

Supporting Information © Wiley-VCH 2010

69451 Weinheim, Germany

Selective P–P and P–O–P Bond Formations through Copper-Catalyzed Aerobic Oxidative Dehydrogenative Couplings of H-Phosphonates

Yongbo Zhou, Shuangfeng Yin, Yuxing Gao, Yufen Zhao, Midori Goto, and Li-Biao Han*

anie_201003484_sm_miscellaneous_information.pdf

Table of Contents:

Ι	General
II	Synthesis and characterization of complex 3b
III	A general procedure for the stoichiometric reaction of H -phosphonates with Cu(OAc) ₂ leading to
	hypophosphates
IV	A general procedure for copper-catalyzed aerobic oxidative coupling of H-phosphonates leading to
	hypophosphatesS5
V	A typical procedure for copper-catalyzed aerobic oxidative coupling of H-phosphonates leading to
	pyrophosphatesS6
VI	Screening on the catalysts
VII	¹ H NMR, ¹³ C NMR and ³¹ P NMR Spectra
VII	I References

General.

¹H, ¹³C and ³¹P NMR spectra were recorded on a JEOL LA-500 instrument (500 MHz for ¹H, 125.4 MHz for ¹³C, and 201.9 MHz for ³¹P NMR spectroscopy) or a JEOL LA-400 instrument (400 MHz for ¹H, 100 MHz for ¹³C, and 162 MHz for ³¹P NMR spectroscopy). CDCl₃ or benzene- d_6 was used as the solvent. Chemical shift values for ¹H and ¹³C were referred to internal Me₄Si (0 ppm), and that for ³¹P was referred to H₃PO₄ (85% solution in D₂O, 0 ppm). Elemental analysis was performed by the Analytical Center at the National Institute of Advanced Industrial Science and Technology.

Synthesis and characterization of complex 3b

To a capped tube were added the secondary phosphine oxide $(Ph(CH_2)_4)_2P(O)H$ (6 mmol), anhydrous $Cu(OAc)_2$ (4 mmol) and THF (10 mL) under nitrogen atmosphere. The reaction mixture was stirred at room temperature for 2 h. Then volatiles were removed under vacuum. The residue was dissolved in THF (5 mL) and Et₂O (5 mL). Hexane (15 mL) was added. The solution was slowly cooled to -30 °C to give colorless crystals suitable for X-ray analysis. Yield: 1.45 g, 56%.

Compound 3b

Colorless solid, m.p.: 77–78 °C. ¹H NMR (benzene- d_6 , 400 MHz): δ 7.23-7.14 (m, 32H, CH), 7.10-7.06 (m, 8H, CH), 2.54 (t, J = 6.8 Hz, 16H, CH₂), 2.32 (s, 12H, CH₃) 1.59-1.51 (m, 40H, CH₂), 1.36-1.30 (m, 8H, CH₂). ¹³C NMR (benzene- d_6 , 100 MHz): δ 177.6 (CO), 142.3 (CH), 128.8 (CH), 128.7 (CH), 126.1 (CH), 36.0 (CH₂), 33.1 (dd, $J_{C-P} = 5.7$ Hz, $J_{C-P} = 6.7$ Hz, CH₂), 32.6 (dd, $J_{C-P} = 2.5$ Hz, CH₂, overlap), 24.5 (CH₃), 22.9 (CH₂). ³¹P NMR (benzene- d_6 , 162 MHz): δ 120.77. Anal. Calcd for C₈₈H₁₁₆Cu₄O₁₀P₄: C, 61.74; H, 6.83. Found: C, 61.36; H, 6.66.

Fig. 1 Molecular structure of complex 3b (H atoms omitted for clarity).

Fig. 2 A simplified diagram showing the coordination geometry of complex 3b.

A general procedure for the stoichiometric reaction of H-phosphonates with $Cu(OAc)_2$ leading to hypophosphates.

To a capped tube were added *H*-phosphonate (5 mmol), anhydrous $Cu(OAc)_2$ (5 mmol) and THF (10 mL) under nitrogen atmosphere. The reaction mixture was stirred at 70 °C for the time as shown in Table 1. The precipitate was filtered, washed with THF, and then the filtrate was evaporated under vacuum. 25 mL chilled saturated NH₄Cl solution was added. The product was extracted with CHCl₃, dried over MgSO₄, and concentrated under vacuum to give NMR spectroscopically pure coupling products.

Table 1. The stoichiometric reaction of *H*-phosphonates with Cu(OAc)₂.

