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Abstract

This thesis takes a community approach to investigate the acoustics of forest birds

in Zealandia sanctuary, Wellington. Initially, the annual changes in vocalisation

output of 16 study species and their possible effect on bird conspicuousness were

described. Environmental factors that may shape these avian vocalisations were

addressed though invoking two key hypotheses, the acoustic adaptation

hypothesis, and the acoustic niche hypothesis. In addition, the songs of selected

species are investigated: the role of song harmonics in the native North Island

saddleback, Philesturnus rufusater, and their role in ranging, change in song

dialect through time and space in the introduced song thrush, Turdus philomelos,

and temporal change in the song of the native grey warbler, Greygone igata.

Vocal activity of the study species varied seasonally, affecting their detectability in

bird counts. Some species were mostly first heard rather than seen and vice-

versa. The results lend support to the acoustic niche hypothesis in that

vocalisations within the forest bird community appear to have evolved towards

divergence, with native species’ vocalisations being more dispersed within the

community acoustic space than those of the introduced species. However, all

species concentrated their energy within relatively narrow frequency bands,

supporting the predictions of the acoustic adaptation hypothesis. Adaptation to

different transmission properties associated with different singing elevations or

physiological parameters such as body weight may have an effect on shaping

such bird vocalisations.

Forests provide a complex acoustic space for sound transmission and a “sound

window” may not be a constant property of a given forest. The study revealed that

a prominent sound window persists in the lower frequency range that is less
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affected by habitat. Some high frequencies may have similar average attenuation

values to those of low frequency, however, with greater fluctuation in attenuation.

Ground effect is a further factor in determining how well different frequency ranges

transmit and birds may use acoustic characteristics of their habitat to enhance

their signal.

Harmonics in North Island saddleback chatter song were found to play a potential

role in ranging (estimating the distance of signaller), for playback songs with more

relative energy within higher harmonics were evidently perceived as coming from a

nearby individual.

The repertoire size of the song thrush population studied in Zealandia has

apparently evolved to become larger and more varied than the source population

of song thrushes in the UK, with more syllables delivered with less repetition than

the UK song recordings examined.

Over a period of 7 years, syllables in grey warbler song have shifted to a higher

frequency, but there was no difference in the temporal structure of the song.

Habitat effect, competition on the acoustic signal from reintroduced birds and

ambient noise level are considered as possible casual factors.
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Chapter 1

General Introduction

1.1 Function of bird vocalisations

Acoustic signals play an important role in several aspects of birds’ behaviour.

Song is thought to serve two main functions, either to attract mates or to defend

territories (Catchpole & Slater 2008). Between males, territorial defence is thought

to be the principal function of song (Collins 2004), and this was demonstrated

clearly by playback experiments, a technique widely used to test hypotheses on

territorial behaviour (Catchpole & Slater 2008). In a speaker replacement

experiment on the great tits, Parus major, Krebs (1977), showed that intruding

males were delayed or less frequent on territories defended by song. Comparable

studies on other species have since found similar results in, for example red-

winged blackbirds, Agelaius phoeniceus (Yasukawa 1981), white-throated

sparrows, Zonotrichia albicollis (Falls 1988), and song sparrows, Melospiza

melodia (Nowicki et al. 1998). Other playback studies have confirmed that

individual song performance can affect male–male territorial interactions (Hultsch

& Todt 1982; Schmidt et al. 2008; De Kort et al. 2009).

The second function of male song is to attract females (Eriksson & Wallin 1986),

and the characteristics of such songs can play a major role in their effectiveness in

attracting females. For example, songs with larger repertoires are more attractive

to females in the sedge warbler, Acrocephalus schoenobaenus (Catchpole et al.

1984; Buchanan & Catchpole 1997) and more stimulating to females in the canary,

Serinus canaria (Kroodsma 1976). A larger song repertoire, which may include

hundreds or even thousands of syllable types, is now widely accepted to have

arisen through sexual selection by female choice (MacDougall-Shackleton 1997).
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Long and more elaborated songs indicate better male quality (Searcy & Yasukawa

1996), and affect females’ choice by their preference for some phrases over others

(Vallet & Kreutzer 1995; Forstmeier & Balsby 2002). In addition, other

characteristics of the song may convey subtle information about the signalling

male, such as the rate of singing, the form of song, and the song duration

(Bradbury & Vehrencamp 1998).

Other functions of acoustic communication involve cooperation rather than conflict,

which benefits both receiver and sender. This includes alarm calls, species or kin

recognition calls, and parent–offspring communication (Kroodsma & Miller 1982;

Searcy & Andersson 1986; Catchpole & Slater 2008). For example, a great tit may

give an alarm call to warn its fledglings that a predator is approaching (Catchpole

& Slater 2008). Cooperatively breeding long-tailed tits, Aegithalos caudatus,

respond differently to playback of kin and non-kin songs (Hatchwell et al. 2001).

Parent–offspring communication is particularly important for birds that nest in large

crowded colonies where parents are challenged in finding their own young. For

example, king penguins, Aptenodytes patagonicus, use a complex pattern of

frequency modulations to form a distinct vocal signature (Jouventin et al. 1999). In

some passerine species, parents can recognise begging calls of chicks, e.g. black

redstart, Phoenicurus ochruros (Draganoiu et al. 2006) and bank swallows, Riparia

riparia (Beecher et al. 1981).

Bird vocalisations are clearly important in bird communication and their

composition and structure differs between species according to their specific

functions and the intended receiver (Marler 2004b). However, to deliver the

information between the sender and the receiver, all the different vocalisations
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have to transmit within the habitat and are challenged by sound transmission

constraints (Marler 2004b).

1.2 Problems of avian sound transmission

Acoustic signals are susceptible to modification by the habitat, posing two

fundamental problems for sound transmission between individuals, namely

degradation and attenuation (Naguib & Wiley 2001). Degradation is the sum of

structural changes that the signal accumulates at some distance from the source

(Morton et al. 1986). Scattering or refraction of sound by vegetation gives rise to

degradation by frequency alterations, and timing rearrangements by echoes and

reverberations (Bradbury & Vehrencamp 1998). Habitats with dense foliage

impose greater degradation on sound transmission (Blumenrath & Dabelsteen

2004), which may reduce, or even prevent, the transfer of information between the

sender and the receiver (Fotheringham & Ratcliffe 1995; Fotheringham et al. 1997;

Holland & Rice 1998).

Attenuation is the progressive decrease of signal intensity (energy per unit

surface), which takes place as the propagation distance increases (Forrest 1994).

Spherical spreading describes the decrease in sound amplitude when it

propagates away from a source, and usually it deals with a point source in the

middle of an environment that is homogeneous in all directions. Attenuation of bird

vocalisations tends to be greater than expected by spherical spreading, due to

atmospheric absorption (Bass 1991) and vegetation structure (Taylor 1971; Wiley

& Richards 1978; Martens 1980). Warm, dry air enhances sound transmission

(Evans & Bailey 1956; Harris 1966), while dense foliage increases attenuation

(Boncoraglio & Saino 2007).
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Acoustic interference from background noise can also affect sound transmission

as it decreases the efficiency of intraspecific communication by decreasing the

detectability, the ability to separate a signal from background noise, and the

discriminability, the ability to separate similar conspecific signals (Endler 1992).

Many examples of communication in noisy environments come from animals

communicating in aggregations, such as frog choruses and avian dawn choruses,

where it is especially difficult to discriminate conspecific from similar hetero-

specific signals (Bremond 1978; Wiley 1994; Pfennig 2000; Gerhardt & Huber

2002; Wollerman & Wiley 2002; Brumm & Slabbekoorn 2005). Ambient sounds

produced by other bird species and the environment (wind, rain, and insects) can

interfere with signal detection and recognition and mask critically important

messages.

Vocalisations of other bird species are a common source of background noise

(Schwartz & Wells 1983; Wollerman & Wiley 2002), and signals with similar

features have a greater chance of interfering with each other and creating receiver

errors (Wiley 2000). Such errors include response to signals from different

species, or lack of responses to appropriate signals, which could result in

additional time and risks in finding a mate or confronting a rival (Wiley 1994).

One way to improve communication under noisy conditions is to increase the

signal-to-noise ratio, for example king penguins, Aptenodytes patagonicus,

produce longer calls with more syllables under windy and noisy conditions

(Lengagne et al. 1999), and zebra finches, Taeniopygia guttata, can adjust the

amplitude of their song in response to varying noise levels (Cynx et al. 1998).

Similar responses are also found in territorial species such as the nightingale,

Luscinia megarhynchos (Brumm & Todt 2002) and the blue-throated hummingbird,
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Lampornis clemenciae (Pytte et al. 2003). To avoid the negative effects of acoustic

interference, signallers should evolve signals that contrast with the background

noise of their environment (Miller 1982; Endler 1992; Wiley 1994; Wiley 2006), and

signals that evolved more distinctive features from those of other species should

have advantages for conspecific recognition (Falls 1963; Emlen 1972; Nelson &

Marler 1990).

1.3 Effect of the environment on avian vocalisation

Environmental selection pressures may shape the physical characteristics of song,

such as its spectral and temporal structure (Wiley & Richards 1982; Endler 1992;

Forrest 1994). As noted above the predominant selection pressures that may vary

between habitats are sound transmission properties associated with local

microclimate and vegetation structure (Wiley & Richards 1982; Brown & Handford

2000; Slabbekoorn et al. 2002) and signal interference by local ambient noise

patterns (Brenowitz 1982; Ryan & Brenowitz 1985; Nelson & Marler 1990). These

two phenomena have led to the formulation of two hypotheses on the structure of

bird vocalisations within a community.

1- The Acoustic Adaptation Hypothesis (hereafter, AAH) states that animal

vocalisations should adapt to sound transmission characteristics of the

environment (Ey & Fischer 2009), and it is supported widely by habitat-

based song variation studies (Doutrelant & Lambrechts 2001; Chilton et al.

2002; Marler & Slabbekoorn 2004; Koetz et al. 2007; Derryberry 2009). It is

based on the fact that different frequencies of sound are absorbed and

reflected to a lesser or greater degree by different objects in the habitat,

hence, birds should utilise frequencies in their vocalisations that are less

affected to modification from habitat, to achieve maximum transmission
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distance (Catchpole & Slater 2008). Marten & Marler (1977) proposed the

presence of a “sound window” within which the frequencies achieve

maximum transmission distance. In deciduous or tropical forest, the optimal

“sound window” occurs between 1.5 KHz and 2.5 KHz where sounds within

these wavelengths are less affected by habitat and travel better than

sounds with higher or lower frequencies. In coniferous forest, sounds

between 1 KHz and 3 KHz transmit better as they are enhanced by the

vegetation (Marten & Marler 1977). According to the AAH, birds in forest

should sing at lower frequencies, and have few rapidly repeated elements

since there is greater reverberation and attenuation in forests compared to

more open habitat (Rothstein & Fleischer 1987).

2- The Acoustic Niche Hypothesis (hereafter, ANH) argues that the

available frequency range for bird vocalisation is partitioned, and birds call

so that overlap between different species in frequency and time is reduced

(Krause 1987). Later work on species recognition (Nelson & Marler 1990;

Nelson & Soha 2004) has stressed the possible negative effect of confusion

between similar signals. Interspecific competition for acoustic space should

favour birds that adjust their signals to exploit vacant niches in the auditory

spectrum to minimise spectral or temporal overlap in interspecific

vocalisations (Krause 1993). For example, some species that share the

same habitat may adjust their temporal pattern of singing to avoid the

overlapping of songs; this is seen in, least flycatchers, Empidonax minimus,

which insert their shorter songs between the longer songs of red-eyed

vireos, Vireo olivaceus (Ficken et al. 1974).

Species assemblages altered by invasive, or introduced birds might feature

a degree of acoustic disturbance, resulting from the alteration of the
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previously natural acoustic partitioning (Pijanowski et al. 2011b). This may

lead to the prediction that undisturbed habitats with unaltered species

assemblages might show higher levels of coordination between inter

specific vocalisations than more heavily disturbed habitats (Pijanowski et al.

2011b). In his formulation of the ANH, Krause (1987) pointed out that both

the morphological and the behavioural adaptations implied by the ANH and

the AAH could also be triggered by interspecific interference when bird

vocalisations contain similar frequency and timing features. Krause (1987)

repeatedly had observed complex arrangements of non-overlapping signals

in his recordings of animal vocalisations and natural sounds in an

environment with multiple habitat types.

1.4 Forest as acoustic space

The “acoustic space” of a given environment is the multi-dimensional space

available for sound signals. It is a concept used in analysing the distinctiveness of

songs and evaluating the acoustic overlap among bird species in a multivariate

way (Marler 2004a). Forests can be very complex auditoria because of the variety

of physical processes associated with sound transmission such as attenuation and

degradation (Slabbekoorn et al. 2009). Generally, forests have many types of leaf

and different twig sizes, variably distributed between sender and receiver, and this

will result in an inconsistent effect on sound transmission depending on the density

and obstacles in the path of the travelling sound (Martens et al. 1985). For

example, there may be a dense shrub layer at one location and more open

patches in another, both irregularly interspersed with thick tree trunks, or the

ground may be bare or carpeted with vegetation, or flat or hilly. All these factors
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contribute to changing patterns of sound absorption and reflection depending on

the positions of sender and receiver (Mark 2004).

1.5 Study area

This study was based at Zealandia (41° 18’ S, 174° 44’ E), a 2.5 km² valley of

secondary forest (Fig. 1.1) located 2 km west of Wellington city centre. The forest

is protected from a suite of mammalian predators introduced to New Zealand, by a

9 km long 2.2 m high barrier fence (Campbell & Atkinson 2002). The forest canopy

is predominantly a mixture of evergreen native and exotic tree species, with a well-

developed native understorey. The forest is inhabited by exotic and native bird

species, after a series of successful reintroductions of endemic New Zealand

species, such as North Island saddleback, Philesturnus rufusater, in 2002, bellbird,

Anthornis melanura, in 2002-2003, North Island robin, Petroica (Miro) longipes, in

2001-2002, whitehead, Mohoua albicilla, in 2001-2002, and North Island kaka,

Nestor meridionali septentrionalis, in 2000 (Miskelly et al. 2005; Taylor et al. 2005;

Bell 2008). Climate in the area is characterised by mild temperate conditions, with

an average daily temperature of 12.8º C and annual rainfall of 1,249 mm (NIWA

2010). Winter is the wettest time of year, while in summer droughts are common

(Hurnard 1978). However, compared with many temperate climates, there is

relatively little variation between summer and winter temperatures, the mean

temperature range between summer and winter being 17.20° C to 8.90° C (NIWA

2010). The austral summer occurs from December to March, with winter

conditions prevailing from June to September.
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Figure 1.1. Location of Zealandia sanctuary, Wellington, New Zealand. The inset

shows the sanctuary with the two lakes (black) and trails within.
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1.6 Aims and structure of the thesis

Generally, most research on bird vocalisations has focused on Holarctic or

Neotropical species, which may ultimately share a common evolutionary history

(Blumstein & Turner 2005). New Zealand offers opportunities for new

investigations that examine Southern Hemisphere species that may differ in their

patterns of vocal behaviour in a temperate environment. This thesis takes both a

community approach and a species approach to bird vocalisations and

investigates patterns of songs and calls across spatial and temporal scales. It

addresses the AAH and ANH hypotheses by examining possible links between the

vocal environment and the characteristics of the local avian community that share

the same acoustic space in the forest at Zealandia (Fig. 1.2).

While the general aims and hypotheses of this study are listed below, further

questions are embedded in each of the subsequent results chapters that are

prepared in a format that will facilitate their later publication as research papers.

Chapter 2: Does the seasonal change in the vocal output of bird at Zealandia

affect their conspicuousness?

This chapter serves as an introduction to the avian community studied in

subsequent chapters, and describes the seasonal change in the vocal activity of

different species. Bird censuses in forests depend largely on hearing rather than

on visual detection of birds (Bibby et al. 1992). The reliability of vocal data for

measuring population abundance will be highly affected by seasonal changes in

singing and calling behaviour (Gibb 1996). Through undertaking a regular line-

transect count each month, seasonal changes in vocal output of different species,

and the possible effect on their conspicuousness, was investigated.
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Figure 1.2. Summary of the content and themes of the thesis chapters

(numbered) and how they relate to key hypotheses

Chapter 3: Do bird vocalisations of the avian community at Zealandia

converge under the sound transmission properties of their habitat?

This chapter is an analysis of vocalisation characteristics of the forest bird

community at Zealandia, using a multivariate species approach. The primary

objective of this chapter was to describe the acoustic community and investigate

whether bird vocalisations at Zealandia might have converged in their traits under
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the effect of habitat selection pressure for better transmission (Marler &

Slabbekoorn 2004; Ey & Fischer 2009), or might have diverged to reduce

competition among species (Krause 1987; Krause 1993) (Fig.1.2). Bird

vocalisations can be affected by their body size, e.g. Brenowitz (1982) and Ryan &

Brenowitz (1985), and by their bill size and shape (Podos 2001; Seddon 2005;

Ballentine & Pfennig 2006), so another aim of this chapter was to assess whether

such phenological traits might have an effect on the traits of bird vocalisations.

Chapter 4: Is there a sound window for bird communication at Zealandia

forest? What is the expected transmission distance of bird vocalisations

within the Zealandia forest?

This chapter complements the community study (Chapter 2) by focusing on the

habitat as a source of selection pressures on bird vocalisations and assessing the

selection pressure imposed on transmitted sound. Different habitat types have

varying effect on the transmitted signal between individuals and a sound window

has been described in the low frequency range that is more suitable for sound

transmission within forests (Morton 1975; Catchpole & Slater 2008). This chapter

investigated the possible effect of the Zealandia forest on sound transmission by

modelling the acoustic environment as it appears during natural signalling and by

establishing a reference level of the magnitude of frequency dependent

attenuation, degradation, and ground effect, on the acoustic signal. Estimating a

signal’s actual range and the range of information coded in given bird vocalisations

provides a better understanding of how far the intended receiver might be

(Brenowitz 1982). A playback method was used to estimate the maximum

propagation distances of bird vocalisations.
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Chapter 5: Do chatter song harmonics in North Island saddleback play a role

in ranging?

This chapter focused on the perception of sound, namely the role of harmonics in

estimating the distance of a signaller. Harmonics have received little attention as

distance cues, however chatter song frequency plays a role in estimating the

distance of a signaller (i.e., ranging) (Naguib 1995, 1997b). In this chapter, I

investigated whether song harmonics in the North Island saddleback play a role in

ranging. Playback experiments were used on wild birds to test whether the relative

amplitude of harmonics served as a distance cue, and whether a change of

harmonic composition of the song had an effect on a territorial bird’s response and

its likely ability to estimate the distance of the signalling individual.

Chapter 6: Has the song repertoire of the song thrush at Zealandia diverged

from the source population in Europe?

This chapter compares the song repertoire of the song thrush at a macro-

geographical level. New dialect patterns emerge in response to habitat selection

pressure for optimal transmission through the acoustic environment (Hunter &

Krebs 1979; Handford & Lougheed 1991; Doutrelant et al. 1999; Slabbekoorn &

Smith 2002b; Patten et al. 2004). This study compares song thrush songs in

Zealandia with song samples from its source population in Europe.

Chapter 7: Has the grey warbler song in Zealandia changed over time? This

chapter investigates how songs may change with time by comparing the song of

grey warblers between 2002 and 2009, within the same population in Zealandia.

Temporal stability of song varies within avian taxa, even within the same
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geographical boundaries, with some dialects persisting unchanged for many

generations while others can quickly arise and disappear (Podos & Warren 2007).

Chapter 8: I finish with a concluding discussion of preceding chapters to provide

an overall view of the findings of this thesis, discussing its contributions and its

limitations, and suggesting further directions for research.
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Chapter 2

Seasonal variation in vocalisations: how does vocal output

change in the Zealandia forest bird community over the year?

2.1 Abstract

The seasonal changes in vocalisation patterns of birds at Zealandia are described

based on data collected through line transect counts, carried out over a year within

the first week of each month from April 2010 to March 2011. The fixed line transect

of 1.5 km ran through a section of exotic pine and native broadleaf forest to cover

a representative range of forest birds. All birds recorded were classified into three

categories according to how they were first detected, as either being seen, or

heard singing or calling. The predominant mode of detection varied across months

and between species. Some species were mostly first heard rather than seen and

vice-versa. Singing activity varied seasonally affecting the conspicuousness of

different bird species through the year.



Chapter 2

16

2.2 Introduction

To assess the conservation importance of a particular habitat, data on the

distribution and the assemblage of bird species is required. Such data are then

often used as a measure of the biological importance of a given site (Bibby et al.

1992). Bird census methods in forests typically depend largely on vocal rather than

on visual detection of birds (Bibby et al. 1992). In turn, vocal detection data for

measuring population abundance will be highly affected by seasonal changes in

singing and calling behaviour (Gibb 1996). Most bird species have different

patterns of vocalisation throughout the year. For example, many oscine birds do

not sing all year round, and the vocalisation pattern can change during the

breeding season, including the amount and the structure of vocalisations

(Catchpole & Slater 2008).

