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The metaplectic extension by {+1, - 1} of either SL(2) or GL(2) over a local or
global field has been a center of interest for the last twenty-five years. Two points
of view developed first simultaneously: the study of automorphic forms of half-
integral weight on SL(2, Q) or GL(2, Q), culminating with the Shimura corre-
spondence, and the study of Weil (or oscillator) representations, for which 1
cannot help citing Weil’s paper [15]. Far from giving an historical account of
those subjects 1 only want to stress now how papers by Gelbart and Piatetskii-
Shapiro [8] and Flicker [6] emphasized the crucial part played in the theory by
the Weil representation, granting that:

2022 The local components of an automorphic square-integrable representation of
an adelic metaplectic group over GL(2) that is determined by only one
Fourier coefficient are all Weil representations ([8]).

2022 Locally, odd Weil representations are the only supercuspidal representations
of the two-fold metaplectic group over GL(2) that map, in the local Shimura
correspondence, onto special representations of GL(2) ([6]).

Let now F be a local non archimedean field with n n-th roots of unity (n prime to
the residual characteristic of F), and let G be the n-fold metaplectic extension of
GL(2, F). All genuine irreducible admissible representations of Gare known
([6]) and the supercuspidal ones can all be obtained by induction from an open
compact mod center subgroup ([3]). When n is odd no peculiar phenomenon
occurs: the Shimura correspondence maps supercuspidal representations of G
onto supercuspidal representations of GL(2, F), the construction by induction of
supercuspidal representations of G follows closely the construction previously
made for GL(2, F), and the Whittaker spaces of those representations all have
the same dimension n. When n is even however this smoothness disappears as
follows:

1. There are supercuspidal representations of G that map, in the Shimura
correspondence, onto special representations of GL(2, F).

2. The general pattern of construction by induction from open compact mod
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center subgroups is broken for some induced representations, that split into a
direct sum of a finite number of supercuspidal representations.

3. Most supercuspidal representations of G have an n-dimensional Whittaker
space, yet for a finite number of them (up to the central character), the
Whittaker space has dimension n/2.

Not surprisingly, those three peculiar behaviours occur for exactly the same
supercuspidal representations, obtained, up to twisting, as follows: take a

cuspidal representation of the finite group GL(2, kF) associated to a regular
character of trivial square of the quadratic extension of kF, pull it back to the
canonical homomorphic image of GL(2, Op) in G, twist it by a compatible
genuine character of the center of G and induce the resulting representation to G;
the induced representation splits into two inequivalent supercuspidal represen-
tations. The set of supercuspidal representations obtained in this way is exactly
the set of genuine supercuspidal representations of G that map, in the Shimura
correspondence, onto special representations of GL(2, F), and is exactly the set
of genuine supercuspidal representations of G the Whittaker space of which has
dimension n/2; if n = 2 this set is exactly the set of odd Weil representations. In
view of the three peculiarities above, we can expect to find some interesting
supercuspidal representations of the metaplectic groups over GL(r, F), r &#x3E; 2,
related in some sense to the odd Weil representation if we are dealing with an r-
fold covering, while studying the construction by induction of supercuspidal
representations of this group and giving special attention to the cases when the
induced representations split most and to the dimensions of the Whittaker
spaces of the representations under study; so far we deliberately put aside, as
important as they may be, the global point of view and the point of view of the
Shimura correspondence.

In a previous paper ([4]) we initiated the program described above by
studying the process of induction of representations pulled back from represen-
tations of GL(r, kF); we will here study the, say, "unramified series" of

supercuspidal representations of G, namely the representations obtained by
induction and, possibly, splitting, from a very cuspidal (see [5]) representation of
GL(r, Cp) (pulled back to the canonical homomorphic image of this subgroup in
G) twisted by a compatible genuine character of the center of G. The first part of
the paper will set up the structure of the metaplectic group and the necessary
notations. The second part will detail the process of induction and give an
interpretation in terms of the Langlands correspondence for GL(r) of the cases
when the induced representation splits. The last part will describe the Whittaker
spaces of the representations just constructed and show that the minimal
dimension for the Whittaker space occurs exactly for the factors of an induced
representation in case of maximal reducibility.
Note that for an r-fold metaplectic group over GL(r, F) we get, among the
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representations constructed, supercuspidal representations with a one-

dimensional Whittaker space, that is, with a unique Whittaker model. Those
representations, associated to some cuspidal representations of GL(r, kF), enjoy
some of the properties expected from a generalized odd Weil representation:
they have a similar construction and a unique Whittaker model, as is shown
here, and we will describe elsewhere an interesting model for them that

generalizes the original Weil construction; it would be interesting to determine
their behaviour in the Shimura correspondence as described in [7] and to
investigate their possible fitting into exceptional automorphic forms for the
global metaplectic group. For n = r = 3 they do fit into an exceptional
automorphic form: the cubic analogue of the cuspidal theta series constructed
by Patterson and Piatetski-Shapiro in [13]; indeed the computation of their
Gamma factor as defined in [13] shows that they are equivalent to the

supercuspidal representations with unique Whittaker model the existence of
which is proved in [13] through a converse theorem.

