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Abstract
The statistical analysis of a large number of rare events, (LNRE), which can
also be called statistical theory of diversity, is the subject of acute interest
both in statistical theory and in numerous applications. A careful eye will
quickly see the presence of a large number of very rare objects almost ev-
erywhere: large numbers of rare species in ecosystems, large numbers of
rare opinions in any opinion pool, large numbers of small admixtures in
any solution and large numbers of rare words in any text are only few
examples.

In studying such objects, the interest for mathematical statisticians lies
in the fact that most of the frequencies are small and, therefore, difficult
to deal with. It is not immediately clear how one should be able to derive
consistent and reliable inference from a large number of such frequencies.

In this thesis we study the diversity of questionnaires with multiple
answers. It has been demonstrated that this is a particular model of LNRE
theory. In our analysis, the theories of large deviation, contiguity and
Edgeworth expansion were employed, and limit theorems have been es-
tablished.
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Chapter 1

Introduction

The background of the LNRE theory can be traced back in the 1980‘s.
The pioneering work of formal statistical analysis of the concept of large
number of rare events was [14], where Khmaladze introduced the notions,
studied its different forms and found various necessary and sufficient con-
ditions for results. Also, some significant connections between this area
and several other areas of statistical theory were found.

1.1 Examples of statistical data with a large num-
ber of rare events.

From some points of view the presence of a large number of rare events
is a rather fundamental feature of nature. In particular, in any statistical
analysis devoted to the study of the variety of words in the large text or va-
riety of species, one has to deal with what might be called “a large number
of rare events.” The common feature of examples we will present below is
that along with several frequent events there is also a very large number of
very rare events, say, with frequency 0,1,2. The total amount of these rare
events compared to the number of observations typically is not large but
the number of these events among all different observed events is always

1
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very significant. These rare events are usually very important. For in-
stance the number of words used in the book only once, can be considered
not of vital importance for this book, but it is very clear that these words
are absolutely important because they constitute half of the author‘s vo-
cabulary. “...Most of us agree that mankind must preserve a rich variety in
biology, i.e. must protect a large number of rare animals and rare plants.
”[16].
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1.1.1 LNRE in Linguistics

Let n be the total number of words in a text, µn be number of different
words used in the text, or size of vocabulary, µn(k) - the number of words
used in the text k times.
Table 1 contains data taken from [1]. It illustrates frequencies of differ-
ent words in separate novels. Tables 2 and 3 contain data from the BNC
(British National Corpus) showing word frequency distributions in casual
and formal English.

Table 1.1: LNRE in Linguistics
Works n µn µn(1)

L. Carroll
Alice in Wonderland 26505 2651 1176

H.G. Wells
War of the worlds 59938 7112 3613
A. Conan-Doyle

Hound of the Baskervilles 59241 5741 ca. 2836

Table 1.2: Word frequencies in casual English language usage
n µn µn(1) µn(2) µn(3)

4188576 26618 6718 3616 2259

The following chart shows the ratio of number of words used k-times
k = 1, · · · , 25, over number of different words (vocabulary) for two cor-
pora of English, for casual and formal English sources. We see similarities
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Table 1.3: Word frequencies in formal English language usage
n µn µn(1) µn(2) µn(3)

4187647 34455 8883 4534 2766

between them, although the actual words are different. This demonstrates
a common feature of linguistic data.

Figure 1.1: Spectral statistics for casual and formal English



CHAPTER 1. INTRODUCTION 5

1.1.2 LNRE in Nature

Williams in [37] analyzed the distribution of the number of head lice found
on 461 prisoners.

Table 1.4: Number of head lice on prisoners
Lice per Number of heads Lice per Number of heads

head head
1 106 7 12
2 50 8 18
3 29 9 11
4 33 10 11
5 20 11-12 13
6 14 13-14 14

1.1.3 LNRE in Chemistry

Data on chemical analysis of a substance, taken from [35], shows that there
always is a large number of rare admixtures. For instance “...in ocean wa-
ter one can find ions of all elements of the periodic system of Mendeleev,
though the main part of all inorganic substances dissolved in the ocean
water contains only nine ions... The total amounts of these nine ions ex-
ceeds 99.9% of the whole amount of all dissolved salts”[35].

Table 1.5: Data on chemical analysis of ocean water

% of total amount of inorganic admixture
Cl− Na+ SO2 Mg++ Ca++ K+ HCO3 + CO2 Br− H3BO3

55.04 30.61 7.68 3.69 1.16 1.10 0.41 0.19 0.07
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According to Table 5 the remainder of more than a hundred dissolved
elements take up only 0.05% of the total amount of inorganic admixture.
A large variety of data of the same character is available in demography:
for instance, data of the population of different nationalities in a given
community, say, in a city or in a whole state.

1.1.4 LNRE in Demography

Table 6 is created from the data taken from Statistics New Zealand website
and illustrates ethnical diversity of New Zealand population in 2001.

Table 1.6: Ethnic diversity in New Zealand
No. of different nationalities Nationalities %

in the population of New Zealand

over 65

NZ European 68.03
Maori 13.31

Samoan 2.89
Chinese 2.53
Indian 1.51

Cook Islander 1.29
Tongan 1.02
English 0.86

and only 8.5% for more than 57 others

1.1.5 LNRE in Bibliography

Table 7 contains data extracted from the Author index of A Journal of Mod-
ern Society and Culture 2003-2007. (http : //www.logosjournal.com/)
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Table 1.7: Author index data
No. of publications, m 1 2 3 4 5 6 7

No. of authors
publishing m papers 167 31 12 3 3 2 1

1.1.6 Artificial source of LNRE

An artificial source of a large number of rare events can be created in the
following way: let X1, · · · , Xn be i.i.d. continuous random variables, dis-
tributed over a finite interval [a, b]. Divide this interval into N equal subin-

tervals [a+i∆, a+(i+1)∆], ∆ =
1

N
, i = 0, · · · , N−1. For small ∆ the events

Xj ∈ [a+i∆, a+(i+1)∆] have small probabilities, but the number N of such
events is large. Let νin be the frequency of Xi with values in the i-th subin-
terval. The main question is behavior of the vector νn = (ν1n, · · · , νNn) of
frequencies when both n and N are large. In the second part of this thesis
we will see that properties of statistical methods based on grouped data
(such as the χ2 test) are changed very essentially if N is not much smaller
than n [14].

1.2 Definition of a large number of rare events.

In this section we formulate key definitions and results obtained by E.
Khmaladze in [14], where LNRE theory was shaped as an independent
and significant area of statistics.

Consider a random vector of frequencies νn = (ν1n, · · · , νNn) which has
a multinomial distribution with vector of probabilities pn = (p1n, · · · , pNn)

and sample size n,

P{νin = ki, i = 1, · · · , N} =
n!

∏N
i=1 ki!

N∏

i=1

pkiin,
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N∑

i=1

ki = n, ki ≥ 0,
N∑

i=1

pin = 1.

The number N of different events might be finite or infinite. The random
variable νin is called the frequency of the i-th event.

Consider the statistics

µn(m) =
N∑

i=1

I{νin = m}

and

µn =
N∑

i=1

I{νin > 0}

where

I{νin = m} =

{
1, νin = m

0, νin $= m,

so that µn(m) is the number of events observed in n trials exactly m times,
and µn is the number of different observed events in n trials. The vector
{µn(1), µn(2), · · · , µn(n)} is sometimes called the set of spectral statistics.

The marginal distribution of each frequency is binomial:

P{νin = k} =
n!

k!(n− k)!
pkin(1− pin)

n−k.

Hence

Eµn(m) =
n!

m!(n−m)!

N∑

i=1

pmin(1− pin)
n−m

and

Eµn =
N∑

i=1

[1− (1− pin)
n].

1.2.1 d1 and d2 zones of LNRE

Definition 1. (d1) A sequence of random vectors {νn} is called a sequence with
a large number of rare events (LNRE sequence) if

lim
n→∞

Eµn(1)

n
> 0
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Definition 2. (d2) A sequence of random vectors {νn} is called an LNRE se-
quence if

lim
n→∞

Eµn(1)

Eµn
> 0 and lim

n→∞
Eµn = ∞

For convenience, we will say that we are in (d1) or (d2) zone of LNRE if
(d1) or (d2) is satisfied respectively. These two definitions are not equiva-
lent: namely (d1) ⇒ (d2), but not vice versa. Later on we will see examples
when (d2) is satisfied but not (d1). It is easy to observe that for a fixed fi-
nite N and fixed vector of probabilities p each frequency νin → ∞ a.s. as
n → ∞, and therefore µn(1) → 0 and µn → N a.s. Consequently (d1) and
(d2) cannot be satisfied.
If X1, · · · , Xn are i.i.d. random variables with some absolutely continuous
distribution supported on interval [0, 1] and if νin are frequencies accumu-

lated in the subinterval [
i− 1

N
,
i

N
), then for N = cn, n → ∞, the sequence

of the vectors of frequencies {νn}n≥1 satisfies (d1) and therefore (d2) as
well [14].
Following two functions, introduced in [16], play crucial role in the study
of LNRE theory:

Gn(z) =
N∑

i=1

I{npin > z},

Qn(z) =
N∑

i=1

pinI{npin ≤ z}.

The function Gn(z), called the structural distribution function, is one of the
main objects of interest in LNRE theory. Estimation of this function was
widely considered in [36], [26] and [18].

1.2.2 Some conditions for d1 and d2 zones of LNRE

Condition 1. (c1) For some z < ∞

lim
n→∞

Qn(z) > 0
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Condition 2. (c2) For some z < ∞

lim
n→∞

Gn(z)

nQn(z)
< ∞

and
lim
n→∞

nQn(z) = ∞.

Lemma 1. (c1) ⇔ (d1).

lim
n→∞

Eµn(1)

n
> 0 ⇒ (c1). [14]

Lemma 2. (c2) ⇔ (d2). [14]

As Khmaladze indicates, some other definitions also may correspond
to the intuitive understanding of the expression “large number of rare
events“. For instance {νn} could be called an LNRE sequence if

lim
n→∞

Eµn(1) = ∞

or if
lim
n→∞

Eµn(1) > 0

or if
lim
n→∞

Eµn = ∞.

1.2.3 Some artificial sources for d1 and d2 zones of LNRE

Case 1. Let X1, · · · , Xn be independent random variables, identically distributed
on [0, 1] and f be the density of the distribution of Xi. Consider the uniform
partition of [0, 1] by N points and denote

pin = ∆F (
i

N
), fn(t) = Npin,

i− 1

N
≤ t <

i

N

If N → ∞ then the frequencies ν1n, · · · , νNn, where

νin =
N∑

j=1

I{ i− 1

N
≤ Xj <

i

N
}

satisfy (d1). [14].
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Case 2. Let p be a non-increasing density on (0,∞) and let

pin = pi =

∫ i

i−1

p(t)dt

Let X1, · · · , Xn be i.i.d. random variables with density p and, finally, let

νin =
N∑

j=1

I{i− 1 ≤ Xj < i}.

Lemma 3. For any fixed p the sequence {νn} of vectors of frequencies (6) does
not satisfy (d1).

Condition 3. (c.3) For some ρ ∈ (0, 1]

p(t) = t−ρL(t)

where L is a slowly varying function, that is
L(tc)

L(t)
→ 1 as t → ∞ for any c > 0

Lemma 4. Let p be a fixed density and pi and νin be defined as in Case2. Then
(c.3) ⇔ (d2).[14]



Chapter 2

Models and Laws of LNRE

2.1 Distribution functions of probabilities

Assume that {νin}Ni=1 are drawn from a multinomial distribution with prob-
abilities {pin}Ni=1 which form an array with respect to n. Asymptotic be-
haviour of statistics {ν(k,n)}µn

k=1, {µn(k)}µn

k=1 is governed by the distribution
function of probabilities {pin}Ni=1 [14]. Let us recall the function Gn(x) in-
troduced in previous section,

Gn(x) =
N∑

i=1

I{npin ≥ x}.

If
1

n
Gn

w−→ G

then
µn(k)

n
P−→

∫ ∞

0

λk

k!
e−λG(dλ).

Let us define new measure Rn(x) as follows

Rn(x) =
Gn(x)∫∞

0 (1− e−z)Gn(dz)
.

If
Rn

w−→ R

12
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and
lim
ε→0

sup
n

∫ ε

0

zRn(dz) = 0

then
µn(k)

µn

P−→ −
∫ ∞

0

λke−λ

k!
R(dλ).

This expression shows that we have as many possible limiting expressions

for the ratio of spectral statistics
µn(k)

µn
as there are measures which satisfy

∫ ∞

0

(1− e−λ)R(dλ) = 1

[16].

2.2 Zipf‘s Law

The French stenographer J.B. Estoup observed that word frequencies in a
long text, or in a corpus, fall off inversely with the word‘s rank accord-
ing to a simple power law. Later on this phenomenon was systematically
studied by the American linguist and philologist G.K. Zipf.

2.2.1 Definition of Zipf‘s Law

Let {νin}Ni=1 be frequencies of N , N ≤ ∞, different disjoint events in a
sample of size n, for example, occurrences of different words in a text of n
running words. So called ”empirical vocabulary“, or number of different
words in a text, can be defined as follows:

µn =
N∑

i=1

I{νin ≥ 1}.

Number of words that occurred in the text exactly k times can be written
as follows:

µn(k) =
N∑

i=1

I{νin = k}.
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The following assertion is called Zipf‘s law

µn(k)

µn
≈ 1

k(k + 1)
, k = 1, 2, · · ·

For example, when k = 1, then,
µn(1)

µn
≈ 1

2
. In other words it means that

half of empirical vocabulary is built up from the words which are used

in the text only once. The words that are used only twice constitute
1

6
of

vocabulary and so on.
Notice that in this case definition (d2) is satisfied, but not (d1). Indeed

n

Eµn
=

∞∑

k=1

k
Eµn(k)

Eµn
→ ∞, n → ∞

and therefore
µn

n
→ 0.

2.2.2 Data satisfying Zipf‘s Law

Below is given data from James Joyce‘s famous novel Ulysses. As we can
see empirical data agrees with the theoretical law quite well.