Bird counts to estimate abundance rely on the assumption that numbers of

individuals detected (e.g. seen, heard) represent a constant proportion of the

actual numbers present across space and time (Thompson 2002). The validity of

this assumption has been questioned and has been a matter of much debate

(Burnham 1981; Buckland et al. 2001; Rosenstock et al. 2002; Thompson 2002).

The number of counted birds can be affected by the detectability of different

species, among different habitats, and across the time of year (Rosenstock et al.

2002; Thompson 2002). As bird counts in dense forest rely mainly on counting

birds heard, seasonal changes in their vocal output influence the overall number of

individuals recorded (Bibby et al. 1992).

Variation in species detectability, resulting from conspicuousness and differences

in vocal output across months, is a key issue for wildlife surveys and needs to be
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assessed carefully (Sutherland 2006). Indices of bird counts based on the total

number of birds heard and seen might not represent the actual species density,

especially for birds that have strong seasonal change in the vocalisation output

(Haselmayer & Quinn 2000). In New Zealand, 5-minute point counts are widely

used in avian surveys (Dawson & Bull 1975), however, few studies have evaluated

the suitability of this method for particular New Zealand species (Gill 1980; Cassey

et al. 2007), or looked at the effect of change of the vocal output on bird counts

(e.g. Gibb 1996, Gibb 2000).

The frequency of occurrence of song types or calls is likely to vary seasonally,

spatially, and under different social contexts (Brunton & Li 2006). Different

vocalisation types and rates among age classes and sexes are known to have an

important effect on species detectability (Wilson & Bart 1985). Understanding

seasonal variation in forest bird counts can be confounded by the effect of

detectability of different species, and influenced by changes in song output, calls,

or conspicuousness (Simon et al. 2002). Providing a background to sound

recording analysis covered later in this thesis, these counts illustrate the

seasonality of vocal output for different species in the Zealandia forest bird

community.

2.3 Study area

This study was conducted at Zealandia, a 250 ha mainland island in New Zealand,

protected from invasive mammalian predators by a 9 km long 2.2 m high barrier

fence (Campbell & Atkinson 2002). Characterised as a coastal broadleaf-conifer

forest (Dawson 1988b; Wardle 2002), the forest is dominated by mähoe, Melicytus

ramiflorus, five finger, Pseudopanax arboreus, and pate, Schefflera digitata; tree

ferns, Cyathea spp., and Hymenophyllum spp., while shrubs such as hangehange,
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Geniostoma rupestre, and kawakawa, Macropiper excelsum, are common in the

understorey vegetation. The study site has a mild, temperate climate, with annual

rainfall averaging 127 cm, and there is relatively little variation between summer

and winter temperatures compared with many temperate climates, the mean

temperature range between summer and winter being 17.20° C to 8.90° C (NIWA

2010).

2.4 Methods

A line transect along existing tracks was used in Zealandia to record all birds

heard singing, seen or heard calling along a predefined route within the forest.

Birds were recorded while walking at a slow constant speed along the route; the

route was approx. 1.5 km long (Fig. 2.1) and took approx. 40 min to complete.

Birds within approx. 20 m either side of the transect were recorded. The study

commenced in April 2010 and ended in March 2011, the transect being carried out

in the early morning between 7-9 am within the first week of each month. The line

transects were done on fine days with calm to moderate wind. Birds were

classified into three main categories depending on the way they were first

detected: first heard singing, first heard calling, or first seen. Songs were defined

as complex vocalisations that appear to occur spontaneously and are often

produced in long spells with a characteristic diurnal rhythm(Catchpole & Slater

2008). Calls were defined as being shorter, simpler and produced in particular

contexts which can be related to specific functions such as flight, threat or alarm

(Catchpole & Slater 2008). If a bird was heard first then seen, it was recorded only

once according to the first encounter (heard).



Chapter 2

19

Figure 2.1 Location of Zealandia sanctuary, Wellington, New Zealand. The inset

shows the sanctuary with the two lakes (black) and trails within. The dashed track

represents the line transect.

The results are represented as stacked bar charts, and Chi-square tests were

used to describe the pattern of vocalisation. Graphs and Chi-square tests were

done using SPSS 18. When the number of observations was less than five

individuals no statistical test was done. The null hypothesis was that species were

equally detected seasonally by each of the three counting methods; seen, heard

calling, and heard singing.

2.5 Results

Over the twelve-month period of counts, a total of 22 species were recorded,

including all 16 species whose vocalisations are investigated further in this thesis.

These species are listed in Table 2.1.



Chapter 2

20

Table 2.1. Bird species recorded during the transect counts in Zealandia: species

selected for bioacoustics study are shown in bold type.

Scientific name Common name Status Hereafter
Falco novaeseelandiae New Zealand falcon Endemic Falcon

Callipepla californica California quail Introduced Quail

Chrysococcyx lucidus Shining cuckoo Native Shining
cuckoo

Eudynamys taitensis Long-tailed cuckoo Endemic Long-tailed
cuckoo

Platycercus eximius Eastern rosella Introduced Rosella

Nestor meridionalis
septentrionalis North Island Kaka Endemic Kaka

Todiramphus sanctus
vaganus

New Zealand
kingfisher Native Kingfisher

Philesturnus rufusater North Island
saddleback Endemic Saddleback

Notiomystis cincta Stitchbird Endemic Stitchbird

Gerygone igata Grey warbler Endemic Grey warbler

Anthornis melanura Bellbird Endemic Bellbird

Prosthemadera
novaeseelandiae Tui Endemic Tui

Mohoua albicilla Whitehead Endemic Whitehead

Rhipidura fuliginosa North Island fantail Endemic Fantail

Petroica longipes North Island robin Endemic Robin

Sturnus vulgaris Starling Introduced Starling

Zosterops lateralis Silvereye Native Silvereye

Turdus merula Eurasian blackbird Introduced Blackbird

Turdus philomelos Song thrush Introduced Song thrush

Prunella modularis Dunnock Introduced Dunnock

Fringilla coelebs Chaffinch Introduced Chaffinch

Carduelis chloris Greenfinch Introduced Greenfinch

Nomenclature follows Gill et al. (2010)
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I confine the analysis in this chapter to the commoner 16 species within the forest.

The overall trend in numbers of species seen and heard (singing and calling) over

the year is shown in Fig 2.2. Overall most birds were counted in spring and early

summer (September-December). The number of birds first heard peaked during

October, and those first seen in November. When each of these species is

examined in turn, different species had different patterns of vocalisation output

over the year. The results are presented in bar charts along with a description

about the patterns observed for each of the 16 study species.

Figure 2.2.The overall monthly change in numbers of all birds heard (calling

and singing) and seen over the calendar year April 2010 – March 2011.



Chapter 2

22

Figure 2.3. Variation in transect counts of kaka, kingfisher, saddleback, and

stitchbird over twelve months in Zealandia in relation to their initial mode of

recognition (first seen, first heard singing, first heard calling).

Kaka (Fig. 2.3) were vocally active throughout the year, being seen and heard

vocalising while flying, often flying in small flocks. Song as such was not

recognised in this non-passerine species, but the proportion calling and seen

remained statistically similar through most of the year (χ2= 1.8, d.f = 11, P = 0.99

and χ2= 11.4, d.f = 11, P = 0.41 respectively), though in May and January none of

the birds were first seen. The kingfisher (Fig. 2.3) was variously first detected by

hearing its calls or being seen, but numbers remained relatively low (0-3). It was

vocally active mainly from September until November and March, with a peak in

October. The saddleback (Fig. 2.3) was heard singing loudly through most of the

year and was visually identified year round although the number of birds seen and

heard was not different across months (χ2= 8.8, 6.1, d.f = 11, P > 0.5). It was

mostly first heard singing (66.7% of the total counts) rather than seen (such song
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includes both chatter and male rhythmical songs). The stitchbird (Fig. 2.3) was

mainly heard calling rather than singing (χ2= 13.3, d.f = 1, P > 0.5), its quiet

warbling song being heard only once in December. No birds were recorded on the

transect in winter (χ2= 44.7, d.f = 11, P > 0.5) (June until August).

Figure 2.4. Variation in transect counts of grey warbler, bellbird, tui, and

whitehead over twelve months in Zealandia in relation to their initial mode of

recognition (first seen, first heard singing, first heard calling).

The grey warbler (Fig. 2.4) was more often heard in song than seen (72.3 % of the

total counts). Its song was heard throughout the year, and there was no significant

change in the number of singing birds in different months (χ2= 7.6, d.f = 11, P =

0.75); however, the peak singing activity was in August - November. The bellbird’s

(Fig 2.4) presence was detected mainly by vocalisation (60.0% of the total counts).

The number of birds singing varied with month (χ2= 22, d.f = 11, P = 0.02),

however it was heard singing most of the year, with the peak singing activity in
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September-November (spring). The tui (Fig. 2.4) was vocally active throughout the

year (χ2= 7.7, d.f = 11, P = 0.74), with peak singing activity in April-May and

October – December. It is a conspicuous species and its presence was often

detected visually (24% of total counts) as well as vocally (76% of total counts). The

whitehead (Fig 2.4) was heard vocalising much more than seen (95% of total

counts), and there was a significant difference in numbers of birds singing across

months (χ2= 50.1, d.f = 11, P < 0.01), with peak singing activity from October to

December. Its calls were most prominent from February to May.

Figure 2.5. Variation in transect counts of fantail, robin, silvereye, and blackbird

over twelve months in Zealandia in relation to their initial mode of recognition (first

seen, first heard singing, first heard calling).

The fantail (Fig. 2.5) was heard singing on 45.5% of the total counts, almost as

often as being seen (39% of total count). Its singing activity varied across months

(χ2= 54.9, d.f = 11, P < 0.01), and extended from September to January, peaking
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in October. The robin’s song was heard throughout the year (Fig. 2.5), however in

March it was seen almost as much as being heard calling, the number of birds

seen differing through the year (χ2= 45.9, d.f = 11, P < 0.01). The silvereye (Fig.

2.5) called throughout the year and was mainly detected by call (53% of the total

counts), and its singing output peaked from September to January (χ2= 22.2, d.f =

11, P = 0.02). It was visually detected throughout the year. The blackbird (Fig. 2.5)

had a strong seasonal singing pattern (χ2= 18.2, d.f = 11, P = 0.01), with song

starting in August and ceasing in January. It was seen on 36.9% of the counts and

heard calling on 41.2% of them. Birds were encountered throughout the year, but

the number calling did not vary across months (χ2= 1.6, d.f = 11, P = 1.0).

Figure 2.6. Variation in transect counts of song thrush, dunnock, chaffinch and

greenfinch over twelve months in Zealandia in relation to their initial mode of

recognition (first seen, first heard singing, first heard calling).

The song thrush (Fig. 2.6) was often heard but not seen (χ2= 28.0, d.f = 11, P <

0.05), its presence being usually detected by hearing its call (30.2% of the total
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counts) or its song (69.8 % of the total counts). It was inconspicuous from March

until May. The dunnock (Fig. 2.6) was often heard (94.7% of the total counts) but

not often seen (5.3% of the total counts) and its song was the most reported

vocalisation. Its call was a good indicator of its presence when not singing from

March until May (χ2= 15.3, d.f = 11, P = 0.01). Chaffinches (Fig. 2.6) had a strong

seasonal singing pattern (χ2= 50, d.f = 11, P < 0.05), starting to sing in August and

continuing until January, peaking in September and December, but ceasing by

February. The greenfinch (Fig. 2.6) also had a strong seasonal pattern (χ2= 95.3,

d.f = 11, P < 0.01), its singing starting in September and peaking in November,

then dropping gradually until it ceased in February. Greenfinches were

inconspicuous from April to August.

2.6 Discussion

The total number of bird counted varied seasonally and between species. Some

species (e.g. tui, grey warbler, kaka and saddleback) had a relatively constant

vocalisation output seasonally. Other species (e.g. blackbird, song thrush,

chaffinch, greenfinch, and whitehead) had different vocal and song periods. Song

thrush, dunnock, whitehead, greenfinch, silvereye, and chaffinch often sing in

spring. The call of kaka, tui, silvereye, and blackbird, were heard across the

seasons. Fantail, silvereye, blackbird, were seen at all seasons. In general, each

species had its own pattern of vocal output across the seasons; these changes

can have a direct effect on the total number of bird counts. Hence comparing the

abundance of species between different seasons alone may be misleading.

As the primary goal of bird counts is to obtain a population estimate of the birds

present at a given location at a particular time (Bibby et al. 2000), the lack of

appropriate adjustment to common methods of surveying birds may be biased
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towards more conspicuous species or vocally active ones (Nichols et al. 2000;

Bart & Earnst 2002; Rosenstock et al. 2002). Comparison of unadjusted counts

will be valid only if the numbers represent a constant proportion of the actual

population present across space and time (Sutherland 2006). The solution is to

adjust counts to account for the detectability of different species (Thompson 2002).

The total number of birds first seen was less variable across months than the

number of birds heard (Fig. 2.2). However, these numbers might be biased toward

less conspicuous species and larger species that can be seen more easily than

smaller species. Counts of the birds heard and seen might also be biased towards

more vocally active birds and towards seasonal variability in their vocal output, as

singing activity in birds is highly correlated with breeding season (Catchpole &

Slater 2008). Seasonal changes in singing and calling activity probably account for

much of the variation in conspicuousness (Gibb 2000) and the increase in the

detected birds might be explained by an increase in detectability of vocalising birds

(Simon et al. 2002).

Counts carried out in certain months within the year might miss some species that

have strong seasonal vocalisation patterns. For example, the kingfisher, stitchbird,

whitehead, song thrush, and greenfinch were detected only in some seasons.

Another way in which bird presence be may be biased is that some species may

be attracted to the human observer, for example the robin. Another source of

detection might be wing sounds e.g. bellbird, and tui (Craig 1984). For some

species, there was less seasonal variation in conspicuousness, especially for

those birds that had less distinguishable songs and calls, for example the tui and

bellbird. Furthermore, local movements and the availability of food sources will
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have accounted for some of the variability in the observed bird numbers between

seasons.

The counts were carried out over one year from April 2010 to March 2011, but the

pattern might vary with years, depending on the environmental conditions which

might affect the immediate weather condition or timing of the breeding seasons,

hence the vocal output (Catchpole & Slater 2008). In conclusion, seasonal

changes in vocal output were found to have affected bird conspicuousness and

the number of birds counted. Standardisation of counting protocols often is

suggested to overcome bias in counts (Bibby et al. 1992), so standardisation of

the count timing may improve precision when comparing results across years. It

cannot remove biases resulting from species conspicuousness, however,

accounting for inconspicuous species might be improved by using indices that can

account for changes in the numbers of birds counted across the year (Sutherland

2006). These bird count data also confirmed that the sound recordings of targeted

species were carried out at the time of year of most vocal output. These sound

recordings form the basis of analyses in subsequent chapters and facilitated

selection of study species in chapter 2. In addition, the counts were informative on

the distribution of different species within Zealandia.
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Chapter 3

Do bird vocalisations converge according to the sound

transmission properties of their habitat in Zealandia?

3.1 Abstract

Environmental selection pressures may shape the physical characteristics of bird

vocalisations. Habitat-dependent selection pressures may result in convergence of

vocalisation characteristics of species living in the same habitat, favouring optimal

song transmission features in that habitat. In contrast, competitive interactions for

acoustic space between different species may lead to divergence of acoustic

signals mediated by character displacement, as many species within the same

habitat have to use the available acoustic space. Here, the pattern of bird

vocalisations was examined within the forest bird community, to see whether it has

converged due selection pressure on sound transmission through the habitat. The

vocalisations of 16 bird species were analysed by comparing 13 features from

each vocalisation sample. The acoustic space each species occupied was

quantified using principle component analysis. The results show that the

distribution pattern of the 16 vocalisations was over-dispersed within the acoustic

space. Vocalisations of introduced birds were distributed closer to the centre of the

acoustic space, while vocalisations of native birds were distributed towards the

outer edge. Vocalisation frequency was negatively correlated with perch height

and body weight. The results support the acoustic niche hypothesis in that

vocalisations within community of native birds appear to have diverged. The

results also support the acoustic adaptation hypothesis because the birds

concentrated their energy within a narrow frequency band, which may be an

adaptation to better transmission in the forest.
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3.2 Introduction

Species living in the same habitat experience similar environmental selection

pressures, which may in turn drive certain traits to converge into those most

advantageous in that habitat (Keddy 1992; Weiher & Keddy 1995; Weiher et al.

1998). Trait convergence is widespread within species occupying the same niche

(Harmon et al. 2005; Langerhans et al. 2006), and among sympatric species

adapted to similar environments (Losos 1992; Losos et al. 1998; Rosenblum 2006;

Fleischer et al. 2008). Alternatively, trait differentiation through divergent selection

can also be favoured across different species within communities when

competition over resources is high (Turelli et al. 2001; Doebeli & Dieckmann

2003).

Acoustic signals in birds have functions, including in long-range communication in

species or kin recognition, mate attraction and territorial defence (Kroodsma &

Miller 1982; Searcy & Andersson 1986; Catchpole & Slater 2008). Acoustic signals

are under selection pressure from vegetation structure (Barker 2008), as

transmitted sound between individuals is susceptible to modification by habitat.

This poses fundamental problems for sound transmission through degradation and

attenuation (Naguib & Wiley 2001).

Different habitats and vegetation structures have varied sound transmission

properties (Wiley & Richards 1982; Brown & Handford 2000; Slabbekoorn & Smith

2002b). Ambient noise may also interfere in the transmission of signals (Brenowitz

1982; Ryan & Brenowitz 1985; Nelson & Marler 1990). Song divergence among

populations of the same species living in different geographical areas (i.e. song

dialects) has been related to the acoustic characteristics of the habitat (Mundinger

1982; Kroodsma 2004). Another example involves the adaptation of species in
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urban areas to background noise, where the temporal and spectral characteristic

of their songs are modified, resulting in the utterance of higher frequencies, (e.g.

great tit, Parus major (Slabbekoorn & den Boer-Visser 2006) and blackbird,

Turdus merula (Nemeth & Brumm 2009)). Morton (1975) studied the structure of

signals in relation to habitat, and found that forest birds use lower frequency

modulated notes than birds living in more open habitat. This was supported by

subsequent studies that compared the song of birds living in open and closed

habitats (Badyaev & Leaf 1997; Bertelli & Tubaro 2002; Tubaro & Lijtmaer 2006).

Vocalisations of birds may also be affected by their community structure. Some

songbirds enrich their song repertoires by adding elements from neighbouring

conspecifics or other species, as well as non-avian sounds. This may be based on

what is heard best under local acoustic conditions through mechanisms of vocal

copying within their acoustic environment (Slabbekoorn & Peet 2003). Avifaunal

complexity may also have a consequence on vocalisations within populations

(Kroodsma 1985). Acoustic competition and species densities within the same

community may influence vocalisation traits and signal design (Price 2008). For

example, an avifaunal community with fewer sympatric passerines may exhibit

increased song variability (Kroodsma & Canady 1985; Naugler & Ratcliffe 1994).

Species singing similar songs may also suffer fitness costs due to ambiguity in

species recognition, and this may cause some species to avoid singing when other

species using the same frequency range are singing also (Planqué & Slabbekoorn

2008).

Most bioacoustic studies have focused on individual species, or groups of similar

species, and only two other reports have focused on the wider avian community in

a given location (but see Luther (2009) and Cardoso and Price (2010)). To my
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knowledge, no studies have investigated the vocalisations of a bird community in

the temperate broad-leaved rainforests of the southern hemisphere, such as in

New Zealand (Ovington & Pryor 1983). New Zealand’s distinctive bird community

(King et al. 2009a) allows the study of acoustic adaptation amongst both native

and exotic bird species. The primary aim of this chapter is to describe the acoustic

characteristics of one such avian community at Zealandia (mainland island), and

see whether species vocalisation have converged under the effect of habitat

selection pressure for better transmission (Marler & Slabbekoorn 2004; Ey &

Fischer 2009), or have diverged to reduce competition among species (Krause

1987; Krause 1993).

This chapter addresses the following questions:

1. Does the distribution of bird vocalisations cluster in acoustic space? A

clustered distribution indicates convergence of vocalisation characteristics

under the influence of habitat selection pressure.

2. Do introduced and native species have similar distribution patterns within

acoustic space?

3. Do phenological traits (body size and bill length) influence vocalisation

characteristics?

4. Do bird vocalisations show adaption to a particular elevation within the

forest?
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3.3 Study area

This study was conducted at Zealandia, a 250 ha mainland island in New Zealand,

protected from invasive mammalian predators by a 9 km long 2.2 m high barrier

fence (Campbell & Atkinson 2002). Characterised as a coastal broadleaf-conifer

forest (Dawson 1988b; Wardle 2002), the forest is dominated by mähoe, Melicytus

ramiflorus, five finger, Pseudopanax arboreus, and pate, Schefflera digitata; tree

ferns, Cyathea spp., and Hymenophyllum spp., while shrubs such as hangehange,

Geniostoma rupestre, and kawakawa, Macropiper excelsum, are common in the

understorey vegetation. The study site has a mild, temperate climate, with annual

rainfall averaging 127 cm, and there is relatively little variation between summer

and winter temperatures compared with many temperate climates, the mean

temperature range between summer and winter being 17.20° C to 8.90° C (NIWA

2010).