1. The general metaplectic group

1.1. Let F be a local non archimedean field with V as ring of integers, i3 as
maximal ideal, k as residual field, with q elements, p as residual characteristic
and m as a uniformizing element; let r  2 be an integer, let n  1 be another
integer such that INIF = 1 and 039E = {03BE ~ F /03BEn = 1} has cardinality n.

Let G = GLr(F). We will work on the general metaplectic group G, that is, the
central extension of G by 039E described in [11]:

We fix as in [11] the section s and the associated 2-cocycle 03C3(c) (here c is an
integer mod n); let A be the subgroup of diagonal matrices in G and

a = diag[al’ ..., arJ, b = diag[b1, ..., b,] be two elements of A, then:

with ( , ) denoting the n-th Hilbert symbol over F " .

1.2 A general element in G will be denoted by g; we agree on p() = g, namely g
is any pullback of g E G to G. For any subgroup H of G its inverse image p-1(H)
1 All the details and properties we give here without proof can be found in Kazhdan and Patterson’s

paper [11], "Metaplectic Forms".
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in G will be denoted by H. We call a representation (n, V) of H genuine if the
kernel of the extension acts through an injective character e from 039E into the
group of complex n-roots of unity: 03C0° 1(j) = 03B5(03BE)IV for ç ES. We fix once and for
all such an e, through which E will be supposed to act in any genuine
representation considered, unless otherwise mentioned.

1.3 Let N be the subgroup of unipotent uppertriangular matrices in G. One has
for all g, h in G and n, m in N, the property u(’)(ng, hm) = U(’)(g, h), hence the
section s restricted to N is a homomorphism from N into G; now:

LEMMA 1. Let H be a subgroup of G; assume the map h H h nfrom H to itself is
onto. Then a homomorphic section of H into G is unique.

Proof. Two homomorphic sections from H to G can only differ through a
morphism a from H into 8; it satisfies a(h") = oc(h)n = 1 for all h in H, hence is
trivial.

For any subgroup H of G such that there exist a unique homomorphic section
of itself into G we can unambiguously denote by H the image of this section in G.
Since the assumption in the lemma holds for any unipotent radical of a
parabolic subgroup in G, the section s is the unique homomorphic section of N
in G and we will still denote s(N) by N.

Let T be a subgroup of a group M; we call NM(T) the normalizer of T in M.
Note that for any g in G the inner automorphism of G defined by g only depends
on its image g in G - the extension is central - and for any subgroup H of G the
equality N e(H) = NG(H) holds. Now:
LEMMA 2. Let H be a subgroup of G such that there exist a unique homomorphic
section SH of H into G; then the equality N(H) = NG(H) holds.

Proof. The inclusion Nj(H) z NG(H) is clear. Conversely let 9C-NG(H); the
map h ~ sH(g-1hg)-1 is a homomorphic section of H into G; we get from
uniqueness sH(g-1hg)-1 = sH(h), hence g normalizes H in G.

COROLLARY 1. The normalizer of N in G is ÂN.

1.4. We still call det the morphism det 0 p from G to F ; hence det g = det g.
We denote by G the kernel of the morphism det F ", namely p-1(SLr(F)).
We denote by G the kernel of the morphism det F /F n.
For any subgroup H of G we use the notations °H = H n G and

nH = H ~ nG.

1.5. Since we are dealing with a central extension the commutator

[,] = -1-1 of two elements g, h E G depends only on their projections g
and h ; sometimes we will just denote it by [g, h].
The center Z of G is the subgroup of scalar matrices in G. Let be the injection

of F " into Z defined by (2) = s(03BBIr) for 2 in F x. The want of commutativity
between Z and G can be measured:
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Proof. The commutator [03BE(03BB), g] certainly belongs to i(039E), central subgroup in
G; it follows that the map g H [03BE(03BB), g] is, for any Â, a morphism from G to i(8)
hence factors through the determinant. It is now enough to compute it for a
diagonal g, which is straightforward.

So Z is generally not central in G; however Z is the commutant of  in G.

1.6. Let K = GLr(D) be the standard maximal compact subgroup of G.

Kazhdan and Patterson have shown in [11] that under the assumption Inj, = 1
there exists a canonical continuous homomorphic section 03BA:K) ~  with the
following characteristic properties (here W is the subgroup of permutation
matrices in G, contained in K):

The image x(K) of K in G through K will be denoted by K*. The existence of the
section K plays a crucial part in the construction of "an unramified series" of
supercuspidal representations of G, as we will now explain.

2. A construction of supercuspidal representations

2.1. Let H be a closed subgroup of a locally compact totally discontinuous
group G; let p be a smooth irreducible representation of H in a complex vector
space V The (compactly) induced representation of p to G is the representation
indZ p of G through right translations in the space Bc(G, H, p) of functions from
G into that are smooth, compactly supported mod H, and satisfy
f(hg) = p(h) f (g) for all h in H and g in G. It is a smooth representation.
Dropping the assumption of compact support mod H leads to the non-

compactly induced representation of p to G.
Let p be a smooth irreducible representation of K and p* the associated

smooth irreducible representation of K*, defined by P* - x = p ; let x be a

genuine character of the center znr of G such that x and the central character of
p* agree on  n K*. Then the tensor product x Q p* is a smooth irreducible
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genuine representation of 7;!’K*. We want to investigate its (compactly) induced
representation to G, n(p, X) = ind O p*, a smooth genuine representation
of G, in the case when p is very cuspidal in the sense of Carayol ([5, Définition
4.1]). The next four sections will be devoted to prove the following:

THEOREM 1. Let p be a very cuspidal irreducible representation of K and X be a
genuine character of? agreeing on 27e n K* with the central character of p*.
The subgroup of all z in Z the adjoint action of which fix the equivalence class of
x Q p* has the form z;;1kK(Z n K) where k is an integer dividing d = g.c.d.(n, r).
The induced representation n(p, X) of X 0 p* to G is a direct sum of k inequivalent
genuine irreducible supercuspidal representations of G, induced from the k

inequivalent extensions to zn /k K* of X 0 p*.