Table 2.1: Spectral statistics for James Joyce‘s Ulysses

Total number of words n = 264217

Vocabulary µn = 30030

µn(1) µn(2) µn(3) µn(4) µn(5) µn(6) µn(7) µn(8) µn(9) µn(10)

16409 4832 2209 1280 924 619 496 369 297 250
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Figure 2.1: Zipf‘s law in James Joyce‘s Ulysses
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2.3 Zipf-Mandelbrot Law

Mandelbrot in [24] used considerations based on information theory. He
took the ”effort“ or ”cost“ of words as the delay resulting from their trans-
mission as a sequence of letter patterns or phonemes, separated by spaces
or pauses. Assuming that the aim of language is to allow transmission of
the largest variety of signals as possible with the least delay, he used the
technique for matching codes to message usage [3]. The statement

µn(k)

µn
≈ 1

(a+ bk)2
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is frequently called Zipf-Mandelbrot law. Here a and b are constants for the
texts being analyzed.

2.4 Pareto distribution

The Pareto distribution in its original form, or ”Pareto distribution of the
first kind“, is defined as follows:

F (x) = 1−
(
k

x

)a

, a > 0; x ≥ k ≥ 0

where a and k are parameters. Corresponding density function is:

f(x) =
aka

xa+1
, a > 0; x ≥ k ≥ 0

The economist Vilfredo Pareto formulated following Law:

N = Ax−a

where N is number of those in the community with income equal, or ex-
ceeding x, and A, a are parameters. Notice that it is very general distribu-
tion and applies to a very wide range of phenomena outside economics.

2.5 Yule-Willis taxonomy model

Yule in [38], analyzing data of J.C. Willis, assumed that new species within
given genus arise from a specific mutation. If p is probability that in some
small assigned interval of time ∆t the species will mutate, then starting
with N species of different genera, after ∆t time we will have N(1 − p)

genera without new species and Np genera with new species. Proceed-
ing to the limit, taking the time-interval ∆t as indefinitely small but the
number of such intervals n as large, so that the time n∆t = t is finite, Yule
obtained: p = s∆t, pn = st and

qn = (1− p)n = (1− st

n
)n ∼ e−st
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Now, according to our notations introduced above, let µn(k) be num-
ber of genera containing k species and µn be number of different genera
respectively. Then according our scheme µn is N . After certain transfor-
mations, Yule obtained following result:

µn(k)

µn

P−→ γΓ(γ + 1)Γ(k)

Γ(k + γ + 1)
,

where γ is some parameter.

2.6 Lotka‘s distribution of literary productivity

Lotka‘s law describes the frequency of papers published by authors in any
given field. In a study of literary output, Lotka in [21] found that the num-
ber of authors who had published k papers in a given field was roughly
1

k2
of the number of authors who had published one paper only [3].

2.6.1 Data satisfying Lotka‘s Law

In the following Table we illustrate the data taken from [31]. It comprises
the numbers of times that individual authors had published with Emerald
Group Publishing Limited.

Table 2.2: Bibliographic data from Emerald Group Publishing Limited

Total number of authors, n = 20624

µn(1) = 13428

µn(2) µn(3) µn(4) µn(5) µn(6) µn(7) µn(8) µn(9) µn(10) µn(11)

3327 1437 782 487 297 218 149 99 95 79

The chart below shows the matching of empirical µn(k) to µ′
n(k) calcu-

lated from Lotka‘s law. µ′
n(k) =

µn(1)

k2
, k = 2, · · · , 11.
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Figure 2.2: Lotka‘s law for bibliographic data from Emerald Group Pub-
lishing Limited



















         





2.6.2 Lotka‘s law versus Zipf‘s law

Lotka‘s law is not the only one which describes scientific productivity of
authors in a given field. For example, Khmaladze and Tsigroshvili in [17]
analyzed data collected by Dr I. Urinov. It contains the authors index of
the Theory of Probability and Applications from 1955-1980. Khmaladze and
Tsigroshvili reproduce this data jointly with the Zipf‘s approximation for
µn(k) which is

µn

k(k + 1)
with µn = 741 being the total number of the au-

thors during 25 years.
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Table 2.3: Bibliographic data from Theory of Probability and Applications

µn = 741

µn(1) µn(2) µn(3) µn(4) µn(5) µn(6) µn(7) µn(8) µn(9) µn(10)

366 135 67 41 31 19 9 9 10 9

In the chart below we demonstrate comparison of Zipf‘s and Lotka‘s
approximations. Blue column correspond to empirical data, red column -
Zipf‘s approximation and green column - Lotka‘s approximation. We can
see clearly that Zipf‘s law gives much better matching.

Figure 2.3: Lotka‘s law vs Zipf‘s law
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2.7 MacArthurs Stick Model

A simple way to study the structure of animal communities is to plot
the rank of species from commonest to rarest along abscissa and their
abundances along ordinate. The idea is to to predict curves on the basis
of simple biological hypotheses such as there being equilibrium or near-
equilibrium in population.

MacArthur in [22] considered following scheme:
”The environment is compared with a stick of unit length on which n −
1 points are thrown at random. The stick is broken at these points and
lengths of the n resulting segments are proportional to the abundance of
the n species”.

For uniform partition of [0, 1] interval, when ordered from smallest to
largest, the expected length of the rth shortest interval is given by

1

n

r∑

i=1

1

n− i+ 1
.

This is a natural ordering to use when listing the species in “order”, from
rarest to most common. The expected abundance of the rth rarest species
among n species and m individuals is

m

n

r∑

i=1

1

n− i+ 1
.

Quite frequently common species are too abundant and rare species are
too rare, so the curve is very steep. These steep curves can be duplicated
by considering the community as composed of two sticks of very differ-
ent length (totaling unit length), each broken uniformly into n/2 pieces.
That could be generalized to communities which are composed of several
smaller ones, each obeying the original hypotheses.
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2.8 Hill‘s model

B. M. Hill in [7] suggested the following model. Suppose n individuals are
distributed to µn non-empty genera with Bose-Einstein distribution - all
allocations are equiprobable with probability

(Cµn−1
n−1 )−1.

If P{µn

n
≤ x} w−→ F (x), 0 ≤ x ≤ 1, F (0) = 0, then the number of genera

with exactly k species µn(k) satisfy following expression

µn(k)

µn

d−→ U(1− U)k−1

where the random variable U has distribution F . Notice that if U has uni-
form distribution, then

Eµn(k)

µn
→ 1

k(k + 1)

which is exactly Zipf‘s law.

2.9 Karlin-Rouault‘s Law

S. Karlin in [12] considered following scheme: n balls are thrown indepen-
dently at a fixed infinite array of cells with probability pi of hitting the i-th
cell. Probabilities, without loss of generality, were ordered in such a way
that pi ≥ pi+1 for i = 1, 2, . . . and pi > 0 for all i. Let νin be number of balls
in the i-th cell after n tosses. Consider a Poisson process {N(t); t ∈ [0,∞)}
with parameter 1 and let νN(t)i be number of balls in the i-th cell at time
t. The stochastic process {νN(t)i;t≥0} for i = 1, 2, . . . is composed of mu-
tually independent homogeneous Poisson processes with parameters pi,
i = 1, 2, . . . respectively

P{νN(t)i = k} = e−tpi
tpki
k!

.
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Notice that, in sharp contrast, the frequencies {νin} with n fixed and i vary-
ing are not mutually independent.

Karlin proved central limit theorems and determined the asymptotic
behavior of the moments for several special functionals of the processes
{νN(t)i;t≥0}∞i=1 and {νni}∞i=1. What is more interesting for us, he considered
µn(k) - the number of cells containing exactly k balls after n tosses and µn =
∑∞

k=1 µn(k) - number of occupied cells. The limit theorem he obtained is
as follows:

µn(k)

µn

P−→ uΓ(k − u)

Γ(k + 1)Γ(1− u)

where u is some parameter typically close to
1

2
.

A. Rouault in [30] considered certain Markov process as a model for
formation of a text word by word and obtained a similar result to that of
Karlin. This expression is called Karlin-Rouault‘s Law

2.10 Good-Turing Estimators

I.J. Good in [5] tried to answer the following question:
Suppose a random sample is drawn from an infinite set of outcomes Ξ. Let
sample size be n, frequency of outcome ξ in the sample be νξ and µn(k) be
number of outcomes represented in the sample exactly k times, so that

∞∑

k=1

kµn(k) = n.

Suppose number of different outcomes we have seen in the sample is µn,
then what can one say about underlying probabilities p(ω), ω ∈ Ω?
I.J Good introduced following quantities

Gn(k) =
∑

ξ∈Ξ

p(ξ)I{νξ = k}

and
pn(k) =

Gn(k)

µn(k)
.



CHAPTER 2. MODELS AND LAWS OF LNRE 23

These two quantities can be interpreted as follows. Gn(k) is the total prob-
ability of outcomes represented in the sample k times and pn(k) is an “av-
erage” probability of each such outcome.

As an estimate for pn(k) one would take
k

n
, but this naive estimator

leads to one awkward result: namely, for unseen outcomes in the sample
it would imply the estimate Ĝn(0) = 0.

Assume that frequencies νξ follow binomial distribution with parame-
ters p(ξ) and n, then

EGn(k) = E
∑

ξ∈Ξ

p(ξ)I{νξ = k}

=
∑

ξ∈Ξ

p(ξ)
n!

k!(n− k)!
pk(ξ)(1− p(ξ))n−k

=
∑

ξ∈Ξ

n!

(k + 1)!(n− k − 1)!
pk+1(ξ)(1− p(ξ))n−k−1 k + 1

n− k
(1− p(ξ))

but

Eµn(k + 1) =
∑

ξ∈Ξ

n!

(k + 1)!(n− k − 1)!
pk+1(ξ)(1− p(ξ))n−k−1

and
k + 1

n− k
(1− p(ξ)) → k + 1

n
as n → ∞. So we obtained following expression:

EGn(k) ∼
k + 1

n
Eµn(k + 1).

More precisely, as p(ξ) → 0 as n → ∞, we can assume that frequencies
νξ follow Poisson distribution with parameters np(ξ).

EGn(k) = E
∑

ξ∈Ξ

p(ξ)I{νξ = k}

=
∑

ξ∈Ξ

p(ξ)enp(ξ)
(np(ξ))k

k!
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=
∑

ξ∈Ξ

p(ξ)enp(ξ)
(np(ξ))k+1

(k + 1)!

k + 1

np
=

k + 1

n
Eµn(k + 1)

so here we obtained exact equality:

EGn(k) =
k + 1

n
Eµn(k + 1).

Based on this Good proposed to estimate Gn(k) and pn(k) as

Ĝn(k) =
k + 1

n
µn(k + 1)

and
p̂n(k) =

k + 1

n

µn(k + 1)

µn(k)

respectively.



Chapter 3

LNRE in questionnaires

3.1 On multinomial distributions with LNRE

Khmaladze and Tsigroshvili, in [17], obtained the Karlin-Rouault law in a
context very different from that of Karlin and Rouault.
“ Let unit interval be divided into two in the ratio a : 1 − a. Let each of
these two be again sub-divided in the same ratio, and so on. On q-th step
one obtains probabilities pi, i = 1, 2, · · · , 2q, of the form ak(1 − a)q−k for
some k = 0, 1, · · · q. One can think of filling a questionnaire with ”yes-
no“-questions at random with probability a for one of the answers in each
question”. The pi‘s defined above are the probabilities of each particular

answer to the questions. It was proved that if a $= 1

2
, then

µn → ∞,

but
µn

n
→ 0,

and that
µn(k)

µn
→ uΓ(k − u)

Γ(k + 1)Γ(1− u)
.

The authors give to this statement very interesting heuristic interpretation.

If each particular answer is regarded as an “opinion”, then if a $= 1

2
, the

25
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proverb “as many men as many minds” is incorrect though number of
“minds” is infinitely large it still is asymptotically smaller than number of
“men”. Notice that in this case we have definition (d2) satisfied but not
(d1).

In 2009 in his paper “Diversity of responses in questionnaires and sim-
ilar objects”,[15], E.Khmaladze considered similar scheme with some gen-
eralization, namely he assumed that probabilities for “yes” or “no” for

each question may be different. Investigation of limit for
µn(k)

µn
becomes

significantly more difficult, but using relatively transparent probabilistic
tools, such as, large deviation theory and contiguity theory, the author
showed that

µn(k)

µn
→ uΓ(k − u)

Γ(k + 1)Γ(1− u)

in other words he again obtained Karlin-Rouault‘s Law.

3.2 Formulation of the problem

We intend to replace the ratio of statistics,
µn(k)

µn
, with the ratio of their ex-

pected values,
Eµn(k)

Eµn
. To make it legitimate, in Section 5.1 we will prove

that
µn

Eµn
and

µn(k)

Eµn(k)
converge to 1 a.s.

The scheme considered in [15] was following: A person is asked to
fill in a form with q binary (yes/no) questions and probability that an an-
swer to i-th question is “yes” is equal to ai. So we have a vector

−→
ξ =

(ξ1, ξ2 · · · , ξq) of q Bernoulli random variables. The set Ξq of its possible
values is the set of all sequences −→x = (0, 1, 0, · · · , 0) of length q. It is ob-
vious that cardinality of the set Ξq is 2q, which means we have 2q possible
values of vector

−→
ξ with corresponding frequencies

νq(
−→x ) =

2q∑

j=1

I{
−→
ξj = −→x }
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Probability of a particular vector −→x (“opinion”) could be written as fol-
lows:

p(−→x ) =
q∏

i=1

axi
i (1− ai)

1−xi .

It is obvious that each frequency νq(−→x ) has a binomial distribution with
parameters n and p(−→x ), where n = λ2q. Therefore

Eµq =
∑

−→x ∈Ξq

(1− b(0, n, p(−→x )))

and
Eµq(k) =

∑

−→x ∈Ξq

b(k, n, p(−→x )), k = 1, 2, · · ·

Because p(−→x ) → 0 as q → ∞, the author assumes that frequencies νq(−→x )

behave like Poisson random variables with parameter λ2qp(−→x ). Conse-
quently, following expressions were used

Eµq =
∑

−→x ∈Ξq

(1− π(0, np(−→x )))

and
Eµq(k) =

∑

−→x ∈Ξq

π(k, np(−→x )), k = 1, 2, · · ·

The asymptotic behavior of these sums is extremely awkward; however,
after a certain interpretation the author gave to the expression 2qp(−→x ),
suddenly everything became relatively clear and transparent. Namely, he
introduced a new, artificial measure P0q of

−→
ξ on Ξq as follows

p0(
−→x ) =

1

2q

in other words he assumed that under measure P0q all ai =
1

2
.

The gain from this transformation is that it allowed one to consider an
expression 2qp(−→x ) as a likelihood ratio of Pq and P0q

Mq(
−→x ) ≡ 2qp(−→x ) =

pq(
−→x )

p0q(
−→x )

.
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Now Eµq and Eµq(k) could be written as following

Eµq = 2qE0(1− π(0,λMq(
−→
ξ )))

and
Eµq(k) = 2qE0π(k,λMq(

−→
ξ )), k = 1, 2, · · ·

where E0 denotes expected value with respect to the new, uniform distri-
bution P0q of

−→
ξ .