3.4 Study species

The study embraced 16 species comprising 14 passerines, a native kingfisher,

Todiramphus sanctus vaganus, and an endemic parrot, the kaka, Nestor

meridionalis septentrionalis (Table 1.2). Nine of the passerine species were

endemic, while five were introduced from Europe between 1840-1900 (Wodzicki &

Wright 1984; King et al. 2009b). Some species were excluded from the analysis as

they occurred along the forest edge rather than within the forest e.g. starling,

Sturnus vulgaris, eastern rosella Platycercus eximius, or were less common e.g.

falcon Falco novaeseelandiae, shining cuckoo, Chrysococcyx lucidus, and long-

tailed cuckoo, Eudynamys taitensis.
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3.5 Methods

3.5.1 Sound recording

This study used vocalisations of bird species recorded during April-December

2009 in the Zealandia sanctuary. The majority of the recordings were from

September and December when most species were actively singing (chapter 2).

Vocalisations were recorded at a sampling frequency of 44.1 KHz and 16-bit

sample size using a Marantz PMD670 solid-state recorder and a Telinga Pro7

parabola microphone. Songs and calls were differentiated following Catchpole and

Slater (2008). For the 14 songbirds studied, song samples were analysed while in

the two non-passerines, call samples were used. Ten individuals of each of the 16

study species were sampled. Recording sites were plotted on a map to reduce the

chance of recording the same individual twice. In most cases, vocalisations were

recorded at a distance of 3-10 m from the bird, to get good quality recordings.

3.5.2 Sound analysis

Sound analysis was undertaken using Raven Pro 1.4 software, allowing graphical

display of the power spectra, waveforms, and spectrograms (sonograms) of each

species’ vocalisations (Fig. 3.1). Spectrograms were generated via a standardised

procedure with a Hann-filter and a Fast Fourier Transform (FFT) value of 512

points. Overlap was set to 50% giving a frequency resolution of 86.1 Hz.
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Figure 3.1. Raven window showing the three views used in analysis, using a grey

warbler, Gerygone igata, as the example. From the top, the plots are waveform,

spectrogram, and power spectrum. Below the graph is the selection table

illustrating some of the measurements.

The 13 variables were: (1) Lowest frequency across the song (KHz), (2) Highest

frequency across the song (KHz), (3) Song band-width (KHz), (4) Mean dominant

frequency (KHz) (average of the dominant frequencies in each sample), (5) Centre

frequency (KHz), (6) 1st quartile frequency (KHz), (7) 3rd quartile frequency (KHz),

(8) Inter-quartile bandwidth (IQRZ) (KHz), (9) Song duration (s), (10) Number of

notes, (11) Inter-note interval (s), (12) Change in song rates between the 1st half

and 2nd half of the song, and (13) Change in inter-note interval rates between the

1st half and 2nd half of the song (Fig. 3.2).
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For species with more than one song type, the most frequently heard song types

were selected for the analysis. In turn, for each recording track, the clearest

phrase of the repertoire was selected for analysis. Appendix (1) shows the

spectrograms of the vocalisation of the 16 species included in the analysis.

3.5.3 Quantifying acoustic space

Principle component analysis (PCA) was used to analyse the vocalisation data.

Some of the acoustics features in the vocalisations were inter-correlated,

consequently, PCA was used to reduce the dimension of the dataset, while still

retaining its spatial characteristics (Peres-Neto et al. 2003). This method is robust

against the normality assumption of the data (Locantore et al. 1999), although the

temporal variables were normalised by log transformation. Frequency variables of

vocalisations were normally distributed. All statistical tests were done in SPSS v

18.0

Figure 3.2. Spectrogram of bellbird, Anthornis melanura, song, illustrating

some of the variables measured.
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3.5.4 Species distribution in the acoustic space

Nearest neighbour measurement provided a tool for describing the general spatial

distribution of bird vocalisations within the acoustic space defined by the extracted

principle components (PC). The Euclidean distances between vocalisations of

each species in the defined acoustic space were calculated. Because PCA

normalises the resultant principle components, it eliminates differences in scale

that result from different units of measurement. The nearest-neighbour distance

(NND) for each species is the distance to the closest neighbour in this acoustic

space (Peres-Neto et al. 2003).

Spacing patterns were considered at the species level, to determine whether the

acoustic community was clustered, random or over-dispersed in the acoustic

space following Luther (2009). Using the R score developed by Clark and Evans

(1954), the distances between nearest points and the distances that would be

expected by chance were compared. An R score approaching zero indicates an

extremely clustered distribution, R = 1.0 indicates a random distribution, while an

R > 1.0 indicates a more widely dispersed pattern than would be expected by

chance. R is the ratio of two statistics, the observed distance from the closest

neighbour to each point (ra), and the distance that would be expected by chance

(re). In a four dimensions space, the expected NND in a randomly distributed

population (re) = 0.60813/ ρ ¼ of density (ρ), and the standard error of the mean

distance to the nearest neighbour (σ (re)) = 0.55326/ ρ ¼. The volume of a 4-

dimensional hyper-sphere = π2 /2*r4 defined by the four extracted PC’s (see results

section) (Clark & Evans 1979). The radius was the Euclidean distance from the 4-

dimensional centroid of the acoustic community to the location of the species

farthest from the centroid. Outliers were not removed so the hyper-sphere in effect
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incorporated a buffer strip around the occupied volume, as recommended by

Donnelly (1978). Table 3.1 summarises the result of NND measurements.

To test how different species may weigh the different variables extracted by the

four principle components, the distribution of vocalisation characteristics on the

four-principle components extracted was examined. A 1-sample Kolmogorov-

Smirnov test was used to ascertain whether the distribution of bird vocalisations is

significantly similar to uniformity. Following Cardoso and Price (2010), the

significance at the lower tail1 was used to test whether the spacing of vocalisation

pattern within the community was more even than random drawing from a uniform

distribution (as could be the case if vocalisations have evolved from acoustic

competition among sympatric species).

3.5.5 Relation with body size and bill length

I obtained body weights and bill lengths of studied birds from Marchant et al.

(2006). When both sexes are known to sing, the mean values of males and

females were used, while for species in which only the male sang, the

measurements for males were used (Appendix 2). The distribution of body mass

was slightly right-skewed (Kolmogorov–Smirnov: Z = 1.29, n = 16, P = 0.073), so

was log transformed (after transformation, Z = 0.55, n = 16, P = 0.93). I tested for

a relation between body weight and each of the principal components using

General Linear Regressions.

1 For a lower tail test, the P-value is the probability of obtaining a value for the test
statistic as small as or smaller than that provided by the sample.



Chapter 3

39

3.5.6 Relation with singing post

Heights of singing posts for all birds were recorded, and the relation between

singing post and each of the principal components was examined using linear

regression.

3.6 Results

3.6.1 Acoustic space

Principle component (PC) analysis on the correlation matrix of the 13 variables

measured returned four principle components with eigenvalues greater than one,

which collectively explained 77% of the variation in measurements among species.

Table 3.3 summarises the PCA result and identifies the aspects of vocalisations

explained by each PC (bold font). PC1 explained 29.6 % of the data and it

reflected the frequency aspects of the vocalisation, maximum, centre, and the

quartile frequencies (Q1 and Q3). PC2 explained 22.6% of data and quantified the

temporal arrangement of the vocalisation, mainly related to longer vocalisations

and longer spaces between notes. PC3 related to songs with higher frequency.

PC4 explained the IQRZ. These four PCs formed the axes of the acoustic space

within which each of the 160 vocalisations produced by the 16 species studied

were located.
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3.6.2 Species distribution in the acoustic space (nearest-neighbour

distance)

The distribution of bird vocalisations was over-dispersed indicated by an R score

of 1.74 (Table 3.1). To examine the distribution of native and introduced species,

the mean nearest - neighbour distance (NND) was calculated for each of the

native and introduced species separately. The mean Euclidean distance measured

from the centre of the acoustic space for native birds (mean = 1.85, SE = ±0.23, n

Table 3.1. Loadings of vocalisation variables on each of the four principal

components (PC) with eigenvalues greater than 1.

Trait PC1 PC2 PC3 PC4

Variance explained 29.6% 22.6% 13.6% 11.1%

Eigenvalue 3.8 2.9 1.7 1.4

Lowest frequency .558 -.43 .147 -.236

Highest frequency .193 -.187 .936 .034

Delta frequency .024 -.036 .965 .104

Max. frequency .892 .199 .086 -.173

Centre frequency .900 .204 .046 .162

First quartile frequency .613 .029 .093 -.527

Third quartile frequency .864 .197 .069 .390

IQRZ .121 .171 .221 .853

Song duration .132 .941 -.003 .018

Number of notes .197 .929 -.075 .051

Interval rate .024 .936 -.054 -.028

Song rate -.193 -.264 -.003 -.029

Change in Interval rate .006 .151 .473 -.495

Trait loadings larger than 0.5 are in bold
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= 10) was significantly higher (one-tailed t test: t14 = 1.88, P = 0.04) than for

introduced species (mean = 1.15, SE = ±0.28, n = 6).

Table 3.2. Summary of the nearest neighbour distance measurements.

r ρ re ra R* σ (re)
1.46 .81 .59 1.03 1.74 .223

* R = ra / re, where (ra) is the observed mean nearest-neighbour distance and (re) is
the expected mean distance if individuals are distributed at random. re = 0.55/ρ1/3,
r is the radios of observed acoustic space, ρ is the density of the population in
number of individuals per unit area ρ, and σ (re) is the standard error of the mean
distance to the nearest neighbour.

Introduced species were distributed closer to the centre of the acoustic space (Fig.

3.3), indicated by smaller mean NND measured from the centre, while native

species were distributed towards the outer edge of the acoustic space.

Figure 3.3. Species distribution against PC1 and PC2 axes.
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The distribution of bird vocalisations on PC1, PC2, and PC3 indicated by

Kolmogorov-Smirnov tests (Table 3.3), were similar to uniform distribution, while

the distribution of bird vocalisations on PC4 was significantly different to a uniform

distribution. The distribution of species vocalisation on IQRZ (explained by PC4)

was found to be clustered in a narrow frequency distribution (mean = 0.84, SE =

±0.14 KHz, n = 16).

Table 3.3. One-sample Kolmogorov-Smirnov testing for distribution uniformity.

PC1 PC2 PC3 PC4
Kolmogorov-Smirnov Z 0.86 0.91 0.70 1.24

P value 0.23 0.19 0.35 0.04

The probability of the lower-tailed Z statistic is below 0.05, meaning that the

uniformity distribution is not a good fit model.

3.6.3 Factors that play a role in vocalisation structure

3.6.3.1 Frequency aspect

Principle Component 1 (PC1), which explained the frequency characteristics in the

song, regressed negatively on body weight 2 (β = -0.57, SE = ±0.11), t14 = -2.57, P

< 0.02), and negatively on singing post (β = -0.542, SE = ±0.65), t14 = -2.41, P <

0.03). Larger birds produced lower frequency vocalisations while birds that

vocalised closer to the ground used higher frequency vocalisations (Figs. 3.4 &

3.5).

2 In a simple regression, the standardised regression coefficient (β) is the

correlation between the predictor and dependent variables, and is thus

constrained to be between -1 and +1.



Chapter 3

43

Figure 3.5. The relationship between log body weight (g) and PC1 (linear

regression).

Figure 3.4. The relationship between log song post height (m) and PC1

(linear regression.

.
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A multiple stepwise regression model between PC1 and predictive variables (body

weight, singing post, and bill length) did not increase the fitness of the model (final

model: β = -0.57, SE = ±0.44), (F 14,1 = 6.6, P < 0.02) and the majority of the

variation in the data was explained by the body weight only.

None of the previous predictors had a significant regression on PC2 (the temporal

arrangement in the song) at P = 0.05 levels.

3.7 Discussion

This study investigated whether there is evidence that bird vocalisations might be

shaped under the effect of habitat selection on sound characteristics (Acoustic

Adaptation Hypothesis) (Marler & Slabbekoorn 2004; Ey & Fischer 2009), or under

the effects of the avifaunal community structure, in a way that reduces vocalisation

similarity (Acoustic Niche Hypothesis) (Krause 1987; Nelson & Marler 1990;

Nelson & Soha 2004). The NND measurements indicated an over-dispersed

pattern of bird vocalisations within the acoustic community. The over-dispersed

pattern within the acoustic space might indicate that vocalisations have evolved in

a way to reduce vocal competition, giving evidence on structuring at the

community level, in a way that reduces the overlap of similar sounds. Competition

may result in a shift of sound characteristics (Doutrelant & Lambrechts 2001), for

example, Seddon (2005) found that the songs of sympatric pairs of closely related

species are more divergent than allopatric pairs. Ambient noise in the habitat can

be a powerful selective force, leading to upward shifts of song frequencies among

species, or even within populations (Slabbekoorn & Peet 2003; Brumm & Slater

2006b).
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The acoustic adaptation hypothesis, reviewed by Barker (2008), predicts that

acoustic signals will have lower frequency, simpler structure, and slower pace in

densely foliated habitats compared to open habitats. By investigating the spatial

distribution of species on the four extracted principle components, the distribution

of bird vocalisations was seen to be clustered only on PC4, which explained the

inter-quartile energy range. The birds concentrated the amplitude (energy) within

their vocalisation in a narrow frequency band, rather than spreading it through a

broader range of frequencies. Concentrating in a narrow-frequency band may lead

to an increase in transmission distance with minimal degradation (Slabbekoorn et

al. 2009), and this feature seems suited to species living in dense forest. However,

there was suggestive evidence of uniformly distributed vocalisations on three of

the axes (PC1, PC2 and PC3), which characterised the duration, frequency, and

number of notes. This may have resulted from acoustic competition between

species resulting in regularly spaced phenotypes within the community (Chek et al.

2003). Although there were indications of structuring of vocalisation characteristics

on three principle components, Luther (2009) argued that bird vocalisations are

complex signals that vary in many dimensions and that there is little importance in

structuring vocalisation in bird communities. Newman et al. (2006) found that the

pressures on acoustic signals relate to sound transmission, and that sexual

selection may be relaxed, as suggested by a reduced response to playback of

dark-eyed junco, Junco hyemalis thurberi, songs in an urban population.

The prediction of the AAH is based on the hypothesis that vocalisations should

travel the maximum distance with minimal attenuation and degradation. However,

signals may be adapted for optimal, rather than maximal distances (Lemon et al.

1981; Nemeth et al. 2006). Maximising the transmission distance might not be

necessary or desirable, in cases where the intended receiver is nearby (Kroon &
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Westcott 2006), or when the transmission distance correlates with smaller territory

size (Brenowitz 1982), or if degraded signals might serve an intended purpose

such as ranging (Naguib & Wiley 2001).

Native species were distributed towards the outer edge of the acoustic space. The

distance between native species indicated by NND was higher than between

introduced species. The potential for introduced species to produce sounds that

disturb existing endemic acoustic niches is possible (Pijanowski et al. 2011a).

Introduced species or non-native vocalising species can mask the vocalisation of

native birds. This interaction between native and introduced species is termed

biophonic invasion by Pijanowski et al. (2011a).

Species richness may have a strong inverse relationship on song variability within

bird communities (Naugler & Ratcliffe 1994). A similar result was confirmed by

Luther (2009) in a study on the acoustic community of birds in a neo-tropical

Brazilian rain forest, characterised by a high species diversity, finding that the

distribution of bird songs was extremely clustered. Species richness usually

decreases with latitude (Gaston 2000), and the low species diversity in my study

area (16 species) may have reduced competition on acoustic signals and allowed

the birds to more readily explore available signals without strongly competing with

other species.

Divergence in bird vocalisations can also be driven by differences in environmental

selection pressures, which may even occur within the same habitat when species

occupy different forest layers (Kirschel et al. 2009). There was a negative

correlation between vocalisation post height and PC1 (maximum frequency

measurements). Song post height might influence sound transmission as the

vertical structure of the habitat changes due to vegetation stratification (Mathevon
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et al. 2005). Lemon et al. (1981) found that song frequency in 19 species of

Parulid warblers is positively correlated with singing height, high-pitched songs

being sung at higher song posts where interference by vegetation is expected to

be less. Antbirds (Thamnophilidae) in South American neo-tropical rainforests tend

to use song posts at different heights, each with different layer-specific

transmission and noise characteristics (Nemeth et al. 2001b).

The frequency aspect of bird vocalisations (PC1) was correlated with body size,

larger species using lower frequencies. The relationship between body size and

frequency has been documented across different bird species, e.g. Brenowitz

(1982); Ryan and Brenowitz (1985). Body weight did not correlate with any of the

other sound characteristics. Bill length constraints on bird vocalisations are less

often examined e.g., Laiolo and Rolando (2003); Seddon (2005), but bill size and

shape may influence temporal features of songs (Podos 2001; Seddon 2005;

Ballentine & Pfennig 2006). Bill length did not correlate with the frequency or with

the temporal aspects of avian sounds in the Zealandia forest community.

There is little evidence that the avian community affects the evolution of bird

vocalisations, especially in closely related species e.g. the Ficedula flycatchers

(Gelter 1987). Song evolution through sexual selection is thought to result in

species divergence rather than convergence (Irwin 2000). The chance that

unrelated species evolve very similar song is therefore likely to be small. However,

there is some evidence that similar songs may evolve in different lineages (Price

et al. 2007). The acoustic adaptation hypothesis predicts a relationship between

signal structure and vegetation density, however vocalisation properties can also

evolve as a by-product of habitat-related selection on body size and traits

associated with foraging (Barker 2008). Birds may adapt to their acoustical
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environment by evolving different vocalisation types to reduce acoustic

interference from other species or they may reduce the overlap with similar signals

by choosing different times and places to sing (Luther 2009).

The forest avian community at Zealandia is a mixture of native and non-native

species, and the vocalisations of these may have evolved under different habitat

selection pressures, imposed by the acoustic properties of the habitat, the avian

community and ecological or behavioural factors. Most of the non-native species

were introduced to New Zealand in the 1880’s (Lever 1987). Whether there are

variations in the vocalisations of established introduced species from their original

ancestors is not well understood, nor are the changes that might have

accumulated in their vocalisations since their introduction (Baker & Jenkins 1987).

Multispecies study approaches are vulnerable to the influence of confounding

variables or to chance, and the signal phenotype might be affected by various

forms of character displacement (Seddon 2005). Different species may weigh

vocalisation features differently, or may have different mechanisms of sound

production (Luther 2009). While it is not possible to be certain about the direct

cause of divergence in vocalisation characteristics in the Zealandia bird

community, the results are more consistent with the prediction of the ANH.

However, the birds focused their vocalisations in a narrow bandwidth presumably

needed for better transmission, which is consistent with the AAH.
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Chapter 4

Is there a “sound window” for avian communication in

Zealandia forest?

4.1 Abstract

Forests are a complex acoustic space, and as a result the cumulative changes in

bird vocalisations with distance are often difficult to predict. Knowing the acoustic

properties of the habitat is necessary when examining whether birds adjust the

structure of their acoustic signals to reduce the effect of habitat. The physical

acoustic characteristics of two types of forest in Zealandia are described, by

measuring attenuation, reverberation, and ground effect as a function of sound

frequency, distance, and speaker elevation. The maximum transmission range of

bird vocalisations of different species w also examined. Generated tones of

varying frequency and recorded bird vocalisations were broadcast in both pine and

conifer broadleaf forest. The results demonstrate that the exact nature of sound

transmission in forests depends on frequency sound, the relative height of the

singer above the ground, and the path along which the sound travels. Hence, a

“sound window” may not be a constant property of forests, because it can be

affected by multiple factors. There was a prominent sound window in the lower

frequency range, which was less affected by habitat, although some high

frequencies had similar average attenuation values to those of low frequency but

with more fluctuation. The ground effect was important in determining how well

different frequency ranges transmit. Birds may be able to use the acoustic

characteristics of their habitat to enhance their signal transmission.
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4.2 Introduction

Natural selection is considered one of the unifying concepts in ecological science

that shapes biological traits, hence, quantifying the source of selection in natural

populations is critical to understanding the evolution of a particular trait (Loreau

2010). The types of selection that may affect bird vocalisations are varied, and can

include, bill morphology (Podos 2001), body size (Ryan & Brenowitz 1985) and

intensity of sexual selection (Vallet & Kreutzer 1995). The structure of bird

vocalisations is shaped by a trade-off between such factors (Derryberry 2009). To

serve the main role of communication, however, vocalisations must transmit

effectively through the habitat before they can be shaped by other selective

pressures (Wiley & Richards 1982). The selection pressure on bird vocalisations

by habitat may have a substantial effect in shaping sound characteristics

(Catchpole & Slater 2008).

