Comment on “A new approach to optimum design in thermoelectric cooling systems” [J. Appl. Phys. 80, 5494 (1996)]
Jincan Chen and Jan A. Schouten

Citation: Journal of Applied Physics 82, 6368 (1997); doi: 10.1063/1.366517
View online: http://dx.doi.org/10.1063/1.366517
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/82/12?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Response to “Comment on ‘Effective thermal conductivity in thermoelectric materials’” [J. Appl. Phys. 113, 204904 (2013)]

Comment on “Effective thermal conductivity in thermoelectric materials” [J. Appl. Phys. 113, 204904 (2013)]

Design and development of a thermoelectric cogeneration device integrated in autonomous gas heaters

Thermal Stress Simulation and Optimum Design of CoSb 3 / Bi 2 Te 3 Thermoelectric Unicouples with Graded Interlayers

Response to “Comment on ‘A new approach to optimum design in thermoelectric cooling systems’” [J. Appl. Phys. 82, 6368 (1997)]
J. Appl. Phys. 82, 6370 (1997); 10.1063/1.366518
Comment on “A new approach to optimum design in thermoelectric cooling systems” [J. Appl. Phys. 80, 5494 (1996)]

Jincan Chen
Department of Physics, Xiamen University, Xiamen 361005, The People’s Republic of China and Van der Waals-Zeeman Laboratory, University of Amsterdam, Valckenierstraat 65, 1018 XE, Amsterdam, The Netherlands

Jan A. Schouten
Van der Waals-Zeeman Laboratory, University of Amsterdam, Valckenierstraat 65, 1018 XE, Amsterdam, The Netherlands

(Received 2 April 1997; accepted for publication 11 August 1997)

It is pointed out that there are some errors existing in a recent investigation in this journal [M. Yamanishi, J. Appl. Phys. 80, 5494 (1996)]. The correct results are given so that one can better understand the performance of real thermoelectric cooler systems. © 1997 American Institute of Physics.

The theoretical analysis of the optimal design of thermoelectric cooler (TEC) systems has been one of the most important subjects in the investigation of thermoelectric devices. Several authors have considered the effect of thermal resistances between the TEC and the external heat reservoirs on the performance of the TEC system and obtained a lot of significant results.1–4 In a recent article5 in this journal, Yamanishi put forward a new cycle model, which is useful for the performance analysis of TEC systems. However, the main Eqs. (43) and (52) in Ref. 5 and the relevant results are incorrect. In addition, there are some other problems in Ref. 5, which need to be discussed further.

(i) Using Eqs. (14)–(24) in Ref. 5 and the same notation, we obtain the coefficient of performance (COP)

\[
\eta = \frac{Q_C}{Q_H - Q_C} = \frac{q_c}{\theta_H q_H - q_C} = \frac{j - \frac{1}{2} j^2 \frac{1}{ZT_C} \left(\frac{1}{1 - \beta j} - \frac{1}{1 - \beta j} \right) \left(\theta_H - 1 \right)}{j \left(\frac{1 + \lambda j}{1 - \beta j} - 1 \right) + \frac{1}{2} j^2 \frac{1}{ZT_C} \frac{1}{1 - \beta j} 2(1 + \lambda + \beta + (\lambda - \beta)j \theta_H - 1)}
\]

and the dimensionless cooling rate

\[
q_c = \frac{j(1 - \beta j) - \frac{1}{2} j^2 \frac{1}{ZT_C} \left(1 - \beta j + 2 \beta - (\theta_H - 1) \right)}{(1 + \lambda + \lambda j)(1 - \beta j) + (1 + \lambda j)\beta}
\]

Comparing Eq. (1) with Eq. (43) in Ref. 5, one can find without difficulty that some calculative errors have been included in Eq. (43) in Ref. 5, so that the relevant results derived in Ref. 5 may not be correct.