3.3 Contiguity approach

Before we start to investigate asymptotic behaviour of Mq, we would like
to overview some basic facts and results from contiguity theory.

Definition 3. The sequence Pq is contiguous with respect to the sequence P0q if
limq→∞ P0q(Aq) = 0 implies limq→∞ Pq(Aq) = 0 for any sequence of measurable
sets Aq. This one-sided contiguity is denoted by Pq * P0q.

The sequences are said to be contiguous with respect to each other if
both Pq *P0q and P0q *Pq. This two-sided contiguity concept is denoted by
Pq * +P0q [28]

The Hellinger distance H(P,P0) between two probability measures P
and P0 is defined as follows:

H(P,P0) = (

∫
(
√
p−√

p0)
2dµ)

1
2 = (2− 2

∫
√
p
√
p0dµ)

1
2

where p =
dP
dµ

and p0 =
dP0

dµ
are corresponding Radon-Nikodym deriva-

tives with respect to the σ-finite measure µ dominating P+ P0.
Suppose Pq =

∏q
i=1 Pqi and P0q =

∏q
i=1 P0qi, so Pq and P0q are product

measures. Then, the Hellinger distance between product measures and
that of their marginals are connected by the relationship

H2(Pq,P0q) = 2− 2
q∏

i=1

(1− 1

2
H2(Pqi, P0qi)).

We formulate here two theorems, without proofs, from [28].
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Theorem 1. [28] Pq * P0q iff

lim sup
q→∞

q∑

i=1

H2(Pqi, P0qi) < ∞

and

lim sup
q→∞

q∑

i=1

Pqi(
pqi
p0qi

(Xqi) ≥ cq) = 0

whenever cq → ∞.

Consider log-likelihood Pq with respect to P0q

Lq =
q∑

i=1

ln
pqi
p0qi

(Xqi).

Theorem 2. [28] For a given σ ≥ 0

Lq
w−→ N(−1

2
σ2; σ2)

under measure P0q and

lim
q→∞

max
1≤i≤q

P0qi(| ln
pqi
p0qi

(Xqi)| ≥ ε) = 0

for every ε > 0, iff for every ε > 0

lim
q→∞

q∑

i=1

H2(Pqi, P0qi) =
1

4
σ2

and

lim
q→∞

q∑

i=1

∫

|p0qi−pqi|≥εpqi

(
√
p0qi −

√
pqi)

2dµqi = 0.

As an immediate consequence of those two theorems, Khmaladze stated
following result:
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Theorem 3. [15] Suppose probabilities a1q, · · · , aqq form in q triangular array,

such that max1≤i≤q |aiq −
1

2
| → 0 and

aiq =
1

2
+

ciq√
q
, with lim sup

q→∞

q∑

i=1

c2iq
q

< ∞.

Then
lim inf
q→∞

Eµq

2q
> 0.

If the finite limit

lim
q→∞

q∑

i=1

c2iq
q

= c2

exists, then
Eµq

2q
∼

∫
(1− π(0,λez))Φ− c2

2 ,c2
(dz)

and
Eµq(k)

Eµq
=

∫
π(k,λez)Φ− c2

2 ,c2
(dz)

∫
(1− π(0,λez))Φ− c2

2 ,c2
(dz)

.

“Note that the result extends to very general class of distributions.
Namely, whether ξ1, · · · , ξq are independent and Pq is a product of Bernoulli
distributions or not does not matter much.”
Indeed, aiq could stand for conditional probability of ξi = 1, given ξ1, · · · , ξi−1

and, in this case, conditions for asymptotic normality for lnMq are well
known (see, e.g,[6]).

3.4 Arbitrary underlying distribution. Large de-
viations approach

For arbitrary ai-s, i = 1, · · · , q, the behavior of the likelihood ratio Mq

becomes unstable as, under P0q, Mq → 0 in probability but E0Mq = 1 which
indicates that, although with very small probability, Mq takes extremely
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large values. The asymptotic analysis of E0(1−π(0,λMq)) and E0π(k,λMq)

becomes again nontrivial.
“ How small is the quantity E0(1− π(0,λMq)) is not immediately obvi-

ous : for large q, although the random variable Mq is small with high prob-
ability, the integrand 1−π(0,λMq) also becomes small, while although Mq

is large with only small probability, the integrand is close to 1, that is to
say, not small.” [15]

To avoid these difficulties, the author suggested following transforma-
tion: “ Let T1 be exponential random variable (with scale parameter 1),
independent from Mq, and let η1 = lnT1. The distribution function of η1 is
1− π(0, ex) = 1− e−ex”[15]

These interpretations transforms E0(1 − π(0,λMq)) into certain proba-
bility. Namely

E0(1− π(0,λMq)) = P0{Lq > η1 − lnλ}

where Lq = lnMq and P0 denotes the joint distribution of Lq and η1 under
uniform distribution on Ξq.

Similarly if Tk is a Gamma-distributed random variable with shape pa-
rameter k and ηk = lnTk, we can write

E0

∞∑

j=k

π(j,λMq) = P0{Lq > ηk − lnλ}

These probabilities are naturally connected with the theory of large de-
viations and the author uses corresponding technique to establish their
asymptotic. We will not go here in details but will just formulate the main
theorem.

Lq = ln
pq(

−→
ξ )

p0q(
−→
ξ )

=
q∑

i=1

[ξi ln 2ai + (1− ξi) ln 2(1− ai)]

where ξ1, · · · , ξq are symmetric Bernoulli random variables under P0.
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Let ψi(u) denote the logarithm of the moment generating function of
each summand

ψi(u) = lnE0e
u[ξi ln 2ai+(1−ξi) ln 2(1−ai)]

= ln[(2ai)
u + (2(1− ai))

u]− ln 2.

Let

Fq(a) =
1

q

q∑

i=1

I{ai < a}

and suppose as q → ∞, for all a ∈ [0, 1]

Fq(a) → F (a)

and ∫ 1

0

ln2 a

1− a
dFq(a) →

∫ 1

0

ln2 a

1− a
dF (a).

Notice that, the last condition excludes the possibility of having too many
ai-s too close to 0 or 1. Now we can formulate the theorem given in [15].

Theorem 4. [15]
If ∫ 1

0

ln2 a

1− a
dFq(a) →

∫ 1

0

ln2 a

1− a
dF (a)

Then
Eµq(k)

Eµq
→ uΓ(k − u)

Γ(k + 1)Γ(1− u)

where u = lim uq and uq is such that
∑q

i=1 ψ
′(uq) = 0.

3.5 Remark on Good-Turing Estimation

As an immediate consequence of previous two theorems, Khmaladze ob-
tained estimators for quantities which I.J.Good introduced in early 1950‘s.
Namely, recall that Gq(k) is the total probability of outcomes that hap-
pened to appear k times and pq(k) is an “average” probability of each
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of such outcomes. Then if a sample agrees with the Karlin-Rauault law,
Khmaladze showed, that

EGq(k) ∼
1

n

uΓ(k + 1− u)

Γ(1− u)Γ(k + 1)
Eµq

and
pq(k) ∼

k − u

n
,

and thus

EGq(0) ∼
u

n
Eµq

and
pq(0) ∼

u

n

Eµq

2q − Eµq

as q → ∞.
“This, in turn, leads to conclusion that if Karlin-Rouault law is satisfied,

then in the underlying probabilities there should have been approximately

µq(k) probabilities, equal
k − u

n
, while the total probability of unseen out-

comes was
uµq

n
.” [15]

In [15] it was shown that more accurate and complete evaluation of
overall behaviour of probabilities is possible.

Let

Hq(x) =
1

2q
Gq(x)

where
Gq(x) =

∑

−→x ∈Ξq

I{np(−→x ) > x}.

And as in Section 2.1 of Chapter 2, let

Rq(x) =
1∫∞

0 (1− ey)dHq(y)
Hq(x),

or equivalently,

Rq(x) =
1

Eµq

∑

−→x ∈Ξq

I{np(−→x ) > x}
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be the tail of empirical distribution function of np(−→x ) under P0q and its
normalized form respectively.

Khmaladze in [15] obtained in a sense a very strange result. The de-
pendence of the spread of probabilities p(−→x ) on distribution function F

of individual probabilities a1, · · · , aq is very weak. It essentially depends
on very narrow class of functions through the parameter u, which in it-
self is quite stable as it varies around 0.5 for whatever Beta distribution of
a1, · · · , aq.

Theorem 5. [15]
If, as q → ∞ and sample size n = λ2q with λ = const,

µq(k)

µq
→ uΓ(k − u)

Γ(k + 1)Γ(1− u)
,

then for all x > 0

Rq(x) → R(x) =
1

Γ(1− u)
x−u.



Chapter 4

Measures of Diversity

4.1 Diversity as a property of a population

As we mentioned in Section 1.1, in any statistical analysis devoted to the
study of variety of species, one will observe the presence of a large number
of rare events. Diversity in populations is of particular interest to ecolo-
gists.

As an illustration, we quote Williams from [37]: “If one goes into a
natural forest in a cold temperate climate such as Northern Europe and
selects at random two trees, the chances are high that both will belong to
the same species, because in such an environment the vegetation is undi-
versified. If one makes the same experiment in a tropical forest, it may be
necessary to select quite a number of pairs before getting two of the same
kind: here the vegetation is highly diverse. If one collected a few thousand
mosquitoes in the far north, it is likely that only a few species would be
represented, but in the tropics forty or fifty species might easily be found
in a sample of the same size.“

Magguran in [23] partitions biological diversity into two components:
species richness and evenness. The term ”species richness“ was coined
by McIntosh in [25] and represents one of the oldest and most intuitive
measures of biological diversity. Species richness is simply the number of

35
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species in the particular study. A community in which all species have
approximately equal number of individuals would be considered as ex-
tremely even. A large disparity in the relative abundances of species would
result in the description ”uneven“

A ”diversity index“ or ”diversity measure“ or heterogeneity (see,e.g.,
[5]) is a measure that incorporates information on richness and evenness
and therefore takes species abundances into account.

4.2 The Shannon diversity index and evenness
measure

In the theory of probability an entropy is a quantity which measures an
indeterminacy of distribution. Let (p1, p2, · · · , pN) be a finite probability
distribution. The entropy, or Shannon‘s index, of this distribution is de-
fined as follows:

H = −
N∑

i=1

pi ln pi.

It is clear that H ≥ 0, and H = 0 if and only if every pi, with one exception,
is equal to zero and ”exception” is equal to 1. The function −p ln p, on the
interval [0, 1] is convex, therefore

H = −
N∑

i=1

pi ln pi ≤ −N

∑N
i=1 pi
N

ln

∑N
i=1 pi
N

= lnN.

In other words, the entropy attains its maximum for p1 = p2 = · · · = pN =
1

N
.

The Shannon‘s index is widely used to measure biological diversity.
Let n be a sample size and N be number of different outcomes. The Shan-
non index is estimated as follows:

Ĥn = −
N∑

i=1

νi
n
ln
νi
n
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where the quantity νi is the number of occurrences of i-th outcome. Some
commentators who discuss this measure underline disadvantages of it.
For example, Sager and Hasler in [32] complain that Shannon‘s index is
inadequate because it is insensitive to rare species which may play impor-
tant role in the ecosystem. This argument is incorrect as diversity index
can not in itself incorporate species importance.

As a heterogeneity measure the Shannon index takes into account the
degree of evenness in species abundances. Pielou in [29] suggested cal-
culating a separate evenness measure based on following arguments. The
maximum diversity (Ĥn)max that could possibly occur would be found
in a situation where all species had equal abundances, in other words if
Ĥn = (Ĥn)max = lnN . The ratio of observed diversity to maximum diver-
sity can therefore interpreted as a measure for evenness (see, e.g., [23])

Ĵn =
Ĥn

(Ĥn)max

=
Ĥn

lnN
.

Hurlbert in [8] uses the value (Ĥn)min, instead of (Ĥn)max, as a measure
of Shannon evenness. For a given N and n, a simple method to calculate
(Ĥn)min is given in [2].

Ĥn = −
N∑

i=1

νi
n
ln
νi
n

= − 1

n

N∑

i=1

νi(ln νi − lnn)

= − 1

n

N∑

i=1

νi ln νi +
lnn

n

N∑

i=1

νi

= lnn−− 1

n

N∑

i=1

νi ln νi.

The lower limit of Ĥn corresponds to the case for which νi = n − (N − 1)

for one i-th outcome and νj = 1 for all the rest j $= i outcomes. The N − 1
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outcomes j with νj = 1 do not contribute to the calculation. Thus minimal
diversity value depends only on the outcome i with n−(N−1) individuals.
Substituting νi with n− (N − 1) we will obtain

(Ĥn)min = lnn− (n−N + 1) ln(n−N + 1)

N
.

4.3 McIntosh‘s measure of diversity

McIntosh in [25] treated a population as point in a N -dimensional space
and used Euclidean distance from the origin to define a measure of diver-
sity. It is calculated as follows:

U =
√∑

n2
i

where, again, ni is number of i-th species. And a measure of diversity is

D =
n− U

n−
√
n

(see,e.g, [23]). And a further evenness measure can be obtained from the
formula:

E =
n− U

n− n/
√
N

[29].

4.4 Simpson‘s diversity index and measure of even-
ness

One of the simplest diversity measures was suggested by Simpson in [34]:
it is the probability of any two individuals drawn at random from an in-
finitely large community belonging to the same species, or equivalently
”It is calculation of the number of pairs that would have to be selected
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at random from a particular population in order to give an even chance of
getting one pair with both individuals belonging to the same species“ [37].

D =
∑

p2i

where pi is the probability of i-th species.
Another form

D =
∑ νi(νi − 1)

n(n− 1)

where n is a total number of individuals and νi is a frequency of i-th
species [23].

Simpson‘s index is usually expressed as 1 − D or 1/D. The last one
could be interpreted as an expected value of geometric distribution with
parameter D, that is, an average number of trials before we get a pair
with both individuals belonging to the same species. This index is heavily
weighted towards the most abundant species in the sample, while being
less sensitive to species richness.[23]

Simpson‘s measure of evenness can be calculated by dividing the re-
ciprocal form of Simpson‘s index by the number of species in the sample
N

E1/D =
(1/D)

N
.