Structural changes that accumulate in transmitted sounds with distance are

generally the result of attenuation and reverberation imposed by the habitat

(Catchpole & Slater 2008). Attenuation of sound results mainly from three different

mechanisms: spherical spreading, atmospheric absorption, and scattering (Naguib

& Wiley 2001). The magnitude of these factors is not constant amongst habitats,

resulting in different optimal sound features associated with different habitats

(Kroodsma & Miller 1982). Spherical spreading is the decline in the intensity of

sound with the increase of distance it travels, and the basic expectation is that the

intensity of sound will decrease by 6 dB for each doubling of distance

(Slabbekoorn et al. 2002). Atmospheric conditions can also affect sound

transmission, as attenuation increases with increasing temperature, and is

reduced with increasing humidity (Wiley & Richards 1982).
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Obstacles in the forest (foliage, trunks, and branches) scatter the sound away from

the path between sender and receiver, which may result in greater attenuation in

denser broadleaved forests (Padgham 2004). Frequency ranges are affected

differently by scattering, with high frequencies being more prone to scattering than

low frequencies. This results in frequency-dependent attenuation (Padgham

2004). Reverberation is another factor that can affect especially sound

transmission in forests, for with many sound-reflecting surfaces, this is an increase

in the formation of echoes, which appear in sonograms as a smear (tail) following

each note (Padgham 2004). Reverberated sound results in irregular patterns of

sound ‘tail’ formation that can overlap with proceeding notes and change the

temporal structure of the signal (Wiley & Richards 1982; Wiley 1991; Naguib

2003). The duration of echoes and their relative amplitude are determined by the

interplay between attenuation and accumulation of reverberations (Slabbekoorn

2004b). Reverberated sound may cause a masking effect on closely spaced notes

within bird vocalisations but also may be advantageous to the sender and receiver,

when the reflected echoes amplify subsequent notes of the same frequency e.g.

long whistle notes (Embleton 1996). Birds can also use reverberations as a cue to

estimate the distance of the signalling bird (Slabbekoorn et al. 2002).

Vocalisations broadcast at low elevations are affected by interference between

sound traveling directly between the sender and receiver, and sound reflected

from the ground. This is known as the ground effect (Slabbekoorn et al. 2007). The

reflected sound waves may lead to attenuation at some frequencies or

amplification at others, depending on the differences in phase (Embleton 1996).

Sound waves can either cancel each other causing excess attenuation at certain

frequencies, or be additive and amplify the sound at certain frequencies. This will

depend on the path of direct and reflected sounds (Embleton 1996).
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The exact nature of sound transmission in a particular type of habitat depends

mainly on sound frequency, relative heights of the singer and receiver above

ground and habitat characteristics (Slabbekoorn et al. 2007). In line with this,

Morton (1975) found a sound window at around 1.6–2.5 KHz in woodland. Such a

window was not found in more open country. Subsequent studies suggested that

such a sound window may occur in a variety of other habitats as well (Catchpole &

Slater 2008). Birds in tropical forests may experience strong selection to produce

songs within the window of relatively quiet frequencies (1–4 KHz) to avoid masking

from the intense ambient noise created by tropical insects, although this will

depend on the particular habitat (Slabbekoorn 2004a). Ellinger and Hodl (2003)

found a sound window at 0.5–1.5 kHz on or close to the ground and that

attenuation rises smoothly with frequency increase. They also showed a low

frequency peak at or below 2.5 m.

This study is complementary to the community study presented in (Chapter 2). It

focuses on the habitat as a source of selection pressures on bird vocalisations and

endeavours to quantify the selection pressure imposed on the transmitted sound,

through broadcasting artificial tones and recording them at different distances

within the forest. I model the acoustic environment as it appears during natural

signalling by establishing a reference level of frequency-dependent attenuation,

degradation, habitat effect, ground effect, and elevation. The study was replicated

in two types of forest, indigenous broadleaf conifer coastal forest that dominates

Zealandia, and exotic pine forest, Pinus radiata, that also occurs there. Many bird

species occupy both types of habitat. Recorded bird vocalisations were used to

estimate the maximum propagation of different species.

The following questions were investigated:
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1 Is there a frequency range (sound window) associated with each forest type

present in Zealandia that is less affected by attenuation?

2 To what extent do the transmission properties of sound in the broadleaf

forest and the pine forest differ?

3 What frequencies are affected more from reflected sound near the ground,

and from reverberation?

4 What are the maximum propagation distance of the vocalisations of

different bird species?

5 Do bird vocalisations coincide with the sound windows determined for their

particular habitat?

4.3 Methods

4.3.1 Study site

The experiments were conducted in November 2010 to model the acoustic

properties in forests within Zealandia, a 250 ha sanctuary surrounded by a

mammal-proof fence within the city limits of Wellington, New Zealand (41°17.8' S,

174°45.3 'E). The sound transmission experiments were carried out in two

distinctly different forest types, pine forest, and a broad leaf evergreen forest. The

pine forest, dominated by Monterey pine, Pinus radiata, was located on the south

side of the sanctuary. The trees were approximately 50 to 55 years old, 40 m tall,

and had a mean diameter of 50 cm at 2 m height (Karori Wildlife Sanctuary Trust

1997). The understorey was dense at 1-2 m high and was dominated by

regenerating native trees and shrubs. The pine was the only species over 5 m tall,

and it comprised approximately 36% absolute cover in the overstorey (Moles &

Drake 1999). The second forest type is classified as coastal broadleaf evergreen

forest (Dawson 1988a), which is dominated mainly by mahoe, Melicytus
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ramiflorus, and fivefinger, Pseudopanax arboreus. There is a dense understory of

tree ferns, vines and shrubs, but few canopy emergent trees. The average tree

diameter at 2 m height was 0.18 m (Karori Wildlife Sanctuary Trust 1997).

4.3.2 Field techniques

Generated tones and recordings of bird vocalisations were broadcast from a

MIPRO MA-101 portable speaker at two heights, 0.5 m, and 3.0 m above the

ground. These elevations were chosen because an elevation of 3 m placed the

speaker above the surrounding understorey vegetation, and most of the birds

usually sing at heights around 3 m (personal observation). A 0.5 m elevation was

chosen to represent some birds that usually forage and sing close to the ground

(e.g. kiwi, robin, and saddleback). The broadcast sound was recorded

simultaneously using three sound recording packages (Song Meters SM2)

installed at 20 m, 40 m and 80 m away from the speaker to represent three

distance ranges (close, mid and far). The recorders were installed at 2.5 m above

the ground, and their height did not change with change of speaker height. A GPS

unit (eTrex 10) was used to measure the distance between the Song Meters from

the speaker and a compass was used to ensure all the recorders were facing

towards the speaker.

The same experimental design was replicated in the two forests. The experiments

were conducted on three successive days with similar weather conditions, fine

with few scattered clouds, the temperature being approximately 18 °C, the relative

humidity approximately 85%, and the wind was calm, except for occasional mild

breezes in the forest. The experiment was replicated five times at each elevation

resulting in 10 playbacks within each forest type.

4.3.3 Playback signal design
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Three variables were manipulated in this study: sound frequency, height of the

speaker, and habitat. The played-back sound consisted of 19 artificial tones of 0.4

s duration, produced by Adobe Audition 3.0. Each tone had a different frequency

but similar amplitude, the lowest frequency being 0.5 KHz, with a gradual increase

of 0.5 KHz in subsequent notes up to 10 KHz. Silence duration of 2 s duration

separated each note (Fig. 4.1). In addition to the generated tones, 18 vocalisations

of the 17 study species were included (Appendix 1), namely those 16 species

studied in chapter 2 plus a male and female little spotted kiwi, Apteryx owenii (to

represent birds that vocalise near the ground). High quality recordings were

chosen for the playback, and were played without any modification to their

amplitude.

4.3.4 Sound analysis

Figure 4.1. Raven window with waveform (upper), and spectrogram (lower)

of the 19 generated tones used in the experiment.
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To control for the recorder and the speaker effects, the sound was recorded 2 m

away from the speaker and used as a control, to compare the recorded sound

within the two habitats and at different elevations and distances. Broadcast sounds

were recorded by the Song Meters at 44.10 KHz and 16-bit sample rate. All

sounds were then band pass filtered with a FFT size 1024 Hamming window.

Attenuation at each frequency was quantified by measuring the amplitude (dB) of

each note using Raven Pro 1.4 software then subtracting that value from the

reference amplitude recorded 2 m away from the speaker. Reverberation was

quantified by measuring the amplitude in the echo (shown as a tail in the

sonograms) after the end of each note (Fig. 4.2).

The attenuation of bird vocalisations was estimated by measuring the amplitude of

vocalisation at different distances, the amplitude of a vocalisation being the

average amplitude of its syllables. The sound files recorded at 2 m were used as a

Figure 4.2. Spectrogram produced by Raven software showing the

reverberated sound (tail) of the generated tones used in the experiment in a

recording made in pine forest 40 m from a speaker at a height of 3 m.
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reference to compare the recordings at each distance. The maximum distance at

which the vocalisation could be detected was estimated from the point where the

mean amplitude of the syllables equalled the background noise, which was around

60 dB.

4.3.5 Statistical analysis

Attenuation graphs were produced by SPSS 18 and smoothed by piecewise-

polynomial function (spline). A One-way ANOVA was used followed by a Tukey

post hoc test (hereafter ‘Tukey’) to compare the effect of frequency on attenuation

within the same habitat and at different distances. The relative influences of

distance, habitat type, and elevation on sound amplitude were quantified using

linear regression analysis. The effect of elevation on certain frequencies was

compared using an independent sample t-test. Linear regressions were used to

model the effect of increased distance on the change of energy in bird

vocalisations, and these models were used to estimate the distance each

vocalisation could be recorded across the broadleaf forest. SPSS 18 was used for

all statistical analysis.

4.4 Results

4.4.1 Attenuation patterns of broadcast sounds in the broad leaved forest

(effect of frequency and distance)

The measured attenuation values of broadcast sounds (Fig 4.1) were normally

distributed at 40 and 80 m away from the speaker (Kolmogorov-Smirnov: P >

0.05), but not at 20 m (Kolmogorov-Smirnov: P < 0.01). There was significant

variation in attenuation at 40 m (Levene's test for homogeneity of variance: P <

0.01) but not at 80 m (Levene's test for homogeneity of variance: P = 0.53). The
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data at 40 m were not transformed because there was little need to test for the

homogeneity of variance1.

Attenuation varied as a function of frequency at 40 m (one-way ANOVA: F 19,80

=19.6, P < 0.01), 80 m (one-way ANOVA: F 8,36 = 4.1, P < 0.01) and at 20 m away

from the speaker (no statistical contrast can be drawn but see Fig. 4.3). The

plotted sound attenuations in Fig. 4.3 are likely to be the result of spherical

spreading and excess attenuation. A general pattern can be perceived on

frequency dependent attenuation at different distances from the speaker, with low

frequencies around 1 KHz attenuating less than at any other frequency at 20 m

(no statistical contrast can be drawn), 40 m, and 80 m (Tukey, P < 0.05). At mid

distance (40 m) from the speaker, there was no significant difference in

attenuation values of frequencies between 2-4 KHz (Tukey, P = 0.14). Among the

high frequency range (5-10 KHz), frequencies of 7.5 KHz had the lowest mean

attenuation (mean = 39, SE = ±5.3 dB), however this result was not significantly

different from the mean attenuation of frequencies 5 - 6.5 KHz (Tukey: P > 0.05)

because of the fluctuation in attenuation represented by the high standard

deviation (SD) (Fig. 4.4).

At further distance (80 m), there was no significant difference in the mean

attenuation values of frequencies between 1.5 - 3 KHz (Tukey: P > 0.05), and

frequencies higher than 3.5 showed significant increase in attenuation (Tukey: P <

0.05). Frequencies above 5 KHz were highly affected by attenuation and were not

detected (Fig. 4.3).

1 The homogeneity of variances assumption is usually not as crucial as other
assumptions for ANOVA, in particular in the case of balanced (equal n) designs.
Levene's test and Brown & Forsythe's test are not necessarily very robust
themselves (Glass & Hopkins 1996; Hill & Lewicki 2006).
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Attenuation fluctuated at different frequencies and at different distances (Figs. 4.3

& 4.4), although the overall variation observed was greater due to the increase in

attenuation with increasing distance. There was a positive correlation between the

increase in attenuation and the increase in SD (Fig. 4.4), particularly at 40 m from

the speaker (Table 4.1). At 20 m, much of the variation in attenuation appears to

be produced by reflected sound from the ground (ground effect) or from different

surfaces in the forest (see sections 4.4.4 & 4.5.3).

Figure 4.3. Mean frequency response (±SE) to propagation in broadleaf forest at

3 different distances, 20 m, 40 m, and 80 m, speaker elevation 3 m.
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A “sound window” can be defined as a frequency or a band of frequencies

bounded by a sharp increase in attenuation with a stable pattern of attenuation

(low SD) (Douglas et al. 1980). When attempting to determine a sound window

from Figs. 4.3 and 4.4, it was found that the 1 KHz frequency attenuated less at all

distances from the speaker. At 20 m, a sound window could be defined at 2.5-3.5

Figure 4.4. Variation in attenuation (SD) in response to frequency change,

measured in the broadleaf forest at three different distances, 20 m, 40 m, and

80 m, speaker elevation 3 m. The marked frequency ranges show possible

sound windows.
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KHz, 4 KHz, and 6.5 - 7 KHz. At each of these frequencies attenuation was less

and there was less variation in attenuation. At the mid distance of 40 m, a

narrower sound window could be defined between 1.5-3.5 KHz frequency with less

attenuation and low SD, while frequencies above 3.5 KHz showed a rapid increase

in attenuation (Fig. 4.3). At the further of distance 80 m, a narrower sound window

could be defined around 2 KHz.

Table 4.1. Summary of linear regression models of frequency and SD in

attenuation at 3 m speaker height in the broadleaf forest.

Distance
(m)

R2

value
Spectral
intercept
(dB)

Slope p value
(ANOVA)

20 0.08 1.2 1.2 0.23

40 0.53 2.9 0.73 0.00

80 0.15 2.1 0.4 0.29

4.4.2 Effect of forest type on sound attenuation

The habitat effect on different frequencies of sound was examined by modelling

attenuation in each of the two forest habitats, using linear regression (Figs. 4.5 &

4.6). The slopes of the linear regressions indicate the effect of increased

frequency on attenuation. The spectral intercepts of the linear models on the y-

axis reflect the minimum attenuation comparable across the two forest types and

within the same habitat across different distances (Padgham 2004). Table 4.2

summarises the linear models of frequency attenuation in the two habitats.
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Figure 4.6. Attenuation measured at 20 m, 40 m, and 80 m from the

speaker, within the pine forest. The speaker was at 3 m height from

ground.

Figure 4.5. Attenuation measured at 20 m, 40 m, and 80 m from the

speaker, within the broadleaf forest. The speaker was at 3 m height from

ground.
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Estimates of the 'goodness of fit' of the linear regression indicated by r2 values,

increased with increased distance from the speaker (Table 4.2). Frequency

dependant attenuation was obvious in the two habitats, with slopes of the linear

regression increasing with distance (Figs. 4.5 & 4.6). Frequency dependent

attenuation was greater in the broadleaf forest than in pine forest, indicated by the

higher slope values; they were about three times more in the broadleaf forest,

especially at 40 m and 80 m. The minimum attenuation indicated by linear

intercepts with the Y-axis was higher in the broadleaf forest and at all distances.

The loss in amplitude was more than 6 dB with doubling the distance, except

between 20 m and 40 m within the broadleaf forest, while it was about 15.5 dB

between 80 m and 40 m (Table 4.2).

Forest Distance r2 value Spectral
intercept

Slope P value
(ANOVA)

Broadleaf forest 20 0.39 4.9 1.6 < 0.001

40 0.77 12.7 4.1 < 0.001

80 0.74 27.7 7.5 < 0.001

Pine forest 20 0.24 0.82 1.0 < 0.001

40 0.25 9.3 1.2 < 0.001

80 0.47 19.3 2.1 < 0.001

Table 4.2. Summary of all the linear regression models of frequency

attenuation. The speaker was 3 m above the ground.
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In the pine forest, attenuation values were normally distributed at 40 and 80 m

(Kolmogorov-Smirnov: P > 0.05) but not at 20 m (Kolmogorov-Smirnov: P = 0.04).

There was significant variation in variances at 20 and 80 m (Levene's test for

homogeneity of variance: P < 0.01, P < 0.01 respectively). A one-way ANOVA was

used followed by a Tukey test to describe the attenuation pattern at 40 m only,

since at 20 m there was an obvious effect of reverberated sound from the ground

in the pine forest (see sections 4.4.4 & 4.5.4).

At 40 m in the pine forest, there was no statistical difference between attenuation

at 1.5 KHz, 2 KHz, 3 KHz, and 3.5 KHz (Tukey: P > 0.05), and these had the

lowest mean attenuation (Fig. 4.6). The 7 KHz frequency had the second lowest

mean attenuation, along with 0.5 KHz (Tukey: P < 0.05). There was no significant

difference in the mean attenuation of 2.5 KHz and frequencies between 4-7 KHz

(Tukey: P > 0.05).

4.4.3 Reverberation

The reverberation values in the broadleaf forest were normally distributed at 20 m

(Kolmogorov-Smirnov: P = 0.17), and at 40 m (Kolmogorov-Smirnov: P > 0.05).

The amplitude of the reverberated sound varied with frequency change at both 20

m (ANOVA: F 19,99 = 7.5, P < 0.01) and 40 m (one-way ANOVA: F 19,99 = 25.0, P <

0.01), energy in the reverberated sound decreasing with increasing distance from

the speaker (Fig. 4.7). At close distance (20 m) the frequency between 0.5 and 1.5

had the highest mean energy in the reverberated sound (Tukey: P < 0.05), while

there was no significant difference between the amplitude of reverberated sound

over the 2-5 KHz frequency range. At 40 m from the speaker, there was no

significant difference in the amplitude of the reverberated sound of frequencies
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between 1- 4 KHz (Tukey: P > 0.05). At (80 m) the amplitude in the reverberated

sound decreased dramatically with increased frequency (Fig. 4.7).

Linear regression was used to compare the effect of habitat on reverberation at 40

m at 3 m speaker height (Table 4.3). Amplitude of the reverberated sound

decreased with frequency increase, this pattern being more prominent in the

broadleaf forest (R2 = 0.80), while in the pine forest there was less variation in the

reverberated sounds at lower frequencies (R2 = 0.46), especially at the lower

frequencies of 1- 4 KHz (Fig. 4.8). In the pine forest, frequencies between 1-2 and

3 KHz had high mean reverberation values, while frequencies between 0.5-1.5

KHz had low amplitude in the reverberated sound (Fig. 4.8); frequencies of 2 and

3.5 KHz were less affected by reverberation. These same frequencies also were

Figure 4.7. Mean energy (±SE) in reverberated sound within the broadleaf forest.

Speaker height 3 m.
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less affected from attenuation 80 m away from the speaker (Fig. 4.6). In the

broadleaf forest, the frequency range of 0.5 - 1.5 KHz resulted in the highest

energy (dB) of reverberated sound.

Table 4.3. Summary of the linear regression model showing that reverberation in

the pine forest was higher in than the broadleaf forest.

Forest Distance
(m)

R2

value
Spectral
intercept

Slope P value
(ANOVA)

Broadleaf forest 40 0.83 92.2 -5.5 <0.01

Pine forest 40 0.34 112 -2.6 <0.01

Figure 4.8. Energy in the reverberated sound at different frequencies

measured at 3 m speaker height and 40 m from the speaker in the pine and

broadleaf forests.
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4.4.4 Ground effect

Attenuation was compared at two different elevations in the broadleaf forest and at

different distances (Fig. 4.9). At 20 m, low frequencies of 0.5 and 1 KHz

attenuated more near the ground (t-test: t8 = 8.4: P < 0.05 and t 8 = 25.0: P < 0.05,

respectively). Frequencies between 3-4 KHz (t-test: t8 =-3.7,-6.7,-26.6: P < 0.05)

and 5-6.5 KHz (t-test: t8 =-2.9,-3.1,-5.1,-9.1: P < 0.05) attenuated less near the

ground (0.5 m).

At 40 m, the reflected sound from the ground was apparent at frequencies

between 4.5 and 5.5 KHz, but the 5 KHz frequency attenuated significantly less at

0.5 m (t-test: t8 = -3.0: P = 0.02). At 80 m, there were no significant differences

between attenuation at the two elevations, the reflected sound of the ground and

attenuation having similar patterns at the two elevations (Fig. 4.9). A similar

pattern was found in the pine forest; at 40 m, lower frequencies (between 0.5-1.5

KHz) attenuated more near the ground than at 3 m (t8 = 8.5, 6.6: P < 0.05).

Frequencies 3 KHz and 5 KHz were attenuated to a lesser extent near the ground

(t-test: t8 = 7.0, -3.0: P < 0.05).
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Figure 4.9. Attenuation spectra in the dense evergreen broadleaf conifer forest

measured at two elevations, close to the ground (0.5 m) and at 3 m height across

different distances of 20 m, 40 m, and 80 m from the speaker.

