View metadata, citation and similar papers at core.ac.uk

brought to you by i

provided by Xiamen University Institutional Repository

Tetrahedron 70 (2014) 6776—6780

journal homepage: www.elsevier.com/locate/tet

Contents lists available at ScienceDirect

Tetrahedron

Base-promoted reaction of CggClg with thioamides: an access to [60]

fullereno[1,9-d] thiazoles

@ CrossMark

Ping Yan, Cheng-Bo Tian, Cong-Li Gao, Qianyan Zhang, Zhuang-Ping Zhan,
Su-Yuan Xie *, Min Lin *, Rong-Bin Huang, Lan-Sun Zheng

State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen

University, Xiamen 361005, China

ARTICLE INFO ABSTRACT

Article history:

Received 21 February 2014

Received in revised form 8 July 2014
Accepted 17 July 2014

Available online 22 July 2014

Keywords:

Fullerenes

Ceo

Thiazoles

Radical reaction

Single electron transfer

photovoltaic application.

Regioselective reaction of CgyClg with thioamides via a radical annulation to form fullereno thiazole
derivatives is reported. The reaction is promoted by K;CO3, which might deprotonate thioamide to ini-
tiate a single electron transfer from thioamide anion to CgoClg. The experiments with various thioamides
establish the proposed base-promoted reaction as a facile route for synthesis of fullereno fused thiazole
derivatives starting from CgoClg, a prevalent synthon in fullerene chemistry. In addition, the tunable
electrochemical properties of the fullereno thiazole products have been investigated for their potential

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Fullerene derivatives have attracted considerable attention due
to their potential applications in the fields such as photovoltaic and
biological materials.! Various derivatization methods have been
developed to modify the fullerene cage over the years. Among
them, hexachlorofullerene CgoClg is a prevalent synthon for prep-
aration of novel fullerene derivatives by substitution of chlorine
atoms with appropriate organic groups.” For example, Troshin
et al.? reported a highly water-soluble fullerene derivative through
Arbuzov-type reaction of CgoClg with trialkyl phosphites. Darwish
and co-workers* treated CgoClg with phenol to give corresponding
benzo[b]furano fullerenes. Stable pentacyanofullerene anion
[Cs0(CN)s]~ was obtained by reaction of CgoClg with organic cya-
nide.” Recently, our group succeeded in converting CgoClg into
fullerocyclobutene derivatives through a copper(I)-mediated radi-
cal annulation reaction.’® Herein we report another unexpected
regioselective reaction involving CgoClg and thioamide in the
presence of K,COs. Promoted by K,COs3 base, two out of six chlorine
atoms on fullerene skeleton are replaced by thiazole regiose-
lectively, and the other four chlorine atoms leave from the fullerene
cage to result in fullerene-fused thiazole compound. The

* Corresponding authors. Tel.: +86 (0)592 2182151; fax: +86 (0)592 2183047;
e-mail addresses: syxie@xmu.edu.cn (S.-Y. Xie), minlin@xmu.edu.cn (M. Lin).
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mechanism responsible for the reaction is different from those
previously reported by Itami and co-workers’ for synthesis of
fullerene-fused thiazole derivatives using aziridinofullerene as
precursor. The present regioselective reactions starting from the
prevalent CgoClg (with quantitative yield) is efficient over Itami’s
method using aziridinofullerene (with ~43% yield) as reactant, and
is different from the fullerene-fused oxazole derivatization with the
heteroatom involved.®

2. Results and discussion

4-tert-Butylthiobenzamide (1a) was used as a model substrate
for optimizing the reaction conditions, including bases, phase
transfer catalysts (PTCs), and solvent systems. Only a trace amount
of product 2a was obtained without base added (Table 1, entry 1).
The reaction was improved in the presence of K,COs, but the iso-
lated yield of 2a (<10%) was unsatisfactory (Table 1, entry 2). The
effect of solvent was also critical to the catalytic reaction. With
a mixture of 0-DCB (5 mL) and toluene (50 mL) as solvent media,
product 2a was obtained in 15% yield (Table 1, entry 3), which was
significantly improved by applying tetrabutylammonium hydrogen
sulfate (TBAHS) as phase transfer catalyst (Table 1, entry 4). Using
Na,COs as the base in replacement of K,CO3 reduced the yield to 9%
(Table 1, entry 5). Stronger base such as Cs;CO3 resulted in de-
chlorination of reactant CgoClg leading to lower yield under other-
wise the same reaction conditions. Replacing TBAHS with
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Table 1
Reaction of CgoClg with 1a under selected conditions®