REMARKS:

1. If n is prime to r the representation n(p, x) is always irreducible.
2. After proving this theorem we will be able to give an interpretation of the

integer k associated to p through Moy’s results on the Langlands corre-
spondence for G (see [12]); for that purpose we will have to assume that F has
characteristic 0 and r is prime to p.

2.2. According to [5, Proposition 1.5] the induced representation indGZK 03BD Q p
(where v is any appropriate character of Z) is an irreducible supercuspidal
representation of G provided that the following condition be satisfied2 for any
gEG,gflZK:

The representations PIKngKg-1 and 9 PIKngKg-1 are disjoint. (4)

An analogous criterion of irreducibility, hence supercuspidality, for rc(p, X) is (see
[5] or [3, 1.4.3]) that the following condition be satisfied for all  E G,  ~  K*:

The representations ~ ~ 03C1|K*~K*-1 and

The study of (5) requires a close look at the subgroups n’ K* n K*-1.
2.3. Denote by k-P(k) the projection morphism from K onto GLr(k) -
obtained through reducing the entries mod B-, the kernel of which is

K 1 = 1 r + Mr(). Since n is prime to the residual characteristic of F the

subgroup 1 + q3 lies in the kernel of the n-th Hilbert symbol and we will freely
regard ( , ) as defined on k B

For any g in G we define a homomorphic section g03BA of gKg -1 into G through

2 The conjugate representation g p is the representation of gKg-1 defined by g03C1(gkg-1) = p(k) for
kEK.
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9K(gkg -’) = gK(k)g-l for k E K. We want to compare gK and K on their common
domain, hence we put i(03BE(g,k)) = g03BA(k)03BA(k)-1 for k E K n gKg -1; we have:

LEMMA 4. 1. The map k H 03BE(g, k) is a continuous morphism from K n gKg -1 
into trivial on the intersection with K1.

2. Let h, 1 be in K; then 03BE(hgl, hkh - 1) = 03BE(g, k) for any k E K n gKg-1.
3. Let a = diag[al, ..., ar] be in A and assume val ai  val ai + 1 for 1  i  r;

then P(K n aKa-1) is a standard parabolic subgroup in GLr(k) with Levi

subgroup 03A0sj = 1 GLrj(k). Let k1,..., ks be the corresponding diagonal blocks of
P(k) , for a k in K n aKa-1; then

Proof 1. Because g03BA and x are continuous morphisms and 1(039E) is central in G,
the given map is a continuous morphism; because K is a pro-p-group and n, the
order of 039E, is prime to p, it is trivial on K1.

2. Follows from a straightforward computation, since x is a morphism and

1(E) is central.
3. One can check that P(K n aKa-1) is the standard upper-block-triangular

parabolic subgroup with the given Levi subgroup where 03A0sj=1 GLrj(F) is the
centralizer of a in G. Let n belong to N n K n aKa -1 = N n K; then 03BA(n) = s(n)
from 1.6 and aK(n) = s(a)03BA(a-1na)s(a)-1 = s(a)s(a-1na)s(a)-1 = s(n) from 1.3.

Hence 03BE(a, n) = 1. It follows that the morphism k H 03BE(a, k) viewed as a morphism
from P(K n aKa-1) into 039E factors through its Levi subgroup, and is trivial on
P(N n K) n 03A0sj = 1 1 GLrj(k) and on any of its conjugates in this Levi subgroup.
Henceforth it factors on each GLr J through the determinant and the given
formula is easily checked on diagonal elements, using 1.6.

2.4. The representation g(~~ p*) appearing in condition 5 is the representation
~ ~g 03C1* of  K*-1 = 03BA(gKg-1) and is disjoint from X ~ 03C1* on their
common domain if and only if p* and 8 ~g 03C1* are disjoint on K* n gKg . Let k
belong to K n gKg -1; then K(k) = i(03BE(g, k))-19K(k) and r*(k(k)) = p(k) while

We can now restate condition 5 as follows:

The representations
are disjoint.
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Whenever p is very cuspidal, condition 6 is satisfied for any g in G - ZK.
Indeed, the proof of Théorème 4.2 in [5] shows that:

2022 either p and gp are disjoint on K 1 ~ gK1g-1; since we know from the above
lemma that 03B5(03BE(g, k)) is trivial on that group the assertion follows.

e or p factors through P to a cuspidal representation of GLr(k); in this case part
2 of the above lemma shows that we need only to consider the double coset
KgK and can then assume that g = a is a diagonal element satisfying the
conditions of part 3 of the lemma. The proof in [5] exhibits a standard
unipotent subgroup U of G such that p and ap be disjoint on U n K. Since we
know from part 3 in the above lemma that 03B5(03BE(g, k)) is trivial on that group the
assertion follows.

