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1 Introduction

Over the last three decades, quantile regression, also called conditional quantile or regression

quantile, introduced by Koenker and Bassett (1978), has been used widely in various dis-

ciplines, such as finance, economics, medicine, and biology. It is well-known that when the

distribution of data is typically skewed or data contains some outliers, the median regression,

a special case of quantile regression, is more explicable and robust than the mean regres-

sion. Also, regression quantiles can be used to test heteroscedasticity formally or graphically

(Koenker and Bassett, 1982; Efron, 1991; Koenker and Zhao, 1996; Koenker and Xiao, 2002).

Although some individual quantiles, such as the conditional median, are sometimes of inter-

est in practice, more often one wishes to obtain a collection of conditional quantiles which

can characterize the entire conditional distribution. More importantly, another application

of conditional quantiles is the construction of prediction intervals for the next value given a

small section of recent past values in a stationary time series (Granger, White, and Kamstra,

1989; Koenker, 1994; Zhou and Portnoy, 1996; Koenker and Zhao, 1996; Taylor and Bunn,

1999). Also, Granger, White, and Kamstra (1989), Koenker and Zhao (1996), and Taylor

and Bunn (1999) considered an interval forecasting for parametric autoregressive conditional

heteroscedastic (ARCH) type models.

Recently, the quantile regression technique has been successfully applied to various ap-

plied fields. For example, in the 1992 presidential selection, the Democrats used the yearly

Current Population Survey data to show that between 1980 and 1992 there was an increase

in the number of people in the high-salary category as well as an increase in the number

of people in the low-salary category. This phenomena could be characterized by using a

quantile regression method. See Figure 6.4 in Fan and Gijbels (1996, p. 229). More im-

portantly, by following the regulations of the Bank for International Settlements, many of

financial institutions have begun to use a uniform measure of risk to measure market risks

called Value-at-Risk (VaR), which can be defined as the maximum potential loss of a specific

portfolio for a given horizon in finance. In essence, it is to compute an estimate of the lower

tail quantile (with a small probability) of future portfolio returns, conditional on current

information. Therefore, VaR can be regarded as a special application of the quantile regres-

sion. There is a vast amount of literature in this area; see, to name just a few, Khindanova

and Rachev (2000), Bao, Lee and Saltoğlu (2001), Engle and Manganelli (2004), and Tsay

(2005), and references therein.

In this paper, we assume that {Xt, Yt}∞t=−∞ is a stationary sequence. Denote F (y |x) the

conditional distribution of Y given X = x, where Xt = (Xt1, . . . , Xtd)
′ with ′ denoting the
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transpose of a matrix or vector, is the associated covariate vector in ℜd with d ≥ 1, which

might be a function of exogenous (covariate) variables or some lagged variables or time t. A

regression quantile function qτ (x) is defined as, for any 0 < τ < 1,

qτ (x) = inf{y ∈ ℜ : F (y |x) ≥ τ}, or qτ (x) = argmina∈ℜE {ρτ (Yt − a) |Xt = x} , (1)

where ρτ (y) = y (τ − I{y<0}) with y ∈ ℜ is called the loss (“check”) function, and IA is the

indicator function of any set A. Clearly, the simplest form of (1) is qτ (x) = β′
τx, which is

called the linear quantile regression model well studied by many authors. For details, see

the papers by Koenker and Bassett (1978, 1982), Koenker, Ng and Portnoy (1994), Koenker

and Zhao (1996), Khindanova and Rachev (2000), Bao, Lee and Saltoğlu (2001), Koenker

and Xiao (2002, 2004), and Engle and Manganelli (2004), and references therein.

In many practical applications, however, the linear quantile regression model might not

be “rich” enough to capture the underlying relationship between the quantile of response

variable and its covariates. Indeed, some components may be highly nonlinear or some covari-

ates may be interactive. To make quantile regression models more flexible, there is a swiftly

growing literature on nonparametric quantile regression. Various smoothing techniques, such

as kernel methods, splines, and their variants, have been used to estimate the nonparametric

quantile regression for both independent and time series data. For recent developments and

detailed discussions on theory, methodologies, and applications, see, for example, the papers

by He, Ng, and Portony (1998), Yu and Jones (1998), He and Ng (1999), He and Portony

(2000), Honda (2000, 2004), Khindanova and Rachev (2000), Bao, Lee and Saltoğlu (2001),

Cai (2002a), De Gooijer and Gannoun (2003), Kim (2003), Yu and Lu (2004), Tsay (2005),

and Horowitz and Lee (2005), and references therein. In particular, for the univariate case,

Honda (2000) derived the asymptotic properties of the local linear estimator of the quantile

regression function under α-mixing condition. For the high dimensional case, however, the

aforementioned methods encounter some difficulties such as the so-called “curse of dimen-

sionality” and their implementation in practice is not easy as well as the visual display is

not so useful for the exploratory purposes.

To attenuate the above problems, De Gooijer and Zerom (2003), Yu and Lu (2004),

and Horowitz and Lee (2005) considered an additive quantile regression model qτ (Xt) =
∑d

k=1 gk(Xtk). To estimate each component, for the time series case, De Gooijer and Zerom

(2003) first estimated a high dimensional quantile function by inverting the conditional

distribution function estimated by using a weighted Nadaraya-Watson approach, proposed

by Cai (2002a), and then used a projection method to estimate each component, while Yu and

Lu (2004) focused on independent data and used a back-fitting algorithm method to estimate
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each component. On the other hand, to estimate each additive component for independent

data, Horowitz and Lee (2005) used a two-stage approach consisting of the series estimation

at the first step and a local polynomial fitting at the second step. For independent data, the

above model was extended by He, Ng and Portony (1998), He and Ng (1999), and He and

Portony (2000) to include interaction terms by using spline methods. Finally, Xiao (2006)

investigated a new and robust approach of estimating conditional quantiles based on GARCH

type models. Since quantile regression estimation of GARCH models is highly nonlinear,

Xiao (2006) discussed the problem of estimating this type model using traditional recursive

methods for nonlinear quantile regression and proposed two new methods of estimating

quantiles of GARCH models.

In this paper, we adapt another dimension reduction modelling method to analyze dy-

namic time series data, termed as the smooth (functional or varying) coefficient modelling

approach. This approach allows appreciable flexibility on the structure of fitted models. It

allows for linearity in some continuous or discrete variables which can be exogenous or lagged

and nonlinear in other variables in coefficients. In such a way, the model has the ability of

capturing the individual variations. More importantly, it can ease the so-called “curse of di-

mensionality” and combines both additivity and interactivity. A smooth coefficient quantile

regression model for time series data takes the following form

qτ (Ut, Xt) =
d∑

k=0

ak,τ (Ut)Xtk = X′
t aτ (Ut), (2)

where Ut is called the smoothing variable, which might be one part of Xt1, . . . , Xtd or

just time or other exogenous variables or lagged variables, Xt = (Xt0, Xt1, . . . , Xtd)
′ with

Xt0 ≡ 1, {ak,τ (·)} are smooth coefficient functions, and aτ (·) = (a0,τ (·), . . . , ad,τ (·))′. Here,

some of {ak,τ (·)} are allowed to depend on τ . For simplicity, we drop τ from {ak,τ (·)} in

what follows. Our interest here is to estimate coefficient functions a(·) rather than the

quantile regression surface qτ (·, ·) itself. Note that model (2) was studied by Kim (2003),

Honda (2004), and Wei and He (2005) for an independent sample, but our focus here is on

a dynamic model for nonlinear time series, which has more capacity of applications.

