mathrm{~m}$,
$1 \mathrm{H}), 1.80-1.96(\mathrm{~m}, 3 \mathrm{H}), 2.05-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.62(\mathrm{~m}, 5 \mathrm{H}), 2.76(\mathrm{ddd}, J=3.6$, $10.6,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.62$ (ddd, $J=1.2,7.8,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dt}, J=13.8,4.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.62(\mathrm{ddd}, J=3.0,7.8,10.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.9,23.9$, 25.4, 28.9, 30.0, 39.1, 44.0, 50.8, 60.5, 80.6, 174.7, 177.8; MS (ESI, m/z): 246 (M + $\left.\mathrm{Na}^{+}, 100 \%\right)$. HRESIMS calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NNaO}_{3}\right]^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 246.1101; found: 246.1104.

$(\pm)-20$ synthesized in this work	$\begin{gathered} (\pm)-20 \\ \text { in ref. 10a } \end{gathered}$
$\begin{gathered} { }^{1} \mathrm{H} \text { NMR } \\ \left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \end{gathered}$	
1.38 (d, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me})$	1.39 (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$
1.54-1.69 (m, 1H)	$1.55-1.70(\mathrm{~m}, 1 \mathrm{H})$
1.80-1.96 (m, 3H)	1.80-2.00 (m, 3H)
2.05-2.14 (m, 1H)	2.07-2.15 (m, 1H)
2.22-2.62 (m, 5H)	2.23-2.62 (m, 5H)
2.76 (ddd, $J=13.8,10.6,3.6 \mathrm{~Hz}, 1 \mathrm{H})$	$\begin{aligned} & 2.78 \text { (ddd, } J=14.0,10.6,3.4 \mathrm{~Hz} \text {, } \\ & 1 \mathrm{H}) \end{aligned}$
3.62 (ddd, $J=9.9,7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H})$	3.63 (m, 1H)
4.15 (dt, $J=13.8,4.6 \mathrm{~Hz}, 1 \mathrm{H})$	4.19 (dt, $J=14.0,4.5 \mathrm{~Hz})$
4.62 (ddd, $J=10.6,7.8,3.0 \mathrm{~Hz}, 1 \mathrm{H})$	4.62 (ddd, $J=10.6,7.5,3.0 \mathrm{~Hz}, 1 \mathrm{H})$
$\begin{gathered} { }^{13} \mathrm{C} \text { NMR } \\ \left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \end{gathered}$	
15.9	15.9
23.9	24.0
25.4	25.5
28.9	28.9
30.0	30.1
39.1	39.1
44.0	44.1
50.8	50.8
60.5	60.6
80.6	80.7
174.7	174.6
177.8	177.9

Reference

1. E. A. Peterson, E. N. Jacobsen, Angew. Chem., Int. Ed. 2009, 48, 6328, and the accompanied supporting information for it.
2. Fleischhacker, W.; Noe, C. R.; Hiessboeck, R. PCT Int. Appl. 1990, WO 9012787 A1 19901101.
3. Hu, K.-Z.; Ma, J.; Qiu, S.; Zheng, X.; Huang, P.-Q. J. Org. Chem. 2012, 77, Doi:org/10.1021/jo301277n.
4. (a) Xie, Y.-J.; Zhao, Y.-W.; Qian, B.; Yang, L.; Xia, C.-G.; Huang, H.-M. Angew. Chem. Int. Ed. 2011, 50, 5682 and references cited therein.
5. Xiang, Y.-G.; Wang, X.-W.; Zheng, X.; Ruan, Y.-P.; Huang, P.-Q. Chem. Commun. 2009, 45, 7045.
6. Provot, O.; Célérier, J.-P.; Lhommet, G. J. Heterocyclic. Chem. 1998, 35, 371.
7. CCDC-911087 contains the supplementary crystallographic data for compound 15c. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.
8. (a) Nefkens, G. H. L.; Thuring, J.; Zwanenburg, B. Synthesis 1997, 290. (b) Jefford, C. W.; Sledeski, A. W.; Rossier, J. C.; Boukouvalas, J. Tetrahedron Lett. 1990, 31, 5741. (c) Yoshii, E.; Koizumi, T.; Kitatsuji, E.; Kawazoe, T.; Kaneko, T. Heterocycles 1976, 4, 1663.
9. Khim, S.-K.; Schultz, A. G. J. Org. Chem. 2004, 69, 7734.
10. (a) Bogliotti, N.; Dalko, P. I.; Cossy, J. J. Org. Chem. 2006, 71, 9528. (b) Bogliotti, N.; Dalko, P. I.; Cossy, J. Synlett 2005, 349.