Catalyst
’ Solvent, 100 °C ) W
S7 NH,
1a 2a

Entry Base PTC® Solvent (mL) Yield (%)¢
1 None None PhCH3 Trace
2 K»CO3 None PhCH3 <10%
3 K»CO5 None 0-DCB/PhCH;(5:50) 15
4 K>CO;3 TBAHS 0-DCB/PhCH5(5:50) 32
5 K»CO3 TBAHS 0-DCB/PhCI(5:50) 20
6 Na,CO3 TBAHS 0-DCB/PhCH5(5:50) 9
7 K,COs3 PEG600 0-DCB/PhCH3(5:50) 16
8 K»CO3 TOMAB 0-DCB/PhCH5(5:50) 13
9° K»CO3 TBAHS 0-DCB/PhCH5(5:50) 28
10 K»COs5 TBAHS 0-DCB/PhCH5(5:50) 20
11° K»CO5 TBAHS 0-DCB/PhCH5(5:50) 25
12¢ K2CO53 TBAHS 0-DCB/PhCH5(5:50) 23
13" K»CO;5 TBAHS 0-DCB/PhCH5(5:50) 0

The bold values represent the optimal reaction conditions.

2 All reactions were performed with 0.05 mmol of CgClg, 0.10 mmol of 1a,
0.50 mmol of base and 0.005 mmol of PTC in the indicated solvent at 100 °C for 12 h
unless otherwise noted.

b pPTC=phase transfer catalyst, TBAHS=tetrabutylammonium hydrogen sulfate,
PEG600=polyethylene glycol 600, TOMAB=trioctyl methyl ammonium bromide.

¢ 0-DCB=o-dichlorobenzene.

d Isolated yield.

€ 20 equiv of K»COs.

f The experiments were carried out at a temperature of 80 or 120 °C.

& The reaction time was 24 h.

" The experiment was carried out starting from Cgo and 1a.

polyethylene glycol 600 or trioctyl methyl ammonium bromide
under otherwise the same conditions resulted in a decrease in the
yield too (Table 1, entries 7—8). It is noteworthy that increasing the
loading of K»CO3 from 10 to 20 equiv leads a negative result (Table 1,
entry 4 vs entry 9). Neither the reaction temperature nor the re-
action time showed serious influence on the reaction (Table 1, en-
tries 10—12). Accordingly, the optimal reaction conditions were
selected with 2 equiv 1a, 10 equiv K»CO3, and 0.1 equiv TBAHS
(Table 1, entry 4). It should be noted that reaction of 1a with Cgg
failed to give the expected product under the same reaction con-
dition (Table 1, entry 13). Both 'H and '3C NMR spectra of 2a match
well with the identified structures [see Supplementary data (SD)].

Reactions of CgoClg with other thioamides under the optimized
reaction conditions (as described above) were carried out. As
shown in Table 2, substrates 1a—f bridged with aromatic or non-
aromatic groups afforded the desired products 2a—f in 23—42%
yields. In principle, the aromatic thioamides linked with electron-
donating groups are of higher reactivity. The reactions involving
the aromatic thioamides having electron-donating groups thus
afford higher yields than those containing electron-withdrawing
groups (Table 2, entries 1—3). The reaction of nonaromatic thio-
amide 1d gives a relatively high yield of 42% (Table 2, entry 4).
While heterocyclic thioamides 1e and 1f participated in the re-
action to afford 2e and 2f in 28 and 23% yield, respectively (Table 2,
entries 5—6).

New compounds 2b—f were characterized by 'H NMR, 1>C NMR,
IR, and UV—Vis spectral data. All of the mass spectra of these full-
erothiazole products gave matchable molecular ion peaks. In ad-
dition, geometrical structure of product 2f was further identified by
X-ray diffraction analysis (see the SD).° In agreement with NMR
spectra data, as shown in Fig. 1, the thiazole was regioselectively
fused onto the [6,6] bond of the fullerene cage.