The general setting in (2) covers many familiar quantile regression models, including the

quantile autoregressive model (QAR) proposed by Koenker and Xiao (2004) who applied

QAR model for the unit root inference. In particular, it includes a specific class of ARCH

models, such as heteroscedastic linear models considered by Koenker and Zhao (1996) and

nonlinear models studied by Xiao (2006). Also, if there is no Xt in the model (d = 0),

qτ (Ut,Xt) becomes qτ (Ut) so that model (2) reduces to the ordinary nonparametric quantile

3



regression model which has been studied extensively. For recent developments, refer to

the papers by He, Ng and Portony (1998), Yu and Jones (1998), He and Ng (1999), He

and Portony (2000), Honda (2000), Cai (2002a), De Gooijer and Zerom (2003), Yu and Lu

(2004), and Horowitz and Lee (2005). If Ut is just time, then the model is called the time-

varying coefficient quantile regression model, which is potentially useful to see whether the

quantile regression changes over time and in a case with a practical interest is, for example,

the aforementioned political example and the analysis of the reference growth data by Cole

(1994), Wei, Pere, Koenker and He (2003), and Wei and He (2005), and references therein.

However, if Ut is time, the observed time series might not be stationary. Therefore, the

treatment for non-stationary case would require a different approach so that it is beyond the

scope of this paper and deserves a further investigation. Kim (2003) and Wei and He (2005)

considered the case when Ut is time and data are iid by using spline estimation procedures.

For more applications, see the paper by Xu (2005). Finally, note that the smooth coefficient

mean regression model is one of the most popular nonlinear time series models in mean

regression and has various applications. For more discussions, refer to the papers by Chen

and Tsay (1993), Cai, Fan, and Yao (2000), Cai and Tiwari (2000), and Hong and Lee (2003),

and the book by Tsay (2005), and references therein.

The motivation of this study comes from analyzing the well known Boston housing price

data. The main interest is to identify factors affecting the house price in Boston area. As

argued by Şentürk and Müller (2003), the correlation between the house price and the crime

rate can be adjusted by the confounding variable which is the proportion of population of

lower educational status through a varying coefficient model and the expected effect of in-

creasing crime rate on declining house prices seems to be only observed for lower educational

status neighborhoods in Boston. The interesting features of this dataset are that the re-

sponse variable is the median price of a home in a given area and the distributions of the

price and the major covariate (the confounding variable) are left skewed. Therefore, quantile

methods are suitable for analyzing this dataset. Therefore, such a problem can be tackled by

using model (2). In another example, one is interested in exploring the possible nonlinearity,

heteroscedasticity, and predictability of the exchange rates such as the Japanese Yen against

US dollar. The detailed analysis of these data sets is reported in Section 3.

The plan of this paper is as follows. In Section 2, we present the local polynomial quantile

estimation of coefficient functions and its asymptotic normality of the estimators. Also, we

discuss the local constant quantile estimation and its asymptotic properties. Moreover, the

asymptotic behaviors of both estimators at boundaries are examined. A comparison of two

estimators is presented. Finally, an ad hoc data-driven fashioned bandwidth selector is
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suggested based on the nonparametric version of the Akaike information criterion and the

consistent estimator of the asymptotic covariance matrix is provided in the same section.

In Section 3, we illustrate the finite sample performance of the estimators with a Monte

Carlo experiment and also we give an application to the exchange rate series and the Boston

house price data. A concluding remark in Section 4 concludes the paper. Finally, the brief

derivations of the theorems are given in Appendix with some lemmas.

2 Modeling Procedures

2.1 Local Polynomial Quantile Estimate

Without loss of generality, we consider only the case when Ut in (2) is one-dimensional,

denoted by Ut in what follows. For multivariate Ut, the theory and procedure for the

univariate case continue to hold but more and complicated notations involve; see Rupert and

Wand (1994). A local polynomial fitting has several nice properties such as high statistical

efficiency in an asymptotic minimax sense, design-adaptation, and automatic edge correction;

see Fan and Gijbels (1996).

Now, we estimate {ak(·)} using the local polynomial method based on observations

{(Ut, Xt, Yt)}n
t=1. We assume throughout the paper that the coefficient functions a(·)} have

the (q + 1)th derivative (q ≥ 1), so that for any given gird point u0, ak(·) can be approx-

imated by a polynomial function in a neighborhood of the given grid point u0 as a(Ut) ≈
a(u0)+a′(u0) (Ut −u0)+ · · ·+a(q)(u0) (Ut −u0)

q/q ! and qτ (Ut, Xt) ≈
∑q

j=0 X′
t βj (Ut −u0)

j,

where βj = a(j)(u0)/j!. Then, the locally weighted loss function is

n∑

t=1

ρτ


Yt −

q∑

j=0

X′
t βj (Ut − u0)

j


 Kh(Ut − u0), (3)

where K(·) is a kernel function, Kh(x) = K(x/h)/h, and h = hn is a sequence of positive

numbers tending to zero, which controls the amount of smoothing used in estimation. Solving

the minimization problem in (3) gives â(u0) = β̂0, the local polynomial estimate of a(u0),

and â(j)(u0) = j ! β̂j (j ≥ 1), the local polynomial estimate of the jth derivative a(j)(u0) of

a(u0). By moving u0 along with the real line, one obtains the estimate for the entire curve.

The programming involved in the local polynomial quantile estimation is relatively sim-

ple and can be modified with few efforts from the existing programs for a linear quantile

model. For example, for each grid point u0, the local polynomial quantile estimation can be

implemented in the R package quantreg, of Koenker (2004) by setting covariates as Xt and

Xt (Ut − u0) and the weight as Kh(Ut − u0).
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Although some modifications are needed, the method developed here for the local poly-

nomial quantile estimation is applicable to a general local polynomial quantile estimation.

In particular, we note that the local constant (Nadaraya-Watson type) quantile estimation

of a(u0), denoted by ã(u0), is β̃ minimizing the following subjective function

n∑

t=1

ρτ (Yt − X′
t β) Kh(Ut − u0), (4)

which is a special case of (3) with q = 0. We compare â(u0) and ã(u0) theoretically at the

end of Section 2.2 and empirically in Section 3.1 and the comparison leads to suggest that

one should use the local polynomial approach in practice.

2.2 Asymptotic Results

Although our interest in conditional quantile estimation is motivated by the statistical in-

ferences for time series data, we introduce our methods in a more general setting (α-mixing;

see Hall and Heyde (1980) for the definition) which includes many time series models as a

special case. The asymptotic results here are derived under the α-mixing assumption. In

fact, under very mild assumptions linear autoregressive and more generally bilinear time

series models are α-mixing with mixing coefficients decaying exponentially. Many nonlin-

ear time series models, such as functional coefficient autoregressive processes with/without

exogenous variables, ARCH and GARCH type processes, stochastic volatility models, and

nonlinear additive autoregressive models with/without exogenous variables, are strong mix-

ing under some mild conditions. See, for example, Auestad and Tjøstheim (1990), Chen

and Tsay (1993), Masry and Tjøstheim (1995, 1997), Lu (1998), Cai and Masry (2000), and

Carrasco and Chen (2002).

We first give some regularity conditions that are sufficient for the consistency and asymp-

totic normality of the proposed estimators, although they might not be the weakest pos-

sible. We introduce the following notations. Denote Ω(u0) ≡ E[XtX
′
t|Ut = u0] and

Ω∗(u0) ≡ E[XtX
′
t fy|u,x(qτ (u0,Xt)) |Ut = u0], where fy|u,x(y) is the conditional density of

Y given U and X. Let fu(u) present the marginal density of U .

Assumptions:

(C1) a(u) is (q + 1)th continuously differentiable in a neighborhood of u0 for any u0.

(C2) fu(u) is continuous and fu(u0) > 0.

