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EQUIVARIANT VECTOR BUNDLES ON QUANTUM
HOMOGENEOUS SPACES

Guanglian Zhang and R.B. Zhang

Abstract. The notion of quantum group equivariant homogeneous vector bundles on

quantum homogeneous spaces is introduced. The category of such quantum vector
bundles is shown to be exact, and its Grothendieck group is determined. It is also

shown that the algebras of functions on quantum homogeneous spaces are noetherian.

1. Introduction

Quantum homogeneous spaces are concrete examples of noncommutative geome-
tries which are interesting to several areas in mathematics and physics. The simplest
quantum homogeneous spaces such as the quantum spheres have been particularly
well investigated, see, e.g., [7, 4] and references therein. In the joint publication [5]
by one of us with Gover and also [12], quantum homogeneous spaces were applied
to study a geometric representation theory for quantum groups and quantum super-
groups. A quantum analogue of the Bott-Borel-Weil theory [2] as envisaged in [8]
emerged [5, 12] from the study, which in particular placed the work of Andersen, Polo
and Wen [1] in the setting of noncommutative geometry.

If Uq(l) is a reductive subalgebra of the quantized universal enveloping algebra
Uq(g), the algebra A(g, l) of Uq(l)-invariant functions on the quantum group associ-
ated with Uq(g) defines a quantum homogeneous space (see Remark 2.2 for further
discussion) in the general spirit of noncommutative geometry [3]. A quantum vector
bundle on the quantum homogeneous space is defined by specifying the space of sec-
tions M . Here it is important that M must be a finitely generated projective module
over A(g, l). From the viewpoint of representation theory, the interesting quantum
homogeneous vector bundles are those admitting actions of a quantum group, which
are analogues of equivariant vector bundles (see, e.g., [10]) in classical differential
geometry. The purpose here is to classify such noncommutative vector bundles.

The algebra A(g, l) will be shown to be noetherian. We introduce a notion of Uq(g)-
equivariant A(g, l)-modules, and show that the category P(g, l) of finitely generated
Uq(g)-equivariant projective A(g, l)-modules is an exact category. Objects of P(g, l)
are regarded as Uq(g)-equivariant quantum homogeneous vector bundles, which are
shown to correspond to isomorphism classes of finite dimensional representations of
Uq(l). The precise statement of this result is given in Theorem 3.9.
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The natural framework for understanding results in this letter is a possible quan-
tum group equivariant algebraic K-theory for the algebra A(g, l) of functions on the
quantum homogeneous space. We allude to this very briefly at the end.

2. Quantum homogenous spaces

Let g be a finite dimensional simple complex Lie algebra of rank r with the set of
simple roots Π = {αi|i = 1, 2, . . . , r}. We denote by P the set of the integral weights,
and by P+ the set of the integral dominant weights of g. Fix q ∈ C∗, which is non-zero
and is not a root of 1. The quantized universal enveloping algebra Uq(g) of g over C
will be presented with the standard generators {ei, fi, k

±1
i | i = 1, . . . , r} and relations

(see, e.g., [1, 6] ). As is well known, Uq(g) has the structure of a Hopf algebra. We
denote by ∆, ε and S the co-multiplication, co-unit and antipode respectively.

We shall only consider the finite dimensional left Uq(g)-modules of type-(1, . . . , 1).
It follows from standard facts in Hopf algebra theory [9] that the matrix elements [5] of
the Uq(g)-representations on such modules span a Hopf subalgebra A(g) of the finite
dual Uq(g)◦ of Uq(g). For convenience, we shall also denote the co-multiplication and
the antipode of A(g) by ∆ and S respectively.

