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Summary 
 

 Muscle is one of the most specialised and organised units in our body. Its 

ability to generate force via the complex interaction of many different muscle proteins 

is widely accepted. While the basic mechanism of force generation in vertebrate 

muscle is well understood, the precise structure and function of numerous other 

proteins that also contribute in muscle contraction and cell motility, such as cardiac 

myosin binding protein C (cMyBP-C) and cofilin, remain unclear. Therefore, greater 

understanding of the structure and function of these proteins will enhance our 

understanding and management of muscle related diseases, such as familial 

hypertrophic cardiomyopathy (FHC). Additionally, mutations in cardiac myosin 

binding protein C are known to be the most common cause of FHC. 

Thus, the aims of this thesis are to 1). Construct a fragment of cMyBP-C and 

its FHC mutants and to assess their structural and functional roles and, 2). Design 

cofilin mutants suitable for selective labelling with extrinsic fluorescent spectroscopic 

probes to assess its structural and functional role.  

 The fragment of cMyBP-C examined in this thesis is C1 + linker (C1-L). C1 is 

an immunoglobulin domain of cMyBP-C with the lengthy linker region joining the 

two immunoglobulin domains, C1 and C2. While the structures of C1 and C2 are 

known, the structure of the linker region is unknown. However, homology modelling 

of the linker region suggests the presence of some α-helix in the C-terminal half of the 

linker, while the N-terminal half of the linker consists of minimal secondary structure 

and most likely a significant amount of random coil. Thus, the C1-L construct was 

used to gain further insight into the structure of the linker region by using nuclear 

magnetic resonance (NMR) spectroscopy. This study revealed the linker region is 

largely unstructured with significant α-helical content.  

 Along with the structural analysis, functional analysis was also performed 

using C1-L and its FHC mutant constructs. cMyBP-C has been shown to bind to 

myosin, actin and titin, however, the specific binding site(s) remain to be determined. 

cMyBP-C includes an N-terminal region, which projects out from the thick filament 

and is believed to be able to interact with both actin and the myosin crossbridge. Of 

this N-terminal region, domains C1 and C2 and the motif (linker) region connecting 

the two domains (collectively denoted as C1-C2) were analysed in this thesis. This 
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region is of special interest as its cardiac isoform (related to FHC) contains multiple 

phosphorylation sites (C1-C2 is phosphorylated in response to α and ß adrenergic 

stimulation) and controls S2 binding, which in turn allows an increase in systolic 

force. Phosphorylation may also regulate actin binding, thus making this region a 

crucial component of cMyBP-C function. Furthermore, the C2 domain alone has been 

shown to have minimal capacity to bind to actin, raising the question whether the 

minimum functional unit is the C1 domain and motif (linker). Our data showed that 

C1-L is capable of binding to both F-actin and myosin with a similar affinity to the 

full C1-C2 construct, albeit with a weak, µmolar affinity. These data are consistent 

with the hypothesis that the C2 domain makes little contribution to binding to F-actin 

or myosin. Additionally, our data have shown that FHC mutations result in reduced 

binding to F-actin, suggesting that, at least in part, these mutations may exert their 

effects on sarcomeric function by inhibiting normal physiological interactions with 

F-actin during the contractile cycle. 

Another actin binding protein, cofilin, was studied in this thesis. Cofilin is 

important for the regulation of the actin cytoskeleton. It is capable of binding to and 

severing F-actin filaments, but the molecular basis for these functions is poorly 

understood, due to a paucity of structural data on the quaternary complex. A recent 

computational model has been proposed which we sought to test. We inserted mutant 

residues into the sequence of cofilin to facilitate the specific and unique labelling of 

cofilin residues with spectroscopic probes, to gain structural and functional insights in 

the cofilin-actin interaction.  

We successfully mutated and expressed four mutant cofilins, each containing 

unique spectroscopic probe sites. During this process, we discovered the apparent 

sensitivity of the structure of cofilin to mutagenesis. Mutagenesis led one N-terminal 

cofilin mutant to abolish G-actin binding, whilst still permitting F-actin binding. On 

the other hand, mutations at others sites showed no effect on the binding of cofilin to 

both G- and F-actin. These data allowed us to postulate which regions of cofilin are 

involved in actin binding. Additionally, inter-molecular distance measurements 

between actin and cofilin were undertaken, using fluorescence resonance energy 

transfer (FRET) spectroscopy. Our data provide strong confirmation for the proposed 

computational model of the cofilin-F-actin complex. 
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Chapter 1 
 

General Introduction 
 

1.1 Introduction 
 One of the most essential properties of living systems is their ability to 

transform chemical energy into motion. This motion is essential in a myriad of 

biological functions: chemotaxis, cytokinesis, pinocytosis, signal transduction, vesicle 

transport and muscle contraction (Mermall, Post et al. 1998).  

 An extremely specialised and organised unit, called muscle, allows this 

phenomenon to occur. It has been widely accepted that muscle contraction occurs 

when two sets of interdigitating filaments, the thick filaments and the thin filaments, 

mainly composed of two proteins called myosin and actin, respectively, slide past 

each other in a highly organised and uniform manner.  

 While the basic mechanism of force generation in vertebrate muscle is well 

understood, the precise structure and function of numerous other proteins that 

contribute to muscle contraction, such as myosin binding protein C, are yet to be 

solved. Hence, many scientists endeavour to fill this gap, hoping that their discoveries 

will subsequently lead to a more focused approach to the understanding and 

management of muscle-related diseases, including familial hypertrophic 

cardiomyopathy. 

 

1.2 Classification of Vertebrate Muscle 
Vertebrate muscle is classified into two groups, striated and smooth muscle, 

according to their histological appearance, as shown in Figure 1.1. Striated muscle 

produces visible banding patterns that are not found in smooth muscle.  
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1.2.1 Striated Muscle 
Vertebrate muscle consists of cells that exhibit cross-striations at the light 

microscope level. These striations are due to diffraction of light by highly organised 

repeating units in the muscle fibres called sarcomeres, which are further discussed in 

Section 1.3. Striated muscle tissue is further subclassified into 2 groups, skeletal and 

cardiac. 
 

1.2.1.1 Skeletal Muscle 
Skeletal muscles are attached to bones, organs (e.g. the eyeball), skin (e.g. 

facial muscles) and to the mucous membrane (e.g. intrinsic tongue muscles). They are 

voluntary and innervated by the somatic nervous system. 

Fibres of skeletal muscle contain unbranched multinucleate myocytes 

resulting from fusion of many smaller cells during embryonic development. The 

muscle fibres lay parallel to each other, bundled together by connective tissue (Figure 

1.1a). These fibres are 10-100 µm in diameter and extend the entire length of the 

muscle, from tendon to tendon; consequently they can be up to 35 cm in length. 

Longitudinally arrayed subunits called myofibrils make up the skeletal muscle fibres. 

These are the specialised contractile elements. 