DXJ-B163-C13
Solvent: CDCl3
100 MHz
2010.11 .8

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

DXJ-B151-C13
Solvent: CDC1
100 MHz

DXJ-B178-H1
Solvent: CDC
400 MHz ,
2010.12.9

DXJ-B178-C13
Solvent: CDC13
100 MHz
2010.12 .9

$\begin{array}{lllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

DXJ-B162-C13
Solvent: CDC13
100 MHz
2010.11 .25

$\begin{array}{lllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

DXJ－B166－C13
Solvent：CDCl3
100 MHz
2010.11 .2

400 MHz

$\begin{array}{lllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

DXJ-B165-H1
Solvent: CDC13
2010.11.23

 n

DXJ-B165-C13
olvent: CDC13
100 MHz
2010.11 .2

$\begin{array}{lllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

DXJ-B167-H1
Solvent: CDC13
400 MHz
2010.11 .30

DXJ-B167-C13
Solvent: CDC13
100 MHz
2010.11 .1

(200\%

$\begin{array}{lllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

yhq-B110 H1
2010.11 .06
${ }^{2010.11}$

yhq-B110 C13
2010.11 .06
CDC13
$28 \cdot b \angle T-$
$\begin{aligned} & 9 T \cdot \angle L T \\ & 6 \mathrm{~S} \cdot \angle Z \mathrm{~T} \\ & \mathrm{Sb} \cdot 8 \mathrm{~F} \\ & \angle \mathrm{~T} \cdot \angle \varepsilon \mathrm{~T}-\end{aligned}>$

yhq-B135b H1
${ }^{2010.12 .27}$

yhq-B135b C13
CDC13

$\begin{array}{lllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & & \mathrm{ppm}\end{array}$

DXJ-B144-C13
Solvent: CDCl3
100 MHz
2010.11 .4
隹

DXJ-B171-C13
Solvent: CDC1
100 MHz
2010.12 .3

$\begin{array}{lllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

DXJ-B172-H1
Solvent: CDC13
400 MHz

DXJ-B172-C13
Solvent: CDC13
100 MHz
2010.12 .5

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	

DXJ-A120-H1
Solvent: CDC13
400 MHz

DXJ-A120-C13
Solvent: CDCl3
100 MHz
2010.10 .10

$\begin{array}{lllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

DXJ-B173-H1
Solvent: CDCL
Solvent: CDC13
2010.12.7

DXJ-B173-C13
Solvent: CDC13
100 MHz
2010.12 .7

$\begin{array}{lllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

DXJ-B174-H1
Solvent: CDC13
400 MHz

DXJ-B174-C13
Solvent: CDC13
100 MHz
2010.12.10

[^0] 13a

DXJ-B181-C13
Solvent: CDC13
100 MHZ
2010.12 .1

[^1]

DXJ-B153-C13
Solvent: CDCl3
Nは,

DXJ-B154-H1
Solvent: CDC13
2010.11.1

 L L L L

DXJ-B154-C13
Solvent: CDC13
100 MHz
2010.11 .1

15

yhq d-13 C13
2011.08 .12
CDC13 100 M
|

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

yhq d-14 C13
2011.08 .13
2011.08 .13
CDC13 100 M
|
$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

yhq $\mathrm{d}-15 \mathrm{Cl} 3$
2011.09 .03
CDC13 100 M

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array} \mathrm{ppm}$

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array} \mathrm{ppm}$

yhq $d-17 \mathrm{Cl} 3$
2011.09 .03
CDC13 100 M

$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

[^2]$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

[^0]: $\begin{array}{lllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

[^1]: $\begin{array}{lllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

[^2]: $\mathrm{yhq} \mathrm{d}-19 \mathrm{Cl13}$
 2011.09 .03
 CDC13 100 M

