
The impact of global oil price shocks on China’s bulk commodity
markets and fundamental industries

Chuanguo Zhang a,b,n, Xiaoqing Chen a

a School of Economics, Xiamen University, Xiamen 361005, PR China
b Department of Economics, Cornell University, Ithaca 14850, USA

H I G H L I G H T S

� We investigated the impact of global oil price shocks on China’s bulk commodity markets and fundamental industries.
� The aggregate commodity market was affected by both expected and unexpected oil price volatilities.
� The impact of unexpected oil price volatilities became more complex after 2007.
� The metals and grains indices did not significantly respond to the expected volatility in oil prices.
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a b s t r a c t

This paper investigated the reaction of aggregate commodity market to oil price shocks and also explored
the effects of oil price shocks on China's fundamental industries: metals, petrochemicals, grains and
oilfats. We separated the volatilities of oil price into expected, unexpected and negatively expected
categories to identify how oil prices influence bulk commodity markets. We contrasted the results
between different periods and among classified indices, in order to discover the significant changes in
recent years and the differences at an industry level. Our results indicate that the aggregate commodity
market was affected by both expected and unexpected oil price volatilities in China. The impact of
unexpected oil price volatilities became more complex after 2007. The metals and grains indices did not
significantly respond to the expected volatility in oil prices, in contrast to the petrochemicals and oilfats
indices. These results not only contribute to advancing the existing literature, but also merit particular
attention from policy makers and market investors in China.

& 2013 Published by Elsevier Ltd.

1. Introduction

Over the past few years, a rising demand from emerging
economies and limited supplies from oil producing countries due
to political tensions have frequently pushed oil prices to drama-
tically high levels. However, China, whose economic growth
increasingly depends upon energy consumption, was the second
largest consumer of oil in the world after the United States from
2002 to 2011 and is now the largest energy consumer in the world.
The Chinese government is now facing severe challenges from an
energy supply gap. China's dependence on imported oil has
increased to over 53.9%. With high oil prices and high energy
consumption, the energy issue has become critical and strategic to
long-term development in China.

Crude oil is the most influential resource of raw materials and
primary energies. It has been deemed the life blood of industrial

economics. China is playing a more important role in the world
economy and is becoming more heavily dependent on imported
oil. The volatility of crude oil prices will undoubtedly affect China's
economy. Moreover, this volatility could be transferred to the bulk
commodity markets through various transmission mechanisms
and further impact relevant industries through the chains of
manufacturing, transportation and maintenance closely linked
with the global oil markets. Furthermore, the present develop-
ment of the commodity future market in China is rapid. Not only
its effectiveness and functionality is evident, but also its global
position and influence has greatly advanced. Therefore, it is
necessary to recognize the volatility spillover effects of oil price
shocks on the bulk commodity markets and relevant industries
in China.

This paper investigated the reaction of aggregate commodity
market to oil price shocks and the effects of oil price shocks on
China’s fundamental industries. We employed the ARJI and its
extended model (ARJI-ht), incorporating with the EGARCH method,
to interpret the jump behaviors and volatility processes of various
commodity indices. Moreover, we separated the volatilities of oil
price into expected, unexpected and negatively expected categories
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to identify how oil prices influence bulk commodity markets. We
contrasted the results between different periods and among
classified indices, in order to discover the significant changes in
recent years and the differences at an industry level. Our results
indicate that the aggregate commodity market was affected by
both expected and unexpected oil price volatilities in China. The
impact of unexpected oil price volatilities became more complex
after 2007. The metals and grains index did not significantly
respond to the expected volatility in oil prices, in contrast to the
petrochemicals and oilfats index.

This research not only contributes to knowledge about the
jump behaviors of China's commodity markets and the different
effects of oil price shocks at an industry level, but also is conducive
to analyzing the problems existing in the markets of China's
petroleum and commodity futures. Our results merit particular
attention from policy makers and market investors in China.

2. Literature review

The comprehensive influence of oil price shocks on economies
is not only an important issue among various regulatory agencies,
enterprise managers and market participants, but also under
scrutiny by many economists. Early empirical studies have
revealed a significant negative relationship between oil price
volatilities and the state of the macroeconomy, evidence that
shocks from the crude oil market were a contributing factor in
economic recessions (Hamilton, 1983; Mork, 1989). Later research
on transmission mechanisms from crude oil shocks to economic
growth indicated similar conclusions based on various statistical
techniques and data sources (Baláž and Londarev, 2006; Cunado
and Perezdegracia, 2005; Gronwald, 2008; Miller and Ni, 2011).

Besides close connections between crude oil prices and the
macroeconomy, shocks from global oil markets were also a
contributing factor to volatilities at an industry level. For example,
Jones et al. (2004) found that sensitivities of Australian industry
returns to an oil price factor were significantly different. Fan and
Jahan-Parvar (2012) revealed that the impacts of changes in oil
prices were concentrated in a relatively small number of U.S.
industries. By extending the number of industries to 38 in the Euro
area for the period 1983–2007, Scholtens and Yurtsever (2012)
verified that the response to oil price shocks differed among
different industries, in spite of all industries presenting asym-
metric reactions regarding oil price increases and decreases.
Jiménez-Rodríguez (2008) examined the dynamic effect of oil
price shocks on the output of main manufacturing industries in
six OECD countries and reported that there was cross-industrial
heterogeneity of oil shock effects within the EMU countries.

Due to properties similar to crude oil, energy commodities,
such as natural gas, electric power, coal, and fuel, have also
attracted the attention of researchers. Many have investigated
the relationship between crude oil and energy commodities.
Lescaroux (2009) examined the co-movements of prices between
oil and energy commodities and reported that the relationship
between oil and natural gas prices was the strongest. Ewing et al.
(2002) studied the link between crude oil and natural gas prices
and revealed that there is a clear diffusion effect of natural gas
prices on crude oil prices. Moutinho et al. (2011) found an
analogous link between fuel and crude oil prices. However,
Mohammadi (2009) argued that there was no long-term correla-
tion between electric power and crude oil.