(C3) fy|u,x(y) is bounded and satisfies the Lipschitz condition.
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(C4) The kernel function K(·) is symmetric and has a compact support, say [−1, 1].

(C5) {(Xt, Yt, Ut)} is a strictly α-mixing stationary process with mixing coefficient α(t)

satisfying
∑∞

t≥1 t
lα(δ−2)/δ(t) <∞ for some positive real number δ > 2 and l > (δ−2)/δ.

(C6) E‖Xt‖2δ∗ <∞ with δ∗ > δ.

(C7) Ω(u0) is positive-definite and continuous in a neighborhood of u0.

(C8) Ω∗(u0) is continuous and positive-definite in a neighborhood of u0.

(C9) The bandwidth h satisfies h→ 0 and nh→ ∞.

(C10) f(u, v|x0, xs; s) ≤ M < ∞ for s ≥ 1, where f(u, v|x0, xs; s) is the conditional density

of (U0, Us) given (X0 = x0, Xs = xs).

(C11) n1/2−δ/4 hδ/δ∗−1/2−δ/4 = O(1).

A similar discussion on the above assumptions can be found in Cai (2002a). Assumption

(C6) is commonly required for ensuring the convergence of n−1 ∑n
t=1 Xt X

′
t to E(Xt X

′
t) when

Xt is mixing. It is clear from (2) that Ω(u0) a(u0) = E[qτ (u0,Xt)Xt |Ut = u0]. Then, a(u0) is

identified (uniquely determined) if and only if Ω(u0) is positive definite for any u0. Therefore,

Assumption (C7) is the necessary and sufficient condition for the model identification. To

establish the asymptotic normality of the proposed estimator, define µj =
∫
ujK(u) du and

νj =
∫
ujK2(u) du.

Theorem 1: Under Assumptions (C1)- (C11), we have the following asymptotic normality

for q odd,

√
nh

[
â(u0) − a(u0) −

hq+1

(q + 1)!
a(q+1)(u0)µq+1 + op(h

q+1)

]
→ N {0, τ(1 − τ) ν0Σ(u0)} ,

where Σ(u0) = [Ω∗(u0)]
−1 Ω(u0) [Ω∗(u0)]

−1/fu(u0).

The case when q is even leads to a more complicated derivation, we consider only the case

for q odd. For the case when q is even, we can obtain a similar result; see Rupert and Wand

(1994) and Fan and Gijbels (1996). See Xu (2005) for the detailed technical derivations.

From Theorem 1, the asymptotic mean squares error (AMSE) of â(u0) is

AMSE =
h2q+2 µ2

q+1

[(q + 1)!]2
||a(q+1)(u0)||2 +

τ(1 − τ) ν0

nh fu(u0)
tr(Σ(u0)),
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which gives the optimal bandwidth hopt by minimizing the AMSE

hopt =

(
τ(1 − τ) ν0 (q + 1)[q!]2tr(Σ(u0))

2 fu(u0) ||a(q+1)(u0)||2µ2
q+1

)1/(2q+3)

n−1/(2q+3)

and the optimal AMSE is AMSEopt = O(n−(2q+2)/(2q+3)). Further, notice that the similar

results in Theorem 1 were obtained by Honda (2004) for independent data. Finally, it is

interesting to note that the asymptotic bias in Theorem 1 is the same as that for the mean

regression case but the two asymptotic variances are different; see, for example, Cai, Fan

and Yao (2000). For various practical applications, Fan and Gijbels (1996) recommended

using the local linear fit (q = 1). Therefore, for ease notation, in what follows, we consider

only the case when q = 1 (local linear fitting).

If model (2) does not have X (d = 0), it becomes the nonparametric quantile regression

model qτ (·). Then, Theorem 1 covers the result in Yu and Jones (1998), Honda (2000), and

Cai (2002a) for both independent and time series data.

Now we consider the comparison of the performance of the local linear estimation â(u0)

obtained in (3) with that of the local constant estimation ã(u0) given in (4). To this effect,

first, we derive the asymptotic results for the local constant estimator but the proof is

omitted; see Xu (2005) for the detailed technical proofs. Under some regularity conditions,

it can be shown that

√
nh

[
ã(u0) − a(u0) − b̃ + op(h

2)
]

→ N {0, τ(1 − τ) ν0 Σ(u0)} ,

where

b̃ =
h2 µ2

2

[
a′′(u0) + 2 a′(u0) f

′
u(u0)/fu(u0) + 2 {Ω∗(u0)}−1 Ω∗′(u0) a

′(u0)
]
,

which implies that the asymptotic bias for ã(u0) is different from that for â(u0) but both

have the same asymptotic variance. Therefore, the local constant quantile estimator does not

adapt to nonuniform designs: the bias can be large when f ′
u(u0)/fu(u0) or {Ω∗(u0)}−1 Ω∗′(u0)

is large even when the true coefficient functions are linear. It is surprising that to the best

of our knowledge, this finding seems to be new for the nonparametric quantile regression

setting although it is well documented in literature for the ordinary regression case; see Fan

and Gijbels (1996) for details.

Finally, to examine the asymptotic behaviors of the local linear and local constant quan-

tile estimators at the boundaries, we offer Theorem 2 below but its proofs are omitted; see

Xu (2005) for the detailed technical proofs. Without loss of generality, we consider only the
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left boundary point u0 = c h, 0 < c < 1, if Ut takes values only from [0, 1]. A similar result

in Theorem 2 holds for the right boundary point u0 = 1 − c h. Define µj,c =
∫ 1
−c u

j K(u)du

and νj,c =
∫ 1
−c u

j K2(u)du.

Theorem 2: Under the assumptions of Theorem 1, we have the following asymptotic nor-

mality of the local linear quantile estimator at the left boundary point,

√
nh

[
â(c h) − a(c h) − h2 bc

2
a′′(0+) + op(h

2)

]
→ N {0, τ(1 − τ) vc Σ(0+)} ,

where

bc =
µ2

2,c − µ1,c µ3,c

µ2,c µ0,c − µ2
1,c

and vc =
µ2

2,cν0,c − 2µ1,c µ2,c ν1,c + µ2
1,c ν2,c

[
µ2,c µ0,c − µ2

1,c

]2 .

Further, we have the following asymptotic normality of the local constant quantile estimator

at the left boundary point u0 = c h for 0 < c < 1,

√
nh

[
ã(c h) − a(c h) − b̃c + op(h

2)
]

→ N
{
0, τ(1 − τ) ν0,c Σ(0+)/µ2

0,c

}
.

where

b̃c =

[
hµ1,ca

′(0+) +
h2µ2,c

2

{
a′′(0+) +

2a′(0+)f ′
u(0+)

fu(0+)
+ 2Ω∗−1(0+)Ω∗′(0+)a′(0+)

}]
/µ0,c.

Similar results hold for the right boundary point u0 = 1 − c h.

We remark that if the point 0 were an interior point, then, Theorem 2 would hold with

c = 1, which becomes Theorem 1. Also, as c → 1, bc → µ2, and vc → ν0 and these limits

are exactly the constant factors appearing respectively in the asymptotic bias and variance

for an interior point. Therefore, Theorem 2 shows that the local linear estimation has the

automatic good behavior at boundaries without the need of boundary correction. Further,

one can see from Theorem 2 that at boundaries, the asymptotic bias term for the local

constant quantile estimate is of the order h by comparing to the order h2 for the local linear

quantile estimate. This shows that the local linear quantile estimate does not suffer from

boundary effects but the local constant quantile estimate does, which is another advantage of

the local linear quantile estimator over the local constant quantile estimator. This suggests

that one should use the local linear approach in practice.