There are three types of skeletal muscle fibres: red, white and intermediate. 

Red fibres are small fibres making up slow-twitch motor units and can be found to be 

enriched, for example, in the legs of long distance runners. They are abundant in both 

mitochondria and myoglobin (a protein resembling haemoglobin), thus producing a 

red appearance. Since they are sustained by aerobic metabolism, the fibres have 

greater resistance to fatigue but produce less force than white fibres. White fibres, 

making up fast-twitch motor units and sustained by anaerobic metabolism, are more 

prone to fatigue, but generate more force than red fibres. Consequently, they are 

adapted for rapid contraction and precise movements and can be found to be enriched, 

for example, in the legs of sprinters. Intermediate fibres are intermediate between 

those of red and white fibres in size, amount of myoglobin and mitochondria  
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Figure 1.1. Haematoxylin and eosin stains of muscle viewed under the light 

microscope. 
a) Longitudinal section of skeletal muscle. Muscle fibres are arranged parallel to each 
other; nuclei are located in the cytoplasm immediately beneath the plasma membrane 
and cross-striations of the muscle fibres are apparent. 
b) Longitudinal section of cardiac muscle reveals the intercalated discs (arrows)  
c) Longitudinal section of smooth muscle from small intestine. Note the centrally 
located nuclei (arrows) and their tapered ends. Image from (Ross, Kaye et al. 2003) 
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1.2.1.2 Cardiac Muscle 
 Cardiac muscle forms the muscular wall of the heart and has contractile 

filaments similar to skeletal muscle in its types and arrangement. Consequently, it 

appears striated when viewed under the microscope. 

 However, cardiac muscle differs from skeletal muscle in that it possesses a 

centrally located mononucleus and its fibres are smaller, only 100-200 µm in length 

and 15-20 µm in diameter. Furthermore, cardiac muscle fibres are branched and 

joined to their neighbouring fibres via intercalated discs through which the contractile 

signals are passed from cell to cell (Figure 1.1b).  

 Cardiac muscle fibres are involuntary and are innervated by the autonomic 

nervous system. 

 

1.2.2 Smooth Muscle 
 Smooth muscle cells are between 20 – 500 µm in length and are composed of 

mononucleate cells. They are tapered at each end with nucleus located at the centre of 

the cell (Figure 1.1c). While smooth muscle cells also contain actin and myosin 

filaments like striated muscle cells, these filaments lack the aligned organisation that 

skeletal and cardiac muscle possess, thus lacking the striations.  

 Smooth muscle fibres are specialised for slow prolonged contraction and are 

innervated by the autonomic nervous system. They are also responsible for 

involuntary actions and can be found in the digestive tract, bladder, uterus and blood 

vessels walls.  

 

1.3 The Sarcomere 
1.3.1 Structure of the Sarcomere 

Myofibrils are the functional unit of muscle cells and are made up of repeating 

units called sarcomeres. Sarcomeres occur in both skeletal and cardiac muscle and are 

very similar in structure in these two muscle types. However, in the sarcomere is 

lacking in smooth muscle. The sarcomere is a complex structure and is 2.2 µm in 

length in its relaxed state. It is composed of two cytoskeletal elements called thick and 

thin filaments. The thick filaments are approximately 1.5 µm long and are mainly 

composed of myosin, along with other proteins that bind to myosin, such as myosin 

binding protein C (MyBP-C). The thin filments are composed of actin and the 
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regulatory proteins tropomyosin and troponin and are attached to the Z-line, which 

defines the boundaries of the sarcomere (Figure 1.2). It is the overlapping of these two 

filaments that give it a striated appearance under the light microscope.  

 
 

 
 
 
 
 
 

 
 
Figure 1.2. Structure and organisation of the sarcomere. Skeletal muscle consists 
of bundles of muscle fibres called fascicles, which in turn consists of a bundle of 
elongated muscle fibres called myofibrils. These myofibrils consist of thick and thin 
filaments and the overlap of these filaments creates various bands. Image modified 
from (Ross, Kaye et al. 2003) 
 
 
 The overall structure of a sarcomere can be viewed under the electron 

microscope (Figure 1.3), which manifests different zones of the sarcomere. The 

anisotropic A-band, the region where thick filaments are located, and which overlaps 

the thin filaments, is found as a dark zone. The isotropic I-band is a light zone, where 

thin filaments are found without the thick filaments. The H-band in the middle of the 

sarcomere is the region where thick filaments are found without thin filaments. Lastly, 

MyBP-C 
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the C-zone is the segment where the thick and thin filaments interdigitate, that is, the 

part of the thick filament that contains cross-bridges. In this C-zone, the thick 

filaments are aligned approximately 13 nm away from six neighbouring thin 

filaments. Thus, upon muscle contraction, the thick and thin filaments slide over one 

another and consequently, the length of sarcomere, I-band and H-zone shortens 

whereas the length of the A-band remains constant. In this anisotropic A-band, a 

protein called myosin binding protein-C (MyBP-C) is found in 7-9 transverse stripes 

43 nm part (Figure 1.2.). This is the protein of interest in this thesis and will be 

discussed in details in Section 1.6. 

 

     
 
Figure 1.3. Electron micrograph of sarcomere. H: H-band; I: I-band; M: M-line; Z: 
Z-line; C: C-band and A: A-band. Image modified from (Ross, Kaye et al. 2003). 
 
 
1.3.2 Components of the Sarcomere 

1.3.2.1 Actin 
Actin was discovered by Straub in 1942 from muscle tissue extracts and is 

now known to be found in all eukaryotes (Poglazov 1983). It is a highly conserved 

protein and plays a major role in a wide variety of functions in eukaryotes, including 

muscle contraction, ameboid movement, cytokinesis and mitotic division (Gunning, 

Ponte et al. 1983). Furthermore, its interactions with other actin monomers, 

tropomyosin, troponin and myosin maintain the structural integrity of the thin 

filament and supports the regulatory proteins. 
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Actin is the primary structural protein of the thin filament and was given its 

name due to its ability to “activate” myosin. Its simplest form is in the monomeric 

form, called G-actin, and it is globular in shape, approximately 4 nm in diameter with 

a molecular weight of 43 kDa. It is comprised of 375 amino acids (Gunning, Ponte et 

al. 1983). In the presence of physiological concentrations of salt and with the addition 

of divalent cations such as Ca2+ or Mg2+, G-actin polymerises to form filamentous F-

actin, consisting of 13 monomeric G-actin subunits for every six left-handed turns and 

a repeat of approximately 360 Å (Figure 1.4) (Egelman 1985). Actin is further 

described in Section 6.1. 

 
Figure 1.4. Schematic diagram of thin filament. Two strands of F-actin form a 
helical structure. Tropomyosin TM also form a helical coil by wrapping around the 
actin polymer and the troponin complex, which is made up of TnI (green), TnC (red) 
and TnT (yellow). This leads to coordinated interaction between actin, tropomyosin 
and the tropinin complex (Gordon, Homsher et al. 2000). 
 