In terms of non-energy commodities, agricultural materials
were the most popular subjects of study. For example, Sari et al.
(2012) examined the roles of futures prices of crude oil, gasoline,
ethanol, corn, soybeans and sugar in the energy–grain nexus.
Chang et al. (2012) examined asymmetric adjustments for ethanol

and agricultural products. They found that the skyrocketing price
of crude oil was a major force driving the rising prices of corn,
soybeans, maize and other foods. Their explanation was traditional
that high oil prices would push up the costs of fertilizers,
chemicals and transportation. Currently, the cause of this trans-
mission is often the substitution of oil by bio-energy derived from
maize, wheat and soybeans, increasing the need for agricultural
commodities and their prices (Chen et al., 2010). However, con-
clusions varied from country to country. One study from Turkey
supported the neutrality of agricultural commodity markets to
both direct and indirect effects of oil price changes (Nazlioglu and
Soytas, 2011). Furthermore, some results have also yielded appar-
ently contradictory results from different times, as in the research
of Du et al. (2011), who showed that from November 1998 to
January 2009, there was only evidence of spillover after 2006.

As for correlations between crude oil and precious metals, most
studies reported that they tended to move together (Lescaroux,
2009), owing to the factors of investment portfolios and hedging
effects (Hammoudeh and Yuan, 2008; Lee et al., 2012; Narayan
et al., 2010). Narayan et al. (2010) tested the cointegration relation-
ship between gold and crude oil and found that crude oil prices can
be used to forecast those of gold. Hammoudeh and Yuan (2008)
found that oil shocks had calming effects on precious metals but
not on copper by examining the volatility behavior of three metals:
gold, silver and copper. However, Soytas et al. (2009) found no
predictive power of oil prices on precious metals prices in Turkey.

In terms of analytical methodologies and econometric models,
a framework covering several models or methods has recently
become popular in the literature. A two regime Markov-switching
method was connected with an EGARCH process to examine the
relationship between oil price shocks and stock markets (Aloui
and Jammazi, 2009). Wavelet decomposition and regime shifts
were linked to VAR to explore the impacts of oil price shocks on
stock returns (Jammazi and Aloui, 2010). By combining GARCH
process to VAR model, Arouri et al. (2012) and Hanabusa (2012)
investigated the effects of oil price shocks in Europe and Japan,
respectively. Zhang and Chen (2011) applied the EGARCH process
to China's stock returns, combined with the Autoregressive Con-
ditional Jump Intensity (ARJI) method.

To sum up the extensive body of the literature on oil price
shocks: most focus on U.S. or European economies, and only a few
on developing countries. In contrast to the considerable numbers
of papers concentrating on the relationship between crude oil and
raw commodities in developed countries, we find there is little
attention given to China. In particular, investigations at the indus-
try level in China are still rare. Further work is needed in this area.

In this paper, we considered expected, unexpected and nega-
tively unexpected components of global oil price volatility, using a
theoretical technique based on Lee and Chiou (2009, 2011). We
applied the EGARCH process to the returns of China's Commodity
Index, combined with the Autoregressive Conditional Jump Inten-
sity (ARJI) (Chan and Maheu, 2002) method to examine the
influence of oil price shocks on China's bulk commodity markets
during the period of October 10, 2001–September 30, 2006 and
also the separate phases before and after 2007. In addition, to
compare the different effects of oil price shocks at an industry
level, we investigated their effects on China's fundamental indus-
tries: metals, petrochemicals, grains and oilfats.

3. Methodology

3.1. The ARMA–GARCH model

The traditional ARMA model is a good prediction method of
time series, but the oil price time series has a feature of volatility
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clustering, meaning that conditional heteroskedasticity exists.
While the generalized conditional heteroskedasticity GARCH
model can reflect the conditional heteroskedasticity of oil price
time series (Cheong, 2009). The GARCH model incorporating
ARMA process (ARMA–GARCH model), on one hand, can eliminate
the conditional heteroskedasticity; on the other hand, it can be
used to distinguish different factors causing oil price fluctuation.
To examine whether the volatility process of China's Commodity
Index (CCI) is sensitive to the expected, (negatively) unexpected
shocks of oil spots market, we decomposed the changes of oil price
into expected and (negatively) unexpected components, based on
the ARMA–GARCH model. The ARMA–GARCH model utilized to
describe oil price's volatility is in the following form:

rt ¼ μþ ∑
p

i ¼ 1
ϕirt� iþ ∑

q

j ¼ 1
θjat� jþat ð1Þ

at ¼
ffiffiffiffiffi
ht

p
εt ð2Þ

ht ¼ωþ ∑
k

i ¼ 1
βiht� iþ ∑

l

j ¼ 1
αja

2
t� j ð3Þ

where rt is the changes of oil price, μ is constant term. p; q are the
lag order of AR and MA, respectively. ϕifi¼ 1;2;…; pg,
θjfj¼ 1;2…; qg are the coefficients of AR and MA, respectively.
at is the error term assumed to follow a GARCH process of orders k
and l, both equal to 1 in our empirical analysis. ω is constant term.
βifi¼ 1;2…; kg and αjfj¼ 1;2…; lg are the coefficients of variables.
εt is white noise series, ht is conditional heteroskedasticity of
series.

According to Eq. (1), the expected volatility (et) is reckoned as
the difference between the changes of oil price and the estimated
residual:

et ¼ rt�at ð4Þ
where et is taken as the expected oil price volatility, at is taken as
the unexpected oil price volatility (upt) and define upt

-¼ Min (upt,
E(upt)) as the negatively unexpected component. Now it is feasible
to take the expected (et), unexpected (upt) and unexpected returns
(upt-) into consideration within the framework of commodity
indices’ returns, as displayed in Eq. (5).