As a special case, Theorem 2 includes the asymptotic properties for the local constant

quantile estimator of the nonparametric quantile function qτ (·) at both the interior and

boundary points; see Xu (2005) for details.
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2.3 Bandwidth Selection

It is well known that the bandwidth plays an essential role in the trade-off between reduc-

ing bias and variance. To the best of our knowledge, there has been almost nothing done

about selecting the bandwidth in the context of estimating the coefficient functions in the

quantile regression even though there is a rich amount of literature on this issue in the mean

regression setting; see, for example, Cai, Fan and Yao (2000). Yu and Jones (1998) or Yu

and Lu (2004) proposed a simple and convenient method for the nonparametric quantile

estimation. Their approach assumes that the second derivatives of the quantile function are

parallel. However, this assumption might not be valid for many applications due to (nonlin-

ear) heteroscedasticity. Further, the mean regression approach can not directly estimate the

variance function. To attenuate these problems, we propose a method of selecting bandwidth

for the foregoing estimation procedure, based on the nonparametric version of the Akaike

information criterion (AIC), which can attend to the structure of time series data and the

over-fitting or under-fitting tendency. The basic idea is motivated by its analogue of Cai and

Tiwari (2000) and Cai (2002b) for nonlinear mean regression for time series models and it

is briefly described below.

By recalling the classical AIC for linear models under the likelihood setting; that is

−2 (maximized log likelihood)+2 (number of estimated parameters), we propose the follow-

ing nonparametric version of the bias-corrected AIC, due to Hurvich, Simonoff and Tsai

(1998) for nonparametric regression models, to select h by minimizing

AIC(h) = log
{
σ̂2

τ

}
+ 2 (ph + 1)/[n− (ph + 2)], (5)

where σ̂2
τ and ph are defined later. This criterion may be interpreted as the AIC for the

local quantile smoothing problem and seems to perform well in some limited applications.

Note that similar to (5), Koenker, Ng and Portnoy (1994) considered the Schwarz infor-

mation criterion (SIC) of Schwarz (1978) with the second term on the right-hand side of

(5) replayed by 2n−1 ph log n, where ph is the number of “active knots” for the smoothing

spline quantile setting, and Machado (1993) studied similar criteria for parametric quantile

regression models and more general M-estimators of regression.

Now we turn to define σ̂2
τ and ph in this setting. In the mean regression setting,

σ̂2
τ is just the estimate of the variance σ2. In the quantile regression, we define σ̂2

τ as

n−1 ∑t
t=1 ρτ (Yt − X′

t â(Ut)), which may be interpreted as the mean square error in the least

square setting and was also used by Koenker, Ng and Portnoy (1994). In nonparametric

models, ph is the nonparametric version of degrees of freedom, called the effective num-

ber of parameters, and it is usually based on the trace of various quasi-projection (hat)
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matrices in the least square theory (linear estimators); see, for example, Cai and Tiwari

(2000) for a cogent discussion for nonparametric regression models and nonlinear time

series models. For the quantile smoothing setting, the explicit expression for the quasi-

projection matrix does not exist due to its nonlinearity. However, we can use the first

order approximation (the local Bahadur representation) to derive an explicit expression,

which may be interpreted as the quasi-projection matrix in this setting. To this end, set

Uth = (Ut −u0)/h, X∗
t =

(
Xt

Uth Xt

)
, Y ∗

t = Yt −X′
t[a(u0)+a′(u0) (Ut −u0)], H = diag{I, h I},

and θ =
√
nh H

(
β0 − a(u0)
β1 − a′(u0)

)
. Define Sn = Sn(u0) = an

∑n
t=1 ξt X

∗
t X∗

t
′K(Uth), where

an = (nh)−1/2 and ξt = I(Yt ≤ X′
t a(u0) + an) − I(Yt ≤ X′

t a(u0)). It is shown in Appendix

that

Sn(u0) = fu(u0) Ω∗
1(u0) + op(1), (6)

where Ω∗
1(u0) = diag{Ω∗(u0), µ2 Ω∗(u0)}. It is not difficult to verify that

θ̂ ≈ an S−1
n

n∑

t=1

ψτ (Y
∗
t )X∗

t K(Uth),

where ψτ (x) = τ − I{x<0}. Then, we have

q̂τ (Ut,Xt) − qτ (Ut,Xt) ≈
1

n

n∑

s=1

ψτ (Y
∗
s (Ut))Kh((Us − Ut)/h)X

0
t

′
S−1

n (Ut)X
∗
s

where X0
t =

(
Xt
0

)
. The coefficient of ψτ (Y

∗
s (Us)) on the right-hand side of the above expres-

sion is γs = a2
n K(0)X0

s

′
S−1

n (Us)X
0
s. Now, we have that ph =

∑n
s=1 γs, which can be regarded

as an approximation to the trace of the quasi-projection (hat) matrix for linear estimators.

In the practical implementation, we need to estimate a(u0) first since Sn(u0) involves a(u0).

We recommend using a pilot bandwidth which can be chosen as the one proposed by Yu and

Jones (1998). Similar to the least square theory, as expected, the criterion proposed in (5)

counteracts the over-fitting tendency of the generalized cross-validation due to its relatively

weak penalty and the under-fitting of the SIC of Schwarz (1978) studied by Koenker, Ng

and Portnoy (1994) because of the heavy penalty.

2.4 Covariance Estimate

For the purpose of statistical inferences, we next consider the estimation of the asymptotic

covariance matrix to construct the pointwise confidence intervals. The explicit expression of

the asymptotic covariance provides a direct estimator. Therefore, we can use the so-called

“sandwich” method. In other words, we need to obtain a consistent estimate for both Ω(u0)
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and Ω∗(u0). To this effect, define,

Ω̂n,0 =
1

n

n∑

t=1

Xt X
′
tKh(Ut − u0) and Ω̂n,1 =

1

n

n∑

t=1

wt Xt X
′
tKh(Ut − u0),

where wt = I(X′
t â(u0) − δn < Yt ≤ X′

t â(u0) + δn)/(2 δn) for any δn → 0 as n → ∞. It is

shown in Appendix that

Ω̂n,0 = fu(u0) Ω(u0) + op(1) and Ω̂n,1 = fu(u0) Ω∗(u0) + op(1). (7)

Therefore, the consistent estimate of Σ(u0) is given by

Σ̂(u0) =
[
Ω̂n,1(u0)

]−1
Ω̂n,0(u0)

[
Ω̂n,1(u0)

]−1
.

Note that Ω̂n,1(u0) might be close to singular for some sparse regions. To avoid this com-

putational difficulty, there are two alternative ways to construct a consistent estimate of

fu(u0) Ω∗(u0) through estimating the conditional density of Y , fy|u,x(qτ (u,x)). The first

method is the Nadaraya-Watson type (or local linear) double kernel method of Fan, Yao and

Tong (1996) defined as,

f̂y|u,x(qτ (u,x)) =
n∑

t=1

Kh2
(Ut − u,Xt − x)Lh1

(Yt − qτ (u,x))/
n∑

t=1

Kh2
(Ut − u,Xt − x),

where L(·) is a kernel function, and the second one is the difference quotients method of

Koenker and Xiao (2004) such as

f̂y|u,x(qτ (u,x)) = (τj − τj−1)/[qτj
(u,x) − qτj−1

(u,x)],

for some appropriately chosen sequence of {τj}; see Koenker and Xiao (2004) for more

discussions. Then, in view of the definition of fu(u0)Ω
∗(u0), the estimator Ω̃n,1 can be

constructed as,

Ω̃n,1 =
1

n

n∑

t=1

f̂y|u,x(q̂τ (Ut,Xt))Xt X
′
tKh(Ut − u0).