1.3.2.2 Tropomyosin 
 A threadlike protein, tropomyosin, is a double stranded α-helical, coiled-coil  

dimer with two 284 amino acid residue chains (Wolska and Wieczorek 2003). It lies 

in the grooves formed by the actin double-helix and wraps itself around by bridging 

approximately seven actin subunits (Figure 1.4). In the relaxed state (absence of 

Ca2+), it binds strongly to actin via the troponin complex to block the actin-myosin 

interaction. 
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1.3.2.3 Troponin 
Troponin is a heterotrimeric complex and was initially named as ‘native 

tropomysin’ (Ebashi 1963). The three subunits of troponin complex are troponin C 

(TnC), troponin I (TnI) and troponin T (TnT) (Figure 1.4), each of which performs a 

specific function. The troponin complex is directly affected by the Ca2+ concentration: 

in the low Ca2+ state, the troponin complex allows the tropomysin chain to lie over the 

myosin binding sites on the actin filaments. Once Ca2+ binding occurs, this interaction 

causes conformational changes, allowing the tropomyosin chain to slide away from 

the myosin binding sites and subsequently the myosin S1-actin interaction occurs, 

initiating the cross-bridge cycle. The atomic resolution structure of the core domains 

of the human cardiac components of the troponin complex has been determined 

(Takeda 2005). 

TnC is a calcium binding subunit with molecular weight of approximately 

18kDa. It is symmetrical in shape and belongs to the EF-hand protein with metal ion 

binding sites. The structure of TnC consists of two globular metal binding EF-hand 

domains joined by a central linker, giving the protein a dumbbell shape. TnC has N- 

and C-domains and each has two metal binding sites. The two binding sites on the C-

domain have high affinity for Ca2+/Mg2+ and are always occupied, hence anchoring 

TnC to TnI (Robertson, Johnson et al. 1982) whereas the two binding sites on the N-

domain as low affinity for Ca2+ (Houdusse, Love et al. 1997, Soman, Tao et al. 1999) 

subsequently involved in the regulation of contraction. Although there is a high 

degree of homology between the skeletal and cardiac TnC isoforms, the two main 

differences are: cardiac TnC only has one N-domain Ca2+ binding EF-hand (van Eerd 

and Takahashi 1975, Li, Gagne et al. 1997) and the central linker between the N-

domain and the C-domain in the cardiac TnC is more flexible (Slupsky and Sykes 

1995, Takeda, Yamashita et al. 2003). 

TnI is a flexible polypeptide chain (~24kDa) which inhibits the ATPase 

activity of actomyosin with at least two inhibitory sites (Filatov, Katrukha et al. 

1999). Like TnC, TnI is an elongated protein and binds to TnC, TnT and actin. It 

consists of 181 amino acid residues in the skeletal isoform (both fast and slow) in 

contrast to 211 amino acid residues in the cardiac isoform, due mainly to the presence 

of an additional approximately 30 amino acid N-terminal peptide.  

An elongated protein, TnT attaches its N-terminal tail end (TnT1) to 

tropomyosin laterally and its C-terminal end (TnT2) to both TnC and TnI to form 
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troponin’s globular core domain (Greaser and Gergely 1971, Flicker, Phillips et al. 

1982). Whilst its exact physiological role remains poorly understood, it is thought to 

play a role in anchoring the TnC and TnI complex to the thin filament, activation of 

actomyosin ATPase in a Ca2+ dependent manner (Potter, Sheng et al. 1995), 

regulating tropomyosin movement during muscle contraction (Gordon, Homsher et al. 

2000) and stabilising the blocked state of cardiac thin filament in its cardiac isoform 

(Gollapudi, Mamidi et al. 2012). 

 

1.3.2.4 Tropomyosin/Troponin Regulation 
 At low Ca2+ concentration, bilobed TnC binds weakly to the W-shaped TnI-

TnT complex (Pirani, Vinogradova et al. 2006), but TnI binds strongly to actin 

thereby holding tropomyosin in the position that blocks the myosin binding site 

(Wolska and Wieczorek 2003). However, with an increase in Ca2+ concentration, the 

TnC-TnI interaction becomes dramatically stronger and the interaction between TnT-

tropomyosin, TnI-actin and TnI-tropomyosin becomes weaker. Consequently, 

tropomyosin can shift to a non-blocking position, whereby the myosin binding site on 

actin is exposed and myosin binds to actin.  

 The structural interaction of Tm-Tn is known to involve TnI wrapping around 

the dumbbell-like TnC (Olah and Trewhella 1994). More recently, scientitsts have 

discovered the binding of Ca2+ to TnC leads to conformation changes, allowing a 

hydrophobic patch of the N-domain of TnC to open up (McKay, Tripet et al. 1997, 

Nakamura, Ueki et al. 2005, Ueki, Nakamura et al. 2005). Following this opening up, 

the hydrophobic patch of the N-domain of TnC binds to the hydrophobic switch 

peptide of TnI, thus releasing the TnI from its binding with the thin filament and 

forcing Tm to move away from the myosin binding sites and allowing contraction 

(Vassylyev, Takeda et al. 1998). Unfortunately, the structural organisation still 

remains unclear (Pirani, Vinogradova et al. 2006), although a very recent study has 

attempted to construct an atomic model by measuring distances between the proteins 

using fluorescence resonance energy transfer (FRET) (Miki, Makimura et al. 2012). 
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1.3.2.5 Myosin 
 Filamentous myosin is the major constituent of the thick filaments. It is one of 

the most conserved and ubiquitous proteins found in all eukaryotic cells. Since its 

discovery in 1859, a vast number of different molecules were identified with a great 

diversity of functions. Hence, myosins have been grouped into 24 unique categories 

based on the properties of the head domain (Foth, Goedecke et al. 2006). Myosin 

found in striated muscle is classified as myosin II. 

 Myosin II is a Y-shaped molecule with a molecular weight of 540 kDa. It is 

composed of two heavy chains (200 kDa), each comprising a globular head and a long 

thin tail and two pairs of light chains (17-25 kDa), called the essential and regulatory 

light chains (Figure 1.5). The two tail segments form a parallel, α-helical coiled coil 

that can interact with other myosin tails to form the backbone of the thick filament.  

Myosin has two flexible regions that are proteolytically susceptible, called 

hinges that have both flexibility and/or a functional significance. In general, myosin 

can be cleaved into two fragments; heavy meromyosin (HMM) and light meromyosin 

(LMM). HMM can be further cleaved into S1, containing the two heads, and S2, 

containing a short segment of the tail. The ability to obtain fragments of myosin is 

experimentally invaluable as they enable the large molecule to be examined in smaller 

functionally distinct units. A schematic diagram of these components is illustrated in 

Figure 1.5.  