(ii) In the optimal design of the TEC, one of the important problems is to determine the structure parameters of the device. It may be easily proven that for given semiconductor materials, when

\[
\frac{l_p/S_p}{l_n/S_n} = \sqrt{\frac{\kappa_n \rho_p}{\kappa_p \rho_n}}
\]

the figure of merit of the device, Z, attains its maximum and the total electrical resistance R and thermal conductance K of a TEC should be, respectively, determined by

\[
R = (\rho_p + \sqrt{\rho_p \rho_n \kappa_n / \kappa_p}) \frac{l_p}{S_p} n, \quad K = (\kappa_p + \sqrt{\kappa_p \kappa_n \rho_n / \rho_p}) \frac{S_p}{l_p} n.
\]

In this case, the geometric configuration of the device is optimal.6 It is seen from Eq. (3) that under the assumption \(l_p/S_p = l_n/S_n\) of Ref. 5 the maximum value of Z can be obtained only in the very special case of \(\rho_p/\kappa_n = \rho_p/\kappa_p\). In general, the semiconductor materials have different electrical and thermal conductivities, so that \(\rho_n/\kappa_n\) is not equal to \(\rho_p/\kappa_p\). In the optimum design of the TEC systems, one should take Eq. (3) into account and use the substitution of our Eqs. (4) and (5) for Eqs. (1) and (3) in Ref. 5. Moreover, one should determine further the optimum value of \((S_p/l_p)n\). For given semiconductor materials and specified operating conditions, the parameters \(ZT_C\), \(L_C\), \(L_H\), and \(\theta_H\) are known quantities. It is seen from Eqs. (2) and (1) that the dimensionless current \(j\) is a function of the thermal conductance \(K\) and \(Q_C/T_C\), so the COP may be written as

\[
\eta = \eta[j(Q_C/T_C, K)K].
\]

For the general case, the concrete expression of Eq. (6) is complicated. The maximum COP and other relevant parameters may be calculated numerically. For example, when \(\beta/\lambda = L_c/L_H = 5\), \(ZT_C = 0.8\), \(L_C = 1.0\ W/K\), \(\theta_H = 1.1\), and \(Q_C/T_C = 0.0015\ W/K\), the maximum COP occurs at \(K = 0.0144\ W/K\). Then, the optimum value of \((S_p/l_p)n\) is

Electronic mail: jcchen@xmu.edu.cn
\[
\left(\frac{S_p}{T_p} \right)_{\text{opt}} = \frac{0.0144}{\kappa_p + \sqrt{\kappa_p \kappa_n \rho_n / \rho_p}}.
\]

According to Eq. (7) and the technological requirements, one may determine the values of \(S_p/T_p\) and \(n\). For a special case \(\beta = \lambda = 0\), Eq. (6) may be written as

\[
\eta = \frac{b b_1}{(1-b_1 b_2) K - \sqrt{(1-b_2) K^2 - 2 b K - 2 b b_1}},
\]

where

\[
b = \frac{Q_C}{Z T_C}, \quad b_1 = \frac{1}{\theta_H + 1}, \quad b_2 = \frac{2 (\theta_H - 1)}{Z T_C}.
\]

From Eq. (8), we can find that for a given \(Q_C/T_C\), when the COP is maximum, the optimum value of \((S_p/T_p)n\) is

\[
\left(\frac{S_p}{T_p} \right)_{\text{opt}} = \frac{b (1-b_2)}{\kappa_p + \sqrt{\kappa_p \kappa_n \rho_n / \rho_p}} \times \left[1 + \sqrt{1 + \frac{1-b_2}{(1-b_1 b_2)^2 - (1-b_2)}} \right] = \left(\frac{S_p}{T_p} \right)_{\text{max}}.
\]

Obviously, Eq. (10) may provide theoretically an instruction for the optimal design of the TEC. In real TEC systems, the thermal conductances between the TEC and the external heat reservoirs are always finite. The optimum value of \((S_p/T_p)n\) should be chosen to be smaller than \(\left((S_p/T_p)n \right)_{\text{max}}\).

(iii) According to the exergy efficiency of the TEC system defined in Ref. 5, we obtain

\[
\phi = \frac{E_i}{P} = (\theta_H - 1) \frac{q_c}{\theta_H q_H - q_c} = (\theta_H - 1) \eta.
\]

It is seen from Eq. (11) that the difference between the performance parameters \(\phi\) and \(\eta\) is only a factor \((\theta_H - 1)\), which is independent of the property of the TEC. For a given \(\theta_H\), \(\phi_{\text{max}} = (\theta_H - 1) \eta_{\text{max}}\) and \(j(\phi_{\text{max}}) = j(\eta_{\text{max}})\). Thus, it is un-