There exist two natural actions R and L of Uq(g) on A(g) [5], which correspond to
the left and right translations in the context of Lie groups. The actions are respectively
defined by

Rxf =
∑
(f)

f(1) < f(2), x >, Lxf =
∑
(f)

< f(1), S(x) > f(2)

for all x ∈ Uq(g) and f ∈ A(g). Here we have used Sweedler’s notation to write the
co-multiplication of f as ∆(f) =

∑
(f) f(1)⊗ f(2), and also have written f(x) as 〈f, x〉

for any f ∈ Uq(g)◦ and x ∈ Uq(g). The two actions commute, and A(g) forms a
Uq(g)⊗Uq(g) module under the action L⊗R.

Let Θ be a subset of {1, 2, . . . , r}. We denote by Uq(l) the reductive Hopf subalgebra
of Uq(g) generated by the elements of {k±1

i | 1 ≤ i ≤ r} ∪ {ej , fj | j ∈ Θ}. The Hopf
algebra embedding ι : Uq(l) −→ Uq(g) induces a Hopf algebra map p : Uq(g)0 −→
Uq(l)

0, which is defined for any f ∈ Uq(g)0 by 〈p(f), u〉 = 〈f, ι(u)〉, ∀u ∈ Uq(l).
Denote by A(l) the Hopf subalgebra p(A(g)) of Uq(l)

0.
Recall that any right A(l)-comodule V has a natural left Uq(l)-module structure.

Since all finite dimensional Uq(g)-modules are completely reducible with respect to
Uq(l), all A(l)-comodules are semi-simple. There exists a unique left and right in-
variant integral

∫
: A(l) −→ C such that

∫
1 = 1, where 1 is the identity element of

A(l).
We denote by Uq(l)-mod the category of finite dimensional left Uq(l)-modules,

which arise from right A(l)-comodules.

Definition 2.1. Define A(g, l) := {f ∈ A(g) | Lx(f) = ε(x)f, ∀x ∈ Uq(l)} .

Since Uq(l) is a Hopf subalgebra of Uq(g), it follows from the definition that A(g, l)
is a subalgebra of A(g). It is important to point out that A(g, l) is a right co-ideal
of A(g), that is, ∆(A(g, l)) ⊂ A(g, l) ⊗ A(g). This in particular allows us to define
a right A(g)-comodule structure on A(g, l) by a 7→ ∆(a), a ∈ A(g, l). Equivalently
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A(g, l) has a left Uq(g)-module structure with the action being the restriction of the
right translation R. Clearly for any a, b ∈ A(g, l),

x · (ab) =
∑
(x)

Rx(1)(a) ·Rx(2)(b), ∀x ∈ Uq(g),

and the identity element ε ofA(g, l) is Uq(g)-invariant. ThusA(g, l) is a Uq(g)-algebra.

Remark 2.2. The algebra A(g, l) was constructed in [5]. It was shown there that
A(g, l) was the natural quantum analogue of the algebra of functions on G/K for a
compact connected Lie group G and a closed subgroup K, where G and K have the
Lie algebras Lie(G) and Lie(K) with complexifications g and l respectively.

It was shown in [6, Proposition 9.2.2] that A(g) is noetherian (where A(g) is de-
noted by R = Rq[G], see also [6, §9.1.1]). We have the following result.

Theorem 2.3. A(g, l) is noetherian.

Proof. Assume the existence of an infinite ascending chain I0 ( I1 ( I2 ( · · · of left
ideals in A(g, l), then there is the infinite sequence of left ideals Ji := A(g)Ii, i ≥ 0,
of A(g) such that

J0 ⊂ J1 ⊂ J2 ⊂ · · · .
Under the left action LUq(l), A(g) decomposes into the direct sum of two submod-

ulesA(g) = A(g, l)⊕A(g, l)⊥, whereA(g, l) comprises trivial 1-dimensional irreducible
Uq(l)-modules only, while A(g, l)⊥ is a direct sum of finite dimensional irreducible
Uq(l)-modules of dimensions greater than 1. If f ∈ A(g, l)⊥ and a ∈ A(g, l), then
Lx(af) = aLx(f) and Lx(fa) = Lx(f)a for all x ∈ Uq(l). Hence af and fa be-
long to A(g, l)⊥, showing that A(g, l)⊥ forms a two-sided A(g, l)-module under the
multiplication in A(g).