	0 (RO) ₂ PH + Cu(O	Ac) ₂ THF, 70	$(RO)_2^{P} - P(OR)_2$	
run	H-phosphonate	reaciton time (H	n) product	% yield ^a (^b)
1	O (<i>i-</i> PrO) ₂ PH	4	O (<i>i</i> -PrO) ₂ P—P(O <i>i</i> -Pr) ₂	99 (93)
2	0 (<i>n</i> -BuO) ₂ PH	3	O O (<i>n</i> -BuO) ₂ P—P(O <i>n</i> -Bu) ₂	99 (92)
3	O (EtO) ₂ PH	3	$O O O (EtO)_2 P - P (OEt)_2$	99 (90)
4	(<i>n</i> -C ₁₂ H ₂₅ O) ₂ P(O)H	5	$\begin{array}{c} O O \\ H & H \\ (n-C_{12}H_{25}O)_2 P - P(On-C_{12}H_{25})_2 \end{array}$	98 (91)
5	O (PhCH ₂ O) ₂ PH	4	$\begin{array}{cc} O & O \\ \overset{\parallel}{} & \overset{\parallel}{} & \overset{\parallel}{} \\ (PhCH_2O)_2P \overset{\parallel}{-} \overset{\parallel}{-} P(OCH_2Ph)_2 \end{array}$	99 (94)
6	→ O PH=O	5		98 (90)
	<u> </u>			

[a] ³¹P NMR yields. [b] Isolated yields.

A general procedure for copper-catalyzed aerobic oxidative coupling of *H*-phosphonates leading to hypophosphates.

a)

To a tube were added $Cu(OAc)_2$ (3.7 mg, 0.02 mmol) and Et_3N (200 uL). The mixture was stirred at room temperature for 5 min, then *H*-phosphonates (1 mmol) was added. The reaction mixture was stirred under dry air atmosphere at room temperature for the time as shown in Table 2. 10 mL chilled saturated NH₄Cl water solution was added, and the mixture was extracted with CHCl₃, dried over MgSO₄, filtered, and concentrated under vacuum to give NMR spectroscopically pure coupling products.

b)

To a tube were added CuCl (9.9 mg, 0.1 mmol), TEEDA (52.0 mg, 0.30 mmol) and acetone, and the mixture was stirred at room temperature for 5 min. *H*-phosphonates (1 mmol) was added. The reaction mixture was stirred under dry air atmosphere at room temperature for the time as shown in Table 2. Evaporated the solvent and TEEDA, 10 mL chilled saturated NH₄Cl water solution was added, and the mixture was extracted with CHCl₃, dried over MgSO₄, filtered, and concentrated under vacuum to give NMR spectroscopically pure coupling products.

	R ¹ 0 0 PH — R ² 0	2-10 mol% Et ₃ N or TEEDA	$[Cu] \xrightarrow{R^1O \ H} OR^1 \\ A, air, rt, \xrightarrow{R^2O} P \xrightarrow{P} OR^2 \\ 1$	
run	[Cu] (mol%)	reaciton	time (h) product 2	% yield ^a (^b)
1 ^c	Cu(OAc) ₂ (2)	4	O (<i>i</i> -PrO) ₂ P—P(O <i>i</i> -Pr) ₂	98 (93)
2 ^d	CuCl (10)	1.5	(<i>n</i> -BuO)₂P−P(O <i>n</i> -Bu)₂	94 (80)
3 ^d	CuCl (10)	1.5	O O O O O O O O O O O O O O O O O O O	98 (85)
4 ^c	Cu(OAc) ₂ (2)	4	$(n-C_{12}H_{25}O)_2P-P(On-C_{12}H_{25})_2$	95 (84)
5 ^d	CuCl (10)	3	$(PhCH_2O)_2P - P(OCH_2Ph)_2$	96 (83)
6 ^d	CuCl (10)	6		96 (84)
7 ^d	CuCl (10)	6		95 (78)

Table 2. Copper-catalyzed aerobic oxidative coupling of *H*-phosphonates leading to hypophosphates.

 $\label{eq:alpha} \begin{array}{l} [a] \ ^{31}P \ NMR \ yields. \ [b] \ Isolated \ yields. \ [c] \ Cu(OAc)_2 \ (2 \ mol\%), \ Et_3N \ (0.2 \ mL), \ (RO)_2P(O)H \ (1 \ mmol). \\ \ [d] \ CuCl \ (10 \ mol\%), \ TEEDA \ (30 \ mol\%), \ acetone \ (0.5 \ mL), \ and \ (RO)_2P(O)H \ (1 \ mmol). \\ \end{array}$

Typical procedure for copper-catalyzed aerobic oxidative coupling of *H*-phosphonates leading to pyrophosphates

To a suspension of CuBr_2 (2.2 mg, 0.01 mmol) in 1 mL of acetone, TMEDA (11.6 mg 0.1 mmol) were added. The mixture was stirred at room temperature for 5 min, and then *H*-phosphonates (1 mmol) was added. The mixture was stirred under dry air for the time as shown in Table 3. Chilled saturated NH₄Cl water solution was added, and the mixture was extracted with CHCl₃, dried over MgSO₄, filtered, and concentrated under vacuum to give NMR spectroscopically pure coupling products.

