Solid Superacid Catalyzed Efficient Synthesis of 2-Diethylaminoethyl Aryloxyacetates

Ming De CHEN*, An Qi CHEN, Min LIN, Zhao Ying LI, Jin CHEN

Department of Chemistry, Xiamen University & the Key Laboratory for Chemical Biology of Fujian Province, Xiamen 361005

Abstract: 2-Diethylaminoethyl arylxyacetates are prepared efficiently in 75~95% yields by condensation of the corresponding arylxyacetic acids with 2-diethylaminoethanol in the presence of catalytic amount of solid superacid SO$_4^{2-}$/Fe$_2$O$_3$.

Keywords: Solid superacid, esterification, diethylaminoethyl arylxyacetate, catalyst.

2-Dialkylaminoethyl esters have been found to possess many interesting biological activities. For example, procaine 1 is a well-known local anesthetic agent in clinical use, 2-diethylaminoethyl hexanoate 2 promotes the growth of crops and efficiently induces the biosynthesis of β-carotene, 2-diethylaminoethyl cyclohexyloxycetate 3 has anti-acetyl choline activity while 2-dimethylaminoethyl 4-chlorophenoxyacetate hydrochloride 4 displays a range of pharmacological properties such as anti-stress, anti-aging, anesthetic, reducing of pigment accumulation in aged people etc. As a consequence, the development of efficient methods for the synthesis of these 2-dialkylaminoethyl carboxylates has attracted considerable attention and several methods for their synthesis have been reported. These reported methods can be grouped into two major categories, i.e., direct condensation of a carboxylic acid or also can gain its acid derivative, such as the anhydride or acyl chloride, reacted with 2-dialkylaminoethanol 5, by transesterification of an alkyl (or aryl) carboxylate with 5. All these methods, however, have some drawbacks such as the use of harsh reaction conditions and environmental unfriendly reagents, required multi-reaction steps or give low yields of the desired products.

![Chemical Structures]

E-mail: chenmd3089@sohu.com
Scheme 1

\[
\text{HOCH}_2\text{CH}_2\text{NEt}_2 + \text{OCR}_2\text{CO}_2\text{HR}_2 \xrightarrow{\text{SO}_4^{2-}/\text{Fe}_2\text{O}_3} \text{OCR}_2\text{CO}_2\text{CH}_2\text{CH}_2\text{NEt}_2
\]

6 \(R=R_1=R_2=R_3=\text{H} \)
7 \(R=R_1=R_2=\text{H}, R_3=\text{Cl} \)
8 \(R=R_1=\text{H}, R_2=R_3=\text{Cl} \)
9 \(R=\text{CH}_3, R_1=R_2=R_3=\text{H} \)
10 \(R=\text{CH}_3, R_1=R_2=\text{H}, R_3=\text{Cl} \)
11 \(R=R_1=R_2=\text{H}, R_3=\text{Br} \)
12 \(R=R_1=R_3=\text{H}, R_2=\text{CH}_3 \)
13 \(R=R_1=R_2=R_3=\text{H} \)
14 \(R=R_1=R_2=\text{H}, R_3=\text{Cl} \)
15 \(R=R_1=\text{H}, R_2=R_3=\text{Cl} \)
16 \(R=\text{CH}_3, R_1=R_2=R_3=\text{H} \)
17 \(R=\text{CH}_3, R_1=R_2=\text{H}, R_3=\text{Cl} \)
18 \(R=R_1=\text{H}, R_2=\text{Br} \)
19 \(R=R_1=R_2=\text{H}, R_3=\text{CH}_3 \)

Table 1 Catalytic activity of the solid superacids

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solid superacid</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\text{SO}_4^{2-}/\text{Fe}_2\text{O}_3)</td>
<td>71</td>
</tr>
<tr>
<td>2</td>
<td>(\text{SO}_4^{2-}/\text{TiO}_2)</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>(\text{SO}_4^{2-}/\text{SnO}_2)</td>
<td>59</td>
</tr>
</tbody>
</table>

a: All reactions were carried out by reacting 1.0 mmol phenoxyacetic acids with 0.75 mmol 2-diethylaminoethanol in the presence of 10% (Wt of total reactants) of the solid superacids in toluene (8 mL) at 110°C for 4 h.
b: Isolated yields.