This in particular implies that

Ji = A(g, l)Ii ⊕A(g, l)⊥Ii = Ii ⊕A(g, l)⊥Ii.

Now Ii ( Ii+1, thus Ji ( Ji+1, for all i. This way we obtain an infinite ascending chain
Ji, i ≥ 0, of left ideals in A(g), contradicting the noetherianity of A(g) established
in [6, Proposition 9.2.2]. Hence A(g, l) must be left noetherian. In the same way, we
can show that A(g, l) is right noetherian, thus is noetherian. �

In view of Remark 2.2, the subalgebra A(g, l) will be refer to as the algebra of
functions on a quantum homogeneous space following the terminology of [5]. Adopt-
ing the general philosophy of noncommutative geometry [3], we regard the quantum
homogeneous space as defined by A(g, l). Also, finitely generated projective modules
over A(g, l) will be called quantum homogeneous vector bundles over the quantum
homogeneous space.

3. Equivariant quantum homogeneous vector bundles

3.1. Equivariant quantum homogeneous vector bundles. Let M be a left
A(g, l)-module with a structure map φ : A(g, l) ⊗M −→ M . We also assume that
M is a locally finite left Uq(g)-module with a structure map µ : Uq(g) ⊗M −→ M ,
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and denote the corresponding right A(g)-comodule structure by δ : M −→M ⊗A(g).
Now A(g, l)⊗M has a natural Uq(g)-module structure

µ′ : Uq(g)⊗ (A(g, l)⊗M) −→ A(g, l)⊗M,

x⊗ (a⊗m) 7→
∑
(x)

Rx(1)(a)⊗ x(2) ·m.

We say that the A(g, l)- and Uq(g)-module structures of M are compatible if the
following diagram commutes

(3.1)
Uq(g)⊗A(g, l)⊗M

id⊗φ−→ Uq(g)⊗M
µ′ ↓ µ ↓

A(g, l)⊗M
φ−→ M.

In this case, M is called a Uq(g)-equivariant A(g, l)-module.
A morphism between two Uq(g)-equivariant A(g, l)-modules is an A(g, l)-module

map which is at the same time also a Uq(g)-module map. We call a Uq(g)-equivariant
A(g, l)-module M finitely generated if there exists an epimorphism W −→ M where
W is free and of finite rank over A(g, l). We denote by M(g, l) the category of finitely
generated Uq(g)-equivariant A(g, l)-modules, which is an abelian category.

Let P(g, l) denote the full subcategory of M(g, l) with objects having the following
property. If P is in P(g, l), there exist objects Q and W in M(g, l) with W being free
over A(g, l) such that

P ⊕Q ∼= W.

We shall refer to any object in P(g, l) as a finitely generated Uq(g)-equivariant pro-
jective A(g, l)-module. We shall show in Section 4 that a Uq(g)-equivariant A(g, l)-
module is projective in M(g, l) if and only if it belongs to P(g, l).

Definition 3.1. Call P(g, l) the category of Uq(g)-equivariant quantum homogeneous
vector bundles on the quantum homogeneous space defined by A(g, l).

Remark 3.2. The cross product R(g, l) = A(g, l) o Uq(g) is an associative algebra,
and a Uq(g)-equivariant A(g, l)-module is nothing else but a locally 1 ⊗ Uq(g)-finite
left R(g, l)-module.

For any object Ξ of Uq(l)-mod, we define

S(Ξ) :=

ζ ∈ Ξ⊗A(g)

∣∣∣∣∣∣
∑
(x)

(x(1) ⊗ Lx(2))ζ = ε(x)ζ, ∀x ∈ Uq(l)

 .(3.2)

Then S(Ξ) is a left A(g, l)-module with the action defined by bζ =
∑
vi⊗ bai for any

ζ =
∑
vi ⊗ ai ∈ S(Ξ) and b ∈ A(g, l). We have the following result.