4.4.5 Attenuation of bird vocalisations

The mean maximum frequency was less than 2 KHz for two bird species (tui and

female kiwi), with most of the broadcast bird vocalisations (11/18) having a mean

maximum frequency between 2 – 4 KHz. Four species had a mean maximum

frequency over 4 KHz, and the fantail had the highest maximum frequency of 7

KHz (Table 4.4). Linear regressions used to model the effect of increased distance

on the change of energy in bird vocalisations in broadleaf forest are summarised in

Table 4.4.
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Table 4.4. Summary of the linear models of attenuation of bird vocalisations for all

species studied in the broadleaf forest and pine.

Broadleaf forest Pine forest
Species maximum

F (KHz)
Intercept Slope Expected

distance (m)
Intercept Slope Expected

distance
(m)

Little spotted

kiwi (f)

1.5 115.8 -0.4 138.3 114.2 -0.2 298

Tui 1.9 127.9 -0.6 119.2 125 -0.4 172

Bellbird 2.3 119.4 -0.5 112.1 117 -0.4 280

Kaka 2.3 116.3 -0.6 96.1 115.6 -0.3 143

Little spotted

kiwi (m)

2.7 132.5 -0.8 94.1 121.2 -0.3 217

Saddleback 4.2 125.5 -0.7 89.2 122.1 -0.4 178

Song thrush 3.2 125.8 -0.8 82.6 121 -0.4 197

Whitehead 3.1 123.3 -0.8 80.0 121.2 -0.3 190

Kingfisher 2.9 118.9 -0.7 79.1 116 -0.3 176

Chaffinch 3.8 125.6 -0.8 76.9 123.4 -0.4 178

Robin 4.4 119.9 -0.8 74.1 117.3 -0.3 213

Greenfinch 3.6 117.9 -0.8 71.5 116.0 -0.3 183

Fantail 7.0 120.5 -0.9 67.4 119.2 -0.4 141

Silvereye 3.8 118.7 -0.8 67.3 112.4 -0.4 160

Dunnock 4.9 119.9 -0.9 66.7 114.4 -0.4 141

Blackbird 2.5 133.5 -1.1 66.2 125.1 -0.4 150

Stitchbird 5.1 106.1 -0.7 65.2 104.3 -0.4 108

Grey warbler 3.3 123.1 -.98 68. 121.1 -0.3 183

Most of the studied bird vocalisations were detectable at less than 100 m away

from the speaker. Kiwi (female), tui, and bellbird were the only species detectable
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at more than 100 from the speaker (Fig. 4.10). The maximum frequency used in

bird vocalisations and the predicted distances they travel in the forest were

negatively correlated (Fig. 4.10). The vocalisation of female kiwi had the highest

transmission distance of 140 m, while stitchbird, dunnock, and blackbird had the

lowest transmission distance of about 65 m.

In the pine forest, all vocalisations were detectable at more than 100 m away from

the speaker. Kiwi (female) and bellbird were the only species detectable at more

than 250 m from the speaker (Fig. 4.11). All bird vocalisations were detectable at a

greater distance in the pine forest than in the broadleaf forest. The increase in the

detectability distance in the pine forest was not consistent across the species

Figure 4.10. Expected transmission distance of bird vocalisations within the

broadleaf forest, with the speaker at 3 m height.
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studied, for example, the detectability distance for robin increased about 170 m but

only 55 m for kaka (Figs. 4.10 & 4.11).

4.5 Discussion

This chapter describes experiments that provide a background to the transmission

of physical sound in Zealandia in the two predominant forest types there, broadleaf

forest and pine forest. The results show that a forest is a complex acoustic space.

There was a significant effect on sound transmission of frequency, reverberation,

ground effect, forest type, and distance. Other factors can add to the complexity of

Figure 4.11. Expected transmission distance of bird vocalisations within

the pine forest, with the speaker at 3 m height.
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the forest acoustics, such as atmospheric absorption and wind that can produce

substantial variation over sound frequencies (Larom et al. 1997); the relative

elevation of sender and receiver (Nelson 2000); the amplitude of the broadcast

signal; and the density of the forest and leaf size (Patricelli & Blickley 2006). The

experiments conducted in Zealandia examined transmitted sound between sender

and receiver in a single direct pathway; however, this is not always the case in the

natural environment. The properties of the speaker and recorder might have

further influenced the observed pattern of sound propagation by being sensitive to

particular frequencies. Therefore, the findings of this study need to be examined

with these qualifications in mind.

4.5.1 Frequency dependent attenuation

The series of experiments in the broadleaf forest emphasise the dependence of

sound attenuation on distance and frequency (Padgham 2004). Frequencies less

susceptible to attenuation varied with distance, while the sound window available

for communication became narrower with increasing transmission distance. For

frequencies between 2-5 KHz, the attenuation was steadier closer to the speaker,

while at mid distance the sound window was limited to frequencies lower than 3.5

KHz, with frequencies below 2.5 KHz being more suitable for long distance

communication. Another sound window that might be suitable for mid and short

distance communication can be defined around 7 KHz. It had a relatively low

mean attenuation value and was more susceptible to variation in attenuation. This

might have resulted from wind turbulence, however, to which higher frequencies

are more susceptible (Larom et al. 1997). Smaller birds challenged by body size

constraints may take advantage of this high frequency sound window, e.g. the

fantail (Fig. 4.12).
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Figure 4.12. Attenuation, measured at two elevations, close to the ground (0.5 m)

and at 3 m height across different distances at 20, 40, and 80 m from the speaker.

in the broadleaf forest, compared with frequency and the frequencies used by

each species within the Zealandia forest. Developed from Fig. 4.9. Species name

code as in Fig. 4.10.

In terms of mean attenuation values, the results substantiate the presence of a

sound window restricted to lower frequency ranges; however, some higher

frequencies have mean attenuation values similar to that at lower frequencies. For

example, 5 KHz tones did not degrade more, on average, than the 3 KHz signals

(at mid distance). However, 5 KHz signals tended to be more variable. Birds may

adapt to variability in attenuation rate by having shorter vocalisations and a greater

repetition rate (song duration). Previous studies have examined the overall effect

of degradation on sound transmission in terms of signal design for long-range
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propagation, e.g. Daniel and Blumstein (1998); Nemeth et al. (2001); Nicholls and

Goldizen (2006). Adaptation of a vocalisation to the environment does not

necessarily mean a design for maximum transmission. There might be some cost

associated with increasing the propagation distance of a vocalisation, such as

attracting predators, or stimulating agnostic behaviour from territorial birds (Ward

& Slater 2005). This may lead us to think that birds produce sounds that only

transmit for a desired distance that might be beneficial to them. Therefore, from

the experimental results, there appears to be an optimal frequency suitable for

transmission to particular distance and birds may utilise frequencies in their vocal

repertories depending on the distance of the intended receiver.

The frequency dependent sound attenuation results reflect the acoustic features of

each habitat type. According to spherical spreading, sound amplitude is expected

to be reduced 6 dB with doubling the distance from a point source in free field

conditions (Forrest 1994). However, loss in amplitude with doubling the distance

was more than 6 dB in Zealandia. This may have been due to the variable nature

of the forest structure there. In general, the pine forest was less dense than

broadleaf forest (visual estimation). The attenuation in the broadleaf forest was

distinctly higher than in pine forest confirming that attenuation is greater with

increasing vegetation density. This was noted between open habitats and forests

(Waser & Brown 1986), and, within forests, between open and dense forests

(Padgham 2004), and in deciduous forest between “before” and “after” foliation

(Blumenrath & Dabelsteen 2004).

4.5.2 Reverberation

Reverberation caused irregular patterns of signal tail formation, probably because

of the heterogeneous distribution of obstacles in the environment. Variation in the
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exact location of the sender and receiver is likely to contribute to this. Generally,

the amplitude of the reverberated sound (tail amplitude) was determined by the

amount of attenuation at a particular frequency, lower attenuation rates causing an

increase in tail amplitude. In dense forests, narrow frequency band notes may be

both extended in length and amplified by reverberation so that the habitat works to

their advantage (Slabbekoorn et al. 2002). For example, the 2 KHz frequency

signal was less attenuated in the broadleaf forest and produced marked amplitude

in the tail that can enhance that frequency. Tui, bellbird, and kaka had a maximum

frequency around 2 KHz (Fig. 4.12) and used whistle notes at that particular

frequency (Appendix 1) with the notes being more elongated. Robin, silvereye,

greenfinch, and dunnock songs contained trill like notes and had a maximum

frequency around 4 KHz (Appendix 1), a frequency less affected by reverberation

(Fig. 4.8).

The amplitude of the reverberated sound in the pine forest was markedly higher

than in the broadleaf forest (Fig. 4.8) and some frequencies had high amplitude in

the reverberated sound that was 5-10 dB less than the original amplitude of the

tone (Fig. 4.7). This might have a detrimental effect on some birds that might

vocalise in the pine forest, causing masking of subsequent notes. In the pine

forest, frequencies between 4-6 KHz had a more stable reverberation pattern, and

this might provide a sound window for communication with less reverberation

effect, especially as attenuation of frequency is less in the pine forest than in the

broadleaf forest. Possible positive effects of reverberations on avian

communication in forests have also recently been suggested as distance cues,

which may be advantageous to both sender and receiver (Naguib 1996; McGregor

et al. 2000).
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4.5.3 Ground effect

This study shows the importance of the reflected sound from very low sender

elevations, as shown in other studies (Morton 1975; Michelsen 1983; Embleton

1996). Ground effect presumably has an important impact on communication of

birds foraging on the ground, e.g. North Island robin, saddleback, song thrush, and

blackbird, or on flightless birds, e.g. little spotted kiwi. Even though blackbird and

song thrush might not sing at low elevation, the location of the receiver might be

as important as the location of the sender. The attenuation of sound frequency

depended largely on the height of the sound source, and the distance between

speaker and recorder (Fig. 4.8). For the given conditions of 0.5 m speaker height,

2.5 m recorder height and 20 m recorder distance, the reflected sound from the

ground suppressed the signal at 1 KHz, while frequencies between 3-4 KHz and 6-

7 KHz were amplified (Fig. 4.8). Male little spotted kiwi and saddleback seem to

employ this ground effect to enhance their vocalisations (Fig. 4.12). Female little

spotted kiwi on the contrary used a frequency around 1 KHz that is supressed by

the ground effect; presumably female calls have less importance in long range

communication such as territorial defence or male contact. At mid distance, most

frequencies attenuated more near the ground, probably because of the denser

understory cover, however the sound reflected off the ground amplified the 5 KHz

frequency (Fig. 4.12). North Island robins seem to utilise this small sound window

(Fig. 4.12). Other studies have varying results on the frequency band most

affected by sound reflected off the ground. Marten et al. (1977) and Cosens and

Falls (1984) found that 1 KHz and 3 KHz bands present a minimal excess

attenuation because ground effect is reduced and 1 and 2 KHz are good

transmission frequencies. Sakai et al. (2001) found that in a deciduous forest,

reflected sound from ground and direct sound meet up at 40 m from the source.
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The different equipment used in my experiments might have caused different

results, while the angle of the speaker or recorder might have further affected at

the direction the sound will travel.

4.5.4 Attenuation of bird vocalisation

Brenowitz (1982) notes that estimating a signal’s actual range and the range of

information coded in a given set of acoustic signals, gives us a better

understanding of the distance of the intended receiver. This invokes the idea of an

active space that refers to the area around the sound source over which the signal

remains detectable and is recognisable for potential receivers. Avian studies use

auditory signals in a range of contexts, e.g. population censuses, or using

automated sound recorders with an array of microphones to monitor birds by their

distinctive vocalisations. Such detection methodologies could be affected by

changes in transmission characteristics of different forest species vocalisations

affecting their detection, so this can have important implications when monitoring

bird populations (Desante 1986; Haselmayer & Quinn 2000). Experimental work

has potential application to correcting for distance and recognition bias when

estimating bird species through point counts or audio techniques.

There was a negative correlation between the maximum frequencies (frequency

with highest amplitude) in bird vocalisations and the maximum distance the sound

travelled, although the result was obtained from a transmission experiment limited

to particular experimental conditions (fixed speaker and receiver heights). Other

factors besides attenuation and degradation might also affect the detectability of

vocalisations, such as their loudness (amplitude), for example, grey warbler,

whitehead, song thrush and kingfisher had a maximum frequency around 3 KHz,

however the transmission distance of their vocalisations ranged from 65 m to 85
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m. The maximum amplitude of vocalisations can be constrained by body size, and

a weak positive correlation between amplitude and body size was documented by

Brackenbury (1979) in a comparative survey of 17 songbird species. However,

there were inconsistencies with the tiny winter wren, Troglodytes hiemalis, which

weighs about 10 g, produced very loud songs averaging 90 dB, whereas the much

larger blackbird, Turdus merula, weighing about 96 g only reached 87 dB on

average (Marler & Slabbekoorn 2004).

I did not examine the correlation between vocalisation amplitude and body size,

because a reliable measurement of sound amplitude requires standardising

background noise and the social context of the vocalising bird, and these can be

best manipulated under laboratory conditions (Brumm 2009). However, there are

multiple selection pressures other than those specifically related to body size that

might cause variation in song output level.

High frequency sounds in particular can be beamed in one direction, resulting in a

longer transmission distance (Dantzker et al. 1999). For low frequencies, it is more

difficult to restrict the beam of radiating sound energy, especially with a small bill

(Slabbekoorn 2004b). Acoustic signals can be expected to evolve so that their

active space is related to the optimal distance for accomplishing their

communicatory function (Lemon et al. 1981). For some signals, this may be ‘the

further the better’, but for others a distance of only one or two territories’ may be

optimal.
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Chapter 5

Chatter song harmonics in the North Island saddleback,

Philesturnus rufusater: do they play a role in ranging?

5.1 Abstract

Birds that counter-sing for communication and territorial maintenance need to

localise the source of sound in order to promote an appropriate intra-specific

response. Harmonics have received little attention as distance cues. Here, we

investigate their role in the chatter song of the North Island Saddleback using

playback experiments on wild birds. We test whether the relative amplitude of

harmonics serves as a distance cue, and whether a change of harmonic

composition of the chatter song has an effect on a territorial bird’s response and its

likely ability to estimate the distance of the signalling individual. Saddlebacks

exhibited stronger responses to playback songs with more relative energy within

higher harmonics, suggesting that these are perceived as coming from a nearby

individual. Saddlebacks took longer to respond and counter-sang less to chatter

songs with more relative energy in lower harmonics, suggesting that they were

perceived as coming from a distant bird. We also found that Saddlebacks

responded differently to songs from which different harmonic frequencies were

removed (muted). Muting the harmonics with the highest amplitude did not affect

the birds’ ability to locate the speaker. However, birds were unable to locate the

speaker accurately when muting other harmonic bands, suggesting their greater

importance as distance cues.
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5.2 Introduction

Acoustic signals play a significant role in animal behaviour, conveying information

about signalling individuals involved in intra-specific interactions, such as repelling

rivals in territorial defence or indicating the fitness of singing males to females

(Krebs et al. 1978; Catchpole et al. 1984; Buchanan and Catchpole 1997; Slater

2003; Catchpole & Slater 2008). The distance of a signaller has biological

significance, affecting interactions within and between sexes, and hence it should

be important to have it encoded in the individual’s signal in some way. For bird

song, the receiver should be able to use these cues to estimate the distance of the

signalling individual, a behaviour known as ranging (McGregor & Krebs 1984).

Correct estimation of distance is important in receiver response for it can lead to

avoidance of unnecessary or dangerous interactions or to the better location of

mate, or it may promote aggressive responses to defend a territory when a rival is

nearby (Richards 1981; McGregor et al. 1983; McGregor & Krebs 1984; Naguib

1995).

Few studies have focused on the effect of frequency in ranging, though relative

intensities of high frequencies have been used to estimate the distance of a

signaller, e.g. Carolina Wrens, Thryothorus ludovicianus (Naguib 1995, 1997b).

The combination of frequency-dependent attenuation and reverberation can also

give information about the distance of the signaller (Naguib et al. 2000). Again, few

studies have focused on the role of harmonics (notes with multi-frequency bands)

in ranging (but see e.g. Aubin & Jouventin (2002)), although other aspects of

harmonics function have been investigated. Both Zebra Finches, Taeniopygia

guttataI, and Budgerigars, Melopsittacus undulates, were able to detect slight

mistuning of one of the harmonics in a simulated female Zebra Finch contact call



Chapter 5

81

(Lohr & Dooling 1998). In Whooping Cranes, Grus Americana, harmonics provide

acoustic cues to individuality and body size (Fitch & Kelley 2000), and in Red-

winged Blackbirds, Agelaius phoeniceus, lower frequency elements of song are

essential for species recognition in whereas high frequency elements are not

(Brenowitz 1982).

As the sound of a bird’s vocalisation travels in the habitat, it is subject to

degradation. Changes that accumulate in the songs are the result of reverberation,

amplitude fluctuation and frequency-dependent attenuation (Slabbekoorn et al.

2002), with higher frequencies being more susceptible to degradation (Padgham

2004). Playback experiments on birds in natural conditions demonstrate that

reverberated songs are judged to be further away than un-degraded songs

(Fotheringham et al. 1997). Birds approach closer towards a loudspeaker playing

reverberated song or even fly beyond the loudspeaker (Wiley & Godard 1996).

Relative intensities of high frequencies can also be used in bird song ranging

(Naguib 1995, 1997a). Combinations of reverberation and frequency-dependent

attenuation may therefore serve as distance cues (Naguib 1996). Amplitude varies

more with weather than reverberation or frequency-dependent attenuation

(Richards 1981), so changes in amplitude may provide a less reliable clue for song

ranging. Nevertheless, some species use overall amplitude as a relative cue for

ranging conspecific songs (Naguib 1997a; Nelson 2000).

Different syllables in bird songs can have different spectrographic form, whistles

being a common type in which the energy is concentrated at a single frequency

that may change temporally during utterance. Another type comprises multi-

frequency bands of harmonics where the energy is distributed into more than one

frequency, and where higher frequencies are integer multiples of the fundamental
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frequency. The North Island Saddleback, Philesturnus rufusater (hereafter

‘Saddleback’), is a member of the endemic New Zealand wattlebird family, the

Calleadidae. Saddlebacks stay within their territories and defend them all year-

round. Two subdivisions of loud Saddleback song are recognised; male rhythmical

songs, used exclusively by site attached pair bonded adult males with each male

having one to four patterns (Jenkins 1978), and chatter songs, being more

common in a single bird’s repertoire, and uttered by both sexies throughout the

year (Jenkins 1978, Parker et al. 2010). Chatter songs appear to be important in

territorial maintainance (Ludwig & Jamieson 2007, Jenkins 1978). Quieter songs

are used for pair bonding and can only be heard at close distance, avoiding

agonistic behaviour between residents that would result from louder long distance

signalling (Jenkins 1978). Familiarity with particular male rhythmic song affects

Saddleback response in playback experiments (Parker et al. 2010). Hence, this

study focussed on the role of harmonics in the common chatter song, which is less

likely to vary spatially within the study area and is given by both males and

females (Jenkins 1978; Parker et al. 2010; pers. obs.). The chatter song consists

of a set of repeated notes varying in number from 3 – 40, all of them consisting of

sets of harmonics (Fig. 5.1a). The fundamental frequency (F0) is around 1.5 KHz,

and has the lowest energy compared to other harmonics. The first harmonic (H1)

is around 3 KHz, while the second harmonic (H2) is around 4 KHz and is the

dominant frequency where most song energy is present. Higher harmonics, over

4.5 KHz, have lower energy and are more susceptible to attenuation.

Pitch is the perception of frequency, and in tonal bird song pitch is often a direct

function of the fundamental frequency (Lord et al. 2009). It can also be determined

by harmonics in the upper frequency range that have greater energy than the

fundamental, hence pitch may be relative with respect to F0 (Lord et al. 2009). In
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humans, F0 affects the judgement of both voice quality and recognition (Handel

1995). In other primates, removing the harmonics above the fundamental had a

greater effect on the perception of sound than removing the fundamental alone,

e.g. Japanese Macaques, Macaca fuscata (May et al. 1989) and Cottontop

Tamarins, Saguinus Oedipus (Weiss & Hauser 2002).