Table 3. Copper-catalyzed aerobic oxidative coupling of H-phosphonates leading to pyrophosphates

[a] ³¹P NMR yields. [b] Isolated yields. [c] CuBr₂ (1 mol%), TMEDA (10 mol%), acetone (1 mL), (RO)₂P(O)H (1 mmol). [d] CuBr₂ (2 mol%), TMEDA (15 mol%), THF (1 mL), (RO)₂P(O)H (1 mmol).

Screening on the catalysts

Table 4-1. Copper-catalyzed aerobic oxidative coupling of H-phosphonates with Et₃N.

	<i>(i</i> -PrO)₂P(O)H – 1 mmol	cat. [Cu]/Et ₃ N air, 25 ℃	0 0 ⊣	(O <i>i</i> -Pr) ₂ +	0 (<i>i</i> -PrO) ₂ P-O- 2a	O P(O <i>i</i> -Pr) ₂
Entry	Cat. [Cu] (mol%)	Et ₃ N (mL)	Solvent (mL)	Time (h)	% yield 1a^a (^b)	% yield 2a ^a (^b)
1	Cu(OAc) ₂ (10)	0.2	/	4	98.4 (99.2)	0 (0)
2	$Cu(OAc)_2(5)$	0.2	/	4	98.2 (99.1)	0 (0)
3	$Cu(OAc)_2(2)$	/	acetone (0.5)	4	0.05	0
				20	0.3	0
4		0.1	/	4	45.4	0.1
				20	76.6	0.3
5		0.2	/	4	98.0 (98.7)	0.03 (0)
				20	98.1	0.03
6		0.5	/	4	96.8	0.01
				20	97.0	0.01

7	$Cu(OAc)_2(1)$	0.2	/	4	29.7	0.4
				20	72.7	0.5
8	CuCl(2)	0.2	/	2	5.8	0.6
				8	67.1	3.6
				20	92.6	4.1
9	$CuCl_2(2)$	0.2	/	2	11.1	1.7
	2 ()			8	41.6	5.7
				20	87.0	9.4
10	CuBr(2)	0.2	/	2	37.5	2.2
			,	8	88.5	4.5
				20	92.7	4.6
11	$CuBr_{2}(2)$	0.2	1	2	11.5	3.2
11	$CuDi_2(2)$	0.2	/	8	58 7	10.8
				20	787	12.0
12	CuL(2)	0.2	/	$\frac{20}{2}$	33.7	26.2
12	Cul (2)	0.2	/	2	56.5	41.3
				20	50.5	20.0
12	$C_{12}OAa(2)$	0.2	1	20	J9.1 29.5	50.0 0.05
15	CuOAC(2)	0.2	/	2	36.5 06.5	0.05
				0	90.5	0.00
1.4		0.0	1	20	96.5	0.1
14	$Cu(NO_3)_2 \cdot 3H_2O(2)$	0.2	/	2	27.5	0.5
				8	90.1	1.5
				20	94.3	1.5
15	$CuSO_4 \cdot 5H_2O(2)$	0.2	/	2	26.4	0
				8	91.2	0.4
				20	96.1	0.4
16	$CuSO_4(2)$	0.2	/	2	34.0	0
				8	95.9	0.2
				20	98.0	0.3
17	$Cu(OOCCF_3)_2(2)$	0.2	/	2	54.5	0.3
				8	97.3	0.5
				20	97.4	0.5
18	$Cu(OH)_2$ (2)	0.2	/	2	0.5	0
	_			8	2.1	0.1
				20	3.0	0.3
19	$CuF_2(2)$	0.2	/	2	0.9	0
	2,			8	8.1	0.2
				20	28.1	0.8
20	$Cu(acac)_{2}(2)$	0.2	/	2	0.3	0
-				8	0.9	0
				20	18.6	0.1
21	$Cu(acacF_6)_2$ (2)	0.2	/	2	76.9	0.3
	0,2 ()			8	77.8	0.3
				20	79.9	0.3
22	$Cu(OTf)_2(2)$	0.2	/	2	78.0	0.3
			,	8	79.1	0.3
				20	79.3	0.4
23	$Cu(OAc)_{2}(2)$	0.2	/	2	83.2	0.02
	(/ 2 (- /			8	98.1	0.03
				20	98.1	0.03
24		0.2	DMF (0.5)	2	10.2	0
- ·			(0.0)	8	31.4	0.1
				20	89.4	0.2
25		0.2	DMSO(0.5)	2	57	0
23		0.2	DMISO (0.3)	8	85	0
				20	35.3	02
26		0.2	THE (0.5)	20	35.5	0.2
20		0.2	1111 (0.5)	8	90.0 00.1	0.1
				20	07.5	0.2
27		0.2	CUCN(0.5)	20	97.5	0.5
21		0.2	$CH_{3}CIN (0.5)$	2	19.2	0.5
				20	94.4	0.0
20		0.2	\mathbf{E}_{4}	20	94.9	0.7
28		0.2	Ethanol (0.5)	2	/.0	0
				8	51.3	1.5
00		0.0		20	65.3	2.0
29		0.2	CH_2CI_2 (0.5)	2	20.9	0.3
				8	83.0	0.5
1				20	93.7	0.7
30		0.2	Toluene (0.5)	2	49.2	0
				8	84.9	0.3
		1	1	1		

