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Oka-Analyticity of the Essential Spectrum.

ENRICO CASADIO TARABUSI (*)

SUMMARY - Let .X be a complex Banach space, G an open set in C, and
A H Tg a holomorphic family of closed operators on X. We show here
that A H (1e(Tl) is an analytic multifunction, where 6e denotes the essen-
tial spectrum in any one of its several definitions.

1. Introduction.

Let X, Y be (nonzero) complex Banach spaces, and Y) the
Banach space of bounded linear operators from X to Y. It is known

(see [9, Corollary 3.3 p. 371]) that, if G is an open set of C, and
Â H- Tt: G - 113(X) = X) is a holomorphic map, then the multi-
function spectrum A H G - cl (C) = {closed subsets of C} is

Oka-analytic, i.e. it is upper semicontinuous (u.s.c.; viz. 
c Al is open in G if A is open in C and is compact) and the

open set Q _ ~( ~,, z) E G is pseudoconvex: by abuse of
terminology we say that d is Oka-analytic on Denoting by
C(xl Y) the set of closed linear operators from X to Y, the same re-
sult holds, more generally, (see [10, Theorem 1 p. 121]) if G 3 Â H Ti
is a Kato-holomorphic family with values in C(X) == C(X, X ) : that
is (cf. [4, in Section VII.1.2 p. 366]) if, for every there exist Go
open neighborhood of lo in G, a Banach space Y, and holomorphic
families such that U~, is one-to-one and

Ti Vx Uil for every A E Go : we say that d is Oka-analytic on C(X).

(*) Indirizzo dell’A.: Scuola Normale Superiore, Piazza dei Cavalieri 7,
56100 Pisa, Italy.



116

We shall prove the same results for other multifunctions of spectral
type, each one usually referred to as essential spectrum. The standard
consequences of Oka-analyticity (we refer to [1], [11], [12] for precise
statements and proofs) thus extend to them: for instance, several
functions of each essential spectrum (such as the radius, the inverse
of the distance from a fixed point, the k-th diameter, for any k c N,
the capacity, etc.) are plurisubharmonic on (or C(X)). Also,
we have the analyticity of spectral sets, the finite scarcity and countable
scarcity theorems; and many others.

2. Essential spectrum.

A linear operator T E C(X, Y) will be said to be Fredholm if its
range R(T) is closed, and if the dimensions of its kernel N(T) and
of its co-kernel Y/R(T ) are finite: such dimensions will be called

nullity and deficiency of T, resp., and denoted by nul (T) and def (T);
while the index of T will be ind (T) = nul (T) - def (T). If C(X, Y)
is endowed with the « gap» (metrizable) topology (see [4, in Section
IV.2.4 p. 201-202]), which induces the norm topology on the open set

Y), then Y) = C(X, Y) that are Fredholm} is open
in C(X, Y), and on each of its connected components the function
ind is constant, while nul and def are, in general, just u.s.c. (cf. [4,
Theorem IV.5.17 p. 235]). By Y) we shall denote the union
of the components of Y) where ind = 0; and by Y) the
set of compact operators from X to Y.

Each of the following sets is customarily referred to as essential
spectrum of (cf. [7, p. 365; 13, §1 p. 142; 2, Definition 11
p. 107]):

a) the Wolf spectrum

b) the Weyl spectrum.

c) the Browder spectrum o’eb(T) = z z is an accumulation

point of o’(T)y or R(T - zI) is not closed, or z is an eigenvalue of T
of infinite algebraic multiplicity
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Thus the Weyl spectrum is the largest subset of the spectrum
which is invariant under compact perturbations: furthermore (see [8,
Theorem VII.5.4. p. 180])

If Cal (X ) = is the Calkin algebra of X, then (see [8]) the
Wolf spectrum E cuincides with the (Banach algebra) spec-
trum in Cal (X) of the coset of T.

Fixed due to forementioned properties the function
is constant on each component W of the comple-

ment of a,,,,(T): but we also have def (T - zI )
are constant on W, except for a discrete subset of W (see [4, Theorem
IV.5.31 p. 41]). This implies that is the complement of the
union of those which are not contained in o"(T), viz. such that
W 9 z f--~ nul (T - zI ) = def (T - 0 « a.e. » (see [2]).