3.2. The ARJI–EGARCH model

On the basis of the methodologies originated by Chan and
Maheu (2002), we further integrated the EGARCH framework with
an ARJI method, postulating that the jump intensity varies in time
and follows an ARMA process. Taking the different components of
oil price shocks into account, the dynamic volatility of CCI returns
could be described as follows:

Rt ¼ μþϕ1Rt�1þϕ2ε1;t�1þk1etþk2uptþk3upt
� þε1;tþε2;t ð5Þ

Φ1 and Φ2 are the coefficients of AR (1) and MA (1), respectively.
k1, k2 and k3 are the impact coefficients of expected oil price
volatility, unexpected oil price volatility and negatively unex-
pected oil price volatility, respectively. Two innovations are
included in the volatility equation, separately representing the
‘normal’ (ε1,t) and ‘abnormal’ (ε2,t) vibrations of index change. ε1,t is
a mean zero innovation with a normal stochastic course, assumed
to be:

ε1;t ¼
ffiffiffiffiffi
ht

p
Zt ; Zt �NIDð0;1Þ ð6Þ

Define the information set at time t to be the history of index
returns, ϕt¼{Rt, …, R1}. The conditional variance of ε1,t equals ht,
estimated in accordance with ϕt. Hence, the EGARCH (1, 1) process

is expressed as follows:

ht ¼ expðωþβ ln ht�1þdε1;t�1=
ffiffiffiffiffiffiffiffiffiffi
ht�1

p
þαðjε1;t�1=

ffiffiffiffiffiffiffiffiffiffi
ht�1

p
j�

ffiffiffiffiffiffiffiffiffiffiffi
ð2=πÞ

p
ÞÞ
ð7Þ

As advancement to the GARCH model, Eq. (7) supplies the
evidence of asymmetric effect when the index returns react to
positive and negative outside innovations, d may reveal whether
asymmetry of EGARCH (1) is significant or not.

In Eq. (5), where ε2,t denotes a jump innovation, at the same
time independent of ε1,t. It is induced by the extreme events or
news and supposed to follow a compound Poisson process.
Specifically, within any period t, nt is on behalf of the discrete
counting process dominating the number of jumps, which submits
to a Poisson distribution with the parameter λt and has the
following density function:

Pðnt ¼ jjΦt�1Þ ¼ expð�λtÞλt j=j! j¼ 0;1;2;… ð8Þ
The conditional jump intensity λt is permitted to be varying in

time and is assumed to follow the ARMA (1, 1) process:

λt ¼ λ0þρλt�1þγξt�1 ð9Þ
where λt40, λ040, ρ4γ, γZ0. Eq. (9) demonstrates that the
conditional jump intensity at time t is forecasted by one past lag of
itself and plus one lag of ξt. It is defined that λt� E[nt/ϕt-1],
indicating the conditional expected value of the counting process,
so the ex ante error ξt-1 will capture the unexpected number of
jumps in the preceding period and is calculated according to the
following derivation:

ξt�1 � E½nt�1jΦt�1��λt�1 ¼ ∑
1

j ¼ 0
jpðnt�1 ¼ jjΦt�1Þ�λt�1 ð10Þ

When ϕt-1 is given, the conditional jump size πt,k is supposed to
be independently and normally distributed, with mean θt and
variance δt

2, just as the form πt,k�NID (θt, δt2). Jt ¼∑nt
k ¼ 1πt;k is the

jump component influencing the returns of index from t-1 to t, so
the jump innovation during the period t is expressed as follows:

ε2;t ¼ Jt�E½Jt jΦt�1� ¼ ∑
nt

k ¼ 1
πt;k�θtλt ð11Þ

Take notice of the specifications of the jump intensity and jump
size, so that we can achieve some implications for the conditional
volatility. If the model and process are properly specified, the
conditional variance should be deduced as the following form:

VarðRt jΦt�1Þ ¼ Varðε1;t jΦt�1ÞþVarðε2;t jΦt�1Þ ¼ htþðδt2þθt
2Þλt

ð12Þ
It is shown in Eq. (12) that the conditional variance is an

increasing function of intensity varying in time and is in relation to
the distributed characters of jump size.

After observing Rt and using the Bayes’s rule, the ex post
probability of occurring j jumps at period t can be certainly
inferred from the following equation:

Pðnt ¼ jjΦtÞ ¼
f ðRt jnt ¼ j;Φt�1ÞPðnt ¼ jjΦt�1Þ

PðRt jΦt�1Þ
j¼ 0;1;2… ð13Þ

where P(nt¼ j9ϕt) is specified in Eq. (8). The probability of jump
occurrence plays an important role in the volatility model, for it
not only enters into Eq. (10), but also can be used for inference
purposes. Now there is a completion for the conditional density of
returns (Rt) by integrating out the discrete-valued variable nt:

PðRt jΦt�1Þ ¼ ∑
1

j ¼ 0
f ðRt jnt ¼ j;Φt�1Þpðnt ¼ jjΦt�1Þ ð14Þ

Exclusive of all jumps occurring during the same interval, the
conditional probability density function can be calculated as

C. Zhang, X. Chen / Energy Policy 66 (2014) 32–4134



follows:

f ðRtjnt ¼ j;Φt�1Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πðhtþ jδt2Þ
q exp �ðRt�μ�ϕ1Rt�1þθtλt�θt jÞ2

2ðhtþ jδt2Þ

 !

ð15Þ

Given the sample size T, the log likelihood function of the ARJI–
EGARCH model is naturally the sum of the conditional densities:

LðΨ Þ ¼ ∑
T

t ¼ 1
ln f ðRt jΦt�1;Ψ Þ ð16Þ

where ψ represents the set of all parameters to be estimated.