Proposition 3.3. Let Ξ be any object in Uq(l)-mod. Then S(Ξ) gives rise to a
Uq(g)-equivariant quantum homogenous vector bundle.

Proof. This can be deduced from [5]. Note that S(Ξ) forms a left Uq(g)-module with
the action defined by

xζ = (idΞ ⊗Rx)ζ =
∑

vi ⊗Rx(ai),
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for any x ∈ Uq(g) and ζ =
∑
vi ⊗ ai ∈ S(Ξ). We have

x(bζ) =
∑
vi ⊗Rx(bai) =

∑
(x)

Rx(1)(b)(x(2)ζ), for b ∈ A(g, l),

that is, the Uq(g)- and A(g, l)-actions on S(Ξ) render the diagram (3.1) commutative.
Hence S(Ξ) indeed forms a Uq(g)-equivariant A(g, l)-module.

Consider the bijection [5]

κ : M ⊗A(g) −→M ⊗A(g), m⊗ f 7→
∑
(m)

m(1) ⊗ fS−1(m(2)),(3.3)

with the inverse map given by κ−1(m ⊗ f) =
∑

(m)m(1) ⊗ fm(2). We give the
following Uq(g)-module structures to the domain and range of κ respectively: any
element x ∈ Uq(g) acts on the domain by x · (m ⊗ f) = m ⊗ Rx(f), and on the
range by x · (m⊗ f) =

∑
x(2)m⊗Rx(1)(f) via the opposite co-multiplication ∆′(x) =∑

x(2) ⊗ x(1). The A(g, l)-actions on both the domain and the range of κ are given
by a · (m ⊗ f) = m ⊗ af . Then direct calculations can show that both the domain
and range of κ are Uq(g)-equivariant A(g, l)-modules, and κ is a Uq(g)-equivariant
A(g, l)-module homomorphism. Now we have [5]

S(M) = κ−1(M ⊗A(g, l)).(3.4)

Recall that Ξ can always be embedded in the restriction of some finite dimensional
Uq(g)-module as a direct summand. That is, there exists a finite dimensional Uq(g)-
module M and another Uq(l)-module Ξ⊥ such that M ∼= Ξ⊕Ξ⊥ as Uq(l)-module. It
immediately follows from (3.4) that S(Ξ)⊕S(Ξ⊥) ∼= M ⊗A(g, l). This completes the
proof. �

In view of the proposition, we can extend (3.2) to a functor

S : Uq(l)-mod −→ P(g, l),(3.5)

which applies to objects of Uq(l)-mod according to (3.2) and sends a morphism f to
f ⊗ idA(g). Since Uq(l)-mod is semi-simple and S(V ⊕W ) = S(V ) ⊕ S(W ) for any
direct sum V ⊕W of objects in Uq(l)-mod, the functor S is exact.

3.2. Classification. Recall [10] that for a compact semi-simple Lie group G, and a
closed reductive subgroup K, the G-equivariant vector bundles on the homogeneous
space G/K correspond bijectively to the isomorphism classes of finite dimensional
K-modules. We shall establish a similar result in the quantum case.

Let I = {f ∈ A(g, l)|f(1) = 0}, which is a maximal ideal of A(g, l). For any
x ∈ Uq(l) and a ∈ I, 〈Rx(a), 1〉 = ε(x)a(1) = 0, thus I forms a Uq(l)-algebra under
the restriction of R. This in particular implies that for any Uq(g)-equivariant A(g, l)-
module M , IM is a Uq(l)-equviaraint A(g, l)-submodule of M , since for any a ∈ I
and m ∈M , we have x(am) =

∑
(x)Rx(1)(a)x(2)m ∈ IM for all x ∈ Uq(l).

Given a Uq(g)-equivariant A(g, l)-module M , we define

M0 = (A(g, l)/I)⊗A(g,l) M.