 

                
 
Figure 1.5. A schematic diagram of myosin II. Myosin II is made up of two myosin 
heavy chains coiled around each other to form a rod backbone and two heads. The 
two heads contain two light chains (ELC and RLC).  
http://oregonstate.edu/instruction/bi314/summer09/Fig-12-25.jpg  
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Heavy Meromyosin 

 Heavy meromyosin (HMM) is a water soluble globular protein. It contains 

two identical N-terminal heads (S1) connected by two short C-terminal ends, the tails 

(S2). 

 

Head (S1) 

 The myosin head is divided into two parts; the catalytic domain and the 

regulatory domain. The three-dimensional atomic resolution crystal structure of S1 is 

shown in Figure 1.6.  

 The catalytic domain, also known as the motor domain, contains binding sites 

for actin and Mg2+-ATP. This domain undergoes a conformational change during 

muscle contraction in order to generate force.  

 The regulatory domain is slightly bent and like the catalytic domain, it 

undergoes conformational change upon muscle contraction by acting like a lever arm 

to maximise force generation. The regulatory domain consists of two light chains, the 

essential and regulatory light chains, wrapped around a single myosin heavy chain α-

helix. Both light chains are homologous to calmodulin (Ca2+ binding).  

 The regulatory light chain is believed to wrap around the heavy chain and is 

stabilised by groups of hydrophobic residues: methionines, tryptophans and 

phenylalanines. This light chain is also the site of phosphorylation by myosin light 

chain kinase.  

 The essential light chain is wrapped around in a similar fashion to the 

regulatory light chain and dissociation of this chain from the myosin head results in 

the loss of the myosin ATPase activity.  

 In between the catalytic and regulatory domains, there is a converter domain 

(hinge). This domain transfers small changes in the motor domain to the regulatory 

domain. This mechanism is believed to increase the size of the power stroke 

(Rayment, Holden et al. 1993). Furthermore, S1 has been shown to be the minimum 

subfragment required to generate force in an in vitro motility assay (Toyoshima, Kron 

et al. 1987). 
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Tail (S2) 

 S2 is the neck of the myosin molecule, joining its head to the tail and hinged 

at each end. It is a short segment of α-helical coiled-coil. The tail of myosin (LMM) 

forms the myosin thick filament backbone, while the S2 segment projects out from the 

backbone, allowing the myosin head to reach out towards the thin filament. S2 also 

contains a binding site for the N-terminus of cardiac myosin binding protein-C and 

this interaction is known to be phosphorylation dependent (Gruen, Prinz et al. 1999, 

Kunst, Kress et al. 2000). 

 

 
 
Figure 1.6. Ribbon diagram of the crystal structure of chicken skeletal muscle 
myosin S1. Myosin S1 consists of catalytic and regulatory domains. The catalytic 
domain contains the actin and ATP binding sites and the regulatory domain contains 
the two light chains – essential light chain (ELC) and regulatory light chain (RLC). 
Image modified from (Rayment, Rypniewski et al. 1993). 
 

 

Light Meromyosin 

 Light meromyosin (LMM) is a water insoluble fibrous protein (Lowey 1964)   

and lacks ATPase activity and actin binding sites. It is the tail part of myosin, forming 

a rod-shaped molecule. These tails are electrostatically attracted to each other and 

assemble in a highly uniform manner, forming the backbone of the thick filament.  
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1.3.2.6 Titin 
 Titin, first known as connectin, is the largest known protein to date with a 

molecular weight of 3 MDa and the third most abundant component of the sarcomere 

in vertebrate striated muscle (Maruyama, Kimura et al. 1984, Wang 1985, Kurzban 

and Wang 1988). A single titin molecule is approximately 1 µm long and extends half 

the sarcomere, with the N-terminus at the Z-disc and the C-terminus located in the M-

line. Thus, two molecules cover the entire length of the sarcomere from one Z-line to 

the other (Furst, Osborn et al. 1988, Nave, Furst et al. 1989). Titin is composed of 

immunoglobulin domains (IgI) and fibronectin domains (Fn): 165 IgI domains and 

132 Fn domains in the skeletal isoform and 112 IgI and 132 Fn domains in the cardiac 

isoform (Labeit and Kolmerer 1995).  

 Interestingly, the functions of titin vary along its length and it is these 

variations that provide the sarcomeric alignment during muscle contraction and 

provides support in the assembly and regulation of the length of the thick filaments 

during myofibrillogenesis (Whiting, Wardale et al. 1989, Fulton and Isaacs 1991). In 

the I-band region it forms an elastic connection between the thick filaments and the 

Z-disc (Horowits, Maruyama et al. 1989, Funatsu, Kono et al. 1993), in the M-line it 

makes up an integral part of an extensive protein meshwork (Vinkemeier, Obermann 

et al. 1993) and in the A-band it interacts with myosin and other components of the 

thick filament (Labeit, Gautel et al. 1992, Soteriou, Gamage et al. 1993). As titin is 

known to be associated with myosin and myosin binding protein C at regular 

intervals, it is believed that titin also plays a role as a template for assembly of the 

thick filaments, acting as “the ruler for sarcomere” (Whiting, Wardale et al. 1989). 

 Titin has the ability to passively resist the stretching of the relaxed muscle and 

restore the thick and thin filament overlap at rest. This force is generated from three 

different sequence elements in the I-band region of titin: Ig domains, PEVK (Proline, 

Glutamine, Valine and Lysine) segments and the N2B sequence of cardiac titin. Of 

these three elements, PEVK contributes the most in passive tension (Cazorla, Freiburg 

et al. 2000, Freiburg, Trombitas et al. 2000). 

 

1.3.2.7 Myosin Binding Protein-C 
 Myosin binding protein-C (MyBP-C) is found in all striated muscle. It is 

located in the portion of the A-band where the crossbridges are found (C-zone) in 7 to 
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9 transverse stripes, 43nm apart (Sjostrom and Squire 1977, Bennett, Craig et al. 

1986), with each strip consisting of 2 to 4 MyBP-C molecules and it represents 

approximately 2% of the protein mass in the myofibril (Offer, Moos et al. 1973). 

MyBP-C belongs to the intracellular immunoglobulin superfamily and is composed of 

seven immunoglobulin (IgI) domains and three fibronectin type III (FnIII) domains. 

Functionally, it is known to interact with other sarcomeric proteins: myosin, actin and 

titin. MyBP-C is discussed in more detail in Section 1.6.  

 

1.3.2.8 Cofilin 
 Cofilin is an actin binding protein that regulates actin polymerising and 

depolymerising activity. Although it is known to bind to both globular (G-actin) and 

filamentous (F-actin) actin, the exact binding sites of actin on cofilin are still under 

investigation. The major function of cofilin is its ability to depolymerise actin 

filaments at the minus end (pointed) and this activity is regulated by various factors, 

including phosphorylation (Nebl, Meuer et al. 1996), phosphatidylinositides 

(Yonezawa, Nishida et al. 1990) and pH (Yonezawa, Nishida et al. 1985). Cofilin has 

also been suggested to sever actin filaments and to be involved in nuclear 

translocation. However, precise mechanisms and significances are yet to be 

elucidated. Clinically, aggregation of cofilin is known to be associated with 

Alzheimer’s disease (Minamide, Striegl et al. 2000), cancer (Sidani, Wessels et al. 