3.3. An extension of ARJI: the ARJI-ht model

The inference is established on the postulation that the jump
size is following the distribution of Gaussian, while ignoring the
case of dynamic change in the conditional mean and variance.
Therefore, a developed model of ARJI allowing the conditional
mean of the jump size to be a function of lagged returns (Rt) and
the variance to be varied with ht, referred as ARJI-ht:

θt ¼ η0þη1Rt�1DðRt�1Þþη2Rt�1ð1�DðRt�1ÞÞ ð17Þ

δt
2 ¼ ζ0

2þζ1ht ð18Þ

In Eq. (17), D(x) is an indicator function that equals 1 if x40
and 0 otherwise, and η0, η1, η2, ζ0, ζ1 are coefficients to be
estimated. The specification of the conditional mean of jump size
is renewed to better describe the cluster effect of jumps. For
example, when the returns of the last period increase, the
conditional mean of the current period will be η0þη1Rt�1, vice
versa. Therefore, the distribution form of conditional mean during
this period is decided largely by the last volatility of index returns.
In addition, Eq. (18) is a set up to investigate whether the
conditional variance is influenced by contemporary volatility of
the whole market and if ζ1 significantly rejects the hypothesis of
being zero, indicating that the variance of jump size is related to
the GARCH process of index returns.

4. Data and experimental results

To examine the volatility spillovers between oil price and the
bulk commodity prices in China, we collected 2335 daily data, over
the period from October 8, 2001 to September 30, 2011, for the
main two series in this paper. The first series is Wenhua China's
Commodity Index (CCI), employed to represent the performances of
Chinese bulk commodity markets as a whole, obtained from the
official database of China's Webstock (http://www.wenhua.com.cn/).
Because they can not only capture the prices changes of the most
important nineteen bulk commodities, but also be used to investi-
gate the dynamic impacts at an industry level. The second series is
West Texas Intermediate (WTI) spot price, highly correlated with
other crude oil markets, obtained from the Energy Information
Administration (EIA), the U.S. Department of Energy.

Returns are defined as 100 times the first difference in the
logarithm of the closing price/index and for the following different
model specifications, parameters are estimated using the max-
imum likelihood estimation (MLE) method with the Winrats
7.0 statistical software.

4.1. Descriptive statistics

As shown in Table 1, the high degrees of kurtosis reveal a fat-
tail distribution of both returns and the skewness coefficient is
negative, indicating the rejection of the normality condition for
the two series at the 1% level, along with the Jarque–Bera tests.
According to the standard deviations, the volatility of WTI is
significantly stronger than that of CCI. Strong evidence of auto-
correlations and conditional heteroskedasticity for both markets
are provided by the Ljung–Box Q and Q2 statistics, therefore, the
GARCH class process contained in the model is adaptable to
capture this market phenomenon.

According to Fig. 1, the volatility clustering is apparent, high
volatility in this period tends to be followed by high volatility in
the next period, indicating the plausibility of GARCH effects of
both return series.

To test the unit-root (non-stationarity) of the prices and the
first-order differences regarding to WTI and CCI, we used the
Augmented Dickey-Fuller (ADF) and Phillips–Perron (PP) unit root
tests. Furthermore, the Kwiatkowski et al. (KPSS) stationary test
based on the null hypothesis of trend stationary is also considered,
in order to figure out whether the series existing long-term
memories. If the result of KPSS is significant, it demonstrates a
long-term memory, that is, non-stationarity.

According to the results shown in Table 2, the null hypothesis
of existing unit roots for ADF and PP is accepted in level but not in
the first-order difference, converse in the case of KPSS test. There-
fore, it can be concluded that WTI and CCI are non-stationary in

Table 1
Summary statistics (2001–2011).

Var Mean Std. Skewness Kurtosis Jarque–Bera Q2 (15)

WTI 0.0542 2.7057 �0.2317nnn 4.7195nnn 2190.75nnn 1270.63nnn

CCI 0.0350 0.9571 �0.5033nnn 2.4993nnn 707.23nnn 1364.11nnn

nnn Significance at the 1% level.

Fig. 1. (a) Returns of WTI spot price and (b) returns of the composite CCI.
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level but stationary in the first-order difference, indicating that they
are both integrated with order 1, I (1).

4.2. Application of ARMA–GARCH to WTI price changes (2001–2011)

As shown in Table 3, the coefficients of ARMA model, Ф1 and θ1
are both significant, indicating the instant WTI returns are decided
by its one-lagged value and the last period's error. Positive value of
α1 and β1, sum of them smaller than one, all match the conditions
of the GARCH process and the significance of them demonstrates
the GARCH effect is apparent. The relatively small Q2 statistic

provides evidence for not existing ARCH effect, indicating that the
model is appropriately simulated.

4.3. Application of ARJI–EGARCH to the composite CCI changes

We analyzed the impacts of WTI price volatilities on the CCI
changes not only during the whole period from October 10, 2001
to September 30, 2006, but also during the separate phases before
and after 2007 and compared the results. In addition, in order to
explain the volatility spillover effects at an industry level, we
further investigated the impacts of oil price shocks on four
primary commodity indices.

Empirical estimates on the overall period (2001–2011) are
shown in Table 4. With regards to the jump size distribution of
CCI, the values of all coefficients (η0, ζ0, λ0, ρ and γ) significantly
reject the null hypothesis of zero, suggesting the relative effec-
tiveness of ARJI model in describing the dynamic behaviors of
China's bulk commodity market. Especially, the significant coeffi-
cients (ρ and γ) of jump intensity (λt) indicate the presence of
jumps varying in time on the arrival of new events. The positive
value of ρ (0.940934) measuring the persistence in the conditional
jump intensity suggests that a high probability of many (few)
jumps today tends to be followed by a similar high probability
tomorrow. The coefficient of γ examining the jump sensitivity of λt
to the most recent intensity residual (ξt-1) is also significantly
positive (0.547119), implying that a unit of increase in ξt-1 will
probably lead to enhanced jump intensity in the period t.