Thanks to the various observations made so far, we have aew(T) c
c (Jem(T) c (Jeb(T) c J(T) (all closed subsets), and each inclusion may be
strict, even if T E $(X). (If X is finite-dimensional, all the essential
spectra are obviously empty; while if it is Hilbert and T is self-adjoint,
then they coincide.)

THEOREM 1. The Wolf spectrum is Oka-analytic on C(X).

PROOF. The upper semicontinuity of (Jew easily follows from the
openness of in C(X).

Let Cal (X, Y) = Y) as a Banach space: the product
of composition ~(X, Y) X) -* induces a continuous bilinear

product Cal (X, Y) X Cal ( Y, X) -* Cal ( Y). As in the case X = Y,
one shows that T E Y) is Fredholm if and only if its coset

Y) has a two-sided inverse in Cal { Y, X) : if so, such inverse
is unique by the associativity of the product, and (just like when
X = Y) it depends continuously and holomorphically on [T]Cai(X, Y&#x3E;, 7

so on T.

The notion of analytic multifunction being obviously local, we can
assume the holomorphic families A ~ UÂ, Va of operators in X)
relative to A H Ti (see introduction) to be defined on the whole of G
(Y being a suitable Banach space). If (2, z) E then T~2013 zI =
=== (VA - zU;.) and the range, nullity and deficiency of TA - zI
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are the same, resp., of z Ua; so

) has a two-sided inverse in Cal (X, Y)}.

In view of the remarks made above, the conclusion can be drawn
exactly as in [3, Proof of the Theorem, p. 1] using the nonextenda-
bility to (G x C) r1 8Q of any restriction of the holomorphic mapping

(Examination of VA - instead of ( Y~, - z Ua) as made in
the preceding proof, allows a quicker proof of the Oka-analyticity of
the spectrum on than [10, Proof of Theorem 1 p. 123].)

THEOREM 2. The Weyl spectrum is Oka-analytic on C(X).

PROOF. Since Kato-holomorphic families are continuous (by [4,
Theorem IV.2.29 p. 207]), if is given by z) =

then the open set f (A, z) E G x C : _

is a union of components of the open set = g~-1 (.~ (X ) ),
which is pseudoconvex by Theorem 1. C7

As to the Browder spectrum, we cannot infer its Oka-analyticity
directly from that of the Wolf or the Weyl spectrum as done for
Theorem 2. In fact S2,,b = {(Ay z) E G xC: Z 0 is not, in general,
a union of components of fJem, because of the lack of lower semicon-
tinuity of nul, def. Yet one could conjecture, in view of some of the
properties recalled earlier, that the functions nul’, def’ are locally
constant on where

This conjecture is true only when X is finite-dimensional (in which
case nul’, def’ vanish identically), as the following counter-example
shows.

COUNTEREXAMPLE 3. Let: X be the Hilbert space l2 = L2(7~, v)
(where v is the counting measure); P, A the projection on the
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zeroth coordinate and the onestep shift to the right, resp.; G = C;
A H Ti = A(I - AP): G - If is the canonical basis of 12,
then , therefore T~, - zI E

so nul’ (T1) = def’(T1) = 1; while Ti is invertible for 0  I A -
-1|1, thus = def ’(Ta) = 0. Hence ( 1, 0 ) E whe-
reas if 0 IÂ-11«1.

The upper semicontinuity of the Browder spectrum is interesting
in its own, so we give it separately.

LEMMA 4. T he Browder spectrum is u.s.c. 