It is desirable to develop environmental friendly and one step synthesis for these biologically active dialkylaminoethyl esters. In comparison with stoichiometric or other convention condensational reagents such as concentrate sulfuric acid, in general, the superacids have several advantages. They can be easily recovered by simple filtration, are much less corrosive to the reaction vessels and have less industrial wastes since they are used in catalytic amounts and can be reused. For the preparation of 2-dialkylaminoethyl carboxylic esters, the use of solid superacids has one particular advantage in that the catalyst does not form amine salt with the aminoethanol, which will otherwise reduce the reactivity of the alcohol partner in the esterification reaction. In this paper we report a general, green and one step efficient method for the synthesis of 2-diethylaminoethyl aryloxyacetates using \(\text{SO}_4^{2-}/\text{Fe}_2\text{O}_3 \) as the solid superacid catalysts (Scheme 1).

To screen a suitable solid superacid for current research, three solid superacid catalysts were prepared according to literature method by impregnating sulfate anion on \(\text{Fe}_2\text{O}_3, \text{TiO}_2 \) and \(\text{SnO}_2 \) solid, respectively. Among these three solid superacid catalysts \(\text{SO}_4^{2-}/\text{Fe}_2\text{O}_3 \) was found to give best results under identical but un-optimized conditions for the formation of 2-diethylaminoethyl phenoxyacetate 13 (Table 1).

The \(\text{SO}_4^{2-} \) content in the \(\text{SO}_4^{2-}/\text{Fe}_2\text{O}_3 \) solid superacid catalyst was determined to be 2.21% by ICP-AES(IRIS Intrepid II XPS). Using \(\text{SO}_4^{2-}/\text{Fe}_2\text{O}_3 \) as the catalyst, optimized reaction conditions were examined by reacting 2-diethylaminoethanol with phenoxyacetic acid. The best results were obtained in the case the reaction was carried out with a ratio of the aminoalcohol to aryloxyacetic acids 0.75:1(mol) in the presence of 3-4% of the catalyst (Wt of total reactants) in xylene at 140°C for 6 h.
Synthesis of 2-Diethylaminoethyl Aryloxyacetates

Table 2 \(\text{SO}_4^{2-}/\text{Fe}_2\text{O}_3\) catalyzed synthesis of 2-diethylaminoethyl aryloxyacetates

<table>
<thead>
<tr>
<th>Entry</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aryloxyacetic acid</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>2-Diethylaminoethyl aryloxyacetates</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>Yield (%)</td>
<td>78</td>
<td>90</td>
<td>85</td>
<td>84</td>
<td>95</td>
<td>75</td>
<td>80</td>
</tr>
</tbody>
</table>

a: All reactions were carried out by reacting 1.0 mmol aryloxyacetic acids with 0.75 mmol 2-diethylaminoethanol \(^5\) in the presence of 3\% (Wt of total reactants) \(\text{SO}_4^{2-}/\text{Fe}_2\text{O}_3\) in xylene (8 mL) at 140 \(\text{°C}\) for 6 h.

b: Products were fully characterised.

c: Isolated yields.

Under the optimized conditions seven 2-diethylaminoethyl aryloxyacetates 13-20 were prepared in 75%-95% yields, respectively (Table 2), by condensation of the corresponding aryloxyacetic acids with 2-diethylaminoethanol. The yields were much higher than that of the conventional methods, using concentrated sulfuric acid as the dehydrating agent\(^5\).

In conclusion we have developed an efficient and environmental friendly method for the preparation of biologically active 2-diethylaminoethyl aryloxyacetates using solid superacid \(\text{SO}_4^{2-}/\text{Fe}_2\text{O}_3\) as the catalyst. This method has advantages over the traditional ones in that: (i) the amount of the catalyst was small and the catalyst can be recovered; (ii) the work-up procedure is simple; (iii) by this method the amine salts did not form; (iv) the waste is less acidic so the corrosion to the reaction vessel is less. It can be expected that this method should be found its application in the preparation of other useful 2-diethylaminoethyl aryloxyacetates. The reliability and reusability of the catalyst, however, remains to be further examined.