2.5. We are left with condition 6 for g E ZK, g fi K*, equivalently for g = 03B6(03BB)
with 03BB~ , 03BB~F n’. Now g03C1 = p and 8(Ç(g, k)) = [03B6(03BB), K(k)] = (Â, det k)r-1 + 2rc
from lemma 3. We can as well take 2 = 03C9i, the integer i running from 1 to n’ - 1.
We denote by OJ the character x H 03B5((, x))r - 1 + 2rc of F " and by 03C9* its restriction
to ,0 x. We have to examine whether p and’ evi Q p are disjoint or equivalent
on K.

LEMMA 5. 1. The characters w and 03C9* have the same order n’.

2. The irreducible representations w’ (Do and p are disjoint whenever i is not a

multiple of (n’, r) = n’ (n, r).
Proof. 1. Since n is prime to p we can use the formula in [14, Proposition 8,

p. 217] to compute:

where the unit under e is regarded as an element of k x (remember that n divides
q - 1). The order of this character certainly divides n’ = (n, r - 1 + 2rc);
furthermore on a unit x we get 03C9(x) = 03B5(x - (q - 1/n’)) with order exactly n’, hence
the first assertion.

2. An obvious necessary condition for equivalence is the agreement of central
characters: wir should be trivial on D , hence i should be a multiple of

Part 2 of the lemma shows that the subgroup of those i in Z such that the

representations 03C9i* Q p and p be equivalent is generated by some n’/k where k
divides d. Let A be an operator intertwining x Q p* and its conjugate under
(mn’/k); then Ak is a scalar operator since 03B6(n’/k)k acts as a scalar in X Q p* and

3 Here the tensor product stands for twisting by the given character of the determinant.
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we can choose A such that Ak = x (x) 03C1*(03B6(n’/k)k), There are exactly k such
choices for A, each of whom determines an extension of x Q p* to n’/kK* by
letting (mn’/k) act through A. Those k extensions, say 03C3j(03C1, X),j running from 1 to
k, are inequivalent since the only operators intertwining x Q p* with itself are
the scalar operators. The induced representation of x Q p* to Zn’/kK* is the
direct sum of the aj(p, x), 1  j  k, and n(p, X) is the direct sum of the

indGZn’/kK uj(p, X), 1  j  k; each of those is irreducible from condition 6 for g in
G, g not in z;ï7k K*, and they are inequivalent from [5, Proposition 1.5, (2)]. The
theorem is now proved.

2.6. In order to get a clear understanding of the way the integer k in the above
theorem is related to p we will now make use of the tame Langlands
correspondence established in [12], which forces us to make the hypotheses that
F has characteristic 0 and r is prime to p. We call fi? the bijection constructed in
[12] between the set of equivalence classes of irreducible supercuspidal represen-
tations of G = GLr(F) and the set of equivalence classes of irreducible represen-
tations of the Weil group WF of F of degree r. Theorem 2.2.2 in [12] states that
for any irreducible supercuspidal representation R of G there exists an extension
E of degree r of F and an admissible character e of E " such that fi?(R) is the
induced representation from WE to WF of 0 (that is, of the character of WE
associated to 0 via class field theory) and that such a pair (E, 03B8) is determined up
to conjugacy by an element of WF. The fundamental claim here is the following:

PROPOSITION 1. Let p be a very cuspidal representation of K and v be any
character of Z agreeing on Z n K with the central character of p. Let

L(indGZK v Q p) = indWFWE03B8 where 0 is an admissible character of EX. Then E is an
unramified extension of F.

Proof. 1. We fix an unramified character p of F  of order r. Since

v Q p ~ 03BC° det is equal to v Q p on ZK, the representations R and R ~ 03BC are
equivalent. Since the bijection fi? commutes with twisting by characters of F "
([12, Corollary 4.2.4]) we must have Jl Q L(R) ~ fi?(R). On the other hand
induction also commutes with twisting, hence p Y(R) is induced from the
admissible character 03B803BC° NE/F of EX. Equivalence with 4l(R) implies that

03B803BC°NE/F is conjugate to 0.
2. Let a be an F-automorphism of E such that 03B8(03C3(x)) = 03B8(x)03BC(E/F(x) for all x

in E ", and let L be the subfield of E consisting of the fixed points of 03C3. Then E is
a cyclic extension of L and Hilbert’s Theorem 90 asserts that the image of the
map x H u(x)lx, for x in EX, is Ker NEIL, the kernel of the norm map. Given a
uniformizing element ML of L, we can pick (see [10], with the tameness of E - r
is prime to p - in mind) a uniformizing element ME of E such that E e = mLç
where e is the ramification index of E over L and 03BE is a root of unity in E " of
order prime to p. The group Ker NE/L is generated by the 6(x)/x for x in ,0; and
03C3(E)/E; since (03C3(E)/E)e = 03C3(03BE)/03BE is a root of unity of order prime to p, the
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element a(mE)/mE itself is a root of unity of order k prime to p. 1 claim that

the 6(x)/x for x in ZÊ generate a subgroup of Ker NE/L containing
Ker NE/L n (1 + BE). Indeed let 1 + z belong to Ker NE/L n (1 + BE). There is a
unique 1 + t in 1 + 13E such that (1 + t)k - 1 + z, because k is prime to p. Its
norm NE/L(1 + t) belongs to 1 + 13L and is a k-root of unity, hence equals 1, so
1 + t = (03C3(E)/E)j03C3(y)/y for some j in Z, y in ZÊ . Now 1 + z = (1 + t)k =
(03C3(E)/E)jk03C3(yk)/yk = a(x)/x where x = yk belongs to ,0; as desired.