2007) and asthma (Ruegg, Holsboer et al. 2004). Cofilin will be further discussed in 

Section 1.7. 

 

1.4 Muscle Contraction 
1.4.1 Force Generation 
 The most critical outcome of muscle contraction is force generation. 

According to the most widely accepted theory, the sliding filament theory, force is 

generated by the sliding of thin and thick filaments past one another (Hanson and 

Huxley 1953). Sliding occurs during muscle activation and is caused by the myosin 

crossbridges binding sequentially to the actin thin filaments, undergoing a 

conformational change and dissociating, with this process being repeated multiple 

times. The conformational change within the myosin crossbridge is powered by the 
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binding and hydrolysis of ATP. The mechanism of muscle contraction can be divided 

into five stages (Rayment, Holden et al. 1993, Sherwood 2004) (Figure 1.7).  

1. Attached State: Initially, the myosin head is tightly bound to the actin 

molecule and adenosine triphosphate (ATP) is absent. This arrangement is 

called the rigor configuration. When death occurs, the absence of ATP 

continues permanently and does not proceed to the released state, resulting in 

muscle stiffening and rigidity. This is called rigor mortis. 

2. Released State: Once ATP binds to the myosin head (S1), it induces 

conformational changes of the actin-binding site and reduces the affinity of the 

myosin head for the actin molecule. Therefore, the myosin head is now 

detached from the thin filament. 

3. Cocked State: Hydrolysis of ATP into adenosine diphosphate (ADP) and 

inorganic phosphate (Pi) causes the myosin head to change its shape, such that 

there is a relative shift of a short distance (approximately 5 nm) of the tip of 

the myosin head relative to the neck. ADP and Pi are still attached to the 

myosin head. 

4. Cross-Bridge State: As the myosin head shifts towards the neighbouring actin 

molecule, it binds very weakly and causes the intact Pi to be released. 

5. Power-Stroke State: Once Pi is released, the myosin head again changes its 

conformation, causing the two filaments to slide past each other, which 

generates force within the muscle. Ultimately, the myosin head binds to the 

actin molecule strongly. Finally, ADP is released and the myosin and the 

myosin head assume the rigor conformation once again. The cycle then 

repeats.  

 

Regulation of contraction is essential in order to avoid an endless cycling. The 

major regulatory mechanism in muscle contraction involves the tropomyosin - 

troponin complex, which responds to Ca2+ binding. This mechanism was discussed in 

depth in section 1.3.2.4. 

It is important to note that during muscle contraction and relaxation, the 

lengths of the thick and thin filaments remain constant and it is only the length of the 

overlapping area that changes. 
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Figure 1.7 Schematic diagram of muscle contraction (Boron and Boulpaep 2005). 

 

1.5 Familial Hypertrophic Cardiomyopathy 
Familial hypertrophic cardiomyopathy (FHC) is one of the most frequently 

occurring congenital cardiac disorders (Maron, Gardin et al. 1995) and the most 

common cause of sudden cardiac death in young adults (Watkins, Seidman et al. 

1995). It is an autosomal dominant disease, affecting both children and adults and 

characterised macroscopically, by an excessive thickening of the heart muscle, mainly 

by left ventricular hypertrophy, and microscopically, by myofibrillar and myocyte 

disarray and fibrosis (Davies 1984, Maron, Bonow et al. 1987). Studies over the last 

few decades have discovered that the causative mutations are located in genes 
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encoding numerous sarcomeric proteins and this is further discussed in Section 1.5.6. 

Unfortunately, the exact mechanisms by which these mutations in these genes cause 

FHC remain unclear.  

 

1.5.1 History 
 Hypertrophic cardiomyopathy was first noticed by Vulpian in 1868 (Vulpian 

1868) but it was not until the late 1950s that the unique clinical features of 

hypertrophic cardiomyopathy were systematically described (Teare 1958). Over the 

years its definition by World Health Organisation (WHO) has been changed from 

“diseases of different and often unknown etiology in which the dominant feature is 

cardiomegaly and heart failure” in 1968 (Abelmann 1984) to “an autosomal dominant 

(i.e. offsprings of affected individuals have 50 % chance of inheriting the gene 

mutation) heart muscle disease of unknown cause” in 1980 (Anonymous 1980). 

However, more recently, in 1995, the WHO redefined hypertrophic cardiomyopathy 

as a disease caused by mutations in sarcomeric contractile protein genes (Richardson, 

McKenna et al. 1996).  

 

1.5.2 Epidemiology 
Approximately 1 in 500 (0.2%) people are affected by hypertrophic 

cardiomyopathy (Maron, Gardin et al. 1996, Miura, Nakagawa et al. 2002, Maron, 

Towbin et al. 2006, Maron, Maron et al. 2012) and 60% of this cohort are believed to 

be familial (Fananapazir and Epstein 1995). Interestingly, the disease course is highly 

variable and unpredictable with the majority of the patients (~75%) living a normal 

life with few or no symptoms at all with only about 1% of cases of FHC leading to 

mortality (Maron, Olivotto et al. 2000). Nonetheless, FHC is the most common cause 

of sudden cardiac death in young competitive athletes (generally younger than 35 

years old) (Maki, Ikeda et al. 1998, Maron, Olivotto et al. 2000).  

 

1.5.3 Pathological Features 
 Familial hypertrophic cardiomyopathy (FHC) is characterised by thickening of 

the heart muscle without an obvious cause. The term “hypertrophy” denotes 

thickening of tissue due to an increase in the size of the constituent cells and the term 

“cardiomyopathy” denotes a disease of heart muscle. In general, hypertrophy occurs 

as a compensatory thickening of the left ventricle wall due to a physiological response 
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to either excessive haemodynamic burden (such as pressure overload due to 

hypertension and aortic valve disease) or a pathological state that compromises heart 

muscle function (Grossman, Jones et al. 1975). However in FHC, an inheritable 

disease, hypertrophy occurs in the absence of haemodynamic burden (Bashyam, 

Savithri et al. 2003). Usually this hypertrophy is asymmetrical and occurs in the left 

ventricle, especially in the intraventricular septum, although it can also occur in the 

apical area only, the base of the left ventricle, concentrically (spread throughout the 

left ventricle wall) or even in the right ventricle (Figure 1.8) (Bashyam, Savithri et al. 

2003). Hypertrophy is common in many cardiac disorders but is usually due to an 

increase in the cardiac load. With the normal average thickness of the left ventricle 

wall being 12mm, the degree of hypertrophy in patients with FHC ranges from 13-15 

mm in mild hypertrophy and up to 60 mm in the most extreme cases (Wigle, Sasson et 

al. 1985). 