References and Notes

8. General procedure for the synthesis of 2-diethylaminoethyl arylxocacetates: To a flask fitted with reflux condenser and a calcium drying tube was added sequentially 2-diethylaminomethanol (5.88 mg, 0.75 mmol), an arylxocatice acid (1.0 mmol), SO\(_2\)/FeO\(_2\) (3% by weight of total reactants) and xylene (8 mL). The mixture was heated at 140°C for 6 h. After cooling, the resultant mixture was filtered and washed with xylene (2 mL). The combined filtrates were washed with saturated aqueous Na\(_2\)CO\(_3\) solution (2 x 2 mL). The xylene layer was further washed with water (2x2 mL) and brine (2 mL), dried over Na\(_2\)SO\(_4\). The solvent was removed under reduced pressure and the crude product was purified by silica gel flash column chromatography gradiently eluting with ethyl acetate in petroleum ether to give the desired 2-diethylaminoethyl arylxocacetates.

2-Diethylaminoethyl phenoxycetate 13: 173 mg (78%) as a pale yellow partial crystalline liquid. IR (KBr): ν 3063, 3039, 1762, 1737, 1576, 1596, 1495, 1446, 1263, 1192, 754 and 691 cm\(^{-1}\); \(^1\)H-NMR (CD\(_3\)OD, 6 ppm): 7.04-7.04 (m, 5H, Ph-), 4.18 (s, 2H, OCH\(_2\)CO\(_2\)), 3.92 (t, 2H, J 6.2Hz, -COCH\(_2\)N=), 2.24 (t, 2H, J 6.2Hz, -CH\(_2\)N=), 2.13 [q, 4H, J 7.1Hz, -N(CH\(_2\)\(_2\))\(_2\)] and 0.69 (t, 6H, J 7.1Hz, 2 x -CH\(_3\)) m/z (ESI): 252 [100%, (M+1)]

2-Diethylaminoethyl (4-chlorophenoxycetate 14: 192 mg (90%) as a pale yellow partial crystalline liquid. IR (KBr): ν 3095, 3067, 1761 (s, C=O), 1592, 1491, 1448, 1381, 1278, 1199, 1079, 1009, 826 and 642 cm\(^{-1}\); \(^1\)H-NMR(CD\(_3\)OD, 6 ppm): 7.26-6.85 (m, 4H, Ph-), 4.60 (s, 2H, OCH\(_2\)CO\(_2\)), 4.38 (t, 2H, J 6.1Hz, -COCH\(_2\)N-), 2.73 (t, 2H, J 6.1Hz, -CH\(_2\)N=), 2.56 [q, 4H, J 7.2Hz, -N(CH\(_2\)\(_2\))\(_2\)] and 1.04 (t, 6H, J 7.2Hz, 2 x -CH\(_3\)) m/z (ESI): 286 [80%, (M+1)]

2-Diethylaminoethyl (2-Diethylaminoethyl phenoxycetate 15: 204 mg (85%) as a pale yellow partial crystalline liquid. IR (KBr): ν 3068, 3032, 1759 (s, C=O), 1598, 1489, 1441, 1239, 1202, 880, 803, 719 and 640 cm\(^{-1}\); \(^1\)H-NMR(CD\(_3\)OD, 6 ppm): 7.16-6.80 (m, 4H, Ph-), 4.68 (s, 2H, OCH\(_2\)CO\(_2\)), 4.26 (t, 2H, J 5.9Hz, -COCH\(_2\))\(_2\)), 2.74 (t, 2H, J 5.9Hz, -CH\(_2\)N=), 2.58 [q, 4H, J 7.3Hz, -(CH\(_2\))\(_2\)J and 1.05 (t, 6H, J 7.3Hz, 2 x -CH\(_3\)) m/z (ESI): 320 [41.8%, M\(^+\)], 321 [21%, (M+1)] and 322.8 [100%, (M+2)]