Chapter 5

Results

5.1 Preliminary analysis and discussion

Consider again N disjoint events with probabilities p1, p2, ..., pN ,
∑N

i=1 pi =

1 and let νn = (ν1n, ..., νNn) be the vector of frequencies of these events
in n independent trials. The so-called ”spectral statistics” or “empirical
vocabulary” (see, e.g. [1], [14] and [16] ) are defined by,

µn(m) =
N∑

i=1

I{νin = m}, m = 1, ..., n ,

µn =
N∑

i=1

I{νin ≥ 1} =
n∑

m=1

µn(m) .

Before we start analysis of the spectral statistics, we will prove that the

ratios
µn

Eµn
and

µn(k)

Eµn(k)
converge to 1 a.s. as n → ∞.

Theorem 6. If for every k = 1, 2, . . ., Eµn(k) and Eµn ≥ a(lnn)2, then
µn

Eµn
→ 1 a.s.

and
µn(k)

Eµn(k)
→ 1 a.s.

40
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Remark: Later in Lemma 6 of Section 5.6 we will show that actually
Eµn(k) and Eµn are of order of Nu, 0 < u < 1, which is much stronger than
what is required in the theorem.

Proof:

µn(k) =
N∑

i=1

I{νin = k} ≡
N∑

i=1

Xi

Eµn(k) = E
N∑

i=1

I{νin = k} = E
N∑

i=1

Xi

Aε
n ≡ {ω :| µn(k)

Eµn(k)
− 1 |≥ ε}

= {ω :|
N∑

i=1

Xi − E
N∑

i=1

Xi |≥ εE
N∑

i=1

Xi}.

Using exponential inequality we can obtain:

P{(
N∑

i=1

Xi − E
N∑

i=1

Xi) ≥ εE
N∑

i=1

Xi}

= P{et
∑N

i=1 Xi ≥ e(ε+1)tE
∑N

i=1 Xi} ≤ Eet
∑N

i=1 Xi

e(ε+1)tE
∑N

i=1 Xi

with

Eet
∑N

i=1 Xi =
N∏

i=1

(1− qi + qie
t)

where
qi = P{νin = k}.

Using
Eet

∑N
i=1 Xi = e

∑N
i=1 ln(1−qi+qiet)

we obtain

P{(
N∑

i=1

Xi − E
N∑

i=1

Xi) ≥ εE
N∑

i=1

Xi}

≤ e
∑N

i=1 ln(1−qi+qiet)−(ε+1)tE
∑N

i=1 Xi
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≤ e
∑N

i=1(qie
t−qi)−(ε+1)tE

∑N
i=1 Xi

= e(e
t−1−(ε+1)t)E

∑N
i=1 Xi .

So far, parameter t was arbitrary. After minimizing in t, at t = ln(ε + 1),
we will obtain:

P{(
N∑

i=1

Xi − E
N∑

i=1

Xi) ≥ εE
N∑

i=1

Xi}

≤ e(ε+1−1−(ε+1) ln(ε+1))E
∑N

i=1 Xi

= e(ε−(ε+1) ln(ε+1))E
∑N

i=1 Xi

= e(ε−(ε+1) ln(ε+1))Eµn(k).

Denote (ε−(ε+1) ln(ε+1)) with −α, then using condition from theorem
we obtain,

P{(
N∑

i=1

Xi − E
N∑

i=1

Xi) ≥ εE
N∑

i=1

Xi}

≤ e−αa(lnn)2 = (elnn)−αa lnn = n−αa lnn.

Similarly, we can prove that

P{(
N∑

i=1

Xi − E
N∑

i=1

Xi) ≤ −εE
N∑

i=1

Xi} ≤ n−αa lnn

therefore
∞∑

n=1

P(Aε
n) ≤ ∞

which implies that
µn(k)

Eµn(k)
converge to 1 a.s.. Similarly we can show that

µn

Eµn
converge to 1 a.s.

From now on we concentrate on asymptotic behaviour of
Eµn(k)

Eµn
in-

stead of
µn(k)

µn
.
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We are interested in a specific framework in which the disjoint events
can be indexed by q-dimensional vectors !xq = (x1, . . . , xi, . . . , xq) with
coordinates xi changing from 1 to ki respectively. Then pi(i = 1, ..., N)

in previous setting becomes p(!xq), with !xq ∈ Ξq = ×q
i=1{1, . . . , ki} and

N =
∏q

i=1 ki is the cardinality of Ξq. Hence µn(m) becomes,

µn(m) =
∑

'xq∈Ξq

I{ν(!xq) = m}.

Therefore,
Eµn(m) =

∑

'xq∈Ξq

P{ν(!xq) = m}

=
∑

'xq∈Ξq

(
n

m

)
p(!xq)

m (1− p(!xq))
n−m

and

Eµn =
∑

'xq∈Ξq

(1− (1− p(!xq))
n) .

This framework can be found in many applications. For example, !xq

can be interpreted as an opinion in a questionnaire with q multi-option or
multi-choice questions (the i-th question has ki options). And the ratios,

Eµn(m)

n
and

Eµn(m)

Eµn
(5.1)

can be interpreted as, the proportion of the number of opinions with m

supporters in all n responses, and in the total number of opinions with at
least 1 supporter, respectively.

The main setting of the framework was given in [15]. In that paper all
xi were binary. However, in this chapter, we want to take advantage of the
fact that the proofs given by Khmaladze are of more general nature. We
demonstrate this by extending settings for questionnaires with a general
structure.
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5.2 Formulation of problem

There are three variables n, q and N , which control the asymptotic behav-
ior of the ratios. Among them, q and N are directly associated with each
other by the definition of N . Therefore, it is sufficient that we discuss the
relation between n and N .

Since N is the number of disjoint events (opinions) and n is sample size
(the number of responses), when n = o(N), most frequencies tend to zero
and those nonzero frequencies will mostly be 1. On the other hand, in
the situation of N = o(n), most frequencies are nonzero and tend to infin-
ity eventually. However, it is more interesting to investigate the situation
where N and n are comparable, particularly, n = λN for some constant
0 < λ < ∞. In this chapter we only focus on the last case.

Let Pq denote the probability measure on Ξq which is defined by prob-
abilities p(!xq):

Pq

(
!Xq = !xq

)
= p(!xq)

and let P0,q denote the uniform measure on Ξq:

P0,q

(
!Xq = !xq

)
= p0(!xq) =

1

N
.

Then,

Eµn(m) =
∑

'xq∈Ξq

(
n

m

)
p(!xq)

m (1− p(!xq))
n−m

= NEP0,q

[(
n

m

)
p( !Xq)

m
(
1− p( !Xq)

)n−m
]

and

Eµn = NEP0,q

[
1−

(
1− p( !Xq)

)n]
.

Define Mq as likelihood ratio of the alternative measure Pq to null mea-
sure P0,q, i.e.

Mq(!xq) =
dPq

dP0,q
(!xq) =

p(!xq)

p0(!xq)
= Np(!xq). (5.2)
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Then we have

Eµn(m) = N

(
n

m

)
1

nm
EP0,q

[
(λMq( !Xq))

m

(
1− λMq( !Xq)

n

)n−m]
(5.3)

and

Eµn = N

(
1− EP0,q

[(
1− λMq( !Xq)

n

)n])
. (5.4)

At first sight, it looks artificial that we introduce such a likelihood ra-
tio Mq. However, the benefit of this introduction is significant. Although
“physical” measure of !Xq is Pq, using Mq we can exploit its asymptotic
properties as if !Xq has uniform distribution P0,q. As a likelihood ratio and
a martingale in q, Mq( !Xq) possesses some good and well-known asymp-
totic properties, which is very convenient.

Further, according to the Lemma5 below, expressions in the right hand
side of (5.3) and (5.4) can be replaced by Poissonian limits. This suggests
that we can lay aside the role of sample size n in the asymptotic behavior
of the ratios and focus on the limit behavior of distribution of Mq( !Xq), or
equivalently, Np( !Xq) under the measure induced by P0,q.

Lemma 5. For Mq( !Xq) defined by (5.2),

EP0,q



(λMq( "Xq))
m

(
1− λMq( "Xq)

n

)n−m


 = EP0,q

[
(λMq( "Xq))

me−λMq( "Xq)
]
+O

(
1

n

)
.

Proof: Let us denote the distribution function of λMq( !Xq) with FMq(x).
Since 0 ! λMq( !Xq) ! n,

sup
0!x!n

∣∣∣∣x
m
(
1− x

n

)n−m

− xme−x

∣∣∣∣ = O

(
1

n

)
,

∣∣∣∣∣EP0,q

[
(λMq( !Xq))

m

(
1− λMq( !Xq)

n

)n−m]
− EP0,q

[
(λMq( !Xq))

me−λMq( 'Xq)
]∣∣∣∣∣

!
∫ ∞

0

∣∣∣∣x
m
(
1− x

n

)n−m

− xme−x

∣∣∣∣ dFMq(x) ! O

(
1

n

)
.
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5.3 On the probabilities of large deviations

In this subsection we give a brief overview of the problem known as a
probabilities of large deviations. We will discuss the motivation of the
problem and explain, in a very simple way, the technique used to solve
the problem. Consider i.i.d. Bernoulli random variables ξi, i = 1, ..., n

with parameter p. Let Sn =
∑n

i=1 ξi and Fn be the distribution function of
Sn−np√
np(1−p)

. It is well known that
Sn − np√
np(1− p)

converges, in distribution, to

standard normal random variable,

sup
−∞≤x≤∞

| Fn(x)− Φ(x) |→ 0

but at the same time we know that, this information is valuable for mod-
erate values of x, as for large x both Fn(x) and Φ(x) are close to unity and
the statement of the limit theorem loses its power. (see,e.g, [4])
In many cases we would like to consider following ratio:

1− Fn(x)

1− Φ(x)
.

When x is fixed and n → ∞ this ratio converges to 1, but when x increases
along with n the limit of the ratio is not 1 any more.
For example, suppose we have a sum of 100 Bernoulli random variables
with parameter p = 0.1 and we are interested in the following probability
P{Sn ≥ 20}. Direct calculation of this binomial probability gives us value
0.0008075739, while calculating corresponding normal probability P{Y ≥
3.3} gives us value 0.0004290603. As we see, both of these probabilities
are small, as they should be, but at the same time one is twice as big as
the other. Applying so called continuity correction gives us even worse
approximation, 0.000232691. Now the question is: can we approximate
binomial probability any better?

Let‘s write down the probability we want to calculate:

P{Sn ≥ k} =
n∑

l=k

b(l; p, n) =
n∑

l=k

Cn
l p

l(1− p)n−l.
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Using simple modifications we can rewrite it as follows:

P{Sn ≥ k} =
n∑

l=k

Cn
l (

p

q
)l(

1− p

1− q
)n−lql(1− q)n−l

= (
1− p

1− q
)n

n∑

l=k

(
p(1− q)

q(1− p)
)lCn

l q
l(1− q)n−l

= (
1− p

1− q
)n

n∑

l=k

(
p(1− q)

q(1− p)
)lb(l; q, n),

P{Sn ≥ k} = (
1− p

1− q
)n

n∑

l=k

(
p(1− q)

q(1− p)
)lb(l; q, n).

So we ended up with another binomial distribution with parameters q and
n. Notice, that here we are free in choice of q, we could make it whatever

we want, but we will make it equal to
k

n
, which will make expected value

of new binomial random variable equal to k where the limit theorem gives
the best approximation. Using limit theorem for the new binomial distri-

bution, denoting α =
p(1− q)

q(1− p)
and c =

√
nq(1− q) lnα we will obtain:

P{Sn ≥ k} = (
1− p

1− q
)n

n∑

l=k

(
p(1− q)

q(1− p)
)lb(l; q, n)

= (
1− p

1− q
)n

∫ ∞

k−nq√
nq(1−q)

α(x
√

nq(1−q)+nq)e−
x2

2 dx

= (
1− p

1− q
)n

∫ ∞

k−nq√
nq(1−q)

e(x
√

nq(1−q)+nq) lnα−x2

2 dx

= (
1− p

1− q
)n

∫ ∞

k−nq√
nq(1−q)

e−
x2−2x

√
nq(1−q) lnα
2 +nq lnαdx

= (
1− p

1− q
)nenq lnαe

nq(1−q) ln2 α
2

∫ ∞

k−nq√
nq(1−q)

e−
x2−2x

√
nq(1−q) lnα+nq(1−q) ln2 α

2

= (
1− p

1− q
)nαnqe

c2

2

∫ ∞

k−nq√
nq(1−q)

e−
(x−c)2

2
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Figure 5.1: Shifting the distribution using Esscher transform
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2 [1− Φ(
k − nq√
nq(1− q)

− c)] ≡ PLD{Sn ≥ k}.

Let R1 be the ratio of P{Sn ≥ k} and 1 − Φ(x), where x =
k − np√
np(1− p)

and R2 be the ratio of P{Sn ≥ k} and PLD{Sn ≥ k}. The following graph
illustrates what happens to these ratios when k, and respectively x, in-
creases. For this experiment we assumed that n = 2000, p = 0.1 and k

changes from 200 to 300, or x changes from 0 to approximately 7. We can
clearly see that for large x, in this case when x > 4, PLD{Sn ≥ k} approx-
imates P{Sn ≥ k} much better then 1 − Φ(x). One would say that we do
not need to consider probabilities which are that small; but in finance, for
example, it is very common to deal with risks which have probabilities

as small as 10−7. This figure shows the graph of R1 =
P{Sn ≥ k}
1− Φ(x)

, where
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Figure 5.2: Comparison of CLT and large deviations approach
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Now let us consider arbitrary i.i.d. random variables ξi, i = 1, ..., n

such that Eξi = 0 and E(ξi)2 = σ2. Let Sn =
∑n

i=1 ξi with distribution Fn

let ϕ(s) = lnEesξi be cumulant-generating function of random variable ξi,
then Esscher‘s transform is defined as follows:

dGn

dFn
(x) = esx−nϕ(s).

To make sure that Gn is a probability distribution, we need to show that
∫ ∞

−∞
dGn(x) = 1.
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Indeed, ∫ ∞

−∞
dGn(x) =

∫ ∞

−∞
esx−nϕ(s)dFn(x)

= e−nϕ(s)

∫ ∞

−∞
esxdFn(x) = e−nϕ(s)enϕ(s) = 1.

So, we introduced new distribution which we now could approximate by
the corresponding normal distribution. The gain here is that, unlike for the
previous distribution Fn, relative error committed in this approximation is
minimal.

P{Sn ≥ k} = enϕ(s)
n∑

l=k

e−sxQs{Sn = l}.