Since y is unramified, for all x in ,0; we have 0(u(x» = 0(x), so that 0 is trivial on
Ker N E/L n (1 + 13E) and its restriction to 1 + 13E factors through NEIL - By
definition of an admissible character, this implies that E is an unramified

extension of L.

3. Let f be the residual degree of E over F. We can now pick mE = L, hence
03C3(E) = E. We get 03BC° NE/F(E) = 03B8(03C3(E))/03B8(E) = 1. Since 03BC is unramified this

amounts to 03BC(fF) = 1. But y has order r; we conclude f = r as announced.

2.7. We are now in a position to give the interpretation of the integer k arising in
Theorem 1, in terms of the Langlands correspondence:

THEOREM 2. Let p be a very cuspidal representation of K; pick a character v of
Z agreeing on Z n K with the central character of p and let E be the unramified
extension of degree r of F and e be an admissible character of EX such that
L(indGZK 03BD ~ 03C1) = indWFWE03B8. The positive integers s such that p is equivalent to

03C9s* Q p are the multiples of n’/k with k a divisor of d = g.c.d. (n, r). The integer k is
the degree of E over the smallest subextension Lo of E over F such that en factors
through the norm map from E to Lo.

Proof. 1. Since the bijection 2 commutes with twisting by characters of F
([12, Corollary 4.2.4]) and induction also commutes with twisting, from
p ri ev£ Q p we deduce that 0 is conjugate to 03B803C9s° NE/F . Let 6 in Gal(E/F) be
such that ews 0 NE/F = 0 - 6 and let L be the fixed field of 6. 1 claim that the

degree 1 of E over L is the order of cvs, which divides n’ from Lemma 5, as well as
the order of the restriction of 0 to Ker NE/L (from this will follow that 1 also
divides r hence d and, 1 being prime to p, that the restriction of 0 to 1 + BE
factors through NEII)- Indeed we have 0 - ai = e(wS 0 NE/F)j for all j, while 0 is
regular, so the order of 03C3 equals the order of wS 0 N E/F, itself the order of cvs
from Lemma 5, E being unramified. Now for all x in E  we have

0(u(x)lx) = cos - N E/F(X), hence e restricted to Ker NEIL has order 1.

This proves that for any such integer s the quotient n’/g.c.d.(n’, s) = 1 divides d, so
the smallest such s is some n’/k where k divides d, and that 0’, hence 03B8n, factors

through NEIL where 1 is the degree of E over L.
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2. Let Lo be the smallest subextension of E such that en factor through NE/Lo;
from 1, the degree 10 of E over Lo is a multiple of k. We have to show that 10 = k.

Let u generate Gal E/Lo and let t be the order of 0 restricted to Ker NE/LO; then t
divides n and we can use the n-th Hilbert symbol ( , )n,E on E* and find an a in
E* such that for all x in E*:

Note that mF is a uniformizing element for E, so the character x H 03B8(03C3(x)/x) has
order t on ,0; itself; but for x in D E: :(an/t, x)n,E = (x-n val a/t)(qE-1)/n, from [14,
Proposition 8, p. 217]. We deduce that val a must be prime to t. Now for x in L 0
we must have (an/t, x)n,E = 1 or ((NE/L0a)n/t, x)n,L0 = 1, hence NE/L0an/t ~ L n 0, or,
since F has n n-th roots of 1, NE/L0a ~ L t 0. Write a = iFu with u ~ D E; we get
that ilo must be a multiple of t while i is prime to t, so l0 is a multiple of t; on the
other hand NE/L0(u) must belong to D tL0 so u must belong to D tE. We get:

We just let 03B8(03C3(x)/x) go through the norm NE/F; now we can iterate and find that:

But 03B8 is regular, so this in turn implies 03C3t = 1 hence t = 1,. Also we have nit = (n,
r - 1 + 2rc)n’/t and picking j such that in/t - ij(r - 1 + 2rc)n’/t modulo n we
can write:

Now ij being prime to t we deduce that n’/t is a multiple of n’/k, hence t divides k,
while t = 1, is a multiple of k ; so 1, = k and the theorem is proved.

2.8. We have noticed already, just after Theorem 1, that when n is prime to r the
representation n(p, X) is always irreducible. On the other hand the cases of
greatest interest are those with n = r as will be illustrated in part 3. Note anyhow
that whenever r is a prime (different from p) and F has characteristic 0 the
situation is very clear cut: if n is not prime to r then d = r and the integer k in
Theorems 1 and 2 is either 1 or r. Now the case when k = r (r a prime or not) has
been completely described in a previous work; indeed Theorem 2 and its proof
show that if k = r the restriction to 1 + BE of the character 03B8 factors through
NE/F so that up to twisting 0 has conductor 1 and p comes through P from a
cuspidal representation of GLr(k): this is precisely the situation examined in [4].
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3. Whittaker spaces

3.1. We shall now discuss the Whittaker spaces of the representations con-
structed in part 2, starting with the definitions we need.
We fix a non trivial continuous character 03C8 of the additive group F. Any

smooth character of N has the following form:

Such a character e of N is non degenerate if each ai belongs to F ", in other words
if its fixator in A is Z. From now on, we fix such a non degenerate character e
of N.