A possible mechanism for the reaction is shown in Scheme 1,
which is proposed according to the present experimental evidence
and literature.®'° Considering electron absence in both Cgg cage and
chlorine atom, single electron transfer (SET) from thioamide anion

Table 2
Reaction of CgoClg with 1a—f under optimized conditions®

s
)j\ KoCO4/(n-Bu),NHSO,
2T e
“NH,
R 2 0-DCB/Toluene, 100 °C

Entry R 2 Yield (%)° Recovered Cgo (%)
(H3C):C E
1 C ¢ 2a 32 52
la
H5C(H,C);00C
2 S C % 2b 25 65
1b
H;C(H,C O@
3 e § 2c 35 48
1c
4 T 2d 42 45
1d
",
o
5 N 2e 28 62
(CHa),CH,
le
S
HSClH,Cls 4
6 AvA 2f 23 58
1f

2 All reactions were performed with 0.05 mmol of CgoClg, 0.10 mmol of 1,
0.5 mmol of K,CO3 and 0.005 mmol of TBAHS in 0-DCB (5 mL)/PhCH3 (50 mL) at
100 °C for 24 h.

b Isolated yield.

Fig. 1. Crystallographic structure of 2f.

RCSNH, 1

|

K2CO3

1,4 - Elimination
SET

Scheme 1. Proposed mechanism for the formation of [60]fullereno[1,9-d] thiazole
derivatives 2 (SET = single electron transfer).
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(i.e., promoted by K>CO3) to CgClg is reasonably supposed. Then the
so-formed radical anion loses the chloride-anion at one of the
hexagon—hexagon (6—6) fusion sites. Considering the loss of
chlorine atom attached to the centre cyclopentadienyl ring and the
subsequently nucleophilic attack process seems to be an end road
due to the steric hindrance, the chloride-anion next to the centre
cyclopentadienyl ring (as shown in Scheme 1) is most likely lost
from the cage to form radical A, which is attacked by thioamide 1,
followed by deprotonation to produce radical anion B in the pres-
ence of base. In the similar way, loss of the second chloride-anion
gives radical C, followed by a ring closure and deprotonation to
form radical anion D. In the final stage, the intermediate D, similar
to the products reported in our previous reaction involving CgoClg
with aryl acetylenes,® undergoes the well-known chlorine 1,4-
elimimation'' to form the final product 2.

The electrochemical properties of the thiazole fullerene de-
rivatives are exemplified with 2d and 2f and compared with their
analogue PCBM ([6,6]-phenyl-Cg;-butyric acid methyl ester), the
most widely useful electronic acceptor in organic/polymer solar
cells. In the cyclic voltammogram of 2d (Fig. 2), an oxidation wave
and six pairs of reduction peaks were observed. Among them the
first three pairs of redox peaks are reversible with 45050 mV
potential difference, which is a typical interval between two suc-
cessive redox peaks in fullerene derivatives.'> However, the other
redox waves are irreversible, with implication of a possible reaction
between 2d and the working solution to result in the potential
interval less than 450450 mV. Taking the first three redox waves as
examples, the electron transfer involving in each corresponding
reversible redox reaction can be evaluated as a one-electron pro-
cess based on the ~56 mV peak separation (AE=E,—E.) between
the anodic and cathodic peaks recorded at a low scan rate [AE is an
indication of the number (n) of electron transfer according to the
equation of AE=56.5/n]."> Similar one-electron transfer is observed
in PCBM as well. The first reduction potential of 2d, however, was
shifted to an anodic potential by ca. 50 mV relative to that of
PCBM,'“ reflecting the electron-withdrawing effect of the
substituted thiazole unit. Interestingly, the electrochemical prop-
erties can be tuned depending on the functional groups that could
be replaced by base-promoted reaction described in this paper. The
reduction of 2f, for example, showed four well-defined reversible
waves, with implication of potential usefulness as electronic ac-
ceptor comparable with PCBM (Table 3).

Current (pA)

30 25 20 45 0 05 00
Potential (V vs Ag/Ag’)
Fig. 2. Cyclic voltammograms of PCBM, 2d and 2f, the measurements were performed

in a mixed solution of o-dichlorobenzene/acetonitrile (5:1) containing 0.1 M (n-
Bu)4NPFg in the potential range of 0 to —2.6 V versus Ag/Ag".