 As a consequence of an increase in the wall size, reduction in the volume of 

the ventricular lumen occurs, which in turn leads to decreased volume of the blood 

ejected from the ventricle. Furthermore, although the left ventricle is usually not 

dilated in the absence of other systemic or cardiac diseases that are capable of 

producing the magnitude of the wall thickening evident, the atrial lumen is often 

dilated due to the resistance to filling of the ventricles. 
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Figure 1.8. Interior view of the left ventricle in normal (a) and hypertrophic (b) 
human hearts. Compared to the normal heart (a), the hypertrophic heart (b) bas 
enlarged interventricular septus (IVS) and left ventriclur (LV) wall. There is also a 
decrease in the right ventricular (RV) volume  (Seidman and Seidman 2001). 
 

Histopathology techniques revealed that FHC manifests myofibrillar disarray 

and fibrosis (Thierfelder, Watkins et al. 1994). In a normal heart the muscle fibres are 

arranged in a highly uniform and organised manner to produce contraction and 

generate force in a uniform fashion (Figure 1.9a and c). However, in heart muscles 

with FHC, the fibres lose the normal orientation and move obliquely or 

perpendicularly. This occurs to approximately 25-35 % of fibres (Maron and Roberts 

1979). Additionally, the myocytes are hypertrophied in an unusual shape (Figure 1.9b 

and d). This impairs the electrical impulses, leading to cardiac arrhythmias and the 

possibility of sudden cardiac death. Furthermore, this disarrary and fibrosis has also 

been shown in a recent study using cardiac magnetic resonance (CMR) (Todiere, 

Aquaro et al. 2012).  
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Figure 1.9. Microscopic appearance of normal and FHC myocardium 
a) Drawing of normal myocytes. Cells are arranged in a uniform direction. 
b) Drawing of disarrayed myocytes. Cells are at oblique and perpendicular angles to 

one another. 
c) H & E stain of normal cardiac tissue. 
d) FHC affected cardiac tissue. Note a large amount of fibrosis (seen as blue in this 

stain).  
 

1.5.4 Clinical Features 

1.5.4.1 Clinical Manifestations 
 Clinically, FHC can range from asymptomatic to severe. Due to the more 

common asymptomatic nature of the disease, it is usually discovered as an incidental 

finding, such as a murmur during a medical examination for insurance coverage or 

during clinical evaluation of a family (Murphy and Starling 2005) or even at post 

mortem (Maron, Shirani et al. 1996). However, the patients can present with some or 

all of the following symptoms, ranging from benign to severe (Bashyam, Savithri et 

al. 2003): 

1. dyspnoea (breathlessness): thickening of the ventricular wall leads to an 

increase in left ventricular diastolic pressure, which in turn leads to increased 

a b 

c d 
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pulmonary pressure. This is usually linked to physical activity but can occur at 

rest and following meals. 

2. angina (chest pain): there is an increased demand in oxygen supply due to the 

thickened muscle and chest pain occurs when this demand cannot be met. 

Angina can occur at rest or during sleep or can be brought on by exertion and 

relieved by rest. 

3. syncope (fainting): thought to be due to an irregularity of the heartbeat or a fall 

in blood pressure leading to insufficient blood supply to the brain. 

4. palpitations: patients may occasionally feel an extra beat or a skipped beat. 

This may start suddenly and be associated with sweating or light-headedness. 

5. arrhythmias (irregular heartbeats): this is due to myocyte disarray, leading to 

disruption of the electrical conduction system of the heart  

Furthermore, FHC is associated with an increased risk of sudden cardiac death (SCD) 

and is known to be the most common cause in young competitive athletes (Elliott, 

Poloniecki et al. 2000). 

 

1.5.4.2 Clinical Diagnosis 
The clinical diagnosis of FHC is based on medical history, physical 

examination and electrocardiography (ECG) and echocardiographic identification of 

the septal and left ventricular hypertrophy. However, due to the lack of specificity of 

ECG for FHC, a 2-dimensional echocardiogram is most commonly used for 

diagnostic purposes (Bashyam, Savithri et al. 2003). The diagnosis is based on the 

“presence of a hypertrophied and nondilated left ventricle in the absence of another 

cardiac or systemic disease capable of producing the magnitude of hypertrophy 

evident in the patient (usually ≥15 mm in an adult or the equivalent relative to body 

surface area in children)” (Gersh, Maron et al. 2011). Additionally, Doppler 

ultrasound is capable of producing a colour image of the blood flow within the heart 

and detect the presence of turbulent blood flow (Bashyam, Savithri et al. 2003). 

Nowadays, there is an increase in the use of a more superior method called 

cardiovascular magnetic resonance (CMR) to diagnose FHC. CMR provides better 

spatial resolution than conventional 2-dimensional echocardiography, giving sharp 

contrast between blood and myocardium, and is thus able to more accurately 

characterise the presence and distribution of left ventricular hypertrophy. In addition, 
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studies have shown that hypertrophy confined to the apex may be difficult to visualise 

with echocardiography but is evident with CMR (Moon, Fisher et al. 2004, Maron, 

Finley et al. 2008).  

Lastly, genetic testing is a powerful investigative tool for definitive diagnosis. 

Although it is now commercially available and represents best practice, it is often still 

confined to those who participate in research studies and in the identification of 

affected relatives in families known to have FHC (Gersh, Maron et al. 2011). 

Advances in the capacity of next-generation targeted exomic sequencing have allowed 

a much larger number of mutations to be screened simultaneously (Maron, Maron et 

al. 2012). 

 

1.5.5 Management / Treatment 
 Due to the diversity of both clinical and genetic features, clinicians must 

individualise the treatment to the patient. 

 In asymptomatic patients, although most will achieve a normal life expectancy 

(Maron, Casey et al. 1999, Maron, Mathenge et al. 1999, Maron, Casey et al. 2003), it 

is essential to offer genetic counselling (Semsarian 2011) and educate these patients 

and their families about the disease process, including screening of first-degree 

relatives and avoiding particularly strenuous activity or competitive athletics (Spirito, 

Seidman et al. 1997). High doses of diuretics and vasodilators (e.g. for treatment of 

hypertension) should be avoided as these may exacerbate the degree of obstruction 

(Braunwald, Lambrew et al. 1964, Maron 2002). 

 For symptomatic patients, pharmaceutical therapy is widely used to alleviate 

symptoms of exertional dyspnoea, palpitations and angina. Beta-blockers are the 

mainstay and first-line of pharmacologic therapy due to their negative inotropic 

effects (Bonow, Dilsizian et al. 1985). These can be administered to both adults and 

children and work to decrease heart rate and increase diastolic filling time. 

Consequently this will result in an increase in stroke volume, maintenance of cardiac 

output and reduction in both angina and dyspnoea (Spirito, Seidman et al. 1997, 

Roberts and Sigwart 2001). 