Let (n, V) be a smooth representation of G and V* be the algebraic dual of V;
the Whittaker space of 03C0 with respect to e is:

Any nonzero L in Wh(n, e) is called a Whittaker form on V. Note that Wh(n, e) is
the dual space of Ve = V/V(e) (the Jacquet module of V) where V(e) is the

subspace of V generated by all vectors n(n)v - e(n)v with v E V and n E N. The
subgroup of those elements in the normalizer ÂN of N that fix e, namely ZN,
acts naturally on the three spaces V(e), Ve and Wh(n, e).

Let L be a Whittaker form on V; define for each v in V a function ,!l’(v) on G by
Y(v)(g) = L(n(g)v) for g E G. These functions belong to the space B(, N, e) of
Whittaker functions on G, i.e. of smooth functions from G into C satisfying
f(ng) = e(n) f (g) for all n in N, g in G, and the map Y: v H Y(v) intertwines 03C0 and

the representation of G in B(, N, e) through right translations. The map L - Ef
provides us with an isomorphism:

If 03C0 is irreducible and its Whittaker space is non trivial, a map Y as above is
injective; its image, a subspace of B(, N, e) on which acts through right
translations, is called a Whittaker model for (n, V). We will always assume that n
is genuine, hence work with Whittaker functions in B(, N, e Q e).
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3.2. When working with the group G it has been known since [9] that an
irreducible supercuspidal representation of G has a unique Whittaker model, in
other words has a one-dimensional Whittaker space. This is not true any more

for the metaplectic group; however we know from [ 11] that the Whittaker space
of a smooth representation (n, V) of G:

. is finite-dimensional if (n, V) is irreducible;
e is non trivial if (n, V) is supercuspidal.

Unicity of Whittaker models for supercuspidal irreducible representations of G
stands as a remarkable result with remarkable consequences among which is

global multiplicity one for automorphic forms on GL(r). Likewise, finding the
genuine irreducible representations of G, if any, that have a one-dimensional
Whittaker space can be expected to have, in some cases at least, interesting
global applications, as happened in [11] where Kazhdan and Patterson

constructed in the case when n = r a representation, quotient of a particular
reducible principal series representation of G, having a unique Whittaker model,
and could then fit it into an automorphic form on the global metaplectic group
with remarkable Fourier coefficients. We will not reach such results here; we

merely wish to describe the Whittaker spaces of the supercuspidal represen-
tations constructed in part 2. The first step in this direction is the following:

PROPOSITION 2. Let a be a smooth genuine irreducible representation of ZK
in a complex vector space W such that the induced representation indGZK 03C3 = n,
acting in V = Bc(, ZK, a), is a genuine irreducible supercuspidal representation
of G.

Let E(6, e) be the space of smooth functions (D from Â into W, compactly
supported mod Â n ZK, satisfying:

(i) For any a in Â, the dimension of the subspace of E(u, e) made of the functions
with support in ( ~ )a is equal to the multiplicity of the character

ae: ae(n) = e(a -1 na), of N n K*, in the representation u.
(ii) The morphism 0 factors through the Jacquet module Ve of (n, V) and

de termines, by restriction of the functions 0(f) to Â, an isomorphism still denoted
by 4J from Ve into E(a, e) that intertwines the natural action of Z on Ve and the
action of i on E(a, e) through right translations.
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Proof. (i) Condition (8) on 03A6 in E(a, e) means that 03A6(a) belongs to the
subspace Wae of W on which N n K* acts through ae; conversely if w belongs to
Wae there is a unique function 03A6w,a in E(a, e) with support in (Â n ZK)a
satisfying 03A6w,a(a) = w: it is defined through (7).

(ii) The integral defining 0(f)(g) converges: the function f is compactly
supported mod ZK hence the function n ~ f(gn) is compactly supported on N
for any g. For any n in N, k in ZK and a in Â we have 0(f )(kan) = e(n)03C3(k)~(f)(a)
hence 0(f) is completely determined by its restriction to A which itself belongs
to E(6, e) since the first condition is obviously satisfied and the second arises
from the following, for n in N n K*:

Now N is exhausted by its compact subgroups: we can pick an increasing
sequence (Nj), j running through all integers, of compact subgroups of N such
that N = ~j Nj and we can define operators in V by ~j(f) = SNj e(n)rc(n) f dn; we
have:

1. For every f in V the sequence of functions ~j(f) simply converges to ~(f);
actually, for any g in G there is an integer k depending on g such that
~(f)(g) = ~j(f)(g) if j  k. Note that 0(f) does not belong to v

2. The kernels of the ~j’s form an increasing sequence with union V(e) (see for
instance [1, Lemma 2.33]).

We want to show that V(e) is the kernel of 0 itself. Clearly the kernel of 0
contains the kernel of ~j for all j, hence V(e). Conversely let f belong to the
kernel of ~; from 0(f)(g) = 0 for all g in G and property 1 we deduce that the

decreasing sequence of compact mod the center subsets of G formed by the
supports of the functions ~j(f) has an empty intersection, so we can find a finite
collection of them with an empty intersection and consequently we can find an
integer k such that the support of ~k(f) be empty. This just means that f belongs
to the kernel of 1Jk hence, from property 2, to V(e). Injectivity is proven.