			20	94.2	0.4
31	0.2	$CH_2COOC_2H_5(0.5)$	2	80.0	0.3
01	0.2		8	93.8	0.4
			20	96.4	0.4
32	0.2	Acetone (0.2)	2	81.7	0.2
			8	92.1	0.2
			20	97.9	0.2
33	0.2	Acetone(0.5)	2	26.5	0
			8	90.9	0.2
			20	96.6	0.3
34	0.2	Acetone (1.0)	2	19.5	0
			8	58.3	0.2
			20	96.4	0.4
35	0.2	$H_20(0.01)$	2	31.2	0.1
			8	58.3	0.7
			20	59.8	0.8
36	0.2	$H_{2}0(0.02)$	2	26.2	0.6
			8	55.1	0.9
			20	58.5	0.9
37	0.2	H ₂ 0 (0.05)	2	27.0	1.0
			8	28.1	1.1
			20	31.8	1.2

[a] Determined by GC, [b] ³¹P NMR yields.

Table -4-2. CuCl-catalyzed aerobic oxidative coupling of *H*-phosphonates.

(<i>i</i> -PrO) ₂ P(O)H - 1 mmol	5 mol% CuCl/amin acetone 1 mL, air, 2	0 ≝ 5 ℃ (<i>i</i> -PrO) ₂ P- 5 ℃ 1	0 ⊣−P(O <i>i</i> -Pr) ₂ + (<i>i</i> -F a	O O II II PrO) ₂ P-O-P(O <i>i</i> -Pr) ₂ 2a
Entry	Amine ^a (20 mol%)	Time (h)	% yield 1a ^b	% yield 2a^b
1	H ₂ N NH ₂	5 20	0.1	0.4
2	Et-NH HN-Et	5	0.2 7.4	34.7
3		5	8.5 64.3	77.8 12.0
4		20 5	71.5 13.3	27.4 24.2
5		20 5	16.2 5.4	41.6 2.6
6		20 5	9.0 4.7	15.2 3.1
7		20 5	6.3	14.4
		20	9.4	13.7
8	→ NH	5 20	2.8 4.5	1.6 9.0
9		5 20	2.2 6.9	0 0.1
10	MeNH ₂	5 20	27.7 32.9	3.5 8.4
11	H ₂ N	5 20	14.3 23.9	2.7 13.7
12	$\rightarrow NH_2$	5 20	24.4 30.6	2.7 7.9

13	Et ₃ N	5 20	12.7 16.5	0.7 5.7
14	N-Me	5 20	3.0 4.7	0.16 1.3
15		5 20	1.5 2.3	9.5 43.8
16	_N_N	5 20	3.7 10.7	28.9 48.5

[a] Based on N atom. [b] Determined by GC.

Table 4-3. Copper-catalyzed aerobic oxidative coupling of *H*-phosphonates with TEEDA.

	<i>(i</i> -PrO)₂P(O)H —	cat. [Cu]/TEEDA	O C □ □ → (<i>i</i> -PrO) ₂ P−F) ?(O <i>i</i> -Pr) ₂ +	0 (<i>i</i> -PrO) ₂ P-O	0 ⊓ −P(O <i>i</i> -Pr)₂
	1 mmol	air, 25 ℃	1a	()2	2a	1
Entry	Cat. [Cu] (%)	TEEDA	Solvent (mL)	Time (h)	% yield 1a ^a (^b)	% yield 2a^a (^b)
1	CuCl (5)	(mol%) 10	acetone (1)	5	64.3	12.0
		10		20	71.4	27.5
2		10	Acetone (1) and $U \cap (0, 02)$	5	40.8	6.3
3		20	$H_2O(0.02)$	20	54.0	28.2
3		20	acetolie (1)	20	76.4	8.2
4		20	(1)	20	85.5	11.5
4		30	acetone (1)	5	80.6	7.2
				20	89.0	9.3
5		100	/	1	87.4	11.0
				3	87.5	11.1
6	$\operatorname{CuCl}_{2}(5)$	10	acetone (1)	5	46.3	34.2
_				20	47.2	51.3
7	CuBr (5)	10	acetone (1)	5	51.8	10.2
0		20		20	70.1	29.1
8		20	acetone (1)	5	24.8	1.0
0		20	agatona (1)	20	85.2	8.5
9		50	acetone (1)	20	30.9 89.2	2.9
10	$CuBr_{2}(5)$	10	acetone (1)	5	57.4	38.1
10	CuBr ₂ (5)	10	accione (1)	20	58.4	41.1
11	CuI (5)	10	acetone (1)	5	34.1	33.7
				20	39.0	60.1
12	$Cu(OAc)_2(5)$	10	acetone (1)	5	0.9	0.1
				20	2.5	0.3
13		100	/	5	41.2	0.2
				20	63.1	1.1
14	CuBr (2.5)	20	/	5	23.3	1.0
1.5	G D (10)	20		20	76.2	22.3
15	CuBr (10)	20	acetone (1)	5	/3.3	2.6
16	CuBr(10)	20	/	20	94.1	4.8
10	Cubi (10)	20	/	5	50.5	0.0
17	CuBr (10)	30	/	2	72.5	1.1
10	$C_{\rm P}C_{\rm I}(10)$	20	agatona (1)	4	93.5 (94.7)	5.5 (5.5) 0.5
10	CuCI (10)	20	acetone (1)	20	95 4	3.8
19		30	acetone (1)	20	66.6	0.2
17		50		4	957(971)	2.9(2.9)
20		20	/	1.5 h	96.1	2.3
21		30		1.5 h	96.8 (97.5)	2.1 (2.0)
22		100		1 5 1	07.0	2.0
22		100	/	1.5 n	97.0	2.0
23	$Cu(OOCCF_3)_2$ (1	0) 20	/	4	55.3	0.5