3. Conclusion

In summary, a versatile base-promoted reaction involving CgoClg
and thioamide to form [60]fullereno[1,9-d] thiazole has been

Table 3
Electrochemical onset reduction potentials and half-wave potentials of the fullerene
derivatives

Compound E°N, (V) E1 (V) E2 (V) E3 (V) E4 (V)
PCBM —0.80 ~0.90 ~1.31 ~1.82 227
2d ~0.75 ~0.82 ~1.23 ~1.69 —

2f ~0.74 ~0.82 122 ~1.69 ~2.16

developed. Six chloride groups on fullerene skeleton are replaced
and one fused thiazole effectively forms during one-step featuring
a high regioselectivity for the present reaction. A radical mecha-
nism possibly responsible for the formation of fullerene-fused
thiazole is proposed, in which the base might serves as a deproto-
nated reagent initiating the SET process. This work provides a facile
route to synthesize fullereno fused thiazole derivatives, and
a complement to the existing reactions involving CgoClg. Encour-
aged by valuable electrochemical properties of the fullerene-fused
thiazole derivatives, further studies on potential application of the
novel reaction on making functional fullerene-based materials (e.g.,
the electron acceptors for organic/polymer solar cells) are
underway.

4. Experimental section
4.1. General

All starting materials were purchased commercially and used
without further purification. All solvents are ACS grade unless
otherwise noted. High performance liquid chromatography (HPLC)
was performed on a LC-20AT Shimadzu instrument equipped with
a 5PBB column (10x250 mm). Toluene was used as elution at a flow
rate of 2 ml/min. The elution components were detected at 330 nm
and concentrated by rotary evaporator at room temperature. 'H and
13C NMR spectra were recorded on a Bruker AV-600 (or AV-500, AV-
400) spectrometer. Chemical shifts were reported in parts per
million. H and 3C NMR spectra were referenced to CHCl3/CDCls
(7.26 ppm for 'H NMR and 77.26 ppm for '3C NMR). All *C NMR
spectra were measured with complete proton decoupling. IR
spectra were detected on a Nicolet AVATER FTIR 330 spectrometer
for thin film samples. Absorptions were given in wave numbers
(cm™!). UV—vis spectra were measured on a Cary5000 UV—vis
spectrometer. Absorptions were given in wavelengths (nm). MS
data were obtained via a Bruker-Esquire HCT instrument with at-
mospheric pressure chemical ionization (APCI) source. FT-MS data
were measured on a Bruker APEX 7.0 instrument with APCI source.
The diffraction data were collected on a Bruker Smart Apex-2000
CCD diffractometer using a graphite-monochromated Mo Ka
(1=0.71073 A) radiation with a » scan mode at 173 K. The structure
was solved by direct methods with SHELXS-97 program and refined
by full-matrix least-squares calculations based on F? with SHELXL-
97 program.”>'® All non-hydrogen atoms were refined anisotropi-
cally. Cyclic voltammetry (CV) measurements were performed with
a three-electrode cell in a 0.1 M tetra-n-butylammonium hexa-
fluorophosphate (n-BuyNPFg) solution in o-dichlorobenzene/ace-
tonitrile (5:1) solutions at a scan rate of 100 mV/s at room
temperature. An Ag/Ag* electrode, a platinum wire, and a platinum
disk were used as the reference electrode, the counter electrode,
and the working electrode, respectively.

4.2. General procedures for the synthesis of fullereno[1,9-d]
thiazoles 2a—f

To a 50 mL flask containing a magnetic stirring bar was added
a solution of CgpClg (46 mg, 0.05 mmol, 1.0 equiv) in dry o-di-
chlorobenzene (5.0 mL). The mixture was stirred at 100 °C when
KoCO3 (9x10~> mol/L) and phase transfer catalyst TBAHS
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(9x10~> mol/L) were added. To the resulting solution was added
a solution of thioamides (0.1 mmol, 2.0 equiv) in dry toluene
(50 mL). The reaction mixture was stirred for 12 h at 100 °C and
afterwards cooled down to room temperature. All insoluble prod-
ucts were filtered off, while the filtrate was concentrated in vacuum
to give brown solid and dried in vacuum. Purification by HPLC
(elution with toluene at 2 ml/min flow rate) afforded 2a—f
(23—42%).