(2-Diethylaminoethyl)-(2-methyl-2-phenoxycetone) PROPIONATE 16: 168 mg (84%) as a light brown liquid. IR (KBr): ν 3036, 3023, 1738, 1594, 1490, 1384, 1234, 1178, 1142, 1091, 831 and 668 cm\(^{-1}\); \(^1\)H-NMR(CD\(_3\)OD, 6 ppm): 7.22-6.86 (m, 5H, Ph-), 4.24 (t, 2H, J 6.3Hz, -COCH\(_2\)), 2.68 (t, 2H, J 6.3Hz, -CH\(_2\)N=), 2.53 [q, 4H, J 7.1Hz, -N(CH\(_2\)\(_2\))\(_2\)] and 1.60 (s, 6H, -(CH\(_2\))\(_2\)CO\(_2\)-jand 0.99 (t, 6H, J 7.3Hz, 2 x -CH\(_3\)) m/z (ESI): 279 [100%, M\(^+\)], 281 [6%, (M+2)]

2-Diethylaminoethyl [2-methyl-2-(4-phenoxycetone) PROPIONATE 17: 225 mg (95%) as a light brown liquid. IR (KBr): ν 3107, 3071, 1739 (s, C=O), 1590, 1498, 1382, 1234, 1237, 1178, 1142, 1091, 831 and 668 cm\(^{-1}\); \(^1\)H-NMR(CD\(_3\)OD, 6 ppm): 7.19-6.82 (m, 4H, Ph-), 4.23 (t, 2H, J 6.3Hz, -COCH\(_2\)), 2.67 (t, 2H, J 6.3Hz, -CH\(_2\)N=), 2.53 [q, 4H, J 7.1Hz, -N(CH\(_2\)\(_2\))\(_2\)] 1.59 (s, 6H, -(CH\(_2\))\(_2\)CO\(_2\)-jand 1.00 (t, 6H, J 7.3Hz, 2 x -CH\(_3\)) m/z (ESI): 313 [100%, M\(^+\)], 315 [44%, (M+2)]

2-Diethylaminoethyl (4-bromo-phenoxycetone) acetyl 18: 178 mg (75%) as a light brown liquid. IR (KBr): ν 3091, 3071, 1760 (s, C=O), 1615, 1589, 1557, 1443, 1382, 1286, 1233, 1186, 1068, 822 and 611 cm\(^{-1}\); \(^1\)H-NMR(CD\(_3\)OD, 6 ppm): 7.36-6.81 (m, 4H, Ph), 4.62 (s, 2H, OCH\(_2\)CO\(_2\)), 4.34 (t, 2H, J 5.8Hz, -(CH\(_2\))\(_2\)), 2.86 (t, 2H, J 5.8Hz, -(CH\(_2\))\(_2\)), 2.69 [q, 4H, J 7.2Hz, -(N(CH\(_2\)\(_2\))\(_2\)]. 1.07 (t, 6H, J 7.2Hz, 2 x -CH\(_3\)) m/z (ESI): 330 (6.7%, M\(^+\)), 332 [6.7%, (M+2)]

2-Diethylaminoethyl (4-methylphenoxyacetate 19: 167 mg (80%) as a light brown liquid. IR (KBr): ν 3035, 1758 (s, C=O), 1611, 1512, 1451, 1382, 1289, 1189, 1081 and 814 cm\(^{-1}\); \(^1\)H-NMR(CD\(_3\)OD, 6 ppm): 7.08-6.81 (m, 4H, Ph), 4.61 (s, 2H, OCH\(_2\)CO\(_2\)), 4.29 (t, 2H, J 6.0Hz, -(COCH\(_2\))\(_2\)), 2.76 (t, 2H, J 5.8Hz, -(CH\(_2\))\(_2\)), 2.60 [q, 4H, J 7.1Hz, -(N(CH\(_2\)\(_2\))\(_2\)] and 2.28 (s, 3H, Ar-CH\(_3\)), 1.0 (t, 6H, J 7.1Hz, 2 x -CH\(_3\)) m/z (ESI): 266 [100%, (M+1)], 267 [13%, (M+2)]

Received 12 January, 2004