Suppose now Sn is the sum of arbitrary i.i.d random variables, the
cumulant-generating function is nϕ(s), whereϕ(s) is a cumulant-generating
function of each random variable under initial P measure, or ϕ(s) = ln(1−
p + pes). Cumulant-generating function of each random variable under
shifted measure Q will be,

ψ(r) = ln
n∑

l=0

erlQs{Sn = l} = ln
n∑

l=0

erlesl−ϕ(s)P{Sn = l}

= ln
n∑

l=0

el(r+s)−ϕ(s)P{Sn = l} = ϕ(r + s)− ϕ(s).

5.4 The structure of p(!xq)

By definition, p(!xq) is the probability of { !Xq = !xq}, and we can define

ai(j) = Pq (Xi = j)

to be the probability of answering ”j” to i-th question. In the cases that
X1, . . . , Xq are independent,

p(!xq) =
q∏

i=1

ai(xi).
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Correspondingly,

Mq(!xq) = Np(!xq) =
q∏

i=1

kiai(xi).

If we consider,

ξi = ln(kiai(Xi)),

then we can define,

Lq( !Xq) = lnMq( !Xq) =
q∑

i=1

ln(kiai(Xi)) =
q∑

i=1

ξi.

In principle, discussions based on Mq and Lq are equivalent. Since Lq can
be expressed as a sum of q random variables, it is more convenient to dis-
cuss the limit distribution of Lq. Let us call a questionnaire “neutral” if
the distribution of each Xi is uniform on its possible values. In this case

ai(xi) =
1

ki
and there is no need to study Mq , as it is simply 1. In this case

the limits of the ratios are:
Eµn(1)

n
→ e−λ

and
Eµn(m)

Eµn
=

N
(
n
m

)
1
nmλm(1− λ

n)
n−m

N(1− (1− λ
n)

n)
→ λme−λ

m!(1− e−λ)
.

Note that Eµn(1) ∼ n in this case, and hence the frequencies defined
here form a sequence of large number of rare events in sense of both d1
and d2, of section 1.2.

In practice, the questionnaires are often neither absolutely neutral nor
too “far” from the neutral case. In other words, they are “nearly neutral”.
In this case, we assume the sequence of measure Pq, which is defined by
probabilities p(!xq), is contiguous to the sequence of measure P0,q.

In more general situations, where {ai(j)} were assumed to be an arbi-
trary sequence, the asymptotic behavior of ratios in (5.1) is more compli-
cated. We will show that, under certain condition, the limit theorems can
still be established.
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5.5 Limit theorem for contiguous neighborhood
of neutral questionnaires

As mentioned, one reason for introducing likelihood ratio Mq is its pos-
session of good asymptotic properties. The asymptotic normality of log-
likelihood ratio (see e.g., [28] and [6]) shows that if {Pq} is contiguous to
{P0,q} (denoted by {Pq}*{P0,q}), and satisfies some additional conditions,
the distribution of Lq converges to the normal distribution N (−1

2σ
2, σ2),

i.e. the distribution of Mq converge to a log-normal distribution. The limit
theorem under this condition can therefore be formulated.

Define the Hellinger distance between Pqi and P0,qi as follows:

H(Pqi,P0,qi) = (

∫
(
√
p−√

p0)
2dµ)

1
2

=

(
2− 2

∫ (
dPqi

dP0,qi

) 1
2

dP0,qi

) 1
2

=

(
2− 2

∫ √
kiai(xi)dP0,qi

) 1
2

.

Theorem 7. If

lim
q→∞

q∑

i=1

H(Pqi,P0,qi)
2 =

1

4
σ2 < ∞ (5.5)

and for every ε > 0,

lim
q→∞

q∑

i=1

∫

|kiai(xi)−1|"ε

((√
kiai(xi))− 1

))2
dP0,qi = 0 (5.6)

then
Eµn(m)

n
→ 1

λm!
E
[
λmemLe−λeL

]
(5.7)

and
Eµn(m)

Eµn
→

E
[
λmemLe−λeL

]

m!
(
1− E

[
e−λeL

]) (5.8)

with L ∼ N
(
−σ2

2 , σ
2
)

.
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Proof: Condition (5.5) and (5.6) implies {Pq}*{P0,q} , and they guarantee
the asymptotic normality of Lq ( [28], Theorem 2 ),

Lq = lnMq
d(P0,q)−−−−→ N

(
−σ

2

2
, σ2

)

and combine with Lemma 5, we can get (5.7), (5.8) thereafter.

In this case, both ratios are strictly greater than 0, and Eµn → ∞. Hence
the conditions of both definitions of large number of rare events are satis-
fied.

Example: Suppose we have

Pqi(j) = ai(j) =
1

kj
(1 +

eij√
q
)

where {eij} satisfies −1 ! eij ! 1 and

lim
q→∞

1

q

q∑

i=1

1

ki

ki∑

j=1

e2ij → σ2 < ∞

and constraint
∑ki

j=1 eij = 0. Then square of Hellinger distance between
Pqi and P0,qi becomes

H(Pqi,P0,qi)
2 = 2− 2

∫ √
kiai(xi)dP0,qi = 2− 2

1

ki

ki∑

j=1

√
1 +

eij√
q

using Taylor‘s expansion we get
√
1 +

eij√
q
= 1 +

1

2

eij√
q
− 1

8

e2ij
q

+
1

16

e3ij
q
√
q
· · ·

So
q∑

i=1

H(Pqi,P0,qi)
2 =

1

4
σ2 +O(

1
√
q
) → 1

4
σ2

and since when q > 1
ε2 , |kiai(xi)− 1| < ε for all i, it is easy to see that (5.6)

is satisfied. These imply the asymptotic normality of Lq.
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Remark 1. In our treatment in this section, we assumed that the com-
ponents of !X are independent. However, this is not a necessary condition.
In the case that components of !X are dependent, we can simply replace
kia(xi) by conditional probabilities kia(xi|!xi−1), to achieve the same result
(see [6]).

5.6 Limit theorem for general cases

In general, if {ai(j)} is an arbitrary sequence of distributions, then unlike
the contiguity case in previous section where Lq( !Xq) converge in distribu-
tion to normal random variable, the expectation of Lq( !Xq) usually tend to
−∞ while the variance goes to ∞. In this situation we can use similar tech-
nique which typically is used in the theory of large deviations (see, e.g., [4]
and [11]). After applying Esscher’s transform, the random variable

Yq =
Lq( !Xq)√

q

will converge in distribution under the adjoint measure, and can be ap-
proximated by Edgeworth series (see, e.g., [4] and [19]).

Under necessary conditions, we shall see that, in this case, the limit
theorem can be established and result agrees with Karlin-Rouault’s law.

For any fixed sequence {ai(j)}, the cumulant generating function of ξi
under P0,qi is defined by

ψi(u) = lnEP0,qie
uξi = ln

(
ki∑

j=1

[kiai(j)]
u

)
− ln(ki)

and the cumulant generating function of Lq( !Xq) is therefore,

lnEP0,qe
uLq( 'Xq) =

q∑

i=1

ψi(u).
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By Esscher’s transform, the adjoint to P0,q distribution, Qu,q, is defined as
follows,

dQu,q,Lq( 'X)

dP0,q,Lq( 'X)

(z) = euz−
∑q

i=1 ψi(u).

Consequently, the logarithm of moment generating function of Yq =
Lq( 'Xq)√

q

under Qu,q,Lq( 'X) is,

lnEQu,qe
rYq =

q∑

i=1

ψi(u+
r
√
q
)−

q∑

i=1

ψi(u).

Therefore, expected value of Yq under Qu,q,Lq( 'X) is equal to

q∑

i=1

ψ′
i(u).

Each function ψi(u) is convex and ψi(0) = ψi(1) = 0. Therefore, we can
choose u = uq such that

EQuq,q
Lq( !Xq) =

q∑

i=1

ψ′
i(uq) = 0.

The variance of Yq under Quq ,q is

σ2q =
1

q

q∑

i=1

ψ′′
i (uq)

and therefore Yq = Lq( 'Xq)√
q becomes a random variable with mean 0 and

variance σ2q under Quq ,q.

Theorem 8. Assume uq is the solution of
∑q

i=1 ψ
′
i(u) = 0. If {ai(j)} is such that

c <
1

q

q∑

i=1

ψ′′
i (uq) < C (5.9)

and if there exists δ > 0 such that
∣∣∣e

∑q
i=1[ψi(uq+r)−ψi(uq)]

∣∣∣ = o

(
1
√
q

)
uniformly in r > δ > 0 (5.10)
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are satisfied, then
Eµn

n
→ 0 (5.11)

and
Eµn(m)

Eµn
→ u∗Γ(m− u∗)

Γ(m+ 1)Γ(1− u∗)
,m = 1, 2, . . . (5.12)

where u∗ = limq→∞ uq.

Proof: Applying Esscher’s transform,

EP0,q

[
(λMq( !Xq))

me−λMq( 'Xq))
]

= e
∑q

i=1 ψi(uq)

∫ ∞

−∞
λme(m−uq)xe−λexdQuq ,q,Lq( 'X)(x) (5.13)

then replace Lq( !X) by Yq,
∫ ∞

−∞
λme(m−uq)xe−λexdQuq ,q,Lq( 'X)(x)

=

∫ ∞

−∞
λme(m−uq)

√
qye−λe

√
qy
dQuq ,q,Yq(y) (5.14)

In Lemma 6 , we will prove that under condition (5.9) and (5.10),
∫ ∞

−∞
λme(m−uq)

√
qye−λe

√
qy

dQuq,q,Yq (y)

=

∫ ∞

−∞
λme(m−uq)

√
qye−λe

√
qy

dΦ0,σ2
q
(y) + o

(
1
√
q

)
(5.15)

where Φ0,σ2
q

is normal distribution function with mean 0 and variance σ2q .
Then by Lemma 12,

∫ ∞

−∞
λme(m−uq)

√
qye−λe

√
qy
dΦ0,σ2

q
(y)

∼ λuq

√
q
φ0,σ2

q
(0)Γ(m− uq) = O

(
1
√
q

)
. (5.16)
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Combine (5.3), Lemma5, (5.13), (5.14), (5.15), (5.16), and note that 1
n =

o
(

1√
q

)
, we conclude that for any m " 1,

Eµn(m) ∼ Ne
∑q

i=1 ψi(uq)λ
uq

√
q
φ0,σ2

q
(0)

Γ(m− uq)

m!
.

It is easy to show that

∞∑

m=1

Γ(m− uq)

m!
=

Γ(1− uq)

uq
.

Indeed
∞∑

m=1

Γ(m− uq)

m!
=

∞∑

m=1

∫∞
0 ym−uq−1e−ydy

m!

=

∫ ∞

0

∞∑

m=1

ym

m!
y−uq−1e−ydy

=

∫ ∞

0

(ey − 1)e−yy−uq−1dy =

∫ ∞

0

(1− e−y)y−uq−1dy

using integration by parts we obtain
∫ ∞

0

(1− e−y)y−uq−1dy = − 1

uq

∫ ∞

0

(1− e−y)d(y−uq)

= − 1

uq
(1− e−y)y−uq |∞0 −

∫ ∞

0

y−uqe−ydy =
Γ(1− uq)

uq
.

Finally we obtain,

Eµn ∼ Ne
∑q

i=1 ψi(uq)λ
uq

√
q
φ0,σ2

q
(0)

Γ(1− uq)

uq

hence (5.11) and (5.12) holds.

Lemma 6. Assume uq is the solution of
∑q

i=1 ψ
′
i(u) = 0. If {ai(j)} is such that

the conditions

c <
1

q

q∑

i=1

ψ′′
i (uq) < C (5.17)
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and
∣∣∣e

∑q
i=1[ψi(uq+r)−ψi(uq)]

∣∣∣ = o

(
1
√
q

)
uniformly in r > δ > 0 (5.18)

are satisfied, then
Eµn # Nuq

and therefore
Eµn(k) # Nuq

Proof: Let us prove the lemma for Eµq.

Eµn ∼ Ne
∑q

i=1 ψi(uq)λ
uq

√
q
φ0,σ2

q
(0)

Γ(1− uq)

uq

or

Eµn ∼ Ne
∑q

i=1 ψi(uq) = N
q∏

i=1

eψi(uq).

eψi(uq) =
ki∑

j=1

[kiai(j)]uq

ki

=
(ki)uq

ki

ki∑

j=1

[ai(j)]
uq ≥ 1

k1−uq

i

therefore

Eµn ≥ N
q∏

i=1

1

k1−uq

i

= Nuq .

Lemma 7. If conditions (5.9) and (5.10) are satisfied, then (5.15) holds.

Proof: Denote g(y, q) = λme(m−uq)
√
qye−λe

√
qy and g′(y, q) = ∂g(y,q)

∂y , then
since limy→∞ g(y, q) = 0 and limy→−∞ g(y, q) = 0,

∫ ∞

−∞
g(y, q)dQuq ,q,Yq(y)−

∫ ∞

−∞
g(y, q)dΦ0,σ2

q
(y)

=

∫ ∞

−∞

(
Quq ,q,Yq(y)− Φ0,σ2

q
(y)

)
g′(y, q)dy.
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Under the condition (5.9) and (5.10), the Edgeworth expansion (see [4])
shows,

Quq ,q,Yq(y) = Φ0,σ2
q
(y)−

∑q
i=1 ψ

(3)
i (uq)

6σ3qq
3
2

H2(σqy)φ(σqy) + o

(
1
√
q

)

where H2(y) = y2 − 1 is the second Hermite polynomial. Therefore, using
differentiation by parts

∫ ∞

−∞

(
Quq ,q,Yq(y)− Φ0,σ2

q
(y)

)
g′(y, q)dy

=−
∫ ∞

−∞

∑q
i=1 ψ

(3)
i (uq)

6σ3qq
3
2

H2(σqy)φ(σqy)g
′(y, q)dy + o

(
1
√
q

)

=−
1
q

∑q
i=1 ψ

(3)
i (uq)

6σ2q
√
q

∫ ∞

−∞
H3(σqy)φ(σqy)g(y, q)dy + o

(
1
√
q

)
.

(5.19)

Since ∫ ∞

−∞
H3(σqy)φ(σqy)g(y, q)dy

=

∫ ∞

−∞
((σqy)

3 − 3σqy)φ(σqy)λ
me(m−uq)

√
qye−λe

√
qy
dy → 0

then if limq→∞
1
q

∑q
i=1 ψ

(3)
i (uq) < ∞, the right side of (5.19) is o( 1√

q ) and
hence (5.15) holds.