As shown in Table 4, as for the volatility spillover from WTI
spot price shocks to the composite CCI returns, the statistical
significance of k1 (-0.069061) demonstrates that the expected
volatility of WTI price has significantly negative impact on the
CCI returns. On the contrary, the impact from the unexpected
volatility of WTI price is positive (k2¼0.038968). In addition, the
asymmetric effects between unexpected volatility and CCI returns
do not exist according to the insignificant k3.

Similar to the whole period, both of the variables show
significant volatility clustering with a lot of abnormal spikes
during 2001–2006 (Fig. 2), indicating that the GARCH class model
should also be used to describe their volatility process.

Table 2
Unit root and stationary tests.

Variable Levels First difference

ADF PP KPSS ADF PP KPSS

WTI �1.757 �1.764 3.931 �51.289nnn �51.350nnn 0.067nnn

CCI �0.770 �0.919 4.180 �30.062nnn �47.711nnn 0.082nnn

nnn Significance at the 1% levels.

Table 3
ARMA (1, 1)–GARCH (1, 1) model on the WTI spot price changes (2001–2011).

Parameter Coefficients Standard error T-statistics Signif. lvl.

μ 0.163898661nn 0.075880512 2.15996 0.03077598
Ф1 �0.633620328nnn 0.117993998 �5.36994 0.00000008
θ1 0.593640028nnn 0.124234235 4.77839 0.00000177
ω 0.228704985nnn 0.057853070 3.95320 0.00007711
α1 0.071573114nnn 0.010611501 6.74486 0.00000000
β1 0.893195128nnn 0.017254078 51.76719 0.00000000
Q2 (10) 9.827 (statistic) [0.455790]

Notes: Q2 (10) is the Ljung–Box test statistics for serial correlation in the squared
standardized residuals with 10 lags. The value in the square bracket indicates the
significance level.
n Significance at the 10% level.

nn Significance at the 5% level.
nnn Significance at the 1% level.

Table 4
ARJI–EGARCH – estimation by BFGS (2001–2011).

Variables Coefficients Standard error T-statistics Signif. lvl.

μ 0.112635900 0.025874709 4.35313 0.00001342
Φ1 �0.177335432 0.073392841 �2.41625 0.01568130
Φ2 0.079467382 0.073850264 1.07606 0.28190002
k1 �0.069061559nnn 0.009430032 �7.32358 0.00000000
k2 0.038968385nnn 0.010844671 3.59332 0.0003264
k3 0.003191573 0.016205568 0.19694 0.84387214
ω �0.059287508nnn 0.014868769 �3.98739 0.00006681
α 0.054896176nnn 0.014983601 3.66375 0.0002485
β 0.989896280nnn 0.004295916 230.42730 0.00000000
d 0.044492448nnn 0.01210446 3.67571 0.00023719
η0 �0.164987915nn 0.065434265 �2.52143 0.01168789
ζ0 0.982862729nnn 0.109869514 8.94573 0.00000000
λ0 0.021627196nn 0.008780455 2.46311 0.01377390
ρ 0.940934176nnn 0.019527836 48.18425 0.00000000
γ 0.547119043nnn 0.157840831 3.46627 0.00052773
Q2 (15) 10.997 (statistic) [0.35773]

Notes: Q2 (15) denotes Ljung–Box test for serial correlation in the squared standardized residuals with 15 lags. The value in the square bracket indicates the significance level.
Φ1 and Φ2 are the coefficients of AR (1) and MA (1), respectively, defined in Eq. (5). k1, k2 and k3 are the impact coefficients of expected oil price volatility, unexpected oil
price volatility and negatively unexpected oil price volatility, respectively, defined in Eq. (5). ω, α, β and d are the parameters defined in Eq. (7). d may reveal whether
asymmetry of EGARCH is significant or not. η0 and ζ0 are the parameters defined in Eqs. (17) and (18). λ0, ρ and γ are the coefficients of jump intensity λt, defined in Eq. (9).

nn Significance at the 5% level.
nnn Significance at the 1% level.
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The period of the both variables is from October 9, 2001 to
September 30, 2006.

Compared to the early period, the frequency of two variables'
volatility is higher and the amplitudes of them also become wider
in the recent period (Fig. 3). Especially in 2008 and 2009, the
severe volatility and its characteristic of WTI price are paralleled
with those of CCI, suggesting a closer relationship between them.

The period of the both variables is from October 9, 2007 to
September 30, 2011.

According to Tables 5 and 7, the significance of all the
coefficients demonstrates that the changes of WTI prices can be
mainly explained by the autoregressive and moving average
model. With respect to the oil price changes, the coefficients of
AR and MA process in the recent years are larger than those in the
early period, verifying that the oil price changes are influenced by
the historical information more significantly in the latest years.
The sum of α and β of GARCH is almost equal to one, indicating
that the volatility clustering effect of WTI price changes lasts
longer than before, and the impact of oil price shocks is more
difficult to be removed in short time.

With regards to the volatility spillover effects on CCI from oil
price shocks, it is revealed from Table 6–8 that the responses of CCI
to expected oil price shocks are similar in two stages, according to
both negative and significant k1. However, the asymmetric effect
of the reaction to the unexpected oil price shocks is only
manifested in the later period, evidenced by the significant k3 just
after 2007.

In order to explain the volatility spillover effects at an industry
level, we investigated the impacts of oil price shocks in different
industries: metals, petrochemicals, grains and oilfats. We mainly
focus on the recent period of 2007–2011. There are about 1120
observations of each variable. In the light of saving space, the
specifically statistic descriptions and tests of each returns will be
left out in the following empirical analysis, and we only provide
the results of each returns (Fig. 4).

The period is from October 9, 2007 to September 30, 2011.

According to the empirical results shown in Table 9, as to the
volatility clustering of the four returns, they all can be properly
analyzed by the GARCH model. Unlike the cases in other three
indices, d is significantly positive for the oilfats index returns,
meaning that only oilfats index returns have asymmetric
responses to the outside increased or decreased innovations.