By an analogue of (7), one can show that under some regularity conditions, both estimators

are consistent.

3 Empirical Applications

In this section we report a Monte Carlo simulation to examine the finite sample property of

the proposed estimator and to further explore the possible nonlinearity, heteroscedasticity,

and predictability of the exchange rate of the Japanese Yen against US dollar and to identify

factors affecting the house price in Boston area. In our computation, we use the Epanechnikov
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kernel K(u) = 0.75 (1−u2) I(|u| ≤ 1) and construct the pointwise confidence intervals based

on the consistent estimate of the asymptotic covariance described in Section 2.4 without the

bias correction. For a predetermined sequence of h’s from a wide range, say from ha to hb

with an increment hδ, based on the AIC bandwidth selector described in Section 2.3, we

compute AIC(h) for each h and choose hopt to minimize AIC(h).

3.1 A Simulated Example

Example 1: We consider the following data generating process

Yt = a1(Ut)Yt−1 + a2(Ut)Yt−2 + σ(Ut) et, t = 1, . . . , n,

where a1(Ut) = sin(
√

2π Ut), a2(Ut) = cos(
√

2π Ut), and σ(Ut) = 3 exp(−4 (Ut − 1)2) +

2 exp(−5 (Ut−2)2). Ut is generated from uniform (0, 3) independently and et ∼ N(0, 1). The

quantile regression is qτ (Ut, Yt−1, Yt−2) = a0(Ut) + a1(Ut)Yt−1 + a2(Ut)Yt−2, where a0(Ut) =

Φ−1(τ)σ(Ut) and Φ−1(τ) is the τ -th quantile of the standard normal. Therefore, only a0(·)
is a function of τ . Note that a0(·) = 0 when τ = 0.5. To assess the performance of

finite samples, we compute the mean absolute deviation errors (MADE) for âj(·), which is

defined as MADEj = n−1
0

∑n0

k=1 |âj(uk) − aj(uk)| , where âj(·) is either the local linear or

local constant quantile estimate of aj(·) and {uk = 0.1(k − 1) + 0.2 : 1 ≤ k ≤ n0 = 27}
are the grid points. The Monte Carlo simulation is repeated 500 times for each sample size

n = 200, 500, and 1000 and for each τ = 0.05, 0.50 and 0.95. We compute the optimal

bandwidth for each replication, sample size, and τ . We compute the median and standard

deviation (in parentheses) of 500 MADE values for each scenario and summarize the results

in Table 1.

From Table 1, we can observe that the MADE values for both the local linear and local

constant quantile estimates decrease when n increases for all three values of τ and the local

linear estimate outperforms the local constant estimate. This is another example to show

that the local linear method is superior over the local constant even in the quantile setting.

Also, the performance for the median quantile estimate is slightly better than that for two

tails (τ = 0.05 and 0.95). This observation is not surprising because of the sparsity of data

in the tailed regions. Moreover, another benefit of using the quantile method is that we

can obtain the estimate of a0(·) (conditional standard deviation) simultaneously with the

estimation of a1(·) and a2(·) (functions in the conditional mean), which, in contrast, avoids a

two-stage approach needed to estimate the variance function in the mean regression; see Fan

and Yao (1998) for details. However, it is interesting to see that due to the larger variation,

the performance for a0(·), although it is reasonably good, is not as good as that of a1(·) and
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Table 1: The Median and Standard Deviation of 500 MADE Values

The Local Linear Estimator

τ = 0.05 τ = 0.5 τ = 0.95

n MADE0 MADE1 MADE2 MADE0 MADE1 MADE2 MADE0 MADE1 MADE2

200 0.911 0.186 0.177 0.401 0.092 0.089 0.920 0.187 0.175
(0.520) (0.041) (0.041) (0.091) (0.032) (0.032) (0.517) (0.042) (0.039)

500 0.510 0.085 0.083 0.311 0.055 0.055 0.517 0.085 0.083
(0.414) (0.023) (0.02) (0.056) (0.019) (0.018) (0.390) (0.023) (0.023)

1000 0.419 0.060 0.059 0.311 0.050 0.049 0.416 0.060 0.059
(0.071) (0.018) (0.017) (0.051) (0.014) (0.014) (0.072) (0.017) (0.017)

The Local Constant Estimator

τ = 0.05 τ = 0.5 τ = 0.95

n MADE0 MADE1 MADE2 MADE0 MADE1 MADE2 MADE0 MADE1 MADE2

200 3.753 0.285 0.290 0.501 0.144 0.147 3.763 0.287 0.287
(2.937) (0.050) (0.051) (0.115) (0.027) (0.028) (3.188) (0.052) (0.051)

500 2.201 0.147 0.146 0.355 0.084 0.085 2.223 0.147 0.147
(3.025) (0.024) (0.025) (0.062) (0.016) (0.015) (3.320) (0.025) (0.025)

1000 0.883 0.086 0.086 0.322 0.060 0.061 0.882 0.086 0.087
(0.462) (0.015) (0.014) (0.054) (0.012) (0.011) (0.427) (0.015) (0.015)

a2(·). This can be further evidenced from Figure 1. The results in this simulated experiment

show that the proposed procedure is reliable and they are along the line of the asymptotic

theory.

Finally, Figure 1 plots the local linear estimates for all three coefficient functions with

their true values (solid line): σ(·) in Figure 1(a), a1(·) in Figure 1(b), and a2(·) in Figure

1(c), for three quantiles τ = 0.05 (dashed line), 0.50 (dotted line) and 0.95 (dotted-dashed

line), for n = 500 based on a typical sample which is chosen based on its MADE value equal

to the median of the 500 MADE values. The selected optimal bandwidths are hopt = 0.10

for τ = 0.05, 0.075 for τ = 0.50, and 0.10 for τ = 0.95. Note that the estimate of σ(·)
for τ = 0.50 can not be recovered from the estimate of a0(·) = 0 and it is not presented

in Figure 1(a). The 95% point-wise confidence intervals without the bias correction are

depicted in Figures 1(b) and 1(c) in thick lines for the τ = 0.05 quantile estimate. Basically,

all confidence intervals cover the true values. Also, we can see that the confidence interval

for â0(·) is wider than that for â1(·) and â2(·) due to the larger variation. Similar plots

are obtained (not shown here) for the local constant estimates due to the space limitations.

Overall, the proposed modeling procedure performs fairly well.
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3.2 Real Examples

Example 2: We analyze a subset of the Boston house price data1 consisting of 14 variables,

collected on each of 506 different houses from a variety of locations. The dependent variable

is Y , the median value of owner-occupied homes in $1, 000’s (house price). Some major

factors possibly affecting the house prices used are: U=proportion of population of lower

educational status X1=the average number of rooms per house, X2=the per capita crime

rate, X3=the full property tax rate, and X4=the pupil/teacher ratio. For the complete

description of all 14 variables, see Harrison and Rubinfeld (1978). Recently, there have

been several papers devoted to the analysis of this dataset. For example, Breiman and

Friedman (1985), Chaudhuri, Doksum and Samarov (1997), and Opsomer and Ruppert

(1998) used four covariates: X1, X3, X4 and U or their transformations to fit the data through

a mean additive regression model whereas Yu and Lu (2004) employed the additive quantile

technique to analyze the data. Recently, Şentürk and Müller (2003) studied the correlation

between the house price Y and the crime rate X2 adjusted by the confounding variable U

through a varying coefficient model and they concluded that the expected effect of increasing

crime rate on declining house prices seems to be only observed for lower educational status

neighborhoods in Boston. Some existing analyses (e.g., Breiman and Friedman, 1985; Yu

and Lu, 2004) in both mean and quantile regressions concluded that most of the variation

seen in housing prices in the restricted data set can be explained by two major variables: X1

and U . Indeed, the correlation coefficients between Y and U and X1 are −0.7377 and 0.6954

respectively. The scatter plots of Y versus U and X1 are displayed in Figures 2(a) and 2(b)

respectively. The interesting features of this dataset are that the response variable is the

median price of a home in a given area and the distributions of Y and the major covariate

U are left skewed (the density estimates are not presented). Finally, it is surprising that

all the existing nonparametric models aforementioned above did not include the crime rate

X2, which may be an important factor affecting the housing price, and did not consider the

interaction terms such as U and X2.