Lemma 8. Suppose uq is solution of
∑q

i=1 ψ
′
i(u) = 0, then

∫ ∞

−∞
λme(m−uq)

√
qye−λe

√
qy
dΦ0,σ2

q
(y) ∼ λuq

√
q
φ0,σ2

q
(0)Γ(m− uq).

Proof: Since for any β > 0 and m " 1 > uq, if q large enough

∫ −βq−
1
4

−∞
λme(m−uq)

√
qye−λe

√
qy
dΦ0,σ2

q
(y)

! λme−(m−uq)βq
1
4 e−λe−βq

1
4
∫ −βq−

1
4

−∞
dΦ0,σ2

q
(y) < o(

1
√
q
)
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and ∫ ∞

βq−
1
4

λme(m−uq)
√
qye−λe

√
qy
dΦ0,σ2

q
(y)

! λme(m−uq)βq
1
4 e−λeβq

1
4
∫ ∞

βq−
1
4

dΦ0,σ2
q
(y) < o(

1
√
q
)

while,
∫ βq−

1
4

−βq−
1
4

λme(m−uq)
√
qye−λe

√
qy
dΦ0,σ2

q
(y)

= λuq

∫ βq
1
4

−βq
1
4

(λez)m−uqe−λezdΦ0,qσ2
q
(z)

= λuq

∫ βq
1
4

−βq
1
4

(λez)m−uqe−λez 1

σq
√
2πq

e
− z2

2qσ2
q dz

∼ λuq

√
q
φ0,σ2

q
(0)

∫ ∞

−∞
(λez)m−uqe−λezdz

=
λuq

√
q
φ0,σ2

q
(0)Γ(m− uq)

we conclude that,
∫ ∞

−∞
λme(m−uq)

√
qye−λe

√
qy
dΦ0,σ2

q
(y) ∼ λuq

√
q
φ0,σ2

q
(0)Γ(m− uq).

5.7 Non-classical asymptotics for Shannon diver-
sity index

In Section 4.2 we considered entropy, proposed by Shannon, as a measure
of biological diversity. Namely, we stated that biologists use estimator of
entropy

H = −
N∑

i=1

pi ln pi
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with

Ĥn = −
N∑

i=1

νi
n
ln
νi
n
.

In this case we were in the so called classical situation when number of
different events (species) N was fixed. It would be interesting to see what
happens if we use entropy to measure diversity in non-classical assump-
tion that not only n is large, but at the same time N is large and all or
majority of pi-s are very small. For this purpose let us consider data in
which elements are binary vectors, for example, responses for a question-
naire with q ”Yes/No” questions, the state of any mechanical device with
q ”On/Off” components and so on. Let us consider asymptotic behaviour
of Ĥn and H under non classical situation. Rewrite estimator of entropy in
terms of spectral statistics. Suppose ν−→x is frequency of opinion −→x and Ξq

the set of all possible opinions.

Ĥn = −
∑

−→x ∈Ξq

ν−→x
n

ln
ν−→x
n

= − 1

n

n∑

k=1

kµn(k) ln
k

n

= −µn

n

n∑

k=1

k
µn(k)

µn
ln

k

n

where µq(k) is number of opinions seen in a sample k times and µn is
number of different opinions.

Lemma 9. If, as q → ∞ and sample size n = λ2q with λ = const,

µq(k)

µq
→ uΓ(k − u)

Γ(k + 1)Γ(1− u)
,

then
Ĥn ∼ uµn

nuΓ(1− u)(u− 1)2
.
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Proof. Using results obtained in chapter 5 we can write:

Ĥn ∼ −µn

n

u

Γ(1− u)

n∑

k=1

Γ(k − u)

Γ(k)
ln

k

n
.

Let us consider asymptotic behaviour of
Γ(k − u)

Γ(k)
when k is large.

Γ(k − u)

Γ(k)
=

∫∞
0 e−ttk−u−1dt

Γ(k)
= ET−u

where T is Gamma random variable with scale parameter 1 and shape

parameter k. From the law of large numbers
T

k
→ 1, and therefore

Γ(k − u)

Γ(k)
= ET−u ∼ 1

ku
.

Let us now go back to Ĥn,

1

n

n∑

k=1

Γ(k − u)

Γ(k)
ln

k

n
=

1

n

1∑

x= 1
n

Γ(nx− u)

Γ(nx)
ln x

∼
∫ 1

1
n

Γ(nx− u)

Γ(nx)
ln x dx

=

∫ 1
n+ε

1
n

Γ(nx− u)

Γ(nx)
ln xdx+

∫ 1

1
n+ε

Γ(nx− u)

Γ(nx)
ln xdx

∼
∫ 1

1
n+ε

Γ(nx− u)

Γ(nx)
ln xdx

∼
∫ 1

1
n+ε

(nx)−u ln xdx

∼ 1

nu

∫ 1

1
n+ε

(x)−u ln xdx

∼ − 1

nu

1

(u− 1)2
.
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Finally we obtain that

Ĥn ∼ uµn

nuΓ(1− u)(u− 1)2
.

Notice that this was the case when underlying probabilities are arbi-
trary. In case when these probabilities are from contiguous neighbour-

hood of
1

2
or

1

mi
, depending on whether we have binary or multiple choice

questionnaire, we have different limit for
µn(k)

µn
and respectively we have

different asymptotics for Ĥn, namely,

Ĥn ∼ −µn

n

n∑

k=1

k

∫
π(k,λez)Φ− c2

2 ,c2
(dz)

∫
(1− π(0,λez))Φ− c2

2 ,c2
(dz)

ln
k

n
.

One possible, although not very rigorous, way to derive asymptotics
of entropy H , is by assuming that Rq(z) ∼ z−u.

H = −
∑

−→x ∈Ξ

p−→x ln p−→x = − 1

n

∑

−→x ∈Ξ

np−→x ln
np−→x
n

.

H =
Eµn

nΓ(1− u)

∫ n

0

z ln
z

n
dz−u = − uEµn

nΓ(1− u)

∫ n

0

z−u ln
z

n
dz

denoting
z

n
by x we will obtain,

H = − uEµn

nuΓ(1− u)

∫ 1

0

x−u ln xdx ∼ uEµn

nuΓ(1− u)(u− 1)2
.



Chapter 6

Some numerical observations.

6.1 d1 and d2 zones of LNRE

In this chapter, for simplicity we concentrate on binary questionnaires.
Suppose we have a survey which contains, say, 20 binary “yes/no” ques-
tions. This implies that there are N = 220 possible “opinions”. Suppose
sample size is equal to n, n = λN .

The Figure 6.1 shows a bundle of trajectories of
µq(k)

µq
for k = 1, · · · , 10

and aiq-s are uniformly distributed on the interval [0, 1]
The dots correspond to the Karlin-Rouault law with parameter u =

0.442, which is the mean value of uq for uniformly distributed aiq-s. Even
though q = 20 is not very large, we see that convergence is quite satisfac-
tory.

It would be interesting to answer following questions: If we are given

values of
µq(k)

µq
and

µq

n
, then what can one say about underlying probabil-

ities of questions? or if we know these probabilities a priori, what values

should we expect
µq(k)

µq
and

µq

n
to take? In other words, we want to inves-

tigate empirically if the ratios of spectral statistics depend on underlying
distribution of aiq. It is quite possible to give a legitimate answer to these
questions by combining analytical results we obtained in previous chap-

64
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Figure 6.1: Simulation of Karlin-Rouault law.
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ter and some numerical results we will obtain here. In fact the ratios
µq(k)

µq

and
µq

n
can take any value between 0 and 1, as for as underlying proba-

bilities can be any number between 0 and 1. In the previous chapter we

obtained two different asymptotic for the ratios Eµq(k)

µq
and Eµq

n
. Namely,

for underlying probabilities aiq from contiguous neighbourhood of
1

2
we

obtained:
Eµq(k)

Eµq
=

∫
π(k,λez)Φ− c2

2 ,c2
(dz)

∫
(1− π(0,λez))Φ− c2

2 ,c2
(dz)

and
Eµq

n
∼

∫
(1− π(0,λez))Φ− c2

2 ,c2
(dz).

According to Definitions 1 and 2 of Chapter 1 these results imply that we
are in d1 and therefore in d2 zone of LNRE.

For arbitrary underlying probabilities aiq we have following asymp-
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totic expressions:
Eµq(k)

Eµq
→ uqΓ(k − uq)

Γ(k + 1)Γ(1− uq)

and
Eµq

n
→ 0

which implies that we are in d2 zone of LNRE, but not in d1.
These results suggest that so called Karlin-Rouault‘s law is not the only

possible limiting law we can obtain. Now we can rephrase the questions
asked above as follows. If the data shows that we are in d1 and therefore
in d2 or only in d2 zone, what can be said about underlying probabilities
aiq and the other way round, if aiq-s are given, should we expect to find
ourselves in d1 or in d2? To answer these questions we start with investi-
gating behavior of function ψi(u) considered in previous chapters

ψi(u) = ln[(2aiq)
u + (2(1− aiq))

u]− ln 2

as we know the parameter uq is the solution of following equality;

q∑

i=1

ψ′
i(u) = 0

in other words it is the arg min of
∑q

i=1 ψi(u). With respect aiq-s, the pa-
rameter uq is very stable not only for the

∑q
i=1 ψi(u), but even for the sum-

mand ψi(u). Notice here that the function ψi(u) and therefore
∑q

i=1 ψi(u)

is symmetric with respect to the aiq-s.

On Figure 6.2 is a graph of
1

q

∑q
i=1 ψi(u) for 17 aiq-s equal to

1

2
and 3

aiq-s taking extreme values, greater then 0.9. The graph is lying on y = 0

line, therefore looking at the arg min does not make sense as its exact value
will not matter much.

On the Figure 6.3 aiq-s change uniformly in [0.45, 0.55] or we can say

they are in the contiguous neighbourhood of
1

2
, but still

1

q

∑q
i=1 ψi(u) is so

flat that it is almost impossible to distinguish from y = 0 line, therefore the
arg min is very volatile.
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Figure 6.2:
1

q

∑q
i=1 ψi(u) for 17 aiq-s equal to

1

2
and 3 aiq-s take extreme

values, greater then 0.9.
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0.
5

Only in the Figure 6.4, when aiq-s change uniformly in [0.4, 0.6], one

can clearly see the concave shape of
1

q

∑q
i=1 ψi(u) and consequently it is

reasonable to talk about arg min. In this case it is approximately 0.5.
These values of aiq-s, could be regarded as a some kind of “boundary”

between contiguity and large deviations situations or the “boundary” be-
tween d1 and d2 zones of LNRE. If aiq-s are not deviated from 0.5 more
then 0.1, then we will stay in contiguity case and therefore in d1 and d2
zones.
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Figure 6.3:
1

q

∑q
i=1 ψi(u) for aiq-s change uniformly in [0.45, 0.55].
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6.2 Moving from contiguity to large deviations

In this context we can answer another interesting question. In the Theo-

rem 3 of chapter 3 we have following condition on aiq-s: aiq =
1

2
+

ciq√
q

and limq→∞
∑q

i=1

c2iq
q

= c2. This condition leads us to the contiguity sit-

uation and therefore to d1 and d2 zone. Now one could ask the follow-
ing question: how big can c2 be that we will stay in d1? As our simula-
tion shows, for q = 20, we can take values from interval [0.4, 0.6], which
means that | ciq√

q
| can be as big as 0.1, which on the other hand means that

c2 = 20 ∗ 0.01 = 0.2. So we can conclude that , for q = 20, if c2 ≤ 0.2 then
we definitely will be in d1 zone. In other words c2 can be another kind
of “boundary” between d1 and d2 zones of LNRE. I have to say that this
“boundary” is a bit vague, as its hard to say for what value of c2 we will
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Figure 6.4:
1

q

∑q
i=1 ψi(u) for aiq-s change uniformly in [0.4, 0.6].
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leave d1 zone and move to d2. The reason for this inaccuracy is that q is
not large enough. Notice that to stay in d1, as q → ∞ the size of deviation
from 0.5 should be decreasing to maintain c2 finite.

Figure 6.5 contains graphs of
1

q

∑q
i=1 ψi(u) for different collections of

aiq-s. The most “flat” curve corresponds to aiq-s changing in the inter-
val [0.4, 0.6] (we are in d1); then we slowly leave d1 zone, but stay in
d2. The most concave shape corresponds to aiq-s changing in the inter-
val [0, 0.00002] with corresponding uq 0 0.25 and finally the straight line
corresponds to the case when all aiq-s are equal to 0.
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Figure 6.5:
1

q

∑q
i=1 ψi(u) for different collections of aiq-s.
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6.3 The role of λ-“rate per cell”

It is also very interesting to investigate the role of the λ in the asymptotic

behaviour of
µq(k)

µq
. Looking at the analytical expressions we can see that

λ participates only in the contiguity case. Following simulations give us
empirical proof that influence of λ for arbitrary aiq-s is very insignificant,
while for contiguity situation λ plays crucial role. On the Figure 6.6 q = 20,
aiq-s change uniformly in [0, 1] and λ takes values 1,2,3. Black line corre-
sponds to λ = 1, red line to λ = 2 and green line to λ = 3. On the Figure
6.7, q = 20, aiq-s change uniformly in [0.4, 0.6] and λ takes values 1,2,3.
Black line corresponds to λ = 1, red line to λ = 2 and green line to λ = 3.

As we mentioned before for questionnaire with q “Yes/No“ questions
we have 2q possible ”opinions“. Anyone who conducts a survey would
try to get at least that many ’opinions” as many are possible. That would
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Figure 6.6: Influence of “rate per cell”-λ for uniform aiq-s.
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be fair in a sense as it would give a chance to each possible “opinion” to
appear. So in this case λ = 1 and n = 2q. Ideally he or she would question
twice or three times more people. However, when q is very large, say
greater then 50 or greater then 100, it is not always possible to obtain such
a big sample size. In this context we have to consider the case when λ < 1.

For arbitrary aiq-s, as we mentioned before, λ does not play big role and
we demonstrated this in Figure 6.1. Figure 6.7 shows the result of similar
simulation, but for λ < 1. When λ < 1 its role becomes more significant as

it allows the ratio
µq(1)

µq
, which in this case is same as u, to take the value

greater then 0.5, which on the other hand is impossible for any λ ≥ 1.

Therefore when we observe
µq(1)

µq
≥ 1

2
we don‘t know a priori whether

we are in the contiguity case or in Karlin-Rouault case, unless we know
the value of λ. For aiq-s changing from [0.4, 0.6], or in the contiguity case,

the influence of λ < 1 remains significant as it allows
µq(1)

µq
to be as close to
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Figure 6.7: Influence of “rate per cell”-λ in contiguity case.
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1 as possible, depending how small λ is. To find the “boundary” between
d1 and d2 zones of LNRE, one can consider following approach. We know

the asymptotic behaviour of ratio
µq(k)

µq
in contiguity case.