4.2.1. 2'-(4-tert-Butylphenyl)[60]fullereno[1,9-d] thiazole (2a). Yield
32%; 'H NMR (600 MHz, CS,/CDClz=1:1) § 1.45 (s, 9H), 7.64 (d,
J=8.4 Hz, 2H), 8.15 (d, J=8.4 Hz, 2H); '3C NMR (150 MHz, CS;/
CDCl3=1:1) ¢ 31.43, 35.36, 74.77, 104.91, 126.18, 129.10, 129.68,
135.20, 135.73,139.96, 140.59, 141.95, 142.04, 142.13, 142.36, 142.60,
142.86,142.94,142.97,143.25,143.29, 143.94, 144.57, 144.68, 145.51,
145.54,145.65, 145.89, 146.00, 146.24, 146.33, 146.37, 146.41, 146.65,
146.82,148.08,148.13,149.83,156.31,168.51; FTIR »y/cm ™! (KBr) 526,
797, 1018, 1090, 1260, 1602, 2961; UV—vis Aqmax/nm (toluene) 320,
433; FT-MS (APCI negative mode) m/z calcd for C71H13NS 911.0769,
found 911.0763.

4.2.2. Butyl-4-([60]fullereno[1,9-d] thiazole)benzoate (2b). Yield
25%; TH NMR (400 MHz, CS,/CDCl3=1:1) ¢ 1.07 (t, J=7.2 Hz, 3H),
1.54—1.62 (m, 2H), 1.82—1.89 (m, 2H), 4.29 (t, J=6.8 Hz, 2H), 8.29(d,
J=1.2 Hz, 4H); 3C NMR (100 MHz, CS,/CDCl3=1:1) 6 13.84, 19.36,
30.81, 65.44, 74.91, 104.76, 128.99, 130.15, 133.88, 135.04, 135.65,
135.92,139.83, 140.48, 141.78, 141.87, 142.19, 142.42, 142.70, 142.72,
142.83,143.09, 143.67, 144.38, 144.48, 145.37, 145.40, 145.54, 145.72,
145.77,146.01, 146.04, 146.19, 146.23, 146.27, 146.52, 147.94, 147.98,
149.08, 165.84, 168.06; FTIR v/cm™! (KBr) 526, 1018, 1104, 1273,
1721, 2922; UV—vis Apax/nm (toluene) 320, 432; FT-MS (APCI
negative mode) m/z calcd for C;32H130,NS 955.0668, found
955.0662.

4.2.3. 2'-(4-Hexyloxyphenyl)[60]fullereno[1,9-d] thiazole (2c). Yield
35%; 'H NMR (600 MHz, CS,/CDCls=1:1) 6 0.97 (t, J=6.0 Hz, 3H),
1.40—1.43 (m, 4H), 1.53—1.58 (m, 2H), 1.86—1.91 (m, 2H), 4.12 (t,
J=6.0 Hz, 2H), 7.09 (d, J=12.0 Hz, 2H), 8.14 (d, J=1.2 Hz, 2H); 13C
NMR (150 MHz, CS,/CDCl3=1:1)  14.39, 23.04, 26.08, 29.49, 31.94,
68.51, 74.81, 104.73, 114.88, 124.75, 130.22, 130.96, 135.15, 135.60,
139.87, 140.50, 141.88, 141.97, 142.08, 142.28, 142.52, 142.78, 142.86,
142.89,143.17,143.87,144.50, 144.62, 145.42,145.44, 145.58, 145.79,
145.91, 146.16, 146.24, 146.28, 146.33, 146.55, 146.98, 147.98, 148.04,
149.88, 162.68, 167.55; FTIR v/cm’1 (KBr) 525, 605, 728, 831, 1022,
1169, 1249, 1505, 1560, 2922; UV—vis Apmax/nm (toluene) 319, 432;
FT-MS (APCI negative mode) m/z calcd for C73H170NS 955.1031,
found 955.1027.