By contrasting the effectiveness of applying CJI and ARJI model
to each index, we find that the jump intensity of metals and
petrochemicals indices returns is relatively constant, whereas that
of the grains and oilfats indices returns varies in time. Further-
more, the extended model of ARJI-ht is adaptable to examine the
jump behavior of grains index returns, implying that the condi-
tional mean and variance of jump size are no more constant, but
vary with contemporary returns volatility, evidenced by significant
coefficients of η1, η2 and ζ1.

According to Tables 9, k1 in the model of metals and grains is
not significant, indicating that the responses of their indices
returns are not sensitive to expected volatility of WTI price. This
is contrary to the results of petrochemicals and oilfats. It is found
that the reactions to the unexpected oil price volatility of the four
indices returns are all apparent, in view of the significant k2.
In addition, there is apparent asymmetric effect during the period
of 2007–2011, verified by significant k3.

5. Discussions

5.1. Impacts of global oil price shocks on the composite CCI

There have been volatility clustering and an asymmetric effect
in the bulk commodity markets since 2001. The response to
increased innovation is stronger than the response to decreased
innovation. The explanation may be that the rise of bulk commod-
ity prices has meant higher costs of raw materials for the
correlated companies, which leads to falling profits and reductions

Fig. 2. (a) Returns of the WTI spot price and (b) returns of the composite CCI. The period of the both variables is from October 9, 2001 to September 30, 2006.

Fig. 3. (a) Returns of the WTI spot price and (b) returns of the composite CCI. The period of the both variables is from October 9, 2007 to September 30, 2011.
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in production or shifts to another industry, leading, in turn, to
decreases in the demand for and price of bulk commodities.

The dynamic jump intensity in the volatility of China's bulk
commodity markets varied during the period of 2001–2011. This
result shows that CCI changes are strongly sensitive to exterior
shocks, could be brought on by unexpected innovation, and vary in
intensity over time.

This study suggests that an expected volatility in WTI prices
has a significant negative impact on CCI changes. However, Chiou
and Lee report different results (Chiou and Lee, 2009; Lee and
Chiou, 2011). These suggested that oil price fluctuations had no
significant impacts on financial returns, while we found that an
expected volatility of WTI price has a significant negative impact
on CCI changes. This may be because China still lacks oil futures, so
that related companies do not have sufficient experience to predict
what will happen in terms of oil prices. Secondly, China's produ-
cers and investors tend to overreact in response to oil price

changes; their anticipations are irrational. Thirdly, the incomplete
pricing mechanism of petroleum in China means that global oil
price changes cannot be expeditiously and accurately transferred
to the oil market, and that the volatility spillover effect on bulk
commodity markets is also influenced by the obstructed transfer-
ring channel.

Unexpected volatility of the WTI price has a positive but slight
effect on CCI changes. The transferring coefficient is positive but
very small and there are no asymmetric responses of CCI changes
to the increased or decreased innovations of unexpected oil price
shocks. Generally, the influence of oil price shocks often comes
from the unexpected component of volatility and asymmetry is
also demonstrated in the volatility spillover effects (Lee and Chiou,
2011). As for the empirical results of CCI, besides the inaccuracies
in pricing petroleum, another explanation could be that the energy
sources consumed in China are still dominated by coal. The
dependence on coal by China is about 70.4%, reducing, to some
extent, the influence of unexpected volatility in the global oil price.

5.2. Impacts of oil price shocks on the CCI during different periods

The jump intensity of the CCI changes varied in time only
during the period 2001–2007. There could be two explanations for
this result. On one hand, during the early years, China's bulk
commodity markets were relatively independent of the global
market, so that they were less affected by international fluctua-
tions, and jumps in the market were relatively invariant. What is
more, over-confidence in markets may also have contributed to
abating external influences (Ko and Huang, 2007). After 2007, as
the country developed a closer relationship with world markets, it
was inevitable for China's bulk commodity markets to be more
strongly influenced by outside shocks, making the volatility
features of domestic and foreign bulk commodity markets more
similar.

The expected volatility of WTI price had a negative impact on
the CCI in both periods. This result is consistent with that of the
whole period (2001–2011), again suggesting that irrationality and
over-reactivity always exist in China's bulk commodity markets.

An asymmetric impact of the unexpected volatility of WTI
prices appeared just after 2007. The CCI changes appeared sensi-
tive to the negatively unexpected volatility component of oil price
in this later period, in contrast to earlier years. This suggests that
the degree of linkage with the world and information efficiency of
the China's bulk commodity markets was both greatly enhanced
after 2007.

5.3. Impacts of global oil price on classified commodity indices

Volatility clustering phenomena were apparent in all four
indices, while only the volatility of the oilfat index displayed an
asymmetric effect. The estimated coefficients in the GARCH
process of each classified index were significant, suggesting that
it is suitable to apply the GARCH model to them, in accord with the
study of Du et al. (2011).

Besides the oilfats index, the other three indices do not exhibit
asymmetric responses to good and bad news. For the metal and
grain indices, the main reason for this may be that both the metal
and grain future markets have developed to a high state of
efficiency. They do not behave much differently in the face of
positive and negative shocks. At the same time, this feature of the
two indices suggests that the investing risk of metal and grain
future markets is relatively small.

The volatility of the petrochemicals index does not have
asymmetry. Petrochemical prices are more independent of exter-
nal markets except for oil and other energies, so they do not react
differentially to general bad and good news.

Table 5
ARMA (1, 1)–GARCH (1, 1) model on the WTI spot price changes (2001–2006).

Variables Coefficients Standard error T-statistics Signif. lvl.

μ 0.174769673 0.105074483 1.66329 0.09625376
Ф1 �0.602597328 0.158706130 �3.79694 0.00014649
θ1 0.559912811 0.170477130 3.28439 0.00102205
ω 0.763356168 0.384115363 1.98731 0.04688809
α1 0.084433989 0.024588227 3.43392 0.00059492
β1 0.780871838 0.089420372 8.73259 0.00000000
Q2 (15) 9.402 (statistic) [0.855554]

Notes: Q2 (15) denotes Ljung–Box test for serial correlation in the squared
standardized residuals with 15 lags. The value in the square bracket indicates the
significance level.