Since E(u, e) is the direct sum of the subspaces studied in (i) it is enough to
prove that those subspaces belong to the image of ~. Let w belong to wae and
03A6w,a be the function defined in the proof of (i). Let f be the function on G defined
by f(ka) = 03C3(k)w if k ~ ZK, f(g) = 0 if g ~ a. It is easy to check that ~(f) is, up
to a non-zero constant, equal to 03A6w,a. Surjectivity is proven.
That ~ commutes with the action of Z is easily checked.
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We say that a character e of an open subgroup N’ of N is a non degenerate
character of N’ if it is non trivial on Vin N’ for each i, 1  i  r. With this

definition we can state:

COROLLARY 2. Let p be a smooth irreducible representation of K such that, for
a suitable character L of Z, the representation indGZK i Q p is irreducible. Let e be a
non degenerate character of N. Then:

2022 the multiplicity of the restriction of e to N n K in p is 0 or 1;
2022 the set of elements a in A for which the multiplicity of the character ae of N n K

in o is 1 is exactly one left coset of A n ZK in A;
2022 pick a in A such that the multiplicity of the character ae of N n K in p be 1; then

ae is a non degenerate character of N n K.

Proof. The induced representation is irreducible, hence supercuspidal, so it
has a unique Whittaker model, or, by previous remarks, a one-dimensional
Jacquet module relative to e. Applying the previous proposition to u = r Q p
yields dim E(u, e) = 1, so that the multiplicity of ae in u is 0 for all but one
A n ZK-left-coset, say the coset of a, for which it is 1. Furthermore, assume ae is
trivial on some subgroup Ui n K; then a = diag[al, ... , 03B1r] satisfies

val(03B1i+1/03B1i)  cond(03C8) and for ai = diag[1, ... , 1, ,... , m] (the first m in the
i + 1-th entry) we get ai03B1e = ae on N n K, hence the multiplicity of the character
ai03B1e of N n K in p is also 1, which is impossible since aia does not belong to the
left coset (A n ZK)03B1.

3.3. Let us assume that u is obtained as in part 2; we are then ready to describe
completely the Whittaker space of the representation induced from a:

THEOREM 3. Let p, X and k be as defined in Theorem 1, let pi, for 1  i  k, be
the k inequivalent extensions of p* 0 X to z;ï7k K*, let ai be the induced

representation of Pi to ZK* and 03C0i(03C1, X) be the induced representation of ai to G.
Then the dimension of the Whittaker space Wh(ni(p, X), e) of ni(p, x) is n’/k and a
basis for it is given by the following Whittaker forms:

where:

2022 the element a of A is such that the character "e has multiplicity one in p;
,a let v be a non zero vector in the space of p on which N n K acts through (J.e; then
2 must be a linear form on the space of ai such that 2(v) ~ 0 and 2(ai«((mj)w) = 0 for
any w in the space of p and j between 1 and n’/k - 1.
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The Whittaker space Wh(ni(p, X), e) has length d/k as a Z-module; it is an

irreducible Z-module if and only if k = d = (n, r).
Proof. (1) From Proposition 2, the dimension of Wh(ni, e) is the sum of the

multiplicities of the characters ae in a,, a running through (Â n ZK)BÃ. The
restriction to N n K* of ai is equivalent to the direct sum of n’/k copies of the
restriction to N n K* of p*, hence the multiplicity of ae in 03C3i is n’/k times the
multiplicity of ae in p. From Corollary 2 we get that the dimension of Wh(ni, e) is
n’/k as announced.

(2) From Corollary 2 we can find oc in A, the A n ZK-left coset of which is

uniquely determined by p, such that ae has multiplicity one in p. Let v be a non
zero vector in the space of p on which N n K acts through ae; it is uniquely
determined up to a scalar. The isomorphism 0 constructed in Proposition 2
maps the Jacquet module Y,e of ni onto the space of functions on (Â n ZK)s(«)
satisfying (7) and (8). Evaluating those functions at s(03B1) is again an isomorphism,
transforming the action of Z on Jti,e into its action ai on the subspace Wi(03B1e) of
vectors in the space of 6i on which N n K* acts through ae, twisted by the
character z H e(det «, z), itself equivalent to the induced representation to Z of
the character z H e(det oc, z)xi(z) of Fïk . Z n K* corresponding to the action of
Zn’/k. Z n K* on v. Therefore the Jacquet module v,e is isomorphic, as a Z-
module, to indZZn’/k. ~i 0 8(det a,.).