Figure 5.1 Spectrograms (left) and power spectra (right) of 8 s saddleback

song sample used in playback experiments. (a) control (un-modified song)

showing the fundamental frequency (F0) and the harmonics (H1, H2, HH), (b)

amplified lower harmonics (ALH), (c) amplified higher harmonics (AHH). The

darkness of the band represents the relative amplitude.
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Here I explore whether the Saddleback, uses harmonics as a cue for distance by

observing the birds’ responses to artificially modified chatter song segments using

playback experiments. Given that higher harmonics are more susceptible to

attenuation than lower frequency (Mark 2004), songs with relatively more energy

in higher harmonics are predicted to produce a greater response than songs with

relatively more energy in the lower harmonics, when broadcast with similar

amplitude and from the same distance (Brumm & Slater 2006). Further, I

investigate whether the Saddleback is sensitive to changes in the harmonic

composition of its chatter song, and how it responds to songs from which some

harmonics are removed. Since muting any of the harmonics affects the overall

pitch and the energy in the song (Darwin et al. 1994), this results in different

transmission properties of the song. I predict that modified songs with muted

harmonics will give a false cue of the broadcast location and that this will affect the

distance to which the birds approach the speaker. Since the fundamental

frequency can be related to body size across different species (Ryan & Brenowitz

1985; Gil & Gahr 2002), muting F0 might be less stimulating to a Saddleback

looking for the source of the sound, as it might indicate a smaller rival (Ryan &

Brenowitz 1985; Gil & Gahr 2002). Since harmonics with higher energy transmit

further, we predict that muting harmonics with high energy (H1, H2) will have more

effect on song ranging, and that birds will be less able to locate the speaker. Since

HH bands attenuate more when transmitted in the forest, and the Saddlebacks will

be accustomed to this, we predict that muting HH will not affect their ability to

locate the speaker.

5.3 Methods

5.3.1 Study site
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The experiments were conducted on the North Island Saddleback over March-

April 2011 in Zealandia, a 250 ha native forest sanctuary surrounded by a

mammal-proof fence within the city limits of Wellington, New Zealand (41°17.8'

S,174°45.3 'E; see Fig. 5.2).

5.3.2 Playback signal design

The modified natural chatter song extracts used in the playback experiments were

recorded in 2009 from the same population using a Marantz model PMD670

portable solid-state recorder with sampling frequency of 44.1 kHz and 16-bit

sample size. One good quality chatter song recording was selected to produce the

Figure 5.2. Location of study area and experimental sites at Zealandia

sanctuary, Wellington, New Zealand. The inset shows the sanctuary with the

two lakes (black) and trails within.
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modified songs using Adobe Audition 3 and Raven Pro 1.4 software. We were

unable to confirm the sex of birds attracted by the playback sounds, except for

those that were colour banded. For experiment 1, to test the response to

modifications in harmonics intensity, two types of modification were made (Fig.

5.1): (1) amplification of lower harmonics (ALH) with the attenuation of the higher

harmonics, so that the overall energy in the song remained unchanged, and (2)

amplification of higher harmonics (AHH) with reduction of the energy in the lower

frequency harmonics. We used the unmanipulated song (Fig. 5.1a) as the control.

All three-song types had the same amount of energy (125 dB) but with differing

amplitude distributions across the frequency spectrum. All songs used in the

playback experiments had 5 s duration. For experiment 2, to test the response to

muted harmonics, the song was modified by muting each of the F0, H1, H2, and

HH harmonic bands (Fig. 5.3). The same unmodified song was used as a control

in both
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experiments.

5.3.3 Playback field protocol

The playback design consisted of two speakers, 20 m apart from each other (Fig.

5.4). One speaker (A) was a Sony portable RDPM5iP speaker, placed in the forest

at 3 m height, and used to first attract the bird by playing unmodified song,

ensuring that it was consistently positioned at a similar distance from the second

speaker (B). This second speaker was a Mipro MA-101, placed at 2 m height, and

camouflaged by leaves to prevent the bird from acquiring visual cues of its

location. When the bird was within 2 m from speaker (A), we allowed 2-4 minutes

for the bird to settle, and then each stimulus was played once from speaker B. If

on any occasion two birds were simultaneously attracted to speaker (A), then the

experiment was terminated for that site.

Figure 5.3. Power spectra of four 5 s song samples modified for use in

experiment 2, showing muted fundamental frequency (F0), muted first

harmonic (H1), muted second harmonic (H2), and muted higher harmonics

(HH).
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Figure 5.4. The experimental setup and speaker positions used in the forest at

Zealandia.

After each stimulus, the unmodified song from speaker A was broadcast to bring

the bird to the same starting position. We repeated these procedures until all the

modified songs had been played, allowing 10-15 min between playbacks and

randomising the order in which each stimulus was played for different birds to

eliminate any chance of the targets acquiring more location cues about the source

of the sound. Thirteen birds were tested at 13 sites each at least 400 m apart to

provide a substantial degree of vocal isolation between experiments (Fig. 5.2). We

tested three birds each day, subjecting them to experiment 1 only, after all birds

were tested, we subjected birds to experiment 2, allowing at least four days

between the two experiments.

In experiment 1, each subject received six playbacks of the three chatter song

types, (ALH, AHH and control), presented in random order (two replicates). Two

responses were measured: (1) time (s) to the first vocal response (counter-singing

the stimulus) measured from the moment of the start of the stimulus, and (2)

counter-song duration (s) in response to the stimulus. In experiment 2 each



Chapter 5

89

subject (N=12) received five playbacks of songs with muted harmonics (F0, H1,

H2, HH and control) presented in random order. Five responses were measured:

(1) vocal response to the stimulus (yes, no), (2) time of the first vocal response (s),

(3) time until first flight (movement) towards the speaker (s), (4), distance (m) of

the bird after 30 s, and (5) the closest distance (m) to speaker B within 2 min,

measured from speaker A. A Marked 20 m rope was used to measure the

approach distance of the bird.

The effect of modified song types on the measured bird response was examined

using a General Linear Model (GLM) followed by Tukey honestly significant

difference (HSD) to identify significant differences between responses to each

stimulus. SPSS 18 was used in all statistical tests. In both experiments, the

measured responses were the dependent variables, the stimulus and the order

they were played were the fixed factors. Bird identity was entered as a random

factor to take into account repeated measurements on individuals and intra-

individual variance (Little et al. 1991). All values reported in the results are means

±SE.

5.4 Results

Experiment 1: the response to modifications in harmonics intensity

Most birds (12/13) responded to the three song types, only one showing no

interest in the playback. The response of all 12 birds was swift and aggressive, all

counter-singing to the stimulus and then approaching the speaker. The order in

which the stimulus was played did not have an effect on the first vocal response (F

2,11 = 1.29, P = 0.28) nor on counter song duration (F 2,10 = 0.83, P = 0.44).

Saddlebacks responded to the (control) playback by counter-singing soon after the
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stimulus had ended (mean ±SE, 5.7 ±0.3 s, N = 12), with a counter-song duration

(mean ±SE, 5.1 ±0.3 s N = 12), about equal to the stimulus duration of 5 s. Birds

took longer time to counter-sing the ALH playback (mean ±SE, 9.0 ±1.1 s, N = 12)

and the counter-song duration was shorter (mean ±SE, 4.6 ±0.2 s, N = 12) (Fig.

5.5).

Figure 5.5. Time until the first vocal response, and counter-song duration for all 12

saddlebacks tested in experiment 1. Error bars indicate 95% standard errors.

There were significant differences in the response time (F 2,11 = 19.9, P = 0.03)

and counter song duration (F 2,10 = 32.7, P < 0.01) between stimulus types (Fig.

5.5). Birds responded significantly faster to the AHH playback compared to the

ALH playback (Tukey, P < 0.01), but not to the control (Tukey, P = 0.72). Two

birds counter-sang to the ALH playback 17-21 s after the end of the stimulus.
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Removing these two extreme responses from the analysis did not affect the

significance of the result (F 2,9 = 11.85, P < 0.01) and birds responded faster to

AHH than ALH (Tukey, P < 0.01). Counter-song duration in response to the AHH

playback was significantly longer than to the ALH playback (Tukey, P < 0.01) and

to the control playback (Tukey, P < 0.01) (Fig. 5.5).

Experiment 2: the response to muted harmonics

Most birds (12/13) counter-sang to the unmodified control chatter song, while only

four, six, one, and three responded to songs with muted F0, H1, H2 and HH

playbacks respectively. Change in harmonic composition of the song by muting

selected harmonics therefore caused a change in the vocal response of

Saddlebacks, with significant differences between song types and whether or not

Saddleback would counter sing the stimulus (F 4,11 = 6.4, P < 0.01). All song

playback types captured the attention of the targeted birds and stimulated them to

approach the speaker. The control stimulated the bird to counter sing after the

stimulus ended and then to fly towards speaker B within 5-10 s (Fig. 5.6). The

mean time of the first flight differed significantly with changing the stimulus, (F 4,11

= 9.2, P < 0.01). Multiple comparisons revealed that F0, H1 and HH playbacks

stimulated the bird to search for the source of the sound faster than H2 and the

control playbacks (Tukey, P < 0.05). Nevertheless, there was no significant

difference between the response to F0, H1 or H2 and control playbacks (Tukey, P

> 0.05).
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Figure 5.6. Mean times to the first flight towards the speaker in response to

playback song types in experiment 2 (control and muted F0, H1, H2, HH song).

Error bars indicate 95% standard errors.

All the birds moved towards speaker B (Fig. 5.7) after stimuli were played. The

mean distances at 30 s differed with change of stimulus (F 4,11 = 54.8, P < 0.01).

Distances after two minutes were also significantly different (F 4,11 = 100.36, P <

0.01). Subjects moved significantly faster towards the speaker (expressed by the

distance at 30 s) when presented with the control and H2 songs compared with

the other playback song types (Tukey, P < 0.05). H1 and HH responses were

significantly slower than F0, H2, and control playbacks (Tukey, P < 0.05). There

was no significant difference between the response to F0 and H1 playbacks

(Tukey, P = 0.15).
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The 12 Saddlebacks were able to locate the speaker (indicated by the final

distance from the speaker within 2 min) when presented with the control chatter

song type, approaching within a mean (±SE) of 0.1 (±0.3) m of the speaker B.

Subjects over flew the speaker when presented with the H2 song type and were

within a mean (±SE) of 3.4 (±0.7) m from speaker B, significantly different from the

control song type (Tukey, P < 0.05). The distance birds approached the speaker in

response to the F0 song type (mean ±SE, 7.3 ±0.6 m) was significantly less than

the control and H2, but higher than H1 and HH (Tukey, P < 0.05). Subjects stayed

within similar distance (Tukey, P = 1.00) in response to the H1 and HH playbacks

Figure 5.7. Distance of target saddleback after 30 s and closest distance to

speaker B within 2 min. in relation to different playback song types in

experiment 2 (control and muted F0, H1 H2 HH song). Error bars indicate

95% standard errors.
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(means ±SE = 9.3 ±0.5 m and 9.2 ±1.0 m respectively), significantly different from

F0, H2 and control playbacks (Tukey, P < 0.05).

5.5 Discussion

We found from experiment 1 that Saddlebacks exhibited stronger response

towards chatter songs with more relative energy in the higher harmonics than

towards chatter songs with more energy in the lower harmonics. The former can

be interpreted as coming from a closer mate or rival and thus leading to an

increased response, as demonstrated by the shorter time to call back and the

longer counter-song duration. The Saddleback presumably modified its response

according to its perception of the proximity of the sound source in a cost effective

way, by reducing the counter song duration in response to songs that appeared to

be further away, or by increasing its response to songs that appeared closer.

Songs used in the playback experiments were broadcast from the same distance

and with similar overall amplitude, allowing similar amounts of reverberation and

amplitude fluctuation to occur, so it seems less likely that the Saddleback would

obtain distance cues from these factors, as found in previous studies showing

birds use frequency as a cue for distance (Naguib 1995, 1997a; Naguib & Wiley

2001). Our results suggest that the Saddleback is less sensitive to a change in

relative harmonic amplitudes than to a change in harmonic composition. All

individuals responded vocally to signal playback in experiment 1, but their

response varied significantly in response to muting any of the harmonics.

Saddlebacks were able to differentiate clearly between different harmonics in their

chatter song. There was variation between vocal responses of individuals,

however, although all muted playbacks prompted the bird to look for the speaker.
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The Budgerigar and Zebra Finch can both detect mistuned harmonics, and with

greater acuity than humans, indicating that harmonics can have an important role

in communication, and might potentially encode significant information about the

signaller (Lohr & Dooling 1998). Further, harmonics may be used as vocal

signatures for individual discrimination, while they can also reveal such information

as caller age (Fitch & Kelley 2000), sex or reproductive maturity (Marion 1977;

Fitch 1999) and size, as proposed by the size exaggeration hypothesis (Fitch

1999).

We have not addressed the specific role of each harmonic in the perception of the

song, but have rather focussed on the role of harmonics in ranging. An

unexpected result was that chatter songs with muted H2 (maximum frequency)

stimulated Saddlebacks to a faster flight towards the speaker, although the birds

failed to vocally respond and were unable to locate the speaker. This suggests

that H2 had little use in ranging, but might contain information about bird identity

that stimulated the bird to look for the source of the sound. The birds were unable

to locate the speaker with muted F0, H1 and H2 playbacks. We found no

significant difference in the final distance to speaker B across these muted song

playbacks, so the complete set of harmonics might be necessary to localise the

source of the sound. Considering the high energy in the second harmonic (H2)

compared with any of the F0, H1 and HH options, the Saddleback appears to use

amplitude as a relative cue of distance, but not as an absolute cue for ranging,

since the final distance towards the speaker was significantly lower for H2 than for

any of F0, H, and HH song playback types.

Factors that may influence frequency patterns in bird song include bill gape and

vocal track filtering. Some birds are able to produce higher frequencies when
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increasing the bill gape during song production; this was shown in studies on

White-throated Sparrow, Zonotrichia albicollis, Swamp Sparrow, Melospiza

georgiana (Westneat et al. 1993), and the Song Sparrow, Melospiza melodia,

(Podos et al. 1995). In Zebra Finches, the fundamental and maximum frequencies

were highly correlated with bill gape, however this had little effect on harmonic

composition (Goller et al. 2004). Tracheal length can also affect song frequency,

Fitch (1999) proposing that tracheal elongation lowers the frequencies of

harmonics but has little effect on the fundamental frequency. Some passerine

species, such as the Trumpet Bird, Phonygammus keraudrenii, exhibit elongated

tracheae which are assumed to lower the pitch of the vocalisations (Clench 1978).

Modification of harmonic structure might have biological implication, for example

adaptation to the changing in transmission properties of the habitat with different

season (Naguib 1996), or exaggerating the bird’s apparent size (Fitch 1999; Fitch

& Hauser 2003). The effect of bill gape and tracheal elongation on harmonics in

Saddleback song are not studied and worth further investigation.

My experiments on the Saddleback support previous studies about the role of

relative frequency attenuation in ranging (Naguib 1995), highlighting the

importance of harmonics as distance cues in Saddleback chatter song, the birds

differentiating between songs with different harmonic composition and responding

to them accordingly. More detailed acoustic experiments and analysis, facilitated

by developing acoustical software packages, are needed to further explore the role

of each harmonic in Saddleback communication, such as their importance as

individuality cues, fitness indicators, and in individual location within the territory.

Further investigations could also extend to the more complex and varied male

rhythmical songs, where distance cues are again likely to be of importance

(Jenkins 1978, Parker et al. 2010)..
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Chapter 6

Song thrush repertoires in Zealandia: have they diverged

from their counterparts in Europe?

6.1 Abstract

Following the introduction of birds to a novel environment, to what extent their

songs have changed? I investigate this question in a New Zealand population of

the song thrush, Turdus philomelos, first introduced to the country in 1862 from the

United Kingdom (UK). Songs from eight individuals from our study site at the

Zealandia sanctuary in Wellington were compared with those from eight

individuals in the UK. Syllables within each song sample were visually identified

and coded and their physical characteristics measured. Song diversity was

measured between the two populations using univariate analysis, while physical

measurements of the song syllables were compared using multivariate analysis.

The repertoire sizes of the Song Thrushes sampled in NZ were larger and more

varied than those recorded in the UK, with more syllables delivered with less

repetition. In addition, there were more syllables unique to NZ birds than there

were syllables unique to UK birds. Possible reasons for these differences are

discussed.
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6.2 Introduction

Variations in song and different dialects within a bird species have been described

across a range of different geographic scales (Mundinger 1982; Lynch 1996;

Slabbekoorn & Smith 2002a). Micro-geographical variation is related to

neighbouring groups of birds which potentially interact with each other, while

macro-geographic variations arise in isolated populations or in individual birds that

remain within the same area (Leader et al. 2000). Changes in dialects between

areas can be sharp, with sudden switches from one song type to another e.g.

saddleback (Jenkins 1978) white-crowned sparrow, Zonotrichia leucophrys

(Baptista 1975) corn bunting, Emberiza calandra (McGregor 1980), or they may be

more gradual, where shared song dialects may occur in the contact zones e.g.

orange-tufted sunbird, Nectarinia bouvieri (Leader et al. 2000).

Explanations given to explain song variation are varied, including the suggestion

that new dialect patterns emerge in response to habitat selection pressure for

optimal transmission through the acoustic environment (Hunter & Krebs 1979;

Handford & Lougheed 1991; Doutrelant et al. 1999; Slabbekoorn & Smith 2002b;

Patten et al. 2004). Non-adaptive cultural founder effects can result in loss of

syllables following colonisation (Baker & Jenkins 1987; Baker et al. 2006),

resulting from the small set of the total pool of song elements carried by the

founding individuals to the new population (Baker & Jenkins 1987; Catchpole &

Slater 2008). Social behaviour and interactions between neighbouring males can

prompt new dialect formation (Rothstein & Fleischer 1987; Payne et al. 1988; Bell

et al. 1998), as do changes in the overall intensity of sexual selection, male

competition, and female choice (Catchpole 1980; Badyaev et al. 2002). Song

dialects can be powerful mechanisms for reproductive isolation and potentially
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lead to speciation due to the importance of songs as mating signals, and to female

choice (Grant & Grant 1997; Slabbekoorn & Smith 2002a; Podos & Nowicki 2004).

Imitation affects culturally transmitted song traits from one generation to the next

(Slater 1986; Lynch 1996; Payne et al. 1998). Errors in copying may account for

vocal novelties arising in a population over time, with new songs evolving in

subsequent generations because of selection drift for new song syllables (Marler &

Tamura 1964; Lemon 1975; Baptista 1977; Marler & Peters 1987, 1988; Slater

1989).

New behavioural patterns arise through interaction between innate and learned

characteristics (Marler 2004a). Song features can be encoded innately as

demonstrated by a study on isolated or deafened song sparrows, Melospiza

melodia, which produced songs with sets of complex syntax of several parts,

whereas similarly deprived swamp sparrows, Melospiza georgiana, typically

produced continuous trills (Marler & Sherman 1985). Isolated white-crowned

sparrows, Zonotrichia leucophrys, reared in captivity without the presence of an

adult song model developed atypical song with degraded acoustic structure. When

presented with different vocal models, during their sensitive phase of song

development, however, they showed precise copying, even when training models

had been recorded from non-natal localities (Marler & Tamura 1964; Baptista

1977; Slater 1989). Such experiments, at least in some species, may explain the

origin of new learned vocalisations. Learning to vocalise through imitative vocal

learning enables the generation and rapid transmission of novel patterns of vocal

structure (Slater 1989; Slabbekoorn & Smith 2002a).

Song variations among bird species with small repertoire sizes (1–4 song types

per male) are well documented (Catchpole & Slater 2008). However, variation in



Chapter 6

100

songs with large repertoires are harder to detect, and different song dialects areas

can be defined by differences in the structure of complex syllables, for example

the white-crowned sparrow, Zonotrichia leucophrys (Mundinger 1982; Nelson

1999), the ortolan bunting, Emberiza hortulana (Osiejuk et al. 2003), and the

black-capped chickadee, Poecile atricapillus (Kroodsma 1999). Different dialects

of large repertoires might only be detectable when analysis focuses on the

distribution of basic units of which songs are composed, such as syllables

(Kroodsma & Pickert 1980).

Birds introduced to novel environments are likely to experience different selection

pressures, both physical and/or biotic, compared with their source population, and

this may affect the evolution of novel traits (Endler 1992). Changes within species

over evolutionary time are difficult to study because of their slow pace, so a

comparative approach on how the songs of different species might have diverged

from their common ancestor is a more productive (Catchpole & Slater 2008).

Colonisation of birds into new environments provides such an opportunity

(Westcott & Kroon 2002).

This chapter examines songs of the song thrush, first introduced to New Zealand

(NZ) in the South Island in 1862 when the Nelson Acclimatisation Society imported

and released five birds, with later releases elsewhere that year (24 birds) in

different parts of NZ, followed by 30 in the Auckland region in 1868, with a further

95 later that year, then eight in the Wellington region in 1878. By 1930, the song

thrush had established itself widely throughout NZ (Lever 1987).

The NZ environment is strikingly different to that of the song thrush’s native

European breeding range. High average rainfall, yet abundant and intense

sunshine typically occur in NZ evergreen forest (Allan 1937). Less exposure to
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extreme weather, particularly cold winters, the abundance of higher quality

resources, and some relief from natural predators enhance the niche opportunities

for introduced birds in NZ (MacLeod et al. 2009). In the UK the song thrush

population has suffered a substantial decline during the last three decades, this

leading to it being categorised as a species of high national conservation concern

(Robinson et al. 2004). In contrast, the NZ song thrush population appears

comparatively stable (Robertson et al. 2007). Given these environmental

differences between Europe and NZ, and the different bird communities in the two

regions, the repertoires of the song thrush, and indeed of other introduced NZ

passerines are worthy of further investigation. This study therefore compares the

song of the introduced Song Thrush in Zealandia, NZ, with those of the same

species in the UK, providing a measure of the extent of song differentiation that

may have occurred between the two populations.