Table 6
CJI–EGARCH model on the CCI returns – estimation by BFGS (2001–2006).

Variables Coefficients Standard error T-statistics Signif. lvl.

μ 0.011465442 0.025001384 0.45859 0.64652697
k1 �0.052325071 0.007127560 �7.34123 0.00000000
k2 0.030399233 0.010547396 2.88216 0.00394965
k3 �0.017960069 0.016417648 �1.09395 0.27397735
ω �0.152692341 0.034141342 �4.47236 0.00000774
α 0.158118163 0.031849658 4.96452 0.00000069
β 1.008257425 0.005800490 173.82279 0.00000000
d 0.047705248 0.009980859 4.77967 0.00000176
η0 0.117972064 0.056969972 2.07078 0.03837971
ζ0 0.628743757 0.085253224 7.37501 0.00000000
λ0 0.410715818 0.132742837 3.09407 0.00197430
Q2 (15) 5.591 (statistic) [0.985825]

Notes: Q2 (15) denotes Ljung–Box test for serial correlation in the squared
standardized residuals with 15 lags. The value in the square bracket indicates the
significance level.

Table 7
ARMA (1, 1)–GARCH (1, 1) model on the WTI spot price changes (2007–2011).

Variables Coefficients Standard error T-statistics Signif. lvl.

μ 0.215079114 0.119769138 1.79578 0.07252939
Ф1 �0.845836362 0.129890458 �6.51192 0.00000000
θ1 0.813995974 0.139154105 5.84960 0.00000000
ω 0.314346336 0.072568245 4.33173 0.00001479
α1 0.126545354 0.021183165 5.97386 0.00000000
β1 0.834212391 0.024031987 34.71259 0.00000000
Q2 (15) 17.167 (statistic) [0.309004]

Notes: Q2 (15) denotes Ljung–Box test for serial correlation in the squared
standardized residuals with 15 lags. The value in the square bracket indicates the
significance level.

C. Zhang, X. Chen / Energy Policy 66 (2014) 32–4138



In contrast to the other three indices, the oilfats index has
asymmetric effects in volatility. It reacts to bad news more
significantly than good news. The coefficient value (d) of its
asymmetry is close to that of the composite CCI, indicating that
the asymmetric effect in composite CCI is caused mainly by the
oilfats commodities. Therefore, in hedging and future portfolios,
investors should pay more attention to the impacts of external
shocks on oilfats commodities.

The response of the metal and grain indices to the expected
volatility of WTI price is not obvious, while its response to
unexpected volatility is not only significant but also asymmetric.

Expected shocks from the global oil market do not affect the
metals remarkably. According to one study by Hammoudeh and
Yuan (2008), there are relatively few activities of arbitraging
between copper or aluminum futures and crude oil, so that the
prices of main metals are not easily influenced by expected oil

price volatility. In addition, the efficiency of China's metal future
market is gradually improving and is better equipped to resist
impacts from outside, especially the expected shock of related
commodities like crude oil. It also implies that investors in the
metal futures market should focus on hedging and risk-
diversification.

Expected impact on the grains index is not apparent. On one
hand, the global position of China's grain future market has
improved notably, such as the market of soybean futures with
the second largest transaction volume in the world. Therefore, it is
more efficient for making use of the grain future market to avoid
or calm the expected volatility risk. On the other hand, a variance
from the case in the U.S. or other developed areas (Natanelov et al.,
2011), the price linkage between China's soybean or corn and
global oil is not strong, and oil price volatility as yet has not
transferred to China's grain market.

Table 8
ARJI�EGARCH (1, 1) model on the CCI returns (2007–2011).

Variables Coefficients Standard error T-statistics Signif. lvl.

μ 0.24422268 0.04161712 5.86832000 0.00000000
Φ1 �0.16841853 0.07950745 �2.11827000 0.03415191
Φ2 0.00460240 0.08475213 0.05430000 0.95669282
k1 �0.05417437 0.01588641 �3.41011000 0.00064937
k2 0.05689365 0.01611724 3.52999000 0.00041558
k3 0.04847460 0.02399895 2.01986000 0.04339754
ω �0.11286277 0.03135847 �3.59912000 0.00031930
α 0.11868419 0.03607071 3.29032000 0.00100073
β 0.98901701 0.00778071 127.11134000 0.00000000
d 0.06963208 0.02042450 3.40924000 0.00065143
η0 �0.33866541 0.13240314 �2.55784000 0.01053260
ζ0 0.84028633 0.12562690 6.68875000 0.00000000
λ0 0.02629724 0.01451009 1.81234000 0.06993331
ρ 0.94287683 0.02642287 35.68411000 0.00000000
γ 0.46036262 0.16922615 2.72040000 0.00652032
Q2 (15) 13.115 (statistic) [0.217320]

Notes: Q2 (15) denotes Ljung–Box test for serial correlation in the squared standardized residuals with 15 lags. The value in the square bracket indicates the significance level.
Φ1 and Φ2 are the coefficients of AR (1) and MA (1), respectively, defined in Eq. (5). k1, k2 and k3 are the impact coefficients of expected oil price volatility, unexpected oil
price volatility and negatively unexpected oil price volatility, respectively, defined in Eq. (5). ω, α, β and d are the parameters defined in Eq. (7). d may reveal whether
asymmetry of EGARCH is significant or not. η0 and ζ0 are the parameters defined in Eqs. (17) and (18). λ0, ρ and γ are the coefficients of jump intensity λt, defined in Eq. (9).