Based on the above discussions, it concludes that the model studied in this paper might

be well suitable to analyzing this dataset. Therefore, we analyze this dataset by the following

quantile smooth coefficient model2

qτ (Ut,Xt) = a0,τ (Ut) + a1,τ (Ut)Xt1 + a2,τ (Ut)X
∗
t2, 1 ≤ t ≤ n = 506, (8)

1This dataset can be downloaded from the web site at http://lib.stat.cmu.edu/datasets/boston.
2We do not include the other variables such as X3 and X4 in model (8), since we found that the coefficient

functions for these variables seem to be constant. Therefore, a semiparametric model would be appropriate
if the model includes these variables. But it is beyond the scope of this paper and deserves a further
investigation.

15



where X∗
t2 = log(Xt2). The reason for using the logarithm of Xt2 in (8), instead of Xt2

itself, is that the correlation between Yt and X∗
t2 (the correlation coefficient is −0.4543) is

slightly stronger than that for Yt and Xt2 (−0.3883), which can be witnessed as well from

Figures 2(c) and 2(d). In the model fitting, covariates X1 and X2 are centralized. For the

purpose of comparison, we also consider the following functional coefficient model in the

mean regression

Yt = a0(Ut) + a1(Ut)Xt1 + a2(Ut)X
∗
t2 + et (9)

and we employ the local linear fitting technique to estimate the coefficient functions {aj(·)},
denoted by {âj(·)}; see Cai, Fan and Yao (2000) for details.

The coefficient functions are estimated through the local linear quantile approach by

using the bandwidth selector described in Section 2.3. As a result, the selected optimal

bandwidths are hopt = 2.0 for τ = 0.05, 1.5 for τ = 0.50, and 3.5 for τ = 0.95. Figures

2(e), 2(f) and 2(g) present the estimated coefficient functions â0,τ (·), â1,τ (·), and â2,τ (·)
respectively, for three quantiles τ = 0.05 (solid line), 0.50 (dashed line) and 0.95 (dotted

line), together with the estimates {âj(·)} from the mean regression model (dot-dashed line).

Also, the 95% point-wise confidence intervals for the median estimate are displayed by the

thick dashed lines without the bias correction.

First, from these three figures, one can see that the median estimates are quite close to

the mean estimates and the estimates based on the mean regression are always within the

95% confidence interval of the median estimates. It can be concluded that the distribution of

the measurement error et in (9) might be symmetric and âj,0.5(·) in (8) is almost same as âj(·)
in (9). Also, from Figure 2(e), it can be seen that three quantile curves are parallel, which

implies that the intercept in â0,τ (·) depends on τ , and they decrease exponentially. More

importantly, one can observe from Figures 2(f) and 2(g) that due to the intersection of three

quantile estimated coefficient curves, the heteroscedasticity might exist. But unfortunately,

this phenomenon was not observed in any previous analyses in the aforementioned papers.

From Figure 2(f), we can observe that the expected effect of increasing the number of

rooms can make the house price slightly higher in any low educational status neighborhoods

but much higher in relatively high educational status neighborhoods. Also, the number

of room has a positive effect on the median and/or higher price houses in relatively high

and low educational status neighborhoods but increasing the number of rooms might not

increase the house price in very low educational status neighborhoods. In other words, it is

very difficult to sell high price houses with high number of rooms at a reasonable price in

very low educational status neighborhoods.
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From Figure 2(g), one can conclude that the positive correlation between the housing

prices (τ = 0.50 and 0.95) and the crime rate for relatively high educational status neigh-

borhoods seems against intuitive. However, the reason for this positive correlation is the

existence of high educational status neighborhoods close to central Boston where high house

prices and crime rate occur simultaneously. Therefore, the expected effect of increasing

crime rate on declining house prices for τ = 0.50 and 0.95 seems to be observed only for

lower educational status neighborhoods in Boston. Finally, it can be seen that the correlation

between the housing prices for τ = 0.05 and the crime rate is almost negative although the

degree depends on the value of U . This implies that increasing crime rate slightly decreases

relatively the house prices for the cheap houses (τ = 0.05).

In summary, it concludes that the factors U , X1 and X2 do have different effects on the

different quantiles of the conditional distribution of the housing price. Overall, the housing

price and the proportion of population of lower educational status have a strong negative

correlation, and the number of rooms has a mostly positive effect on the housing price

whereas the crime rate has the most negative effect on the housing price. In particular, by

using the proportion of population of lower educational status U as the confounding variable,

we demonstrate the substantial benefits obtained by characterizing the affecting factors X1

and X2 on the housing price based on the neighborhoods.

Example 3: This example concerns the closing bid prices of the Japanese Yen (JPY) in

terms of US dollar. Here we use the proposed model and its modeling approaches to explore

the possible nonlinearity feature, heteroscedasticity, and predictability of the exchange rate

series. The data is a weekly series from January 1, 1974 to December 31, 2003. The weekly

series is generated by selecting the Wednesdays series (if a Wednesday is a holiday then

the following Thursday is used), which has 1566 observations. We model the return series

Yt = 100 log(ξt/ξt−1), plotted in Figure 3(a), using the techniques developed in this paper,

where ξt is an exchange rate level on the t-th week. Typically the classical financial theory

would treat {Yt} as a martingale difference process. Therefore, Yt would be unpredictable.

But this assumption was strongly rejected by Hong and Lee (2003) by examining five major

currencies and applying several testing procedures. Figure 3(b) shows that there exists

almost no significant autocorrelation in {Yt}, which also was confirmed by Tsay (2005) and

Hong and Lee (2003) by using several statistical testing procedures.

Fan, Yao and Cai (2003) and Hong and Lee (2003) concluded that the exchange rate

series is partially predictable by using the functional coefficient autoregressive model

Yt = a0(Ut) +
d∑

j=1

aj(Ut)Yt−j + σt et, (10)
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where Ut is the smooth variable defined later and σt is a function of Ut and the lagged

variables. If {Ut} is observable, aj(·) can be estimated by a local linear fitting; see Cai,

Fan and Yao (2000) for details, denoted by âj(·). Here, σt is the stochastic volatility which

may depend on Ut and the lagged variables {Yt−j}. Usually, Ut can be chosen based on

the knowledge of data or economic theory. However, if no prior information is available, Ut

may be chosen as a function of explanatory vector {ξt−j} or through the use of data-driven

methods such as AIC or cross-validation. Recently, Fan, Yao and Cai (2003) proposed a data-

driven method to the choice of Ut by a linear combination of {ξt−j} and the lagged variables

{Yt−j}. By following the analysis of Fan, Yao and Cai (2003) and Hong and Lee (2003),

the smooth variable Ut is chosen as an moving average technical trading rule (MATTR) in

finance so that the autoregressive coefficients vary with investment positions. Ut is defined as

Ut = ξt−1/Mt−1, where Mt =
∑L

j=1 ξt−j/L, which is the moving average and can be regarded

as a proxy for the trend at the time t−1. Following Hong and Lee (2003), we choose L = 26

(half a year). The time series plot of {Ut} is given in Figure 3(c). As pointed out by Hong

and Lee (2003), Ut is expected to reveal some useful information on the direction of changes.