µq(k)

µq
∼

∫
π(k,λez)Φ− c2

2 ,c2
(dz)

∫
(1− π(0,λez))Φ− c2

2 ,c2
(dz)

.

On the other hand we know that for λ = 1 the value
µq(1)

µq
=

1

2
sets the

boundary between Karlin-Rouault law and contiguity case and therefore
between d1 and d2 zones of LNRE. Taking advantage of this fact, one can
look at the ratio

µq(1)

µq
∼

∫
π(k, ez)Φ− c2

2 ,c2
(dz)

∫
(1− π(0, ez))Φ− c2

2 ,c2
(dz)

as a function of c2 and find out for what value of c2 it becomes smaller
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Figure 6.8: Influence of “rate per cell”-λ in general case, λ < 1.
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or equal to
1

2
. Figure 6.10 shows that for the value c = 1.1 or equiva-

lently c2 = 1.21 the ratio
µq(1)

µq
becomes

1

2
. Consequently one can consider

c2 = 1.21 as a boundary between d1 and d2 zones of LNRE. Notice that the

requirement that λ = 1 plays crucial role here, as for λ < 1 the ratio
µq(1)

µq

can be smaller than
1

2
even in case of contiguity. As a conclusion we can

formulate that, we have only two cases. One is Contiguity case, when un-
derlying probabilities are in the contiguous neighbourhood of “uniform”
probabilities (12 , or 1

ki
, depending on questionnaire); and second situation,

when aiq-s are arbitrary. In the latter case the variation of the parameter
u, and therefore the values of the ratios of spectral statistics, is extremely
stable as was demonstrated by our simulations.
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Figure 6.9: Influence of “rate per cell”-λ in contiguity case, λ < 1.
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Figure 6.10: “Boundary” between d1 and d2 zones of LNRE in terms of c.
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Chapter 7

Divisible Statistics

7.1 Introduction

Consider a random vector νn1, . . . , νnN which follows multinomial distri-
bution with sample size n and probabilities pn1, . . . , pnN . In general, the
divisible statistics can be defined by the sum of some functions gni of the
frequencies and probabilities,

N∑

i=1

gni(νni).

Let‘s consider the normalized frequencies

Yni =
νni − npni√

npni
, (7.1)

where the function gni has been expressed as a function of argument Yni,
i.e.,

hni(Yni) = gni(νni).

Examples of the divisible statistics include the maximum likelihood
statistics with

gni(νni) = νni log

(
νni
npni

)
,

75
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the chi-square statistics with

gni(νni) =
(νni − npni)2

npni
,

the so-called spectrum with

gni(νni) = I{νni ∈ A},

and so on.
In classical statistical analysis, the limit theorems for the divisible statis-

tics when n → ∞ but N is fixed have been well-studied. However, it is also
of great interest, from both the practical and theoretical points of view, to
investigate the limit behaviour of these divisible statistics when both n and
N tend to infinity. Research in this direction includes [10], [9], [27] etc.

In 1980, Khmaladze firstly developed an innovative approach to study
this kind of problems. Instead of focusing on the asymptotic behaviour of
the total sum

∑N
i=1 gni(νni), he considered the process Xn,N(t) formed by

the normalized partial sum

Xn,N(t) =
1√
N

Nt∑

i=1

[gni(νni)− Egni(νni)] .

It was shown that this process can be conveniently viewed as a semi-
martingale with respect to the natural filtration {Fn

i }0!i!N with Fn
i =

σ{νnk : k ! i} and Fn
0 = {∅,Ω}, and can be easily decomposed into a

martingale part,

Wn,N(t) =
1√
N

Nt∑

i=1

[
gni(νni)− E

(
gni(νni)|Fn

i−1

)]
,

and a compensator part,

Kn,N(t) =
1√
N

Nt∑

i=1

[
E
(
gni(νni)|Fn

i−1

)
− Egni(νni)

]
.
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In Khmaladze’s paper, the condition n ∼ N and sup |Npni| < ∞ implies
that the asymptotic behaviour of the frequencies νni are Poissonian. Under
these conditions, if gni are functions such that |gni(νni)| < ceaνni , both Wn,N

and Kn,N converge in distribution to some Gaussian processes (see[13] for
detail).

7.2 Limit theorems for spectral statistics

Before we start to analyze limit behavior for general
∑N

i=1 gni(νni) case, it
is interesting to consider one example of divisible statistics, namely spec-
tral statistics µn(k) =

∑N
i=1 I{νni = k} we were dealing with in previous

chapters. Taking advantage of powerful theory developed by Khmaladze
we can obtain limit theorem for this statistics. Lets consider normalized
version of spectral statistics:

1√
N

N∑

i=1

[I{νni = k}− EI{νni = k}]

=
1√
N

N∑

i=1

[I{νni = k}− P{νni = k}].

If we assume that νni-s are independent Poisson random variables, then
limit theorem for normalized spectral statistics becomes trivial, namely it
converges to normal random variable with expected value equal to 0 and
variance σ2

1√
N

N∑

i=1

[I{νni = k}− P{νni = k}] ∼ N(0, σ2)

where

σ2 =
1

N

N∑

i=1

[π(k;npi)− π2(k;npi)]

and π(k;npi) denotes Poisson probability with intensity npi.



CHAPTER 7. DIVISIBLE STATISTICS 78

Suppose now that we are interested in spectral statistics for “opinions”
we considered in previous chapters, namely let µn(k) be number of “opin-
ions” (questionnaire with q questions) in a sample with k supporters, then
σ2 can be written as follows:

σ2 = E0π(k;npi)− E0π
2(k;npi)

where E0 denotes expected value taken with respect artificial uniform mea-
sure, similar to one we have in Section 5.1. Then again asymptotic be-
haviour of σ2 depends on distribution of Mni = npi. Its asymptotic theory
we have carefully investigated in Chapter 5.

7.2.1 Limit theorem for spectral statistics for independent
frequencies in contiguity case

Let us consider spectral statistics for “opinions” we have defined in sec-
tion 3.2 and suppose underlying distribution of probabilities is contiguous
to uniform distribution as it was defined in Chapter 3 and 5. We can for-
mulate following theorem:

Theorem 9. Suppose probabilities a1q, · · · , aqq form a q triangular array, such

that max1≤i≤q |aiq −
1

2
| → 0 and

aiq =
1

2
+

ciq√
q
, with lim sup

q→∞

q∑

i=1

c2iq
q

< ∞.

If the finite limit

lim
q→∞

q∑

i=1

c2iq
q

= c2

exists, then

1√
N

N∑

i=1

[I{νni = k}− P{νni = k}] ∼ N(0, σ2)
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with
σ2 ∼

∫
π(k,λez)Φ− c2

2 ,c2
(dz)−

∫
π2(k,λez)Φ− c2

2 ,c2
(dz)

7.2.2 Limit theorem for spectral statistics for independent
frequencies in arbitrary distribution case

Now suppose underlying probabilities aiq-s have arbitrary distribution.
Notice that in this case the variance, σ2 → 0 as

1

N

N∑

i=1

π(k;npi) → 0

and
1

N

N∑

i=1

π2(k;npi) → 0,

therefore we have to normalize the statistics µn(k) differently. Namely we
will consider

1√
Eµn

N∑

i=1

[I{νni = k}− P{νni = k}]

this statistics again converges to Gaussian random variable with expected
value equal to 0 and variance σ2,

Theorem 10. Assume uq is the solution of
∑q

i=1 ψ
′
i(u) = 0. If {ai(j)} is such

that the conditions

c <
1

q

q∑

i=1

ψ′′
i (uq) < C, (7.2)

and
∣∣∣e

∑q
i=1[ψi(uq+r)−ψi(uq)]

∣∣∣ = o

(
1
√
q

)
uniformly in r > δ > 0 (7.3)

are satisfied, then

1√
Eµn

N∑

i=1

[I{νni = k}− P{νni = k}] ∼ N(0, σ2)
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where
σ2 ∼ uΓ(k − u)

Γ(1− u)Γ(k + 1)
− u22k−u−2

(k!)2
Γ(2k − u)

and u = limq→∞ uq.

Proof.
1

Eµn

N∑

i=1

π(k;npi) =
Eµn(k)

Eµn
∼ uΓ(k − u)

Γ(1− u)Γ(k + 1)
.

To analyze asymptotic behaviour of

1

Eµn

N∑

i=1

π2(k;npi),

again, as in Section 1.2, let Gn(x) be defined as

Gn(x) =
N∑

i=1

I{npi ≥ x}.

Then
1

Eµn

N∑

i=1

π2(k;npi) ∼ − 1

Eµn

∫ ∞

0

π2(k; x)dGn(x).

Using Theorem 5 from Section 3.5, we can write

− 1

Eµn

∫ ∞

0

π2(k; x)dGn(x)

∼ −
∫ ∞

0

π2(k; x)dR(x)

∼ − 1

Γ(1− u)

∫ ∞

0

e−2xx2k

(k!)2
dx−u

=
u

Γ2(k + 1)Γ(1− u)

∫ ∞

0

e−2xx2k−u−1dx

=
u22k−u−2

Γ2(k + 1)Γ(1− u)
Γ(2k − u).

Finally we can write

σ2 ∼ uΓ(k − u)

Γ(1− u)Γ(k + 1)
− u22k−u−2

Γ(1− u)Γ2(k + 1)
Γ(2k − u).
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7.2.3 Limit theorem for spectral statistics for dependent fre-
quencies

Now let us drop the assumption about independence of νni-s. In this case
the methodology proposed in [13] becomes particularly important.

Xn(t) =
1√
N

Nt∑

i=1

[I{νni = k}− EI{νni = k}].

We will split Xn(t) into two parts, martingale part Wn(t) and compensator
part Kn(t).

Wn(t) =
1√
N

Nt∑

i=1

[I{νni = k}− E[I{νni = k} | Fn
i−1]],

Kn(t) =
1√
N

Nt∑

i=1

[E[I{νni = k} | Fn
i−1]− EI{νni = k}].

Let us define ñi and p̃i as follows

p̃i =
pi

1−
∑i−1

j=1 pj

and

ñi = n−
i−1∑

j=1

νnj.

In this example, for simplicity, instead of partial sums we will consider
total sum. Then Wn is value of martingale in the last point with expected
value 0 and variance

1

N

N∑

i=1

E[(I{νni = k}− π(k; ñip̃i))
2 | Fn

i−1]

or

V arWn =
1

N

N∑

i=1

(π(k; ñip̃i)− π2(k; ñip̃i))

= E0π(k; ñip̃i)− E0π
2(k; ñip̃i)
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ñip̃i → npi a.s.

and π(k; ñip̃i) is uniformly integrable, therefore

E0π(k; ñip̃i) → E0π(k;npi)

E0π
2(k; ñip̃i) → E0π

2(k;npi).

Consequently
V arWn → E0π(k;npi)− E0π

2(k;npi).

Let us now consider compensator random variable Kn

Kn =
1√
N

N∑

i=1

[π(k; ñip̃i)− π(k;npi)].

Let us denote npi and ñip̃i with λi and λ̃i respectively. Then

Kn =
1√
N

N∑

i=1

[π(k; λ̃i)− π(k;λi)]

= − 1√
N

N∑

i=1

λki e
−λi − λ̃ki e−λ̃i

k!
.

Consider function g(λ̃i) = λ̃ki e
−λ̃i . Using linear approximation g(λ̃i) around

λi, we can obtain
g(λ̃i)− g(λi) ≈ (λ̃i − λi)g′(λi),

consequently

Kn ≈ − 1√
N

N∑

i=1

λi − λ̃i
k!

[kλk−1
i e−λi − λki e−λi ]

Consider the summands

λi − λ̃i
k!

[kλk−1
i e−λi − λki e−λi ]
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= (λi − λ̃i)π(k;λi)(
k

λi
− 1)

= −(
λ̃i
λi

− 1)π(k;λi)(k − λi)

√
N(
λ̃i
λi

− 1) =
√
n(

ñip̃i
npi

− 1) =

=
√
N(

1− F̂n(
i−1
N )

1− Fn(
i−1
N )

− 1) = −
vn(

i−1
N )

1− Fn(
i−1
N )

where vn(t) =
√
N(F̂n(t)−Fn(t)) is empirical process. Finally if λNs → f(s)

we will obtain:

Kn ∼ −
∫ 1

0

vn(s)

1− Fn(s)
π(k; f(s))(k − f(s))ds.

7.3 Limit theorem for martingale part

In this section, we intend to remove the constraints of n ∼ N and sup |Npni| <
∞. Under this framework, both Poissonian and Gaussian frequencies (in
the sense that Yni can be approximated by a normal random variable) can
be observed, which is more general and can be found in some real appli-
cations. To achieve this, we consider that hni satisfy

lim
n,N→∞

hn[Nt](y) = h(y, t)

( [s] being the integer part of s ) and

|hni(y)| < bea|y| for some a, b > 0 (C1)

We will investigate some properties of the frequency νni and the normal-
ized frequency Yni.

Marginally, the distribution of νni follows binomial distribution with
sample size n and probability pni. It is well-known that as limn→∞ npn[Nt] =

λ(t) < ∞

Yn[Nt]
d→ Y (t) =

Zλ(t) − λ(t)√
λ(t)
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with
Zλ(t) ∼ Poi(λ(t))

and as npn[Nt] → ∞,
Yn[Nt]

d→ Y (t) ∼ N (0, 1),

under condition,
sup
i

pni → 0. (C2)

An important but not so obvious fact is,

Lemma 10. If
inf
n,i

(npni) " δ2 > 0 (C3)

then for any a, b > 0, {bea|Yni|} is a sequence of uniformly integrable random
variables over n and i.

Proof. Apply exponential inequality to Yni, it can be shown that for y > 0,

1− FYni(y) = P(Yni > y) ! exp

(
−y2

2
ψ

(
y

√
npni

))

with

ψ(λ) = (2/λ2)[(1 + λ) ln(1 + λ)− λ] = (2/λ2)

∫ λ

0

ln(1 + x)dx.