This study compares the song of the introduced song thrush in Zealandia, NZ, with

their ancestral stock in the UK to provide a measure of the magnitude of song

differentiation between the two populations, following an earlier investigation in

Wellington including Zealandia site (Garland et al. 2004).

6.3 Methods

6.3.1 Study population and song recording

Territorial songs of male NZ song thrushes were recorded within Zealandia, a 250

ha patch of coastal broadleaf-conifer forest surrounded by a mammal-proof fence

within the city limits of Wellington (Campbell & Atkinson 2002) over July –

September 2009, coinciding with the early stage of egg laying from May –

February (Heather & Robertson 2000). The forest vegetation is dominated by

mähoe, Melicytus ramiflorus, five finger, Pseudopanax arboreus, tree ferns,
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Cyathea spp., and pate, Schefflera digitata (Dawson 1988b; Wardle 2002).

Territorial songs of UK birds were recorded by Ben Bell over 1997 -1998 in June,

which is somewhat later in the breeding season there (Mason 1998). Songs were

sampled from five locations in England (Fig. 6.1 & 6.2), in woodland edge or rural

hedgerow habitats.

A Marantz PMD670 solid-state recorder was used to record Song Thrush songs in

NZ, while in the UK,DAT recordings were made on a Sony TCD-D10 Pro II DAT.

All songs were recorded at a frequency of 44.1 KHz and 16-bit sample size using

a Telinga parabolic microphone.

Figure 6.1. World map to illustrate the distances between the locations in

the United Kingdom (UK) and New Zealand (NZ).
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Figure
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6.3.2 Sound analysis

For each individual, spectrograms were generated using Raven Pro 1.4 software,

with a Hann-filter and a Fast Fourier Transform (FFT) value of 512 points. Overlap

was set to 50% giving a frequency resolution of 86.1 Hz. Because different

individuals had different pause times between syllables, 80 successive syllables

were sampled from each individual. Syllables within each song sample were

visually identified and coded to produce a pool of observed syllable types (Fig.

6.3). Syllables were further categorised according to whether they occurred in both

UK and NZ populations (shared syllables), or if they were specific to either the UK

or NZ population (country specific). The diversity of the song was calculated using

the following formula: song diversity = (repetition of shared syllables /number of

shared syllables) + (repetition of unique syllables/number of unique syllables). The

number of shared and unique syllables were normally distributed (Kolmogorov-

Smirnov: P > 0.05, n = 8), and variances between groups were not unequal

(Levene's Test for Equality of Variances for all three variables: all P > 0.05).

Independent sample t-tests were used to compare the results. SPSS 18 was used

for statistical analysis.

The physical characteristics of each syllable that were measured were: (1)

Minimum frequency (KHz), (2) Maximum frequency (KHz), frequency with

maximum energy, (3) Syllable bandwidth (KHz), and (4) Syllable duration (s).

Principal components analysis (PCA) was used to summarise the patterns of

correlation among measured song variables. General Linear Model (GLM)

followed by Tukey honestly significant difference (HSD) was used to compare the

mean factor loading of the three syllable categories (shared syllables, UK specific,

or NZ specific) on the extracted principle component (PC). The factor loadings

were the dependent variables, syllable categories were the fixed factors.



Chapter 6

105

Figure 6.3. Composite sonograms illustrating a sample (only) of different syllables

used by the two song thrush populations, NZ birds (upper) birds and UK birds

(lower).

Bird identity was entered as a random factor to take into account repeated

measurements on individuals and intra-individual variance (Littel et al. 1991). An

independent sample t-test was used to compare the factor loading of the two

populations on the extracted PC.

6.4 Results

The Song thrush tended to repeat the same syllable a few times before switching

to another syllable type. The total number of different syllables recorded was 242,

recorded across the 16 individuals, eight from each population. Thirty (12.4%)

syllables were shared between the two populations sampled, but 143 (59.1%)
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syllables were unique to NZ birds, and 69 (28.5%) syllables were unique to UK

birds. NZ birds included more syllable types in their repertoires than UK birds.

The mean number of “shared syllables” used by individuals of the two populations

was not significantly different (t-test: t14 = -0.72, P = 0.48; means (±SE) 6.1 (±0.64)

and 6.7 (±0.59) for the UK and NZ birds respectively). However, NZ birds had

significantly more unique syllables within their population (t-test: t14 = -3.7, P <

0.01; means (±SE) for NZ birds 24 (±3.2) and for UK 10.5 (±1.8)) (Fig. 6.4).

Figure 6.4. Box plot showing the variation in number of shared and unique song

thrush syllables between NZ and the UK. The two points on the graph represent

name of the locality from where bird were sampled.

6.4.1 Song comparison
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The NZ song thrushes had a faster mean delivery rate of syllables (mean = 38.3,

SE = ±4 syllable/min), than the UK birds (mean = 22.2, SE = ±1.6 syllable/min), (t-

test: t 14 = -4.05 P < 0.01). The minimum song duration analysed was 1.5 min for a

NZ bird and the maximum was 4.5 min for a UK bird. This marked variation in

delivery rate was due to larger inter syllable intervals in UK birds. Diversity of song

was significantly higher for the NZ song thrush; (t-test: t14 = -3.5, P < 0.01). While

the two populations had an equal number of shared syllables, NZ birds had more

unique syllables with less repetition (Fig. 6.5).

Principal components analysis (PCA) was used to summarise the patterns of

correlation among the four measured song variables, and to produce a reduced

number of new variables (factors) that described independent elements of

Figure 6.5. Box plot showing the diversity of song in each population. Diversity

was measured by adding the ratios of shared and unique syllables.
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variation in the song. This yielded two factors with eigenvalues greater than 1.0,

which accounted for 75 % of the total variation within the 1280 syllables measured,

comprising 16 different songs (Fig. 6.6). The first principal component (PC 1)

represented the major source of variation (48%) among syllables in this sample,

having a high positive correlation with lower frequency and maximum frequency

(shown in bold numbers in Table 6.1). Thus, variation in PC 1 was primarily

associated with variation in frequency measurements. The second principal

component (PC 2) accounted for 28 % of the variance among syllables, and was

positively correlated with a higher bandwidth and longer syllables (Table 6.1).

Table 6.1. Results of principal components analysis of the physical characteristics

of syllables.

Variables PC 1 PC 2
Eigenvalue 1.9 1.1
Percent 48 28
Cuml. percent 48 76
Lower frequency .89 -.14

Maximum frequency .93 .26

Syllable duration -.16 .77
Band width .36 .72

To examine variation between the two populations, I grouped the factor loading of

syllables in two categories, first based on individuals that produce them, and

second on the classification of syllables as being either unique to any of the

populations or shared among them (Figs. 6.6 & 6.7).
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There was a significant difference in the mean score of the two populations on PC

1, suggesting that the NZ song thrush has a higher value for both the maximum

and lower frequencies (t-test: t14 = 2.16, P = 0.048). There was no statistical

difference in the mean score of the two populations on PC 2 (t-test: t14 = 0.69, P =

0.5).

GLM was used to test whether there was a significant difference on the loading of

the three syllable categories on PC 1 and PC 2. The mean loading factor differed

significantly on PC 1 (F 2,15 = 6.64, P < 0.01). Syllables used by the NZ birds had a

higher mean loading on PC 1 than shared and UK syllables (Tukey, P < 0.05).

Figure 6.6. Scatter plot of factor 1 versus factor 2 obtained in the principal

component analysis (PCA) for syllable measurements grouped according to

individuals.
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However, there was no statistical difference between loading of UK and shared

syllables on PC 1 (Tukey, P > 0.05). The mean loading on PC 2 also differed

significantly within note categories (F2,15 = 42.54, P < 0.01). NZ syllables had a

significantly higher mean loading than UK syllables and shared syllables (Tukey: P

< 0.05) (Fig. 6.7).

6.5 Discussion

There was distinct geographical variation between the song samples of song

thrushes in NZ and the UK. The NZ repertoires in Zealandia were larger and more

varied with more syllables delivered per unit time and less repetition than in the UK

populations sampled. This increase in song diversity in NZ is unlikely to be due to

Figure 6.7. Scatterplot of syllable categories plotted against the extracted

principle components. Syllables were categorised as shared among to the

two populations, or unique to either the NZ or UK population.
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a founder effect or to selection at the genetic level, for these normally cause songs

to become simpler (Baker & Jenkins 1987). It seems more likely that the song

thrush song has evolved through learning, new syllables being learnt from songs

or sounds the birds hear in their local NZ environment, which they then incorporate

into their repertoires. In Europe , the song thrush is known to mimic songs and

calls of a wide variety of passerines and non-passerines, notably waders (Cramp

& Snow 1988).

The evolution of a larger and more diverse song repertoire in the NZ song thrush

may have occurred under local ecological and social conditions in which

competition for resources is relatively high. A recent study on breeding bird density

estimates for birds introduced to NZ showed these to be on average 22 times

higher than for the same species in comparable habitats in the UK (MacLeod et al.

2009). The NZ song thrushes sampled here came from the relatively small

Zealandia sanctuary, with an avian community boosted by many successful

reintroductions of endemic New Zealand species, such as, saddlebacks, bellbirds,

robins, whiteheads and kakas (Miskelly et al. 2005; Taylor et al. 2005; Bell 2008),

and potentially high bird species diversity and abundance, resulting in high

competition between males and frequent interactions with other bird species.

NZ exhibits less extreme seasonality than the UK with a moderate climate and

warmer winter. This results in longer avian breeding seasons compared with the

UK, however NZ birds lay smaller clutches (Evans et al. 2005). This could imply

that NZ song thrushes have to hold their territories for longer periods throughout

the breeding season, so a higher level of singing may be required to defend and

maintain territoriality during that longer season. In the UK population, the

prolonged periods of very cold temperatures during the winter can reduce over-
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winter survival and lower breeding bird population sizes (Baillie 1990). Such

extreme events are less intense or frequent in New Zealand, so introduced bird

species may have higher over-winter survival, and consequently higher breeding

densities than in their native range. Short lifespan, short breeding season, or high

predation risks may also affect whether larger repertoires are favoured (Collins

2004).

The selective pressure on the song operates through sexual selection, either

through female choice or male-male interaction (Catchpole & Slater 2008). Studies

on great tits and red-winged blackbirds in replacement experiments showed that

territories held by males with larger repertoires were less likely to be intruded on

by other males (Hunter & Krebs 1979; Yasukawa 1981). Female choice is

regarded as favouring elaborate or complex forms of vocal signals (Catchpole &

McGregor 1985; Searcy & Yasukawa 1996). Evolution of large song repertoires is

also favoured in social circumstances where competition for resources is

continually high, as in dense populations (Kroodsma 1999).

Hultsch and Todt (2008) illustrate four steps in the song development of the song

thrush in Europe: early plastic songs (week 30); plastic songs (week 37); late

plastic song week (43); and crystallised song (week 50). Baptista and Petrinovich

(1984) found that species which learn their song at an early stage, might retain the

ability to learn new songs later in life. The timing of song acquisition itself may be a

consequence of selection on other traits such as dispersal distances or length of

breeding season (Nelson 1999). The vocal output of NZ song thrushes was longer,

coinciding with their longer breeding season (Fig. 2.5). This might give young birds

a longer time exposure to the song and a longer time to develop their song,
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compared with the shorter vocal output during the shorter breeding season in the

UK.

The recordings made in NZ were made over July –September, coinciding with an

early stage of the breeding season and period of high song output (Fig. 2.5), while

in the UK songs were recorded in June coinciding with a later stage in the

breeding season. Song thrushes might exhibit temporal change in song

characteristics with season. Over the year, the song thrush song can have distinct

phases, including an extended one at the end of the breeding season, possibly for

repertoire learning by offspring or for territorial marking for subsequent season

(Snow & Perrins 1998). Seasonality in song has been documented in many

temperate bird species and it can affect song structure and song type, for example

in the white crowned sparrow, Zonotrichia leucophrys (Smith et al. 1995), some

migratory European Acrocephalus warblers (Catchpole 1973), the great tit, Parus

major (Rost 1990), and in the European robin, Erithacus rubecula (Schwabl &

Kriner 1991). Given the seasonal mismatch between Song Thrush song in NZ

(spring) and the UK (summer), interpreting results of this UK - NZ comparison

requires caution, although it seems clear that novel phrases occur in the NZ birds,

including vocal appropriation of phrases from native species – e.g. North Island

Saddleback. Although singing vigorously (B. Bell, press. comm.), it is possible that

the UK birds had reduced their song output somewhat, and this may have been a

factor in the more limited repertoire recorded for UK birds in this study.

The NZ study site is a predator free sanctuary, surrounded by a mammal proof

fence, conferring possible advantages on the Song Thrush population as singing

can be a costly activity in terms of the risk of exposure to predators (Catchpole &

Slater 2008). The predatory NZ falcon, Falco novaeseelandiae, and the
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Australasian harrier, Circus approximans, do occur there, however. Another

species the chaffinch (Fringilla coelebs) may have changed its singing behaviour

there, as a male gave was observed giving song from the ground (Bell 2006).

Additional studies of NZ song thrushes outside of the Zealandia sanctuary are

needed to further investigate its song variation.

The physical properties of syllables (duration and frequency) were different for the

unique syllables used in NZ and UK song thrushes populations. This may be due

to different habitat selection pressures for optimum sound transmission. The

dense vegetation in NZ forest may have influenced the selection of acoustic

signals, with different attenuation and degradation features favouring certain

syllables over others. There were also fine differences in song frequency between

the two populations; the unique syllables to NZ birds having higher frequencies

than syllables unique to UK birds. Cultural selection for optimal sound

transmission has also been implicated in the divergence of song among

populations of a number of species (Podos & Nowicki 2004).

In conclusion, this song thrush study provides some possible insight on how

improvised song may have evolved. Other studies e.g. on the white-crowned

Sparrow, do not address the potential influence of improvisation on geographic

song patterns (Kroodsma & Verner 1978), while local dialects inevitably seem to

develop when repertoires exceed five or so song types (Kroodsma 1999). With a

relatively large and varied song repertoire, the song thrush is unlikely to retain the

same song elements over such geographically separate areas as the UK and NZ,

so our identification of differences is to be expected. However, the extent of the

differences we measured was marked and paves the way for further study on this

and other introduced species.
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Chapter 7

Temporal variation of the song of the grey warbler, Gerygone

igata: has the song changed over time?

7.1 Abstract

Bird song can vary from place to place and such variation may reflect ecological

heterogeneity within the habitat, yet understanding how this process occurs over

time within the same population is limited. Here, a vocal change over time in a

population of the grey warbler was investigated. Spectral and temporal aspects of

the song were compared in the same population at an interval of seven years

(2002 and 2009). There was a significant shift in the song syllables to a higher

frequency, but no difference in the temporal structure of the song. The frequency

difference in song possibly suggests adaptation to increased ambient noise.

Alternatively, the change may reflect changes in vegetation and song transmission

properties at the study site.

7.2 Introduction

Song dialects are a form of vocal variation that is characteristic of birds that learn

their songs. Geographical variation and interspecific differences in song structure

can be explained by the characteristics of the habitat used by each species

(Warren 2002). Further, variation may arise through cultural evolution of song,

which can be described as alteration or change in a learned behavioural trait from

one generation to the next (Byers et al. 2010). Temporal stability of song varies

within taxa, even within the same geographical boundaries, with some dialects

persisting unchanged for many generations while others can quickly arise and

disappear (Podos & Warren 2007). For example, the song elements in the
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yellowhammer, Emberiza citrinella, are transmitted culturally through a

considerable number of generations (Hansen 1999). Other examples of songs that

are maintained for decades or longer come from species such as rufous-collared

sparrow, Zonotrichia capensis (Handford 1988), chaffinch, Fringilla coelebs (Ince

et al. 1980) and wood thrush, Hylocichla mustelina (Whitney 1992). In contrast,

some species can modify their songs in a year or less, such as the yellow-rumped

cacique, Cacicus cela (Trainer 1989), the indigo bunting Passerina cyanea (Payne

et al. 1981) and the lazuli bunting, Passerina amoena (Greene et al. 1997).

Despite numerous observations and studies regarding local song dialects, factors

that influence the formation of new dialects or the resistance of change in others

are still unknown (Catchpole & Slater 2008). However, the same factors argued to

influence geographical dialect formation could also influence bird song evolution

over time (Luther & Baptista 2010), for example, change in the physical

transmission properties of the environment (Slabbekoorn et al. 2009), sexual

selection (MacDougall-Shackleton 1997) and song learning (Slabbekoorn & Smith

2002b).

To investigate the possible cultural evolution of grey warbler songs over time, song

samples recorded seven years apart (2002 and 2009) were studied within the

same population at Zealandia.

7.3 Methods

7.3.1 Species studied

The grey warbler, Greygone igata, is an endemic New Zealand passerine in the

family Acanthizidae (Heather & Robertson 2000). Pairs are formed prior to the

breeding season and males are territorial, with some territories being maintained
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year round. Grey warblers build enclosed, pensile nests at heights of 1–10 m,

averaging 3.5 m (Gill 1982). Songs are given only by males and are important in

maintaining territory (Gill et al. 1980). The song is described as a soft, sweet trilling

warble, sometimes subdued, regular and cricket-like (Buller 1888). It is a long

plaintive, rambling indeterminate trill, of about 8 notes, usually lasting 5 s, but

sometimes as long as 12 s. The birds do not weave several themes into one song,

but rather appear to have a number of themes, and to sing by repetition (Andersen

1926), at times broken off suddenly when seemingly not complete (Paul &

McKenzie. 1975).

7.3.2 Song analysis

In 2002, grey warbler songs were recorded in the Zealandia Sanctuary by M.

Borowiec (Wroclaw University, Poland) and B.D.Bell (Victoria University) in

October - December. From this sample of recordings, I selected 10 songs

recorded at different locations within Zealandia (hereafter referred to as the 2002

songs). To examine changes within the song of this species, I recorded the song

of a further 10 birds in 2009 (hereafter referred to as the 2009 songs), between

September and October. Songs sampled in 2002 were recorded on a Sony TCD-

D10 Pro II DAT, equipped with a Telinga parabola microphone; all songs were

digitised at a sampling frequency 44.1 KHz and 16-bit sample size. 2009 songs

were recorded on a Marantz PMD670 solid-state recorder, equipped with a

Telinga Pro 7 parabola microphone also set to a sampling frequency 44.1 KHz and

16-bit sample size.

The main parts of the grey warbler’s song were classified into, a start phrase, and

then a following phrase repeated once or up to six times (Fig 7.1). I measured the

physical characteristics of syllables forming each phrase. There were faint whistle
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notes of low frequency between syllables, which were difficult to detect in some

recordings, due to the quality of recordings or interference from ambient noise, but

these were not included the analysis (Fig 7.1). For each individual song,

spectrograms were viewed and measured using Raven Pro 1.4 software, with a

Hann-filter and a Fast Fourier Transform (FFT) value of 678 points, overlap being

set to 50% giving a frequency resolution of 86.1 Hz.

The four syllables in the start phrase and three in the repeated phrases were the

basic units of analysis. For each phrase, the average value of the following

temporal and frequency variables were calculated: (1) lowest frequency (KHz), (2)

maximum frequency (frequency with maximum energy KHz), (3) highest frequency

(KHz), and (4) syllable duration (s).



Chapter 7

119

Figure
7.1.Spectrogram

 ofgrey w
arbler song show

ing
the

start phrase (S
)and

repeated phrases

(R
1, R

2, and R
3). A

ll syllables are w
histle-like w

ith a
relatively

narrow
 frequency bandw

idth. The

unm
arked notes representthose

not included in the analysis.



Chapter 7

120

7.3.3 Statistical analysis

The data set was reduced and the maximum frequency was used as a

representative measure for spectral characteristics of song elements, because the

phrases in the grey warbler’s song had a narrow frequency bandwidth, and the

lower and highest frequencies were being highly positively correlated with

maximum frequency of both the start phrase and repeated phrases (Table 7.1).

Table 7.1. Pearson correlations of the average values of measured song variables

of 20 grey warbler songs.

Song part Variables Pearson correlations
(r)

P value

S
ta

rt
sy

lla
bl

es

maximum frequency, lower frequency 0.994 P<0.01

maximum frequency, highest frequency 0.996 P<0.01

R
ep

ea
te

d
sy

lla
bl

es

maximum frequency, lower frequency 0.987 P<0.01

maximum frequency, highest frequency 0.988 P<0.01

The maximum frequency values were normally distributed (Kolmogorov-Smirnov:

P > 0.5) and the variances between groups were not unequal (Levene's Test for

Equality of Variances for all three variables: all P > 0.05), thus the one sample test

was appropriate to test group differences. An independent sample t-test was

conducted to compare song variables between the two years. Syllable durations

were not normally distributed (Kolmogorov-Smirnov: P < 0.05), so the non-

parametric Mann-Whitney-U test was used to compare temporal results between

the two years.
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7.4 Results

The song structure of grey warblers in 2002 and 2009 differed in its spectral

characteristics but not in its temporal characteristics (Table 7.2). The sample size

for R2 and R3 varied because some songs ended suddenly after the second or

third phrase.