Note the algebra isomorphism A(g, l)/I ∼= C given by a + I 7→ a(1). Thus we shall
simply write the image in M0 of an element m ∈ M as 1⊗m. Define a Uq(l)-action
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on M0 by

Uq(l)⊗M0 −→M0, x⊗ (1⊗m) 7→ 1⊗ x ·m,(3.6)

which we now show to be well-defined. For all x ∈ Uq(l), a ∈ A(g, l) and m ∈M , we
have (in Sweedler’s notation)

x · (am) =
∑

(a),(m)

a(1)m(1)〈a(2)m(2), x〉

=
∑

(a),(m),(x)

a(1)m(1)〈a(2), x(1)〉〈m(2), x(2)〉

=
∑
(m)

am(1)〈m(2), x〉.

Thus 1⊗ x · (am) = a(1)⊗ x ·m = x · (1⊗ am), proving that the Uq(l)-action (3.6) is
indeed well defined.

To summarise,

Proposition 3.4. The natural Uq(l)-action on M (i.e., the restriction of the Uq(g)-
action) descends to the Uq(l)-action (3.6) on M0.

Note that for any finitely generated Uq(g)-equivariant A(g, l)-module M , the Uq(l)-
module M0 is finite dimensional and in fact is a right A(l)-comodule (note that A(l) =
p(Uq(g)0) $ Uq(l)

0), thus belongs to Uq(l)-mod. Hence we can construct the functor

E : M(g, l) −→ Uq(l)-mod,(3.7)

which sends an object M to M0, and a morphism f to id(A(g,l)/I) ⊗A(g,l) f .
We shall show in Proposition 3.8 that if M is an object of P(g, l), then S ◦ E(M)

is isomorphic to M . To prove this result, we need some preparations. Now for any
object M of M(g, l), we define the map

ψ : M δ−→M ⊗C A(g) −→ (A(g, l)/I)⊗A(g,l) M ⊗C A(g),(3.8)

where δ is the A(g)-comodule map of M , and the second map is the obvious one.
Introduce a Uq(g)-equivariant A(g, l)-module structure on the range of ψ defined for
any element ζ = 1⊗A(g,l) m⊗C f by

xζ = 1⊗A(g,l) m⊗C Rx(f), x ∈ Uq(g),
aζ = 1⊗A(g,l) m⊗C af, a ∈ A(g, l).

Lemma 3.5. The map ψ is a Uq(g)-equivariant A(g, l)-module homomorphism. Fur-
thermore, ψ(M) ∼= S(M0) for any object M in M(g, l).
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Proof. For all a ∈ A(g, l), x ∈ Uq(g) and m ∈M , we have

ψ(am) =
∑

(a)(m)

1⊗ a(1)m(1) ⊗ a(2)m(2)

=
∑

(a)(m)

1⊗m(1) ⊗ ε(a(1))a(2)m(2)

=
∑
(m)

1⊗m(1) ⊗ am(2)

= aψ(m);

ψ(xm) =
∑
(m)

1⊗m(1) ⊗m(2)〈m(3), x〉

=
∑
(m)

1⊗m(1) ⊗Rx(m(2))

= xψ(m).

This proves the first part of the proposition.
Now for any x ∈ Uq(l) and m ∈M , a routine calculation gives∑

(x)

(x(1) ⊗ Lx(2))ψ(m) =
∑

(x),(m)

x(1)(1⊗m(1))⊗ Lx(2)(m(2)) = ε(x)ψ(m).