 For those patients who do not respond to beta-blockers or cannot tolerate their 

side-effects, calcium channel blockers may be effective. Of such agents, verapamil 

has been the most thoroughly studied (Gersh, Maron et al. 2011) and diltiazem has 

also been shown to improve diastolic performance (Betocchi, Piscione et al. 1996) 



24 
 

 

 

and prevent or diminish myocardial ischemia (Sugihara, Taniguchi et al. 1998). 

However, both verapamil and diltiazem are not recommended in patients with severe 

outflow obstruction, elevated pulmonary artery wedge pressure and low systemic 

blood pressure, because a decrease in blood pressure with this treatment can trigger an 

increase in outflow obstruction, precipitate pulmonary oedema and serious 

haemodynamic complications (Epstein and Rosing 1981, Gersh, Maron et al. 2011). 

 Those patients who are unresponsive to pharmaceutical therapy have at least 

three surgical options (Maron, Bonow et al. 1987, Wigle, Rakowski et al. 1995, 

Gersh, Maron et al. 2011): 

1. Myoectomy (removal of excess muscle from basal septum) is currently 

considered the most appropriate treatment for the majority of patients with 

obstructive hypertrophic cardiomyopathy (Gersh, Maron et al. 2011). Although 

surgical results have greatly improved in recent years, this surgery is limited to 

relatively few centres with extensive experience (Schoendube, Klues et al. 

1995, Minakata, Dearani et al. 2004). 

2. Alcohol septal ablation was first reported in 1995 (Sigwart 1995). In this 

procedure, 100% absolute alcohol is injected percutaneously into the branch of 

the coronary artery that perfuses the septum - the target point is the basal 

septum at the point of contact of the anterior mitral valve leaflet. Since alcohol 

is toxic to the heart muscle cells, it leads to a localised infarction and causes 

the thickened heart muscle to be replaced with thin scar tissue. As a result, 

there is a reduction in the obstruction of blood flow out of the left ventricle and 

associated mitral regurgitation, which simulates the results of surgical 

myoectomy. This procedure has been performed successfully in a large number 

of patients and is also particularly useful in patients where surgery is 

contraindicated (Fernandes, Nielsen et al. 2008, Kwon, Kapadia et al. 2008).  

3. Insertion of a dual-chamber pacemaker is particularly recommended in 

patients with complications resulting from alcohol septal ablation surgery 

(Valettas, Rho et al. 2003). This procedure involves artificially exciting the 

septum in the left ventricle to decrease the pressure gradient by reducing the 

obstruction of the outflow blood.   

4. In very severe cases of heart failure a transplant is also available 
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1.5.6 Genetic Basis of FHC 
 After intensive studies for more than two decades, 11 or more causative genes 

with greater than 1,400 mutations responsible for FHC have been found (Maron, 

Maron et al. 2012). These include both sarcomeric and non-sarcomeric proteins, 

although only the genes encoding sarcomeric proteins will be discussed in this thesis. 

Of the genes responsible for FHC, approximately 70% are found to have mutations in 

the two most common genes: beta-myosin heavy chain (MYH7) and myosin binding 

protein-C (MyBP-C). Table 1.1 (Maron, Maron et al. 2012) shows the list of genes 

found to cause FHC, listed from strongest to lesser evidence of pathogenicity. 

Although most people have been found to carry a single gene mutation, multiple 

mutations in an individual have been identified recently and these individuals were 

associated with more severe disease expression and adverse prognosis (Ingles, Doolan 

et al. 2005, Kelly and Semsarian 2009, Maron, Maron et al. 2012) 

 
Table 1.1. List of FHC causing genes and their prevalence. (Maron, Maron et al. 
2012) 

proportionately identifying pa-
tients with left ventricular (LV)
outflow obstruction (1) (Fig. 1).

In the early 1970s, echocardi-
ography afforded noninvasive vi-
sualization of left ventricular hy-
pertrophy (LVH), and reliable
identification of family members
with and without the HCM phe-
notype (14). Introducing basic
science to HCM, by interfacing
deoxyribonucleic acid (DNA)–
based methodologies and classi-
cal segregation linkage analysis

with echocardiography, allowed mapping HCM to a caus-
ative locus on chromosome 14 in 1989 (8). In 1990,
sequence analysis of a candidate gene revealed a pathogenic
missense mutation in the beta-myosin heavy chain gene
(MYH7Arg 403 Gln) to be responsible for HCM (9).

Molecular Basis of HCM

The substrate, 2011. Two decades of intensive investiga-
tion have defined the vast and daunting heterogeneity of the
HCM substrate. The early report of 7 mutations in 1 gene
(MYH7) (10) has now expanded to 11 or more causative
genes (5,13,15–21) with !1,400 mutations (Dr. H. Rehm,
personal communication, August 2011), expressed primarily
or exclusively in the heart. These genes encode thick and thin
myofilament proteins of the sarcomere or contiguous Z-disc
(Table 1). Mutations in several additional sarcomere (or
calcium-handling) genes have been proposed, but with less
evidence supporting pathogenicity (Table 1). Of those
patients with positive genetic tests, about 70% are found to
have mutations (of either definite or uncertain pathogenic-
ity) in the 2 most common genes, MYH7 and myosin-
binding protein C (MBPC3), while other genes including
troponin T, troponin I, !-tropomyosin, and !-actin each
account for a small proportion of patients (1% to 5%).
Types of mutations. The vast majority (about 90%) of
pathogenic mutations altering physical and functional prop-
erties of proteins are missense, in which a single normal
amino acid is exchanged for another (e.g., replacement of
arginine for glutamine). Alternatively, more radical muta-

tions affect many amino acids in the protein, resulting in a
very different product (i.e., frameshift), and are generally
predicted to trigger more substantial clinical consequences.
Frameshift mutations are caused by insertion or deletion of
"1 nucleic acids in the coding region often resulting in
shortened truncated proteins (frequently found in the
MYBPC gene), or abnormal splicing of messenger ribonu-
cleic acid (mRNA).

Genetic Testing for HCM

Background. HCM genetic testing was initially confined
to the realm of a few research laboratories focused on
enhancing a basic understanding of this disease. Testing
results were unpredictable, as laboratories lacked sufficient

Abbreviations
and Acronyms

GINA ! Genetic
Information Non-
Discrimination Act

HCM ! hypertrophic
cardiomyopathy

LV ! left ventricle/
left ventricular

LVH ! left ventricular
hypertrophy

VUS ! variant of uncertain
significance

Figure 1 HCM Landmarks

Genetic and clinical advances over the !50-year history of hypertrophic cardiomyopathy (HCM). ICD " implantable cardioverter-defibrillator; SD " sudden death.