(3) Fix a non trivial linear form 2 on the space Wp of p such that 03BB(v) ~ 0 and
extend it to a linear form on the space of ai by letting it be 0 on the subspaces
03C3i(j)(W03C1) for 1 5 j  n’/k; then the forms 20 03C3i(03B6(j)) for 0  j  n’/k make up a
basis for the dual space of Wi(03B1e) and by composition we get that

f - 2 0 03C3i(03B6(j))(~(f)) make up a basis for W h(03C0i(03C1, Y), e).
(4) The computations in section 1.5 show that Z is an Heisenberg group with

center Z n " G = n’/dZ; furthermore n’/dZ. Z n K* is a maximal commutative
subgroup of index n’/d in Z so that irreducible genuine representations of Z are
determined by their central character and have dimension n’/d. Here k divides d
and the Whittaker space is a genuine representation of Z of dimension n’/k,
hence length d/k as announced.

3.4. The time has come to draw some conclusions and ask some questions.
(1) It turns out that the set of dimensions of the Whittaker spaces of the

genuine irreducible supercuspidal representations constructed in part 2 is

included in (and likely equal to, see Theorem 2) the set of integers {n’/k, k a
divisor of d = g.c.d.(n, r)l. Is it the set of dimensions of the Whittaker spaces of
all genuine irreducible supercuspidal representations of G?

(2) Whenever n is prime to r, the Whittaker spaces of the representations
constructed in part 2 all have the same dimension n’ and are irreducible Z-
modules. Does the Whittaker space of a genuine irreducible supercuspidal
representation of G always have dimension n’ in this case?
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(3) Assume as before that n is prime to r and assume further that n’ = 1, i.e.
that n divides (n, r - 1 + 2rc): we get a series of supercuspidal representations of
G with one-dimensional Whittaker spaces, i.e. unique Whittaker model. This
situation arises for instance when n divides r + 1 and c = -1; note that the case
when n = r + 1 and c = - 1 is, apart from the case n = r, the only case for which
the exceptional representation of Kazhdan and Patterson [11] has a unique
Whittaker model.

(4) We now turn to the case when d = r: then the Whittaker spaces of minimal
dimension in our series are obtained for k = r and are irreducible Z-modules of
dimension n’/r - under the assumptions of 2.6, the corresponding "minimal"
representations of G come from cuspidal representations of GL,(k), see 2.8 and
[4]. This minimal dimension is 1 if and only if n’ = r, i.e. if n is the product of r by
a divisor of r - 1 + 2rc.

(5) Assume n = r and F has characteristic 0: Theorems 2 and 3 imply that the
only representations among those constructed in part 2 that have a one-
dimensional Whittaker model come, after twisting, inducing and splitting, from
cuspidal representation of GLr(k) associated to regular characters 0 of the
extension of degree r of k such that on factors through the norm over k; up to
twisting by a character of the determinant, we get a finite number of such
representations in the series. This is a nice enough situation and we can wonder
whether the set of genuine irreducible supercuspidal representations having a
one-dimensional Whittaker space is, up to the central character, a finite set, and
whether we have obtained this whole set in our series. For n = r = 2, it is indeed
the case (see [3]) and the representations that make up this set are the odd Weil
representations.

References

1. Bernstein, I. N. and Zelevinsky, A. V., Representations of the group GLn(F) where F is a non
archimedean local field, Russian Math. Surveys 31, n. 3, (1976) p. 1-68.

2. Blondel, C., Construction des représentations supercuspidales des groupes métaplectiques sur
GL(2), Thèse de troisième cycle, Université Paris VII, 1981.

3. Blondel, C., Les représentations supercuspidales des groupes métaplectiques sur GL(2) et leurs
caractères, Mémoire S.M.F. n. 18, Supplément au Bulletin de la S.M.F., Tome 113, Fasc. 1, 1985.

4. Blondel, C., Sur des représentations supercuspidales exceptionnelles de groupes métaplectiques
locaux, Note aux C.R. Acad. Sc. Paris, t.303, Série I, n. 13, 1986.

5. Carayol, H., Représentations cuspidales du groupe linéaire, Ann. Scient. Ec. Norm. Sup., 4e série,
t. 17, 1984, p. 191-225.

6. Flicker, Y. Z., Automorphic forms on covering groups of GL (2), Inv. Math. 57, (1980) p. 119-
182.

7. Flicker, Y. Z. and Kazhdan, D. A., Metaplectic correspondence, Publ. Math. IHES 64, (1987) p.
53-110.

8. Gelbart, S. and Piatetski-Shapiro, I. I., Distinguished representations and modular forms of half-
integral weight, Inv. Math. 59, 1980, p. 145-188.



18

9. Gelfand, I. M. and Kazhdan, D. A., Representations of GL(n, K) where K is a local field, in: Lie
groups and their representations, Ed. I. M. Gelfand, Hilger, 1975.

10. Howe, R., Tamely ramified supercuspidal representations of GL(n), Pacific Journal of Math.,
vol. 73, n. 2, 1977, p. 437-460.

11. Kazhdan, D. A. and Patterson, S. J., Metaplectic forms, Publ. Math. IHES 59, 1984, p. 35-142.
12. Moy, A., Local constants and the tame Langlands correspondence, Amer. J. of Math. 108, 1986,

863-929.

13. Patterson, S. J. and Piatetski-Shapiro, I. I., A cubic analogue of the cuspidal theta represen-
tations, J. Math. pures et appl., 63, 1984, p. 333-375.

14. Serre, J.-P., Corps locaux, Hermann, Paris, 1968.
15. Weil, A., Sur certains groupes d’opérateurs unitaires, Acta Math. 111, 1964, p. 143-211.


