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An efficient and highly diastereoselective method for the

construction of the hydroxylated tropane skeleton is described.

The method features a new intramolecular reductive coupling

reaction of N-acyl N,O-acetal with aldehyde, cooperatively

mediated by BF3�OEt2 and SmI2. On the basis of this method,

a new enantioselective total synthesis of (�)-Bao Gong Teng A

has been accomplished.

Tropane alkaloids are a class of alkaloids possessing an

8-azabicyclo[3.2.l]octane skeleton, which have been known

for more than 170 years.1 Because of their remarkable

medicinal significance, tropane alkaloids have received a

great deal of attention of medicinal, natural product, and

synthetic organic chemists.2 The members of tropane

alkaloids have been significantly expanded with the discovery

of a number of hydroxylated tropane alkaloids, such as Bao

Gong Teng A (1),3 (+)-2a,7b-dihydroxynortropane (2),4

(�)-vaccinine B (3),5 and more generally calystegines (Fig. 1).6

Bao Gong Teng A (1) is a tropane alkaloid isolated from

the stem of Chinese medicinal plant Baogongteng (Erycibe

obtusifolia Benth).3 It exhibits hypertensive and miotic

activities. Being more effective and having fewer side effects

than pilocarpine and physostigmine in curing glaucoma, this

alkaloid is used as a miotic agent to treat glaucoma in clinics.7

In addition, Bao Gong Teng A (1) is also the first naturally

occurring tropane alkaloid acting as muscarinic acetylcholine

receptor (mAChR) agonist.8 However, due to scarcity of the

herbs, the clinical use of this eyedrop has been severely limited.

Consequently, Bao Gong Teng A has become an attractive

synthetic target.8–12 Because of the challenges in the construc-

tion of the unique hydroxylated 8-azabicyclo[3.2.l]octane

skeleton, only one racemic10 and two enantioselective11,12 total

syntheses of Bao Gong Teng A have been reported so far. As a

continuation of our interest in the development of efficient

synthetic methodologies13 for the asymmetric synthesis of

natural products,14 we recently reported a method for

the one-pot cross-coupling of N-acyl N,O-acetals with a,b-
unsaturated compounds.15 We now report an extension of this

methodology and its application to the asymmetric total

synthesis of (�)-Bao Gong Teng A.

The basic synthetic strategy was to extend our intermolecular

cross-coupling method (N-acylN,O-acetals with a,b-unsaturated
compounds)15 to intramolecular N-acyl N,O-acetal–aldehyde

coupling, and merge it to our cyclic imide chiron-based

synthetic methodology.13 On the basis of this concept, our

retrosynthetic analysis of (�)-Bao Gong Teng A is displayed in

Scheme 1, in which the intramolecular reductive coupling of

N,O-acetal with aldehyde (4) is the key step.

The synthesis started from the known building block 6.14f

Stepwise reductive alkylation of 6 was accomplished by

treatment of 6 with Grignard reagent 7 (THF/CH2Cl2, 0 1C,

8 h) followed by BF3�OEt2-mediated dehydroxylative

reduction of the resulting diastereomeric mixture of N,O-

acetals with Et3SiH (�50 1C, overnight; rt, 2 days), giving

regioselectively the concomitant desilylated 4,5-trans-lactam 8

in 82% overall yield (Scheme 2). The stereoselectivity

was >98 : 2 as determined by 1H NMR spectroscopy at

400 MHz and the trans-stereochemistry of the product was

deduced from the observed coupling constant between the

protons H-4 and H-5 (J4,5 = 2.0 Hz).16 N-Deallylation of 8

was achieved by RhCl3�xH2O-catalyzed double bond

migration17 (EtOH, refl., 6 h) followed by acid-catalyzed

hydrolysis (AcOH/H2O, refl., 2 days; then HCl/EtOH, rt,

1 day), affording lactam 9 in 75% yield. O-Protection

(TBSCl, DMAP, imid., CH2Cl2, rt, overnight) of 9 afforded

compound 10 in 85% yield. Treatment of lactam 10 with

Fig. 1 Some hydroxylated tropane alkaloids.

Scheme 1 Retrosynthetic analysis of (�)-Bao Gong Teng A.
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di-tert-butyl dicarbonate (TEA, DMAP (cat.), CH2Cl2)

afforded the activated amide 11 in 94% yield.

O-Debenzylation (H2, 1 atm, 10% Pd/C, EtOH, rt) of com-

pound 11 gave amido alcohol 5 in 95% yield (Scheme 3).