24	$Cu(NO_3)_2 \cdot 3H_2O$ (10)	20	/	4	45.3	0.1	
[a] Determined by GC, [b] 31P NMR yields.							

Table 4-4.	Copper-catalyzed aerobic oxidative coupling of H-phosphonates with TMEDA

		cat. [Cu]/amine				
(1	1 mmol	air, 25 ℃	(<i>I</i> -PrO) ₂ P-P	(O-Pf) ₂ +	(<i>I</i> -PIO) ₂ P=0 ⁻ 2a	-P(0 <i>i</i> -Pi) ₂
Entry	cat.[Cu] (mol%)	amine (mol%)	solvent (mL)	time (h)	% yield 1a ^a (^b)	% yield 2a ^a (^b)
1	$CuBr_2(5)$	TMEDA (5)	acetone (1)	2	0.5	62.8
2		TMEDA (10)		2	0.4 (0.4)	99.0 (99.3)
3		TMEDA (15)		2	0.3 (0.3)	98.0 (99.4)
4		TMEDA (15)	acetone (1) and $H_2O(0.04)$	2	2.0 (1.9)	97.3 (97.8)
5		TMEDA (20)	acetone (1)	2	0.3 (0.3)	98.9 (99.3)
6	CuBr ₂ (2.5)	TMEDA (2.5)		4	0	0.4
7		TMEDA (5)		4	0.3	87.1
8		TMEDA (7.5)		4	0 (0)	99.1 (100)
9		TMEDA (10)		4	0 (0)	99.1 (100)
10	$\operatorname{CuBr}_{2}(1)$	TMEDA (5)		6 20	1.3 2.4 (2.7)	42.5 72.4 (75.2)
11		TMEDA (7.5)		6 20	0.01	96.4 98.4 (99.9)
12		TMEDA (10)		6 20	0 (0)	99.2 (100) 98.9
13		TMEDA (10)	THF (1)	6	0.01 (0)	99.1 (100)
14	CuBr ₂ (0.5)	TMEDA (5)	acetone (1)	20 20	0.6	26.9
15	$\operatorname{CuBr}_2(1)$	$N_{N} \sim (5)$		6	0.02	0.05
16	$\operatorname{CuBr}_{2}(1)$	Et-NH HN-Et (5)		6	0.1	27.6
17	$CuCl_2(5)$	TMEDA (15)		2	0.2	25.8
				6 20	1.1	62.3 98.4
18	CuCl (10)	TMEDA (100)	neat	3	12.9	86.2
19	CuCl (10)	TMEDA (200)	/	3	9.2	90.3
20	CuCl (5)	TMEDA (100)	/	3	6.4	92.5
21		TMEDA (100)	acetone (1)	3	4.1	95.0
				6	4.3	95.2
22		TMEDA (200)		3	3.1 3.2	96.1 96.4
23	CuCl (2)	TMEDA (20)		3	2.1	16.9
				6	2.3	17.5
24		TMEDA (50)		3	3.5	67.6 88.3
25		TMEDA (50)	acetone (0.5)	3	4.6	55.0
26		TMED A (100)	agatana (1)	6	5.9	62.0
20		1 MEDA (100)	acetone (1)	6	3.5	90.0
27		TMEDA (200)		3	2.3	97.1
28		TMEDA (200)	Acetone (2)	3 6	1.4 1.6	85.8 97.5

29	CuCl(1)	TMEDA (100)	acetone (1)	3	0.6	16.5
				6	0.7	25.3
30		TMEDA (200)		3	0.3	10.2
				6	0.4	15.3
31	CuBr (2)	TMEDA (100)		3	1.8	65.3
				6	2.5	77.8
32		TMEDA (200)		3	1.8	96.6
				6	2.2	96.9
33	CuBr (1)	TMEDA (200)		3	0.01	2.9
				6	0.01	3.6

[a] Determined by GC, [b] 31P NMR yields.