Note that model (8) was studied by Fan, Yao and Cai (2003) for the daily data and Hong

and Lee (2003) for the weekly data under the homogenous assumption (σt = σ) based on the

least square theory. In particular, Hong and Lee (2003) provided some empirical evidences

to conclude that model (10) outperforms the martingale model and autoregressive models.

We analyze this exchange rate series by using the smooth coefficient model under the

quantile regression framework with only two lagged variables3 as follows

qτ (Ut, Yt−1, Yt−2) = a0,τ (Ut) + a1,τ (Ut)Yt−1 + a2,τ (Ut)Yt−2. (11)

The first 1540 observations of {Yt} are used for estimation and the last 25 observations are

left for prediction. The coefficient functions {aj,τ (·)} are estimated through the local linear

quantile approach, denoted by {âj,τ (·)}. optimal bandwidths are hopt = 0.03 for τ = 0.05,

0.025 for τ = 0.50, and 0.03 for τ = 0.95. Figures 3(d) - 3(g) depict the estimated coefficient

functions â0,τ (·), â1,τ (·), and â2,τ (·) respectively, for three quantiles τ = 0.05 (solid line), 0.50

(dashed line) and 0.95 (dotted line), together with the estimates {âj(·)} (dot-dashed line)

from the mean regression model in (10). Also, the 95% point-wise confidence intervals for

the median estimate are displayed by the thick dashed lines without the bias correction.

First, from Figures 3(d), 3(f) and 3(g), we see clearly that the median estimates âj,0.50(·)
in (11) are almost parallel with or close to the mean estimates âj(·) in (10) and the mean

3We also considered the models with more than two lagged variables and we found that the conclusions
are similar and not reported here.
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estimates are almost within the 95% confidence interval of the median estimates. Secondly,

â0,0.50(·) in Figure 3(d) shows a nonlinear pattern and â0,0.05(·) and â0,0.95(·) in Figure 3(e)

exhibit slightly U -shape and symmetrically. More importantly, one can observe from Figures

3(f) and 3(g) that the lower and upper quantile estimated coefficient curves are intersect and

they behave slightly differently. Particularly, from Figure 3(g), one might conclude that the

distribution of the measurement error et in (10) might not be symmetric about 0 and there

exists a nonlinearity in aj,τ (·). This implies that a nonlinearity exists. Also, our findings

are: the quantile has a complex structure and the heteroscedasticity exists. This finding

concludes that the GARCH effects occur in the exchange rate time series; see Engle, Ito and

Lin (1990) and Tsay (2005).

Finally, we consider the post-sample forecasting for the last 25 observations based on

the local linear quantile estimators which are computed by using the same bandwidths as

Table 2: The Post-Sample Predictive Intervals For Exchange Rate Data

Observation True Value Prediction Interval

Y1541 0.392 (-2.891, 2.412)
Y1542 0.509 (-3.099, 2.405)
Y1543 1.549 (-2.943, 2.446)
Y1544 -0.121 (-2.684, 2.525)
Y1545 -0.991 (-2.677, 2.530)
Y1546 -0.646 (-3.110, 2.401)
Y1547 -0.354 (-3.178, 2.365)
Y1548 -1.393 (-3.083, 2.372)
Y1549 0.997 (-3.110, 2.230)
Y1550 -0.916 (-3.033, 2.431)
Y1551 -3.707 (-3.021, 2.286)
Y1552 -0.919 (-3.841, 2.094)
Y1553 -0.901 (-3.603, 2.770)
Y1554 0.071 (-3.583, 2.821)
Y1555 -0.497 (-3.351, 2.899)
Y1556 -0.648 (-3.436, 2.783)
Y1557 1.648 (-3.524, 2.866)
Y1558 -1.184 (-3.121, 2.810)
Y1559 0.530 (-3.529, 2.531)
Y1560 0.107 (-3.222, 2.648)
Y1561 -0.804 (-3.294, 2.651)
Y1562 0.274 (-3.419, 2.534)
Y1563 -0.847 (-3.242, 2.640)
Y1564 -0.060 (-3.426, 2.532)
Y1565 -0.088 (-3.300, 2.576)

those used in the model fitting. The 95% nonparametric prediction interval is constructed

as (q̂0.025(·), q̂0.975(·)) and the prediction results are reported in Table 2, which shows that

24 out of 25 predictive intervals contain the corresponding true values. The average length

of the intervals is 5.77, which is about 35.5% of the range of the data. Therefore, we can
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conclude that under the dynamic smooth coefficient quantile regression model assumption,

the prediction intervals based on the proposed method work reasonably well.

4 Conclusion

In this paper, we studied a class of quantile regression models with functional coefficients

for time series data. We suggested using the local polynomial fitting scheme to estimate the

nonparametric coefficient functions and derived the asymptotic properties of the proposed es-

timators. An ad hoc method is proposed to select the bandwidth and estimate the asymptotic

covariance. A Monte Carlo simulation experiment was conducted to illustrate the proposed

the methodology and two real data sets were analyzed. There are some new findings to

these two real example based on the dynamic smooth coefficient quantile regression model.

Some interesting future research topics related to this paper should be mentioned. First,

it would be very useful to discuss the bandwidth theoretically and empirically. Secondly,

an important application of quantile regression is to measure how much the τth response

quantile changes as one covariate is perturbed while the other covariates are held fixed; see

Chaudhuri, Doksum and Samarov (1997). Therefore, we can estimate ∇qτ (U, x) by using

the proposed methodology. Further, the above models and results can be extended to the

following cases: some of Xt might be non-stationary such as I(1) and some of Xt might be

endogenous. Finally, the nonparametric quantile regression can be potentially applied to the

analysis of the financial data such as GARCH type models studied by Xiao (2006) and VaR

and other type risk models and their extensions; see Bassett, Koenker and Kordas (2004).

Appendix

In this section, due to the limited space, we give only the brief derivations of the main results

based on some lemmas. The detailed technical proofs of those lemmas can be found in Xu

(2005). For the expositional purpose, we consider only the case for q = 1. First, we need

the following two lemmas and their proofs can be found in Koenker and Zhao (1996) and

Ruppert and Carroll (1980).

Lemma 1: Let Vn(∆) be a vector function that satisfies

(i) − ∆′ Vn(λ∆) ≥ −∆′ Vn(∆) for λ ≥ 1

and

(ii) sup‖∆‖≤M‖Vn(∆) + D∆ − An‖ = op(1), where ‖An‖ = Op(1), 0 < M < ∞, and D is

a positive-definite matrix. Suppose that ∆n is a vector such that ‖Vn(∆n)‖ = op(1), then, we

have

(1) ‖∆n‖ = Op(1) and (2) ∆n = D−1 An + op(1).
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Lemma 2: Let β̂ be the minimizer of the function Σn
t=1wt ρτ (yt − X′

t β), where wt > 0

and ρτ (·) is the check function defined in Section 1. Then, ‖Σn
t=1wt Xt ψτ (yt − X′

t β̂)‖ ≤
dim(X) maxt≤n ‖wt Xt‖, where ψτ (·) is defined in Section 2.3.

By the definition of θ defined in Section 2.3, β =

(
a(u0)
a′(u0)

)
+ an H−1 θ, where an is

defined in Section 2.3. Thus, Yt −
∑q

j=0 X′
t βj (Ut − u0)

j = Y ∗
t − an θ′ X∗

t . Therefore,

θ̂ = argmin
n∑

t=1

ρτ [Y ∗
t − an θ′ X∗

t ] K(Uth) ≡ argminG(θ).