4.2.4. 2'-(4-(Methylperoxy)-1-phenylpent-4-en-1-yl)[60]fullereno
[1,9-d] thiazole (2d). Yield 42%; 'H NMR (500 MHz, CS,/CDCl3=1:1)
0 1.28 (t, J=8.5 Hz, 3H), 1.84—2.00 (m, 2H), 2.32—2.42 (m, 1H),
2.45—2.52 (m, 2H), 2.61-2.69 (m, 1H), 4.14—4.19 (m, 2H), 4.32—4.35
(m, 1H), 7.41-7.68 (m, 5H); '3C NMR (125 MHz, CS,/CDCl3=1:1)
0 14.56, 23.45, 34.37, 34.45, 51.21, 60.65, 74.70, 104.83, 128.31,
128.65, 129.44, 135.08, 135.22, 135.66, 135.82, 139.93, 140.00,
140.64, 141.97, 142.09, 142.14, 142.17, 14241, 142.64, 142.92,
142.94,143.04, 143.32, 143.91, 143.95, 144.63, 144.72, 145.58, 145.62,
145.65, 145.95, 145.99, 146.30, 146.40, 146.45, 146.52, 146.59,
146.73, 148.14, 148.21, 149.67, 149.75, 173.53, 175.36; FTIR v/cm
(KBr) 526, 698, 1028, 1146, 1181, 1732, 2923; UV—Vis Apmax/nm (tol-
uene) 321, 432; FI-MS (APCI negative mode) m/z calcd for
C74H170,NS 983.0980, found 983.0975.

4.2.5. 2'-(1-Pentyl-1H-indol-3-yl)[60]fullereno[1,9-d] thiazole (2e).
Yield 28%; 'H NMR (500 MHz, CS,/CDCl3=1:1) 6 1.01(t, J=6.0 Hz,
3H), 1.27—-1.34 (m, 2H), 1.42—1.50 (m, 2H), 2.03—2.07 (m, 2H),

432(t, J=8.5 Hz, 2H), 7.26—7.46 (m, 3H), 7.87(s, 1H), 8.59(d,
J=9.0 Hz, 1H); '*C NMR (125 MHz, CS,/CDCl3=1:1) §14.48, 23.05,
29.61, 30.31, 47.37, 74.42, 104.27, 109.69, 109.79, 122.26, 123.08,
123.61,126.34,132.06,135.05, 135.23, 136.89, 139.64, 140.34, 141.72,
141.86, 142.10, 142.12, 142.39, 142.60, 142.72, 142.78, 143.01, 143.83,
144.36,144.54,145.24,145.39, 145.59, 145.92, 146.00, 146.05, 146.10,
146.15, 146.34, 147.81, 147.85, 147.97, 150.40, 160.44; FTIR v/cm_l
(KBr) 525, 801, 1020, 1097, 1262, 2963; UV—Vis Apmax/nm (toluene)
323, 432; FI-MS (APCI negative mode) m/z calcd for C74H1N2S
964.1034, found 964.1028.

4.2.6. 2'-(5-Pentylthiophen-2-yl)[60]fullereno[1,9-d] thiazole (2f).

Yield 23%; 'H NMR (400 MHz, CS,/CDClz=1:1) § 1.02 (t, J=5.6 Hz,
3H), 1.42—1.50 (m, 4H), 1.84—1.90 (m, 2H), 3.02 (t, J=6.0 Hz, 2H),
6.99 (d, J=2.8 Hz, 1H), 7.62 (d, J=3.2 Hz, 1H); *C NMR (100 MHz,
CS,/CDCl3=1:1) because of the low solubility of the sample, not all
carbon signals were adequately acquired. ¢ 14.42, 22.99, 30.90,
31.55, 31.70, 125.34, 126.27, 128.61, 129.62, 132.34, 135.02, 135.29,
139.70,140.34, 141.83, 141.96, 142.12, 142.68, 143.01, 143.63, 144.32,
144.49, 145.26, 145.46, 145.63, 145.74, 145.94, 146.11, 146.37, 146.87,
147.83, 149.58, 153.20; FTIR »/cm~! (KBr) 526, 800, k1035, 1461,
1595, 2926; UV—vis Apax/nm (toluene) 321, 432; FT-MS (APCI
negative mode) m/z calcd for C7gH13NS; 931.0489, found 931.0484.
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