¹H NMR, ¹³C NMR and ³¹P NMR Spectra

1a^{1,2}

¹H NMR (CDCl₃, 400 MHz): δ 4.94-4.85 (m, 4H, C*H*), 1.39 (d, 24H, *J* = 6.4 Hz, C*H*₃). ¹³C NMR (CDCl₃, 100 MHz): 72.9 (dd, *J*_{C-P} = 2.8 Hz, *J*_{C-P} = 3.8 Hz, CH), 24.3 (dd, *J*_{C-P} = 2.9 Hz, CH₃, overlap), 23.8 (dd, *J*_{C-P} = 2.9 Hz, *J*_{C-P} = 1.9 Hz, CH₃). ³¹P NMR (CDCl₃, 162 MHz): δ 5.01.

 $1b^1$

¹H NMR (CDCl₃, 500 MHz): δ 4.25-4.17 (m, 8H, C*H*₂), 1.73-1.65 (m, 8H, C*H*₂), 1.46-1.38 (m, 8H, C*H*₂), 0.94 (t, 12H, J = 7.3 Hz, C*H*₃). ¹³C NMR (CDCl₃, 125 MHz): δ 67.5 (dd, $J_{C-P} = 2.0$ Hz, $J_{C-P} = 3.1$ Hz, CH₂), 32.4 (dd, $J_{C-P} = 3.1$ Hz, CH₂, overlap), 18.6 (CH₂), 13.5 (CH₃). ³¹P NMR (CDCl₃, 202 MHz): δ 6.86.

¹H NMR (CDCl₃, 500 MHz): δ 4.30-4.25 (m, 8H, CH₂), 1.38 (t, 12H, J = 7.0 Hz, CH₃). ¹³C NMR (CDCl₃, 125 MHz): δ 63.9 (dd, $J_{C-P} = 3.1$ Hz, CH₂, overlap), 16.4 (dd, $J_{C-P} = 3.1$ Hz, CH₃, overlap). ³¹P NMR (CDCl₃, 202 MHz): δ 6.53.

1d

Wax solid. m.p.: 49–50 °C. ¹H NMR (CDCl₃, 400 MHz): δ 4.22-4.17 (m, 8H, C*H*₂), 1.75-1.68 (m, 8H, C*H*₂), 1.41-1.26 (m, 80H, C*H*₂), 0.88 (t, 12H, *J* = 6.8 Hz, C*H*₃). ¹³C NMR (CDCl₃, 100 MHz): δ 67.8 (dd, *J*_{C-P} = 3.8 Hz, CH₂, overlap), 31.9 (CH₂), 30.5 (dd, *J*_{C-P} = 2.9 Hz, CH₂, overlap), 29.7 (CH₂), 29.7 (CH₂), 29.6 (CH₂), 29.4 (CH₂), 29.2 (CH₂), 25.4 (CH₂), 22.7 (CH₂), 14.1 (CH₃). ³¹P NMR (CDCl₃, 162 MHz): δ 6.86. Anal. Calcd for C₄₈H₁₀₀O₆P₂: C, 69.02; H, 12.07. Found: C, 68.72; H, 12.36.

1e⁵

¹H NMR (CDCl₃, 400 MHz): δ 7.33-7.29 (m, 20H, CH), 5.18-5.08 (m, 8H, CH₂). ¹³C NMR (CDCl₃, 100 MHz): δ 135.3 (dd, $J_{C-P} = 2.8$ Hz, $J_{C-P} = 3.8$ Hz, CH), 128.7(CH), 128.6(CH), 128.2(CH), 69.2 (dd, $J_{C-P} = 2.9$ Hz, CH₂, overlap). ³¹P NMR (CDCl₃, 162 MHz): δ 6.56.

¹H NMR (CDCl₃, 400 MHz): δ 4.67 (d, 4H, J = 10.4 Hz, CH₂), 4.00 -3.92 (m, 4H, CH₂), 1.35 (s, 6H, CH₃), 0.89 (s, 6H, CH₃). ¹³C NMR (CDCl₃, 100 MHz): δ 78.8 (dd, $J_{C-P} = 3.8$ Hz, CH₂, overlap), 32.7 (dd, $J_{C-P} = 3.8$ Hz, $J_{C-P} = 4.8$ Hz, (CH₂)₂C(CH₃)₂), 22.0 (CH₃), 20.2 (CH₃). ³¹P NMR (CDCl₃, 162 MHz): δ -1.32.