Now, define Vn(θ) = an
∑n

t=1 ψτ [Y ∗
t − an θ′ X∗

t ] X∗
t K(Uth). To establish the asymptotic

properties of θ̂, we show in the next two lemmas that Vn(θ) satisfies Lemma 1 so that

we can derive the local Bahadur representation for θ̂. The results are stated here and

their detailed proofs can be found in Xu (2005). For the notational convenience define

Am = {θ : ‖θ‖ ≤M} for some 0 < M <∞ and Zt = ψτ (Y
∗
t )X∗

t K(Uth).

Lemma 3: Under assumptions of Theorem 1, we have

‖Vn(θ) − Vn(0) − E[Vn(θ) − Vn(0)]‖ = op(1) and ‖E[Vn(θ) − Vn(0)] + Dθ‖ = o(1)

uniformly over θ ∈ Am, where D = fu(u0) Ω∗
1(u0).

Lemma 4: Under assumptions of Theorem 1, we have

E[Z1] ≈
h3 f(u0)

2

(
µ2 Ω∗(u0) a

′′(u0)
0

)
and Var [Z1] ≈ h τ(1 − τ) f(u0) Ω1(u0),

where Ω1(u0) = diag{ν0 Ω(u0), ν2 Ω(u0)}. Further, Var [Vn(0)] ≈ τ(1 − τ) f(u0) Ω1(u0).

Therefore, ‖Vn(0)‖ = Op(1).

Proof of Theorem 1: Here we present only the sketch of proofs and details can be found

in Xu (2005). By Lemmas 3 and 4, Vn(θ) satisfies the condition (ii) of Lemma 1; that is,

‖An‖ = Op(1) and supθ∈Am
‖Vn(θ)+Dθ−An‖ = op(1), where An = Vn(0). It follows from

Lemma 2 that ‖Vn(θ̂)‖ = op(1), where θ̂ is the minimizer of G(θ). Finally, since ψτ (x) is an

increasing function of x, then, −θ′ Vn(λθ) = an
∑n

t=1 ψτ [Y
∗
t +λ an (−θ′ X∗

t )] (−θ′ X∗
t )K(Uth)

is an increasing function of λ. Thus, the condition (i) of Lemma 1 is satisfied. Therefore,

θ̂ = D−1 An + op(1) =
(Ω∗

1)
−1

√
nh fu(u0)

n∑

t=1

ψτ (Y
∗
t )X∗

t K(Uth) + op(1). (A.1)

Let εt = ψτ (Yt − X′
ta(Ut)). Then, it is easy to show that E(εt) = 0 and Var(εt) = τ(1 − τ).

From (A.1),

θ̂ ≈ (Ω∗
1)

−1

√
nh fu(u0)

n∑

t=1

[ψτ (Y
∗
t ) − εt]X

∗
t K(Uth) +

(Ω∗
1)

−1

√
nh fu(u0)

n∑

t=1

εt X
∗
t K(Uth) ≡ Bn + ξn.
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Similar to the proof of Theorem 2 in Cai, Fan and Yao (2000), by using the small-block and

large-block technique and the Cramér-Wold device, one can show (although lengthly and

tediously) that

ξn → N(0, τ(1 − τ) ν0 Σθ(u0)), (A.2)

where Σθ(u0) = diag{ν0 Σ(u0), ν2 Σ(u0)}. By the stationarity and Lemma 4,

E[Bn] =
(Ω∗

1)
−1

√
nh fu(u0)

nE[Z1] {1 + o(1)} = a−1
n

h2

2

(
a′′(u0)µ2

0

)
{1 + o(1)}. (A.3)

Since ψτ (Y
∗
t ) − εt = I(Yt ≤ X′

t a(Ut)) − I(Yt ≤ X′
t (a(u0) + a′(u0)(Ut − u0))), then,

[ψτ (Y
∗
t ) − εt]

2 = I(d1t < Yt ≤ d2t),

where d1t = min(c1t, c2t) and d2t = max(c1t, c2t) with c1t = X′
t a(Ut) and c2t = X′

t [a(u0) +

a′(u0)(Ut − u0)]. Further,

E
[
{ψτ (Y

∗
t ) − εt}2K2(Uth)X

∗
t X∗

t
′
]

= E
[
{Fy|u,x(d2t) − Fy|u,x(d1t)}K2(Uth)X

∗
t X∗

t
′
]

= O(h3).

Thus, Var(Bn) = o(1). This, in conjunction with (A.2) and (A.3) and the Slutsky Theorem,

proves the theorem.

Proof of (6) and (7): By the Taylor expansion,

E[ξt |Ut, Xt] = Fy|u,x(X
′
t a(u0) + an) − Fy|u,x(X

′
t a(u0)) ≈ fy|u,x(X

′
t a(u0)) an.

Therefore,

E [Sn] ≈ h−1 E[fy|u,x(X
′
t a(u0))X

∗
t X∗

t
′K(Uth)] ≈ fu(u0) Ω∗

1(u0).

Similar to the proof of Var[Vn(0)] in Lemma 4, one can show that Var(Sn) → 0. Therefore,

Sn → fu(u0) Ω∗
1(u0) in probability. This proves (6). Clearly,

E
[
Ω̂n,0

]
= E[Xt X

′
tKh(Ut − u0)] =

∫
Ω(u0 + h v) fu(u0 + h v)K(v) dv ≈ fu(u0) Ω(u0).

Similarly, one can show that Var(Ω̂n,0) → 0. This proves the first part of (7). By the

same token, one can show that E
[
Ω̂n,1

]
≈ fu(u0) Ω∗(u0) and Var(Ω̂n,1) → 0. Thus, Ω̂n,1 =

fu(u0) Ω∗(u0) + op(1). We prove (7).
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Figure 1: Simulated Example: The plots of the estimated coefficient functions for three
quantiles τ = 0.05 (dashed line), τ = 0.50 (dotted line), and τ = 0.95 (dot-dashed line) with
their true functions (solid line): σ(u) versus u in (a), a1(u) versus u in (b), and a2(u) versus
u in (c). The 95% point-wise confidence interval (thick line) with the bias ignored for the
τ = 0.5 quantile estimate are provided in (b) and (c).
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Figure 2: Boston Housing Price Data: Displayed in (a)-(d) are the scatter plots of the house
price versus the covariates U , X1, X2 and log(X2), respectively.
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Figure 2: Boston Housing Price Data: The plots of the estimated coefficient functions for
three quantiles τ = 0.05 (solid line), τ = 0.50 (dashed line), and τ = 0.95 (dotted line), and
the mean regression (dot-dashed line): â0,τ (u) and â0(u) versus u in (e), â1,τ (u) and â1(u)
versus u in (f), and â2,τ (u) and â2(u) versus u in (g). The thick dashed lines indicate the
95% point-wise confidence interval for the median estimate with the bias ignored.
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Figure 3: Exchange Rate Series: (a) Japanese-dollar exchange rate return series {Yt}; (b)
autocorrelation function of {Yt}; (c) moving average trading technique rule.
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Figure 3: Exchange Rate Series: The plots of the estimated coefficient functions for three
quantiles τ = 0.05 (solid line), τ = 0.50 (dashed line), and τ = 0.95 (dotted line), and
the mean regression (dot-dashed line): â0,0.50(u) and â0(u) versus u in (d), â0,0.05(u) and
â0,0.95(u) versus u in (e), â1,τ (u) and â1(u) versus u in (f), and â2,τ (u) and â2(u) versus u
in (g). The thick dashed lines indicate the 95% point-wise confidence interval for the median
estimate with the bias ignored.
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