Table 7.2. Mean values of the measured song variables. The start phrase

consisted of four syllables while the repeated phrases consisted of three.

Maximum frequencies in all parts of the song, (S, R1, R2, and R3) were

significantly higher in 2009 than in 2002 (Table 7.3). The average increase in the

frequency in 2009 songs was between 0.34 and 0.45 KHz.

Variable
2002 2009

Song
part

Mean N SE Mean N SE

M
ea

n 
m

ax
im

um
fre

qu
en

cy
 (K

H
z)

S 3.6 40 0.04 4.1 40 0.05

R1 2.7 30 0.02 3.01 30 0.03

R2 2.9 30 0.02 3.3 30 0.03

R3 3.2 27 0.02 3.6 30 0.06

M
ea

n 
du

ra
tio

n 
(s

) S 0.5 40 0.05 0.42 40 0.04

R1 0.22 30 0.01 0.22 30 0.01

R2 0.38 30 0.05 0.36 30 0.03

R3 0.85 27 0.03 0.74 30 0.01
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Table 7.3. Differences in mean maximum frequency of grey warbler song between

2002 and 2009.

Levene's Test t-test statistics
Song
part

F P t d.f P Mean
difference

SE

S 0.12 0.9 -6.5 18 .001* -0.45 0.07

R1 0.61 0.8 -10.7 18 .001* -0.35 0.03

R2 0.05 0.8 -10.4 18 .001* -0.4 0.04

R3 2.8 0.11 -5.8 18 .001* -0.34 0.06

There was no significant change in the mean phrase duration for S, R1 and R2,

however R3 was 0.11 s longer in 2002 (Table 7.4)

Table 7.4. Differences in mean phrase duration in grey warbler song between

2002 and 2009 compared using Mann-Whitney U tests.

Song part Mann-Whitney U Z P

S 658 -1.3 1.7

R1 422 -0.7 0.5
R2 404 -0.8 0.42
R3 181 646 >0.01

7.5 Discussion

There was a marked difference in the spectral frequency characteristics of grey

warbler songs between 2002 and 2009. The use of higher frequencies in all parts

of the song phrases in 2009 suggest a positive shift to a higher song frequency as

an adaptation to increased levels of anthropogenic low-frequency noise, as
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suggested for the great tit (Slabbekoorn & Peet 2003; Slabbekoorn & den Boer-

Visser 2006). Similar results have been reported for the European blackbird,

Turdus merula (Nemeth & Brumm 2009), the song sparrow, Melospiza melodia

(Wood et al. 2006) and the house finch, Carpodacus mexicanus (Fernandez-

Juricic et al. 2005). In these species, there was a positive correlation between the

song frequencies and sound pressure level of ambient noise in their habitat. The

ambient noise between the two periods in Zealandia could not be compared, but

the result could suggest that the warblers may have compensated for some

increase in ambient noise in the area.

The grey warblers did not show a significant change in the duration of their song

syllables. Other studies reveal that city birds may have a faster delivery rate of

song and a shorter inter-song interval (Slabbekoorn & den Boer-Visser 2006),

possibly as an adaptation to a more open habitat in the city.

An alternative explanation for differences in song frequency relates to signal

transmission in the habitat that might possibly be associated with different seasons

and weather conditions. Atmospheric conditions can affect sound transmission

properties of the habitat, as sound attenuation increases with the increase in

temperature, and is reduced with increasing humidity (Wiley & Richards 1982). As

both sets of samples were taken over periods of weeks, however, atmosphere

differences between 2002 and 2009 seem unlikely.

Another explanation for differences between years might be related to the possible

influence of seasonal change in breeding density on vocal communication.

Change in the breeding densities with years, and the re-introduction of new

species to Zealandia may have influenced the grey warblers’ song in some way

through acoustic competition. Intra-specific competition within males and
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motivational changes in singing activity can cause a shift in song features

(Goretskaia 2004). Inter-specific interactions may lead to character displacement

of song characteristics of different species, which in turn may be caused by

reintroduced birds appearing or by increase in the relative densities of bird species

that use a similar frequency bandwidth. For example, the mean (±SE) maximum

frequency in the reintroduced whitehead was 3.1 (± 0.2) KHz (n = 22) which more

or less equals the mean maximum frequency of 3.0 (±0.5) KHz (n = 10) for 2002

grey warblers (Fig. 7.2).

The equipment used to record the songs in the two years was different (a DAT

recorder in 2002 and a solid-state digital recorder in 2009). The effect of these

different recorders used in the study was investigated by using both types of

equipment to record a series of generated tones simultaneously. The recorded

tones were then analysed using Raven Pro 1.4 software. There was no difference

in the frequency or the temporal aspects of the recoded tones, ruling out the

Figure 7.2. Sonogram of grey warbler in 2002 and 2009, and whitehead song

introduced to the Zealandia in 2001 and 2002.
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possibility that different equipment use led to the different mean frequencies

(Appendix 3 & 4).

In conclusion, the Inter-specific competition on acoustic signal between the

reintroduced whitehead and grey warbler may have lead to character

displacement of song characteristics, causing a shift in the song of grey warbler

song to higher frequency.
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Chapter 8

General discussion and conclusions

This study represents one of very few comprehensive analyses on the acoustics of

an entire forest bird community, and evidently the first in the temperate

Australasian region. The study investigated the annual cycle of change in the

vocal activity of the study species, and provided some insights into the relationship

between the structure of the bird community, the characteristics of local avian

vocalisations, and the physical characteristics of the habitat, obtained through

analysis of bird vocalisations and sound transmission experiments. The study

aimed at relating the characteristics of avian vocalisations in native and introduced

species to the sound transmission properties of the habitat. It investigated the

perception of sound by the receiver, an important aspect in communication, and

focused on song harmonics in saddleback, one of the least studied characteristics

of bird song.

Chapter 2 reported on the annual change in the vocal output of forest birds, and

showed that some species have stronger seasonal patterns than others. The

change in the vocal output was found to affect the detectability of forest species

within different seasons. There was a significant change in the vocal output for

some of the study species at Zealandia during the year, for example bellbird,

whitehead, fantail, robin, blackbird, and chaffinch (Figs. 3.3, 2.4 & 3.5). However,

for other species there was no significant change in the vocal output, for example

kaka, saddleback, grey warbler, and tui (Figs. 3.2 & 3.3). Variation in species

detectability resulting from conspicuousness and differences in vocal output

across months is a key variable in wildlife surveys and needs to be assessed

carefully (Sutherland 2006). Indices of bird counts based on the total number of
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birds heard and seen might not represent the actual species density, especially for

birds that have strong seasonal change in their vocal output (Haselmayer & Quinn

2000). The lack of proper adjustment in the most common methods of surveying

birds may mean the results are biased towards more conspicuous species or

vocally active ones (Nichols et al. 2000; Bart & Earnst 2002; Rosenstock et al.

2002). Comparison of unadjusted counts will be valid only if the numbers

represent a constant proportion of the actual population present across space and

time (Sutherland 2006).

Chapter 3 examined the inter-relationships of vocalisations of the forest bird

community at Zealandia and found that vocalisations were over-dispersed in

acoustic space. Interestingly, native species were more dispersed and separated

than introduced species, which might indicate that native bird vocalisations have

evolved to reduce vocal competition, supporting the acoustic niche hypothesis.

One possible explanation for the difference between native and introduced

species, is that introduced species are more generalist, and can be found in a

variety of habitats (open habitats and shrub lands), hence their vocal signals might

be under less environmental selection pressure for transmission in the dense

forest.

The evidence for habitat-related convergence of avian vocalisations is mixed. The

acoustic adaptation hypothesis suggesting that evolution has favoured acoustic

signals that match the bird’s habitat so that they become less affected by sound

degradation and attenuation (Marler & Slabbekoorn 2004; Ey & Fischer 2009). In

one of few forest-based community studies on avian acoustics, Luther (2008)

studied the distribution of bird acoustics of Amazonian birds, including 82 species

compromising sub-oscines, oscines, and non-passerines. He found o vocalisations
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to be clustered, however at a smaller spatio-temporal scale, birds that vocalise

within the same stratum or within the same time of day were over-dispersed within

the community. This contradicts the suggestion that vocalisations within the same

stratum should converge to adapt to the transmission properties of that stratum

(Naguib & Wiley 2001; Seddon 2005).

A relatively low species diversity in the study area compared with e.g. Brazil

(Luther 2009), may have allowed birds to incorporate a wider range of signals

within their acoustic space without competing with other species. My results

supported the acoustic adaptation hypothesis in only one aspect, namely that birds

concentrated the amplitude (energy) within their vocalisations in a narrow band

rather than spreading it through a broader range of frequencies, a possible

adaptation to increasing the transmission distance with minimal degradation

(Barker 2008).

In another community-based study, Cardoso (2009) examined communities of

European and North American birds, comparing those within open and closed

habitats. He found that bird vocalisations have converged between similar

habitats. Interspecific acoustic competition did not have an effect on shaping the

acoustic community overall, rather it had localised importance only between

closely related species.

While it is not possible to be certain about the direct cause of divergence in

vocalisation characteristics in the Zealandia bird community, the results are more

consistent with the prediction of the acoustic adaptation hypothesis. As noted by

Seddon (2005), and Luther (2009), multispecies approaches are vulnerable to the

influence of confounding variables or chance, especially when signal phenotype

might be affected by various forms of character displacement because different
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species may weigh vocalisation features differently, or have different mechanisms

of sound production.

In addition, chapter 3 found that the frequency component of bird vocalisations at

Zealandia was negatively correlated with body size, larger species using lower

frequencies (Fig. 4.5) and higher song posts (Fig. 4.6). The effect of body size on

frequency has been documented for a range of bird species (Brenowitz 1982;

Ryan & Brenowitz 1985; Bell 1994). However, body weight did not affect the

temporal aspects of vocalisations at Zealandia. The correlation between song post

height and frequency contradicts the finding of Lemon et al. (1981), that song

frequency is positively correlated with song height. High-pitched songs are sung at

high song posts where interference by vegetation is expected to be relatively low

(Ficken et al. 1974; Lemon et al. 1981; Marler & Slabbekoorn 2004).

The different results may have resulted from different forest types, and differences

in the vocalisation heights investigated. Lemon et al. (1981) sampled 19 species of

warblers in two Neotropical forests, a coniferous spruce-balsam fir forest of Picea

abies and deciduous maple-birch forest of Acer spp. and Betula spp. Different

heights in forests have different specific transmission and noise characteristics

(Nemeth et al. 2001) and the change in forest density might also vary with different

forests, hence the sound transmission properties associated with different forest

layers.

Chapter 4 reported on the physical effect of broadleaf forest and pine forest on the

transmitted signal. As noted by Brumm and Naguib (2009), understanding how

habitat affects transmitted signals, noise interference, and signal perception by the

receiver, is crucial for complete understanding of the factors shaping bird

vocalisations. This chapter showed that forests provide complex acoustics



Chapter 8

130

auditoria for avian vocalising. The heterogeneity of the forest vegetation and its

density between sender and receiver add complexity to sound transmission. In

addition, acoustical properties of forests can vary with elevation, posing different

selection pressure on bird vocalisations at different levels within forests (Kirschel

et al. 2009). Frequency dependent attenuation, reverberation, ground effects, and

forest types are but part of the many factors that can affect transmitted signals

(Nemeth et al. 2006).

Reflected sound waves from the ground can affect the transmitted signal as they

cause excess attenuation at some frequencies and amplification at others

(Embleton 1996) and presumably have an important effect on communication of

birds foraging or vocalising on the ground or at low elevation (Fig. 4.9). In

Zealandia, these include North Island robin, North Island saddleback, little spotted

kiwi, and possibly birds that forage on the ground like blackbird and song thrush,

which may be affected since the location of the receiver might be as important as

the location of the sender. This chapter also found that bird vocalisations are

detectable at different distances in the pine and broadleaf forests (Figs 4.10 &

4.11). This invokes the idea of an active space over which the signal remains

detectable and is recognisable for potential receivers.

Chapter 5 studied the receiver part of sound communication and focused on song

harmonics in saddleback and their role in ranging. Hearing and perception of

sound by the receiver is an important aspect of communication as it adds to our

understanding of the forces shaping vocalisation patterns and structures

(Catchpole & Slater 2008). Few studies have investigated the effect of harmonics

in ranging, though relative intensities of high frequencies have been used to

estimate the distance of a signaller (Naguib 1995, 1997b). Correct estimation of
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the source of vocalisation is important in the receiver response for it can lead to

avoidance of unnecessary or dangerous interactions, or may promote aggressive

responses to defend a territory when a rival is nearby (Richards 1981; McGregor

et al. 1983; McGregor & Krebs 1984; Naguib 1995).

This chapter found that saddlebacks were potentially able to use harmonics in

their song as distance cues and differentiate between songs with different

harmonic composition and respond to them accordingly. In addition, this chapter

implied that harmonics might have important behavioural aspects, such as in

transmitting information about individuality and body size cues.

Chapter 6 compared song thrush song repertoire recordings between NZ and UK

populations, and found that NZ song thrush song contained a larger number of

syllables delivered with less repetition. In addition, it found that syllables unique to

the NZ song thrush had higher mean frequency range. The larger repertoire size

for the NZ song thrush contrasts with the founder effect principle, which predicts a

loss in song diversity (Jenkins 1978). However, the result suggests that local

ecological and social conditions are important in the development of new song

repertoires (Seddon 2005), especially with the ability of the song thrush to mimic

songs and calls from other species (Cramp 1988). The effect of the bird

community on avian communication and the evolution of signals across species in

a community are little studied (Marler 2004b).

Chapter 7 compared grey warbler song across time, and documented that their

song has shifted to a higher frequency, without any change in the temporal pattern

of the song. Arrival of reintroduced native species under Zealandia’s restoration

programme and/or increase in the relative densities of existing species that use a

similar frequency bandwidth to grey warblers, can lead to increased Inter-specific
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interactions, which in turn may lead to character displacement of song

characteristics of different species. Much of the evidence from relevant studies

stresses the effect of habitat on signal transmission and on the evolution of new

vocalisation patterns (Wiley & Richards 1978; Nottebohm et al. 1986; Slabbekoorn

2004b). Social conditions involving intraspecific and interspecific competition for

resources might also affect the evolution of new vocalisation patterns (Nelson

1997; Catchpole & Slater 2008). Ambient noise is a further selective force that can

change bird vocalisations, and increased ambient noise levels may cause a shift in

bird song to higher or lower frequency (Nemeth & Brumm 2009).

Geographical or temporal change in bird song can be easy to document through

sound analysis software currently available, but to explain new patterns in bird

songs can be challenging, involving many potential factors that govern sound

production, transmission, and perception (Marler & Slabbekoorn 2004).

8.1 Conclusion

This study was one of a few to characterise the acoustic properties of a forest bird

community. Chapter 2, describes the temporal change of vocal output of Zealandia

forest birds over a year. Chapter 3 compares avian vocalisation between forest

species. Chapter 4 characterises the habitat selection pressures on sound

transmission in different forest types. Chapter 5 investigates the role of harmonics

in estimating the distance of a signaller in the saddleback. Chapter 6 examines

possible geographical change in the song of the introduced song thrush at

Zealandia. Chapter 7 reports on a temporal frequency change after seven years in

grey warbler song within Zealandia, seeking possible reasons for this.
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Overall, the results of this study indicate that patterns of change in vocal output

can have important effects on species detectability and need to be accounted for

when comparing point counts across different months of the year, or when

calculating relative abundance of species. The temporal change in vocal output

across different months can explain the (ANH) (Table 8.1).

Table 8.1. Summary of the main results from each chapter, and their contribution

to the acoustic adaptation hypothesis (AAH) and the acoustic niche hypothesis

(ANH).

ANH AAH

Temporal partitioning (change in song

output at different months)(CH2)

Divergence of bird vocalisation (CH3) Focus energy in a narrow frequency

band width (CH3)

Multiple sound windows can be present in

forest (CH4)

Prominent sound window at lower

frequencies (CH4)

Adaptation to optimum transmission

distance rather than maximum (CH4)

Shift in song syllables to a higher

frequency (character displacement of

song)(CH7)

The results provided some evidence of the partitioning of acoustic signals between

species. Vocalisations within the Zealandia bird community, especially amongst

the native species, gave support to the acoustic adaptation hypothesis in that the

birds concentrated energy in their vocalisations in a relatively narrow bandwidth
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(Table 8.1). The study also found that there was a negative correlation between

vocalisation frequency and both body size and song post within the community.

The sound transmission experiment demonstrated that forests are complex

auditoria and that changes that accumulate in a transmitted sound will differ with

sound frequency, forest type, vegetation density, and the relative elevation of

signaller and receiver. Species that vocalise near the ground might benefit from

sound reflected from the ground, and for different species, there might be multiple

“sound windows” that achieve optimum transmission for different vocalisations.

However, there was a prominent sound window at the lower frequency range

(Table 8.1). The experimental study of chatter song harmonics in the saddleback

demonstrated their likely importance as distance cues. The song of the introduced

song thrush population at Zealandia has evidently evolved to become larger and

more varied than its source population in the UK, with more syllables delivered

with less repetition than the UK population, contradicting with what might be

expected by the founder effect. Finally, the songs of both the grey warbler and the

song thrush appear to have had a significant shift in song syllables to a higher

frequency (Table 8.1), although there was no difference in the temporal structure

of their songs. Reasons for this were discussed, with increased species density

and diversity as a consequence of Zealandia management being a possible factor.

8.2 Further direction

Several directions of further study emerge as a result of this preliminary acoustic

investigation of the avian community in Zealandia forest:

Some species have developed means of sound communication other than vocal

signalling, for example tui, bellbird, and kereru can produce mechanical sounds by
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their wings during flight (Heather & Robertson 2000). What functions do these

sounds play in communication?

Song harmonics were found to be important for ranging in saddleback; however,

more detailed acoustic experiments and analyses are needed to further explore

the role of each harmonic in saddleback communication, e.g. their importance as

individuality cues, fitness indicators, and individual location within the territory.

The perception of sound by the receiver can give important insights into the

information coded in vocalisations. As the transmission distance of different

elements in a given vocalisation varies, what information is encoded in the long

distance and short distance elements?

Behavioural aspects of sound production (e.g. in tui, bellbird, and saddleback) are

of interest such as singing posture or tracheal elongation. Little is known about

these aspects in native species and requires further study. A study on tracheal

elongation would add to our understanding of the vocal exaggeration hypothesis

(Fitch 1999) and give new insights into vocal production mechanisms.

The predator free environment at Zealandia might have had an effect on the

evolution of bird song there. What effect does the predator free environment have

on the evolution of local song, including the complexity, duration, and singer’s

position?
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Appendix 1

Spectrograms of the vocalisations of the 16 species included in the analysis
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Appendix 2

When both sexes are known to sing the mean values of males and females were

used (indicated as (mf)), while for species in which only males sing, the male

measurements were used (indicated as (m)). IQRZ is the frequency with maximum

amplitude.

Species Lowest
frequency
(KHz)

Highest
frequency
(KHz)

Delta
frequency
(KHz)

Maximum
frequency
(KHz)

IQRz
(KHz)

Body
mass (g)

Bellbird (mf) 0.7 5.4 5.0 2.3 0.7 30

Blackbird (m) 1.3 5.7 4. 2.6 0.5 90

Chaffinch (m) 1.6 8.0 6.3 3.8 0.7 22

Dunnock (m) 2.0 7.5 5.5 4.7 0.8 21

Fantail (mf) 1.6 9.1 7.5 7.0 0.6 8

Greenfinch
(mf)

2.0 5.4 3.1 3.9 1.5 28

Grey warbler
(mf)

2.0 4.6 2.6 3.9 0.5 6.5

Stitchbird (mf) 3.2 11.0 7.9 4.3 2.0 35

Kaka (mf) 0.7 5.7 5.0 2.3 0.6 500

Kingfisher
(m)r

2.0 3.3 1.3 2.9 0.2 65

North Island
robin (mf)

1.7 7.9 5.8 4.5 1.1 35

Saddleback
(mf)

2.9 5.1 2.4 4.1 0.4 75

Silvereye (mf) 2.4 6.2 3.8 3.8 0.7 13

Song thrush
(m)

1.4 8.9 7.5 3.2 0.7 70

Tui (mf) 0.4 11.1 10.7 2.0 2.1 105

Whitehead
(mf)

1.2 5.2 4.0 3.2 0.5 16.5
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Appendix 3

Graph illustrating the effect of different recorders used in the study showing no

difference in the recorded frequency.
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Appendix 4

Graph illustrating the effect of two different sampling rates for frequency

measurements (16-bit and 24-bit).
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