1g

1f⁶

White solid. m.p.: 99–111 °C. ¹H NMR (CDCl₃, 400 MHz): δ 9.30, 9.25 and 9.23 (3s, 2H, N*H*), 7.28, 7.25 and 7.22 (3d, 2H, J = 1.2 Hz, *H*6-thymine), 7.01 (s, broad, 2H, *H*1'), 6.34-6.29 (m, 2H, *H3*'), 5.92-5.90 (m, 2H, *H2*'), 5.00 (s, broad, 2H, *H4*'), 4.94-4.91 (m, 2H, C*H*-isopropyl), 4.38-4.32 (m, 4H, *H5*'), 1.92, 1.92 and 1.91 (3s, broad, 6H, C*H*₃-thymine), 1.40-1.36 (m, 12H, C*H*₃-isopropyl). ¹³C NMR (CDCl₃, 100 MHz): δ 163.9 and 163.8 (2s, broad, C4-thymine), 150.9 and 150.8 (2s, broad, C2-thymine), 135.7 (d, *J*_{C-P} = 2.9 Hz, C6-thymine), 135.6 and 135.5 (2s, broad, C6-thymine), 132.8 and 132.8 (2s, broad, C3'), 132.7 (d, *J*_{C-P} = 2.8 Hz, C3',), 127.9 (dd, *J*_{C-P} = 3.8 Hz, C2', overlap), 127.7 (s, broad, C2'). 111.5 and 111.4 (2s, broad, C5-thymine), 89.7 and 89.6 (2s, broad, C1'), 84.5, 84.4 and 84.3 (3d, *J*_{C-P} = 3.8 Hz, C4'), 74.5, 74.5 and 74.3 (3s, broad, CH-isopropyl), 68.0, 67.8 and 67.7 (3s, broad, C5'), 24.3 and 23.8 (2s, broad), CH-isopropyl), 12.4 (s, broad, CH₃-thymine). ³¹P NMR (CDCl₃, 162 MHz): δ 6.33 and 5.91 (broad). Anal. Calcd for C₂₆H₃₆N₄O₁₂P₂: C, 47.42; H, 5.51; N, 8.51. Found: C, 47.71; H, 5.35; N, 8.28.

¹H NMR (CDCl₃, 400 MHz): δ 4.84-4.70 (m, 4H, C*H*), 1.38 (d, 24H, *J* = 6.0 Hz C*H*₃). ¹³C NMR (CDCl₃, 125 MHz): δ 74.1 (dd, *J*_{C-P} = 3.1 Hz, *C*H, overlap), 23.6 (dd, *J*_{C-P} = 3.1 Hz, *C*H₃, overlap), 23.5 (dd, *J*_{C-P} = 3.1 Hz, *C*H₃, overlap). ³¹P NMR (CDCl₃, 202 MHz): δ -15.09.

2b^{9,10}

¹H NMR (CDCl₃, 500 MHz): δ 4.19-4.15 (m, 8H, CH₂), 1.72-1.66 (m, 8H, CH₂), 1.45-38 (m, 8H, CH₂), 0.94 (t, 12H, J = 7.3 Hz, CH₃). ³¹P NMR (CDCl₃, 202 MHz): δ -12.79.

2c^{8, 11}

¹H NMR (CDCl₃, 400 MHz): δ 4.25-4.17 (m, 8H, CH₂), 1.34 (t, 12H, J = 7.0 Hz, CH₃). ¹³C NMR (CDCl₃, 100 MHz): δ 65.1 (dd, $J_{C-P} = 2.8$ Hz, CH₂, overlap), 15.9 (dd, $J_{C-P} = 2.8$ Hz CH₃, $J_{C-P} = 3.8$ Hz). ³¹P NMR (CDCl₃, 162 MHz): δ -13.12.

2d

Wax solid. m.p.: 51–52 °C. ¹H NMR (CDCl₃, 400 MHz): δ 4.20-4.13 (m, 8H, C*H*₂), 1.74-1.67 (m, 8H, C*H*₂), 1.40-1.26 (m, 80H, C*H*₂), 0.89 (t, 12H, *J*_{C-P} = 6.8 Hz, C*H*₃). ¹³C NMR (CDCl₃, 100 MHz): δ 69.2 (dd, *J*_{C-P} = 2.9 Hz, CH₂, overlap), 32.0 (CH₂), 30.2 (dd, *J*_{C-P} = 2.8 Hz, *J*_{C-P} = 3.8 Hz, CH₂), 29.8 (CH₂), 29.7 (CH₂), 29.7 (CH₂), 29.6 (CH₂), 29.4 (CH₂), 29.2 (CH₂), 25.4 (CH₂), 22.7 (CH₂), 14.2 (CH₃). ³¹P NMR (CDCl₃, 162 MHz): δ -12.77. Anal. Calcd for C₄₈H₁₀₀O₇P₂: C, 67.73; H, 11.84. Found: C, 68.01; H, 12.02.