Since ψ is ↓ and
ψ(λ) ∼ 2 log(λ)/λ

as λ→ ∞, for √npni > δ,

ψ

(
y

√
npni

)
" ψ

(y
δ

)

and hence as y → ∞,

P(Yni > y) ! e−
y2

2 ψ( y
δ ) ∼ e−δy log( y

δ ) 3 e−(a+1)y,



CHAPTER 7. DIVISIBLE STATISTICS 85

Since e−y2ψ(y/δ)/2 is monotonic on y > 0, there exists c1 > 0 such that for
all y > ln(c1/b)/a,

e−y2ψ(y/δ)/2 ! e−(a+1)y.

Therefore,
∫

beay>c>c1

beaydFYni(y) ! b
(c
b

)− 1
a
+

∫

beay>c1

be−ydy = 2b
(c
b

)− 1
a (7.4)

On the other hand, for y < 0

FYni(y) = P(Yni < y) ! exp

(
−y2

2
ψ

(
y

√
npni

))

Since (1 + x) ln(1 + x) − x = x2

2 − x3

6 + x4

12 − x5

20 + . . . " x2

2 , ψ(x) " 1 for
x < 0. Therefore,

−y2

2
ψ

(
y

√
npni

)
! −y2

2
.

and as y → −∞,

P(Yni < y) ! e−
y2

2 3 e(a+1)y.

Since e−y2/2 is monotonic on y < 0, there exists c2 > 0 such that for all
y < − ln(c2/b)/a, e−y2/2 ! e(a+1)y. Therefore,

∫

be−ay>c>c2

be−aydFYni(y) ! b
(c
b

)− 1
a
+

∫

be−ay>c

beydy = 2b
(c
b

)− 1
a (7.5)

Since the right side of both (7.4) and (7.5) are uniform over n and i, and
tend to 0 as c → ∞, this implies,

lim
c→∞

sup
n,i

E
[
bea|Yni|I

{
bea|Yni| > c

}]
→ 0

hence the lemma has been proved.



CHAPTER 7. DIVISIBLE STATISTICS 86

If we consider the conditional distribution of νni under Fn
i−1, it is again

a binomial random variable, only with sample size ñni = n−
∑i−1

j=1 νnj and
probability p̃ni = pni/(1 −

∑i−1
j=1 pnj). If we consider Fn(t) =

∑Nt
i=1 pni as

the distribution function defined by {pni}, F̂n(t) = 1
N

∑Nt
i=1 νni can be re-

garded as the empirical distribution of n F n-distributed random variables
and supt

∣∣∣F̂n(t)− Fn(t)
∣∣∣ → 0 almost surely by Glivenko-Cantelli theorem.

Therefore,

rni =
ñnip̃ni
npni

=
1− F̂n

(
i−1
N

)

1− Fn

(
i−1
N

) a.s.−→ 1

and
inf
i
(ñnip̃ni) " δ2 (7.6)

almost surely.
It is noteworthy that, for some T < 1 such that infn(1− Fn(T )) > 0,

sup
i!NT

|rni − 1| a.s.−→ 0 (7.7)

If define vn(t) =
√
n(F̂n(t)−Fn(t)) as the empirical process, and assume

that
sup
t

|Fn(t)− F (t)| → 0, (C4)

then vn(t) converges to Brownian bridge v(t) with respect to time F (t).
By Dvoretzky-Kiefer-Wolfowitz inequality (see, e.g., [33]),

P
(
sup
t

|vn (t)| > λ

)
! 58e−2λ2

(7.8)

the following lemma can be established.

Lemma 11. If conditions (C2) are satisfied, then as n → ∞, for i ! NT ,

sup
i

|√npni(rni − 1)| ! supi
√
pni

infn(1− Fn(T ))
sup
i

∣∣∣∣vn
(
i− 1

N

)∣∣∣∣
P−→ 0

Proof. Since supi pni → 0, for any ε > 0,

P
(

supi
√
pni

infn(1− Fn(T ))
sup
i

∣∣∣∣vn
(
i− 1

N

)∣∣∣∣ > ε

)
! 58e

−2
(

ε infn(1−Fn(T ))
supi pni

)2

→ 0

(7.9)
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Based on these properties, if let ξni = hni(Yni), we shall be able to estab-
lish the uniform integrability of ξ2ni under conditional measure.

Lemma 12. If conditions (C1-C3) are satisfied, then as n → ∞,

lim
c→∞

sup
i!NT

E
[
ξ2niI

{
ξ2ni > c

}
|Fn

i−1

] P−→ 0 (7.10)

Proof. Let Ỹni = (νni − ñp̃ni)/
√
ñp̃ni then

Yni =
√
rniỸni +

√
npni(rni − 1)

By lemma 11 and (7.7), we have,

sup
i!NT

∣∣∣Yni − Ỹni

∣∣∣ P−→ 0.

Since
ξ2ni ! b2e2aYni ! b2e2a supi!NT |Yni−Ỹni|e2aỸni ,

by lemma 10 and (7.6), we shall get (7.10).

Then, we can establish the limit theorem for martingale part.

Theorem 11. If the conditions (C1-C3) are satisfied, as n,N → ∞, for t ! T ,

Wn,N(t)
d→ W (t) = w (τ(t))

with w being a standard Brownian motion and

τ(t) =

∫ t

0

σ2(s)ds

with σ2(t) being variance of h(Y (t), t).

Proof. Let ηni = E (ξni|Fi−1). Then Wn,N is a martingale with martingale
differences

1√
N

(ξni − ηni)
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According to corollary 6 in [20], to prove the theorem, it is necessary
and sufficient that

1

N

N∑

i=1

E((ξni − ηni)2 I((ξni − ηni)2 > εN)|Fn
i−1)

P−→ 0 (α)

and
1

N

Nt∑

i=1

E((ξni − ηni)2 |Fn
i−1)

P−→ τ(t) (β)

to verify (α), it is sufficient to show that

sup
i

E((ξni − ηni)2 I((ξni − ηni)2 > εN)|Fn
i−1)

P−→ 0 (7.11)

Since
(ξni − ηni)2 ! 2(ξni)

2 + 2(ηni)
2

and

I((ξni − ηni)2 > εN) ! I

(
(ξni)

2 >
εN

2

)
+ I

(
(ηni)

2 >
εN

2

)

It is sufficient that all the following conditions are satisfied.

sup
i

E
[
2(ξni)

2I

(
(ξni)

2 >
εN

2

)
|Fn

i−1

]
P−→ 0 (a)

sup
i

E
[
2(ηni)

2I

(
(ξni)

2 >
εN

2

)
|Fn

i−1

]

!2 sup
i
(ηni)

2 sup
i

E
(
I

(
(ξni)

2 >
εN

2

)
|Fn

i−1

)
P−→ 0 (b)

sup
i

E
[
2(ηni)

2I

(
(ηni)

2 >
εN

2

)
|Fn

i−1

]
! sup

i
E
[
2(ξni)

2I

(
(ηni)

2 >
εN

2

)
|Fn

i−1

]

! 2 sup
i

E
(
(ξni)

2|Fn
i−1

)
sup
i

I

(
(ηni)

2 >
εN

2

)
P−→ 0 (c)

(a) follows from (7.10) immediately. For (b) and (c), (7.10) imply that
supi E

(
(ξni)2|Fn

i−1

)
and supi(ηni)

2 are bounded and hence supi I
(
(ηni)

2 > εN
2

)
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and supi E
(
I
(
(ξni)

2 > εN
2

)
|Fn

i−1

)
vanishes in the limit. Therefore, (α) is sat-

isfied.
For (β), consider the step functions

ϕn(t) = E
[(
ξn[Nt] − ηn[Nt]

)2 |Fn
[Nt]−1

]

Then (7.11) implies that ϕn(t)
P−→ σ2(t). By lemma 2, for all sufficiently

large n, and t ! T ,

ϕn(t) ! E
[
ξ2n[Nt]|Fn

[Nt]−1

]
! sup

t!T
E
[
ξ2n[Nt]|Fn

[Nt]−1

]
< ∞

Obviously, supt!T E
[
ξ2n[Nt]|Fn

[Nt]−1

]
is integrable with respect to t ∈ [0, T ].

By dominated convergence theorem, for t ! T ,
∫ t

0

ϕn(s)ds
P−→ τ(t)

hence (β) and the theorem is proved.

7.4 Limit theorems for compensator process

As in section 2, we develop some preliminary lemmas before we establish
the theorem.

Lemma 13. For N ! n and c = o
(

N1/4
√
p

)
, a binomial density B(k, n, p) can be

approximated by a Poisson density by

B(k, n, p) =
π(k, np)√

1− p

(
1 + o(1/

√
N)

)
(7.12)

in the range of |k−np|√
np < c.

Proof. Apply the Stirling’s approximation,

B(k, n, p)

π(k, np)
= enp−k(1− p)n−k

(
n

n− k

)n−k+1/2
(
1 +O

(
1
n

))
(
1 +O

(
1

n−k

))
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Since
∣∣ k
n − p

∣∣ = O
(
c
√

p
n

)
→ 0, Taylor’s expansion shows that,

ln

(
enp−k(1− p)n−k

(
n

n− k

)n−k+1/2
)

= −1

2
ln(1− p)+

1

2(1− p)

k − np

n
+

(
1

2(1− p)2
− n

1− p

)(
k − np

n

)2

+O

((
k − np

n

)2
)

= −1

2
ln(1− p) +

1

2(1− p)
O

(
c

√
p

n

)
−

(
1

1− p

)
O(c2p).

Therefore,

B(k, n, p) =
π(k, np)√

1− p

(
1 +O

(√
c2p

n

)
+O(c2p) +O

(
1

n

)
+O

(
1

n− k

))

For N ! n and c = o
(

N1/4
√
p

)
,

c2p = o

(
1√
N

)

and hence (7.12) holds.

Let Enp denoting the expectation when ν follows binomial distribution
with parameter n and p, while Eλ being the expectation when ν follows
Poisson distribution with parameter λ = np. Then based on lemma10 and
lemma13, we can show that

Lemma 14. If conditions (C1-C3) hold,
√
N sup

i!NT
| Enpniξni − Eλniξni| → 0

Proof. let cni = N1/8
√
pni

, then infi cni =
N1/8

√
supi pni

→ ∞. By lemma13, and note
that 1− 1/

√
1− p = O(p),

√
N sup

i!NT
| Enpni [ξniI {|Yni| ! cni}]− Eλni [ξniI (|Yni| ! cni)]|

=

(
o(1) +O(sup

i
pni)

)
sup
i!NT

|Enpni [ξniI (|Yni| ! cni)]| → 0
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On the other hand, by (7.4) and (7.5)
√
N sup

i!NT
Enpni [|ξni| I{|Yni| > cni}]

!
√
N sup

i!NT
Enpni

[
bea|Yni|I{bea|Yni| > beacni}

]
→ 0

Since (7.4) and (7.5) also apply when νni follows Poisson distribution with
parameter npni,

√
N sup

i!NT
Eλni [|ξni| I{|Yni| > cni}] → 0

and therefore the lemma holds.

Lemma 14 easily applies to the case when n, pni,λni are replaced by
ñ, p̃ni, λ̃ni, if we realize that

ñ " Ñ = N(1− F n
n (

i− 1

N
)) → ∞

and

inf
i
c̃ni =

N1/8

√
supi p̃ni

→ ∞

almost surely.

Theorem 12. If conditions (C1-C4) hold, and for t < T

Kn,N(t)
d→ K(t) =

∫ t

0

E [h(Y )Y ]√
f(s)

v(s)

1− F (s)
dF (s)

Proof. Let

Kλ
n,N(t) =

1√
N

Nt∑

i=1

[
Eλ̃ni

ξni − Eλniξni
]

by lemma14, for t ! T ,
∣∣Kn,N(t)−Kλ

n,N(t)
∣∣ → 0.

If let y = (k − rλ)/
√
rλ and denote π(k,λ) by poisson probability with

intensity λ, then Taylor’s expansion of π(k, rλ) w.r.t r around 1 shows,

π(k, rλ)− π(k,λ) = yπ(k,λ)
√
λ(r − 1) +O

(
λ(r − 1)2

)
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(7.8) implies that supi n(rni− 1)2/
√
N

p−→ 0, and hence λni(rni− 1)2/
√
N =

op(pni). Therefore,
∣∣∣∣∣

1√
N

Nt∑

i=1

[
Eλ̃ni

ξni − Eλniξni
]
− 1√

N

Nt∑

i=1

[Eλni [ξniYni]
√
npni(rni − 1)]

∣∣∣∣∣

=

∣∣∣∣∣
1√
N

Nt∑

i=1

O
(
λ(r − 1)2

)
∣∣∣∣∣

p−→ 0

Since for t ! T , NPn[Nt] → f(t), Eλn[Nt]

[
ξn[Nt]Yn[Nt]

]
→ E [h(Y (t))Y (t)],

√
n(rn[Nt] − 1)

d−→ v(t)
1−F (t) , and

1√
N

Nt∑

i=1

[Eλni [ξniYni]
√
npni(rni − 1)] =

Nt∑

i=1

Eλni [ξniYni]√
Npni

√
n(rni − 1)pni

d−→ K(t)

the theorem has been proved.



Chapter 8

Conclusion

This thesis studies statistical analysis of the diversity of multiple choice
questionnaires in the context of a large number of rare events (LNRE).
In Chapter 1 (Introduction) the background of LNRE was discussed, cor-
responding definitions, conditions and results were given; and several
data sources of LNRE were discussed. In Chapter 2 (Models and Laws
of LNRE) we reviewed some of the existing models, laws and distribu-
tions related to LNRE. The topic of Chapter 3 is questionnaire in LNRE, in
which we discussed results obtained in [15], namely, analysis and review
of LNRE in the case of binary (Yes/No) questionnaires. Chapter 4 (Mea-
sures of Diversity) contains survey of diversity measures in the context of
LNRE.

The main results of the thesis are presented in Chapter 5. It contains
the statistical analysis of questionnaires with multiple answers, which is
the generalization of the problem considered in Chapter 3. In the pro-
cess of discussion, advanced mathematical and probabilistic tools such as
Contiguity theory, probability of large deviations, Esscher‘s transform and
Edgeworth Expansion were employed. It was shown that approach and
techniques used in [15] are universal and can be generalized to more com-
plex situations. Chapter 6 (Some numerical observations) contains empir-
ical justification of the theoretical results obtained in Chapter 5. Data from
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several simulations were applied to the model. Chapters 5 and 6 together
present one of the most striking results of the thesis. It is demonstrated
particularly that dependence of the diversity of responses on the under-
lying distribution of the questionnaire is quite insignificant. In Chapter
7 we discuss functional martingale limit theorems for divisible statistics.
Results for divisible statistics in the LNRE context were obtained. Also,
limit theorems for general divisible statistics considered by Khmaladze in
[13] were generalized.
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