PROOF. Let T E C(X). Then consists only of isolated
points of d(T) : if A is a compact-complemented open subset of C
containing aeb(T), then = z,). Since or is u.s.c., for

near T we have 4 (where B(zj, E) _

with e &#x3E; 0 such that the above union is

disjoint. Using the Dunford integral calculus, for every such T’ [4,
Theorem IV.3.16 p. 212] provides a splitting of X into a (k + I)-ple
direct sum : " of the generalized eigenspaces associated

to n A, c(T’) n B(zj’ E), j = 1, ..., k; furthermore dim Xj (T’)
is independent of T’. Fix j = 1, ... , k. Since the restriction of T - z~ I
to is a quasinilpotent operator, and its approximated nullity
and deficiency (defined equal to the nullity and deficiency, resp.,
if the range is closed, or to + cx&#x3E; otherwise: cf. [4, Theorem IV.5.10
p. 233]) are finite (because T - zj I is Fredholm), [4, Theorem IV.5.30
p. 240] yields that is finite. Hence is a

finite set {Zjl7 ... and for j’= 1, ..., kj the range of T’- zjj, I
is closed and the algebraic multiplicity of zjj, in T’ is finite; that is,
Geb(T’) r1 B(z,, e) is empty. Therefore C1eb(T’) c A. C7

Let be an Oka-analytic multifunction, and
An isolated point z of 1:;. is a good isolated point, or g.i.p., 7

(for E) at Z if there exists 6 &#x3E; 0 such that r’1 B(z, ð) is finite

for IÂ’- ~,~  6. The Oka-Nishino theorem (cf. [6, Corollary 5.5 p. 557])
asserts that the multifunction 2 H D~~ _ at ~,~ is itself

Oka-analytic.

THEOREM 5. The Browder spectrum is Oka-analytic on C(X).
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PROOF. Let ,1 E G. From the proof of Lemma 4 we get that all
the points in are g.i.p.Is at I, but in general not con-
versely : for instance, if TA == 0 on G, then 0 is a g.i.p. at any Q’-,
but belongs to (Jeb(TA) if X is infinite-dimensional. Thus we have

C Geb(TA) c G(TA) for each ,1 E G, the first and third multifune-
tion being Oka-analytic. In order to prove that is pseudoconvex
it will suffice to show that for each and Zo E 

there exists a neighborhood ZT of (zo, in ~(~,, z) E Gxd:
such that U r1 Deb is pseudoconvex. Because DQ is open,

TI can be taken to be a bidisk; also, we will assume 2,, = zo = 0.
Since 0 is isolated in o’(To) and S~ is open we can choose 8 &#x3E; 3 &#x3E; 0

so that r1 B(O, 8) = r1 B(O, s - ð) for  3 : so ,1 =

- r1 B(O, 8): B(O, ð) -cl(C) is still Oka-analytic. Because 0

is a g.i.p. at 0, by [1, Theorem 3.8] 6 may be taken small enough that
the cardinality of 2~ be finite and independent of ,1 E B ( o, ~ )B~0~,
say k. Furthermore for any such A there exists 6A &#x3E; 0 and k holo-

morphic functions h¡,..., hk: ~~,) - C such that Ea, = ~hl(~,’), ...

... , hk ( ~,’ )~ for 31). As in the proof of Lemma 4 we have
that E (Jeb(TA,) if and only if the dimension of the generalized
eigenspace of TA, associated to h~(~,’) is finite; such dimension being
stable, either E for all Â’ E B(,1, ~~,), or for none of them.
Therefore ko exists, with such that for each ,1EB(O, ~)B~0~
the function h, can be rearranged in such a way that the former alter-
native holds for exactly ... , If f: U = E) C
is defined through j i f or A =,p4- 0, and f ( o, z) = Zko,

such f is well-defined, holomorphic where A ~ 0, and (by the upper
semicontinuity of which is implied by that of A H 
continuous where A = 0. By Rad6’s theorem the function f is holo-
morphic on U : no restriction of 1 / f : 
r1 Deb - C can be extended to any point of Thus U n S~eb
is pseudoconvex, because U is. C1

The following corollary of the three preceding theorems appeared
in [5, Theorem 13 p. 320] for the Weyl case, while it can be easily
proven directly in the Wolf case using the Oka-analyticity of the spec-
trum on a Banach algebra (Cal (X) here: see [1, Theorem 3.2 p. 46]).

COROLLARY 6. The Wolf, Weyl, and Browder spectrum are all Oka-
analytic on 0
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