¹H NMR (CDCl₃, 400 MHz): δ 7.34-7.29 (m, 20H, C*H*), 5.10-5.08 (m, 8H, C*H*₂). ¹³C NMR (CDCl₃, 100 MHz): δ 134.9 (dd, $J_{C-P} = 3.8$ Hz, CH, overlap), 128.7 (CH), 128.5 (CH), 128.0 (CH), 70.4 (dd, $J_{C-P} = 2.9$ Hz, CH₂, overlap). ³¹P NMR (CDCl₃, 162 MHz): δ -12.97. 2**f**^{12,13}

¹H NMR (CDCl₃, 400 MHz): δ 4.48 (d, 4H, J = 10.8 Hz, CH₂), 4.06 -3.90 (m, 4H, CH₂), 1.32 (s, 6H, CH₃), 0.90 (s, 6H, CH₃). ¹³C NMR (CDCl₃, 100 MHz): δ 79.0 (dd, $J_{C-P} = 3.8$ Hz, CH₂, overlap), 32.2 (dd, $J_{C-P} = 2.9$ Hz, $J_{C-P} = 3.8$ Hz, (CH₂)₂C(CH₃)₂), 21.9 (CH₃), 19.9 (CH₃). ³¹P NMR (CDCl₃, 162 MHz): δ -21.02.

2g

White solid. m.p.: 102–112 °C. ¹H NMR (CDCl₃, 400 MHz): δ 9.50, 9.47 and 9.44 (3s, 2H, N*H*), 7.29, 7.28 and 7.22 (3s, broad, *H*6-thymine), 7.02, 7.01 and 7.00 (3s, broad, 2H, *H*1'), 6.35-6.29 (m, 2H, *H*3'), 5.90 (s, broad, 2H, *H*2'), 4.99 (s, broad, 2H, *H*4'), 4.82-4.78 (m, 2H, C*H*-isopropyl), 4.39-4.29 (m, 4H, *H*5'), 1.91, and 1.91 (2s, broad, 6H, C*H*₃-thymine), 1.38-1.34 (m, 12H, C*H*₃-isopropyl). ¹³C NMR (CDCl₃, 100 MHz): δ 164.0 and 163.9 (2s, broad, C4-thymine), 150.9 and 150.9 (2s, broad, C2-thymine), 135.8 and 135.7 (2s, broad, C6-thymine), 132.8 and 132.7 (2s, broad, C3'), 132.6 (d, *J*_{C-P} = 4.8 Hz, C3'), 127.8, 12.7 and 127.6 (3s, broad, C2'), 111.4, 11.4 and 111.3 (3s, broad, C5-thymine), 89.6 and 89.5 (2s, broad, C1'), 84.3, 84.2 and 84.1 (3s, broad, C4'), 75.7 (s, broad, CH-isopropyl), 75.6 (d, *J*_{C-P} = 4.8 Hz, CH-isopropyl), 75.5 (s, broad, CH-isopropyl), 68.6, 67.5 and 68.5 (3s, broad, C5'), 23.6 and 23.4 (2s, broad, CH-isopropyl), 12.4 and 12.3 (2s, broad, CH₃-thymine). ³¹P NMR (CDCl₃, 162

MHz): δ -13.26 (broad) and -13.65. Anal. Calcd for C₂₆H₃₆N₄O₁₃P₂: C, 46.30; H, 5.38; N, 8.31. Found: C, 46.01; H, 5.15; N, 8.54.

References:

- 1. Michalski, J.; Zwierzak, A. Bull. Acad. Polon. Sci., Ser. Sci. Chim. 1965, 13, 253.
- 2. Romakhin, A. S.; Zagumennov, V. A.; Nikitin, E. V. J. Gen. Chem. USSR (Engl. Transl.) 1997, 67, 1022.
- 3. Ruflin, C.; Fischbach, U.; Grutzmacher, H.; Levalois-Grutzmacher, J. *Heteroatom Chem.* **2007**, *18*, 721.
- 4. Kers, A.; Stawinski, J.; Dembkowski, L.; Kraszewski, A. Tetrahedron 1997, 53, 12691.
- 5. Rosenheim; Pinsker Chem. Ber. 1910, 43, 2009.
- 6. Nycz, J. E.; Musiol, R. Heteroatom Chem. 2006, 17, 310.
- 7. Hutchinson, D. W.; Thornton, D. M. J. Organomet. Chem. 1988, 340, 93.
- 8. Jaszay, Z. M.; Petnehazy, I.; Toke, L. Heteroatom Chem. 2004, 15, 447.
- 9. Pudovik, A. N.; Kovtun, V. Y.; Khairullin, V. K.; Vasyanina, M. A. J. Gen. Chem. USSR (Engl. Transl.) **1992**, 62, 218.
- 10 Toy, A. D. F. J. Am. Chem. Soc. 1948, 70, 3882.
- 11. Kinas, R. W.; Okruszek, A.; Stec, W. J. Tetrahedron Lett. 2002, 43, 7875.
- 12. Cullis, P. M.; Kay, P. B.; Trippett, S. J. Chem. Soc. Chem. Comm. 1985, 1329.
- 13. Nycz, J. E. Poll. J. Chem. 2009, 83, 589.

S-18

S-20

S-34

100

300

200

Tun

0

-100

hulunhunhunhun

-200