Controlled partial reduction of the activated amide 5 with

NaBH4 in MeOH produced the hemiaminal as a diastereomeric

mixture, which without separation, was treated with Ac2O/py in

CH2Cl2 to yield the bis-acetate. Treatment of the crude labile

bis-acetate with iodine in MeOH18 gave chemoselectively

desilylated and transacetylated product N,O-acetal 12 in 68%

yield over three steps. Dess–Martin oxidation19 of the

diastereomeric mixture 12 provided the key precursor 4 as a

1 : 1 diastereomeric mixture (determined by 1H NMR) in

73% yield.

After securing the access to the key N,O-acetal/aldehyde 4,

we turned to investigate its intramolecular reductive coupling

reaction. In this regard, we have recently established the

conditions for the one-pot cross-coupling of N-acyl N,O-

acetals with a,b-unsaturated compounds.15 Prior to this, the

homo-coupling of acetals20 and intramolecular coupling of

benzylic acetals with benzylic aldehydes21 had been reported. It

was envisioned that the conditions we developed for the

coupling of N-acyl N,O-acetals with a,b-unsaturated
compounds would also be applicable to intramolecular

coupling of N,O-acetal/aldehyde 4. Indeed, successive

treatment of a THF solution of N,O-acetal 4 with boron

trifluoride etherate, and a solution of SmI2/t-BuOH/THF15

at �50 1C produced the desired intramolecular coupling

product 13 and its diastereomer 14 in 56% and 5% yield,

respectively, along with 11% of the reduced product 15

(Scheme 4).

Although we were unable to determine the stereochemistry

of the diastereomers 13 and 14 at this stage due to rotamerism

(rotameric ratio of 13 was 63 : 37 as determined by 1H NMR),

they were deduced as shown in Scheme 4 on the basis of the

mechanistic considerations, and confirmed by the subsequent

transformations (cf. vide infra). Considering two plausible

biradical intermediates B and C, intermediate B is favored

over C due to electronic effects (Fig. 2).

Oxidation of the major diastereomer 13 with Dess–Martin

periodinane (Scheme 5) followed by reduction of the resulting

ketone 16 with L-selectride12 afforded compound 14 (14 : 13>

98 : 2 as determined by 1H NMR at 400 MHz on the crude

product) in 84% yield. It is worthy mentioning that reduction

with superhydride (LiBEt3H) gave 13 and 14 in a ratio of 1 : 2,

while the reduction with LiAl(Ot-Bu)3H gave 13 as the major

diastereomer (13 : 14 = 1.5 : 1).

Scheme 2 Reductive alkylation of chiron 6.

Scheme 3 Synthesis of the N-acyl N,O-acetal/aldehyde 4.

Scheme 4 BF3�OEt2 and SmI2-mediated intramolecular reductive

coupling of compound 4 (N,O-acetal–aldehyde).

Fig. 2 Plausible electronic effects in the highly diastereoselective

SmI2-mediated intramolecular coupling of compound 4.

Scheme 5 Synthesis of (�)-Bao Gong Teng A.
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Finally, chemoselective cleavage of the Boc group in

compound 14 was achieved by treatment of compound 14

with TMSOTf/2,6-lutidine,22 and the concomitantly formed

TMS ether was desilylated with TBAF in THF, which afforded

(�)-Bao Gong Teng A (1) in 72% yield from 14. Our synthetic

product exhibited the same physical and spectral properties as

those reported {colorless crystalline solid, mp 75–76 1C

(CH2Cl2/PE); lit.
12 colorless crystalline solid: mp 76–78 1C;

[a]D
24 –31.6 (c 0.59 in EtOH); lit.12 [a]D

25 –29.6 (c 0.97 in

EtOH)}.

In summary, we have demonstrated that by cooperative

action of BF3�OEt2 and SmI2, the intramolecular reductive

coupling reaction of N-acyl N,O-acetal with aldehyde could

be achieved efficiently and highly diastereoselectively.23 This

established a novel approach to hydroxylated tropane skeleton.

On the basis of this method, a new enantioselective total

synthesis of (�)-Bao Gong Teng A (1) was accomplished in

14 steps with 7.58% overall yield from the malimide chiron 6.

Application of this strategy to the synthesis of otherN-containing

hydroxylated heterocycles, in particular hydroxylated tropanoids

such as (+)-2a,7b-dihydroxynortropane (2) and (�)-vaccinine B
(3), is in progress.
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