This implies that Imψ ⊆ S(M0) by recalling the definition of S(M0) (cf. (3.2)).
To proceed further, we extend (3.2) slightly to allow for such Ξ that may be infinite

direct sums of Uq(l)-modules in Uq(l)-mod so that we can define S(M) for the object
M in M(g, l) under consideration here. We evidently have the A(g, l)-module iso-
morphism M0

∼= M/IM , and by Proposition 3.4 this is a Uq(l)-module isomorphism
as well. Thus we have the short exact sequence 0 −→ IM −→ M −→ M0 −→ 0
of Uq(l)-modules. Tensor it with A(g) over C and then take Uq(l)-invariants. Since
all the Uq(l)-modules involved are semi-simple, we arrive at the following short exact
sequence of Uq(g)-modules:

0 −→ S(IM) −→ S(M) −→ S(M0) −→ 0.(3.9)

Denote by ψ̃ the surjective map in (3.9). It is given for all
∑

imi ⊗C fi ∈ S(M) by

ψ̃ :
∑

i

mi ⊗C fi 7→
∑

i

1⊗A(g,l) mi ⊗C fi.

One can see this very easily, e.g., by inspecting the formulae in Remark 3.6 below.
Following [5], we consider the Uq(g)-equivariant A(g, l)-module morphism defined by
the same formula (3.3) but for the object M in M(g, l) under consideration here.
Then equation (3.4) remains valid. An explicit calculation shows that for all m ∈M
and a ∈ A(g, l),

ψ(am) =
∑
(m)

1⊗A(g,l) m(1) ⊗C am(2) = 1⊗A(g,l) κ
−1(m⊗C a).

In view of equation (3.4), this shows that Imψ = Imψ̃. Now it follows from the
short exact sequence (3.9) that Imψ ⊇ S(M0), and this completes the proof of the
lemma. �
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Remark 3.6. If M is an object in M(g, l), we can describe S(M) and S(M0) very
explicitly. One can show that S(M) is spanned over C by the elements∑

(m),(f)

m(1) ⊗C f(2)

∫
p(m(2)S(f(1))), ∀m ∈M,f ∈ A(g),

where p : A(g) −→ A(l) is the Hopf algebra map defined in Section 2, and
∫

is the
invariant integral on A(l). Also S(M0) is spanned over C by the elements∑

(m),(f)

1⊗A(g,l) m(1) ⊗C f(2)

∫
p(m(2)S(f(1))), ∀m ∈M,f ∈ A(g).

Lemma 3.7. If M is a free Uq(g)-equivariant A(g, l)-module, then M ∼= S(M0).

Proof. We claim that the desired isomorphism is provided by the map ψ (cf. (3.8)).
To prove this, it suffices to show that ψ is injective in view of the previous lemma.
Let {vi}n

i=1 be a basis of M . Let m =
∑n

i=1 a
ivi belong to the kernel of ψ, where

ai ∈ A(g, l). For any x ∈ Uq(g), ai(k±1
j x) = ai(x) for all j. Since Uq(g) is spanned by

monomials in the generators ej , fj , k
±1
j , j = 1, 2, . . . , r, with elements k±1

j positioned
on the left, ai is equal to zero if it annihilates the monomials in ej , fj , j = 1, 2, . . . , r.
Now ψ(m)(1) =

∑n
i=1 1⊗ai(1)vi = 0. Since {1⊗ vi}n

i=1 forms a basis of M0, we have
ai(1) = 0, ∀i.

For any generator ej of Uq(g), a simple calculation shows that

0 = ψ(m)(ej) = k−1
j (
∑

ai(ej)(1⊗ vi)).

Thus ai(ej) = 0,∀i, j. Similarly, one can see that ai(fj) = 0,∀i, j.
Define the degrees of ei and fi to be 1, and denoted by deg(x) the degree of a

monomial x in the elements ej and fj . We use induction on the degree of the monomial
x to show that every ai satisfies ai(x) = 0 for all x. We have already proved this
for deg(x) = 0 and 1. We have ∆(x) = x ⊗K +

∑
deg(x(1))<deg(x) x(1) ⊗ x(2) for any

monomial x with deg(x) > 1, where K is a monomial in k±1
i . Now

ψ(m)(x) =
∑

i,(v),(x)

1⊗ ai
(1)v

i
(1)〈a

i
(2), x(1)〉〈vi

(2), x(2)〉

=
∑
i,(v)

1⊗ vi
(1)〈a

i, x〉〈vi
(2),K〉

+
∑
i,(v)

∑
deg(x(1))<deg(x)

1⊗ vi
(1)〈a

i, x(1)〉〈vi
(2), x(2)〉

=
∑
i,(v)

1⊗ vi
(1)〈a

i, x〉〈vi
(2),K〉 by induction hypothesis

= K

(∑
i

1⊗ ai(x)vi

)
= 0.