Fig. 4. (a) Returns of the metals index; (b) returns of the petrochemicals index; (c) returns of the grains index; and (d) returns of the oil and fats index. The period is from
October 9, 2007 to September 30, 2011.
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An unexpected volatility in oil price influences the metal and
grain indices significantly and asymmetrically. Since 2007, metal
and grain indices return rationally and fully react to external
shocks to some extent. There is probably asymmetric spillover
from an unexpected volatility of oil price. Moreover, it is found
that the transmission coefficients of unexpected volatility (k2 and
k3) are both larger for the metal indices than for the grain indices,
because metal-related industries make more use of oil in manu-
facturing and processing. They are more susceptible to the oil price
volatility.

Either expected or (negatively) unexpected volatilities of WTI
price have a significant impact on the petrochemicals and oilfats
indices. Compared to other two indices, the petrochemical and
oilfat future markets are less developed and efficient, so they are
sensitive not only to unexpected volatilities but also to
expected ones.

The petrochemical industry is most strongly linked to the oil
market. Therefore, the petrochemicals index is subject to the
expected oil price volatility. Baffes (2007) drew a similar conclu-
sion. Furthermore, owing to overreaction, the petrochemicals’
index even responds in an opposite direction to the expected
volatility.

As to the oilfats’ index, it is also sensitive to expected volati-
lities in oil price, which may result from the crucial contribution of
crude oil to processing and refining. Meanwhile, in contrast to the
behavior of the petrochemicals index, whose response to the
expected volatility is the strongest (k1), it is the weakest in the
case of oilfats. A reasonable explanation is that though oilfat
commodities are somewhat affected by the global oil market, this
limited because they are mainly extracted from soybeans or
vegetable seeds and have a higher elasticity of oil demand.

6. Conclusions and policy implications

This paper examined the volatility spillover effects of crude oil
price shocks on China's bulk commodities markets. We employed
the ARJI and its extended model (ARJI-ht), incorporating with the
EGARCH method to interpret the jump behaviors and volatility

processes of various commodity indices. Moreover, we separated
the volatilities of oil price into expected, unexpected and nega-
tively expected categories to identify how oil prices influence bulk
commodity markets. We contrasted the results between different
periods and among classified indices, in order to discover the
significant changes in recent years and the differences at an
industry level. The main conclusions are summarized as follows:

Firstly, the composite CCI has been significantly influenced by
the expected volatility of global oil price during 2001–2011. Due to
irrationality, the imperfection of the petroleum-pricing mechan-
isms and the lack of oil futures in China, the transmission channel
of prices between the global and China's oil market is somewhat
obstructed, leading producers and investors to over-react to oil
price changes.

Secondly, the jump intensity of composite CCI returns varies in
time, while its response to expected volatility lessens. An asym-
metry response to unexpected volatilities has appeared in recent
years, suggesting that the information efficiency of China's bulk
commodity markets has improved and the impacts of unexpected
oil price shocks have become more complex.

Finally, the jump intensity of industrial indices is constant and
their volatility processes do not have asymmetric effects, unlike
those of agricultural indices. The insignificant response of the
metal and grain markets to the expected volatility of oil prices
demonstrates that they are more efficient, and that it is more
effective for the producers and investors to make use of them to
spread the risks of price volatilities, whereas the development of
the petrochemical and oilfat markets lag behind the others, so that
they are more sensitive to expected volatilities in oil prices.

These results have several important policy implications.
Firstly, the imperfections of the mechanism of petroleum pricing
in China induce irrational expectations and overreactions to oil
prices and should be improved to become more market-oriented
so as to lower the uncertain risks. Secondly, providing a sum of
subsidies for the enterprises that are seriously influenced by oil
price shocks would make sense to maintain the stability of
economic production. Thirdly, it is necessary to begin utilizing
the technologies which employ corns, soybeans, and wheat to
produce bio-energy, helping to reduce the dependence on

Table 9
Volatility spillovers of WTI price shocks on four classified CCI (2007–2011).

Var. Metals (CJI) Petrochemicals (CJI) Grains (ARJI-ht) Oilfats (ARJI)

μ 0.1785798 0.2896695 0.1205671 0.2227429
Φ1 0.1474239nnn �0.0816072 �0.3630329nnn �0.1863318nnn

Φ2 �0.3929809nnn �0.0042843 0.0604860 0.0438559
θ1 �0.2738962nnn

θ2 0.4935543nnn

k1 �0.0122789 �0.0973901nnn 0.0036312 �0.0589972nnn

k2 0.0602449nnn 0.0575418nnn 0.0227004nnn 0.0619216nnn

k3 0.0950643nnn 0.0741176nn 0.0302719nn 0.0587849nnn

ω �0.2014905nnn �0.2373416nnn �0.1488545nnn 0.0002359
α 0.2604084nnn 0.1945759nnn 0.0879858nnn �0.0011322nnn

β 0.9673609nnn 1.04362842nnn 0.9890276nnn 0.9937958nnn

d �0.02943936 0.02362023 0.0098851 0.0691574nnn

η0 �1.05401848nn �0.09825451nn �0.0446950 �0.2306463nn

η1 0.2572417nnn

η2 �0.2665415nnn

ζ0 2.3540416nnn 0.73650901nnn �0.0000062 1.4415196nnn

ζ1 3.2091908nnn

λ0 0.0836416nnn 1.45792983nnn 0.0279359n 0.0122005n

Ρ 0.9662196nnn 0.9715099nnn

γ �0.0422789 0.5051326nnn

Q2 (15) 14.239[0.50746] 14.958[0.45443] 11.435[0.17823] 21.211[0.2170]

Notes: Q2 (15) denotes Ljung–Box test for serial correlation in the squared standardized residuals with 15 lags. The value in the square bracket indicates the significance level.
n Significance at the 10% level.
nn Significance at the 5% level.
nnn Significance at the 1% level.
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traditional energies and importing oil from abroad for China.
Finally, if crude oil futures come into China’s commodity future
markets, petrochemical related industries would spread risks
more effectively. While in view of the more efficient future
markets of metals and grains, relative industries should take
advantage of them to hedge against prices volatilities.
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