Thus ai(x) = 0 for all monomials x and hence ai = 0. This proves the injectivity of
ψ when M is free, thus completes the proof of the lemma. �
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Proposition 3.8. Let M be a finitely generated Uq(g)-equivariant projective A(g, l)-
module. Then M ∼= S(M0).

Proof. Since M is a finitely generated Uq(g)-equivariant projective A(g, l)-module,
there exists another Uq(g)-equivariant A(g, l)-module N such that M ⊕ N = F ,
where F is a free Uq(g)-equivariant A(g, l)-module of some finite rank. Let ψ be the
map defined by equation (3.8) but for F . We get

ψ(M) ⊆ S(M0), ψ(N) ⊆ S(N0).

By Lemma 3.7, ψ(M ⊕ N) = ψ(M) ⊕ ψ(N) = S(F0) = S(M0) ⊕ S(N0). Thus we
must have M ∼= S(M0). �

Let E ′ : P(g, l) −→ Uq(l)-mod be the restriction to P(g, l) of the functor E defined
by (3.7). Denote by K(Uq(l)-mod) and K(P(g, l)) respectively the Grothendieck
groups of Uq(l)-mod and P(g, l). Then the functors S and E ′ induce homomorphisms

S∗ : K(Uq(l)-mod) −→ K(P(g, l)), E ′∗ : K(P(g, l)) −→ K(Uq(l)-mod)

between the Grothendieck groups. Proposition 3.8 implies that S∗ is surjective and
S∗ ◦ E ′∗ is the identity map on K(P(g, l)). In fact we have the following result.

Theorem 3.9. The Grothendieck groups of Uq(l)-mod and of P(g, l) are isomorphic.

Proof. In view of the preceding discussion on the maps S∗ and E ′∗, it suffices to show
either the injectivity of S∗ or surjectivity of E ′∗. We shall prove the latter by showing
that S(V )0 is isomorphic to V for any object V in Uq(l)-mod.

Since Uq(l)-mod is semi-simple, and the functor S is exact, we can assume that
V is simple. Let W be the irreducible Uq(g)-module with highest weight λ such that
the highest weight of V belongs to the Weyl group orbit of λ. Then the restriction
of W contains exactly one Uq(l)-submodule isomorphic to V . Embed V in W , and
let V ⊥ denote the Uq(l)-submodule of W such that V ⊕ V ⊥ = W . Then S(V )0 ⊕
S(V ⊥)0 = S(W )0 ∼= W . We have dim HomUq(l)(W,S(V )0) ≥ 1 and the inequality will
necessarily be strict if S(V )0 is not simple. Proposition 3.8 and Frobenius reciprocity
[5] together lead to the vector space isomorphisms

HomUq(l)(W,S(V )0) ∼= HomUq(g)(W,S(S(V )0))

= HomUq(g)(W,S(V )) ∼= HomUq(l)(W,V )
= C.

This shows that S(V )0 is simple.
Let η : W −→ V be the projection onto V , and consider Ṽ := (η ⊗ idA(g))δ(V ),

where δ is the right A(g)-comodule action on W . We can easily show by straight-
forward computations that Ṽ is contained in S(V ) and forms a Uq(l)-submodule
isomorphic to V . If we can also show that Ṽ0 := (A(g, l)/I) ⊗A(g,l) Ṽ is a non-zero
subspace of S(V )0, then by Proposition 3.4 (or by direct inspection of the Uq(l)-
action) it must be a Uq(l)-submodule of S(V )0 isomorphic to the irreducible module
V . Since S(V )0 is irreducible, we must have S(V )0 ∼= V .

To complete the proof, we need to show that Ṽ0 6= 0. Note that there is a well
defined linear map S(V )0 −→ V given by 1⊗ ζ 7→ (idV ⊗ ε0)ζ for all ζ ∈ S(V ), where
ε0 is the co-unit of A(g) defined by ε0(f) = f(1) for all f ∈ A(g). The image of Ṽ0

under this map is nonzero (in fact is V ).
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This proves the surjectivity of E ′∗, thus completes the proof of the theorem. �

4. Discussions

The results of the previous sections may be placed in a natural framework, which we
discuss here. Let us return to general properties of the category P(g, l) of equivariant
quantum homogeneous vector bundles.

Proposition 4.1. An object is projective in M(g, l) if and only if it belongs to P(g, l).

Proof. The “only if part” is obvious. To prove the “if part”, we note that if P is an
object in P(g, l), then P = S(P0) by Proposition 3.8. We can always find a finite
dimensional Uq(g)-module W0 such that its restriction to a Uq(l)-module decomposes
into W0 = P0⊕Q0. Let Q = S(Q0), then by [5], P ⊕Q ∼= W0⊗A(g, l) in M(g, l). We
recall that Uq(g) acts on the right hand side through the opposite co-multiplication
∆′. Therefore, W0 ⊗ 1 forms a Uq(g)-submodule of W0 ⊗ A(g, l) isomorphic to W0

itself.
In order to prove that P is projective inM(g, l), it suffices to show that W0⊗A(g, l)

is. Given morphisms f : M −→ N and β : W0 ⊗ A(g, l) −→ N in M(g, l) with f
being surjective, we always have an A(g, l)-map i : W0 ⊗ A(g, l) −→ M such that
f ◦ i = β. As a Uq(g)-module, M decomposes into the direct sum M = ker f ⊕M1.
Let π denote the projection on to M1. Define the following A(g, l)-map

ĩ : W0 ⊗A(g, l) −→M, w ⊗ a 7→ a(π ◦ i(w ⊗ 1)).(4.1)

Then f ◦ ĩ = β. The proposition will follow if we can show that ĩ is also a Uq(g)-map.
For any w ∈ W0 and x ∈ Uq(g), we let d(w, x) := xĩ(w ⊗ 1) − ĩ(x(w ⊗ 1)), which

belongs to M1 since W0 ⊗ 1 forms a Uq(g)-submodule of W0 ⊗A(g, l). On the other
hand,

f(d(w, x)) = xβ(w ⊗ 1)− β(x(w ⊗ 1)) = 0,
that is, d(w, x) ∈ ker f . Hence d(w, x) = 0. It follows that

xĩ(w ⊗ a)− ĩ(x(w ⊗ a)) =
∑
(x)

Rx(1)(a)d(w, x(2)) = 0

for all a ∈ A(g, l). Therefore, ĩ is indeed a Uq(g)-map, and this completes the proof.
�

It immediately follows from Proposition 4.1 that P(g, l) is an exact category. There-
fore, one may follow Quillen’s construction to define a “quantum group equivariant
algebraic K-theory” for the algebra A(g, l). Let Q(g, l) = QP(g, l) be the Quillen
category of the exact category P(g, l) of finitely generated Uq(g)-equivariant projec-
tive A(g, l)-modules. Denote by BQ(g, l) the classifying space of the category Q(g, l)
(see [11, Sections 3, 4] for the definitions of the classifying space of a category and
the Quillen category of an exact category). Then the Uq(g)-equivariant K-groups
K

Uq(g)
i (A(g, l)) of A(g, l) may be defined as the homotopy groups πi+1(BQ(g, l)),

i ≥ 0, of BQ(g, l). It is a standard fact that the K0-group π1(BQ(g, l)) is the
Grothendieck group of P(g, l). This provides a natural framework for understand-
ing Theorem 3.9.

It will be very interesting to systematically develop this K-theory.
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