Molecular Substrate of HCMTable 1 Molecular Substrate of HCM

Strongest evidence for pathogenicity

Thick filament

1. #-myosin heavy chain MYH7

2. Regulatory myosin light chain MYL2

3. Essential myosin light chain MYL3

Thin filament

4. Cardiac troponin T TNNT2

5. Cardiac troponin I TNNI3

6. Cardiac troponin C TNNC1

7. !-tropomyosin TPM1

8. !-cardiac actin ACTC

Intermediate filament

9. Cardiac myosin-binding protein C MYBPC3

Z-disc

10. !-actinin 2 ACTN2

11. Myozenin 2 MYOZ2

Lesser evidence for pathogenicity

Thick filament

12. !-myosin heavy chain MYH6

13. Titin TTN

Z-disc

14. Muscle LIM protein CSRP3

15. Telethonin TCAP

16. Vinculin/metavinculin VCL

Calcium handling

17. Calsequestrin CASQ2

18. Junctophilin 2 JPH2

HCM " hypertrophic cardiomyopathy.

706 Maron et al. JACC Vol. 60, No. 8, 2012
Genetics in Hypertrophic Cardiomyopathy August 21, 2012:705–15

 
 



26 
 

 

 

1.5.6.1 β-Myosin Heavy Chain 
 The gene encoding β-myosin heavy chain (βMyHC) is called MYH7 and 

mutations in this gene account for about 30% of all FHC causing mutations (Watkins, 

Seidman et al. 1995, Sivaramakrishnan, Ashley et al. 2009) 

A missense mutation in MYH7 was the first mutation to be identified in FHC 

(Geisterfer-Lowrance, Kass et al. 1990, Tanigawa, Jarcho et al. 1990) and since then 

several distinct missense mutations have been identified in this gene resulting in the 

substitution of conserved amino acids (Watkins, Rosenzweig et al. 1992, Vikstrom 

and Leinwand 1996). Of these mutations, several of them are clustered in the globular 

head region and may occur in regions that form functionally important domains. A 

significant fraction of mutations were also detected in the tail-helix region that lies in 

the rod region of βMyHC (Bashyam, Savithri et al. 2003).  

Phenotypes of the mutations occurring in MYH7 vary from benign to severe, 

leading to sudden cardiac death. Out of these, a missense mutation resulting in an 

amino acid change from arginine to glutamine at position 403 (R403Q) is known to be 

one of the highest penetrance and most severe clinical phenotypes of FHC mutations, 

(Chuan, Sivaramakrishnan et al. 2012). Although the exact mechanism is yet to be 

elucidated (Chuan, Sivaramakrishnan et al. 2012), studies have shown that this 

mutation occurs at a highly conserved residue in close proximity to the actin-binding 

interface of the myosin motor domain (Volkmann, Lui et al. 2007) and these patients 

have a high incidence of morbidity and early mortality (Epstein, Cohn et al. 1992). 

Furthermore, a recent independent study has proposed that missense mutations of 

MYH7 will “probably affect actin or nucleotide binding” (Bashyam, Purushotham et 

al. 2012).  

 

1.5.6.2 Myosin Binding Protein C 
The link between hypertrophic cardiomyopathy and the locus containing 

myosin binding protein C (MyBP-C) on chromosome 11 was first made in 1993 

(Carrier, Hengstenberg et al. 1993). Shortly thereafter, specific mutations within the 

MyBP-C gene were identified (Bonne, Carrier et al. 1995, Watkins, Conner et al. 

1995) and to date, more than 200 MyBP-C mutations have been identified (Marston 

2011, Schlossarek, Mearini et al. 2011). Furthermore, the β-myosin heavy chain 
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(MYH7) and myosin binding protein C genes are estimated to account for 

approximately 60-70% of all FHC cases (Xu, Dewey et al. 2010).  

Mutations identified in MyBP-C include splice site mutations, nucleotide 

deletion/insertion, exon duplications, missense mutations and premature stop codons 

resulting in a truncated protein (Bashyam, Savithri et al. 2003, Flashman, Redwood et 

al. 2004, Morita, Nagai et al. 2010). The mechanism(s) by which these defects lead to 

FHC remains controversial (Knoll 2012), but some of the proposed mechanisms 

include: structural changes with or without altering its function (Morita, Nagai et al. 

2010); deletions or insertions may render the messenger RNA or protein unstable, 

which can lead to reduction in the total amount of MyBP-C within sarcomeres 

(Morita, Nagai et al. 2010) and perhaps in turn may inhibit myosin binding (Bashyam, 

Purushotham et al. 2012) – studies have shown that a 50% reduction in normal 

MyBP-C levels will lead to myofibrillar architecture disruption and impact the 

sarcomere function by unknown mechanisms (Flavigny, Souchet et al. 1999, Marston, 

Copeland et al. 2009, van Dijk, Dooijes et al. 2009).  

For awhile, FHC due to mutations in MyBP-C were thought to be of late 

onset, low penetrance and good prognosis (Charron, Dubourg et al. 1998, Niimura, 

Bachinski et al. 1998). However, several studies recently have demonstrated that the 

spectrum of clinical phenotypes of FHC due to MyBP-C mutations is broad and 

variable, including severe phenotypes, with all patterns and degrees of hypertrophy 

observed (Konno, Shimizu et al. 2006, Page, Kounas et al. 2012). These studies also 

proposed that these differences could not be explained by either the gene-specific or 

the mutation-specific data, hence highlighting the importance of nongenetic factors 

(such as hormones and environmental factors). Consequently, the current genotype-

phenotype data should be used cautiously, especially by clinicians when counselling 

at risk family members, since the applicability of such data and the role of genetic 

predictive testing still remains uncertain.  

 

1.5.6.3 Troponin T 
 Cardiac troponin T (cTnT) gene on chromosome 1 was first recognised to be 

related to hypertrophic cardiomyopathy in 1994 (Thierfelder, Watkins et al. 1994). 

Since then more than 30 mutations have been identified with the majority of them 

caused by missense mutations and a few due to truncated protein (Thierfelder, 
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Watkins et al. 1994). Unlike beta-myosin heavy chain (MYH7) and MyBP-C, the 

clinical phenotype due to the gene encoding troponin T (TNNT2) is similar and 

characterised by mild ventricular hypertrophy and a high incidence of sudden death 

(Fujino, Shimizu et al. 2002), especially at a young age (Varnava, Elliott et al. 2001, 

Richard, Charron et al. 2003). 

 

1.5.6.4 Troponin I 
 The troponin I gene, TNNI3 is located on chromosome 19 and mutations in 

this gene have been reported in 2-7% of hypertrophic cardiomyopathy cases (Van 

Driest, Ellsworth et al. 2003, Mogensen, Murphy et al. 2004).  

Troponin I has three binding sites: one for troponin T (residue 61-112), 

another for troponin C (residue 113-164) and the third one for actin-tropomyosin 

(residue 130-148; 173-181) (Mogensen, Murphy et al. 2004). Troponin I is the 

inhibitory subunit of the troponin complex and this inhibitory effect is released by 

calcium binding to troponin C. This triggers a series of events: altered interaction 

within the actin-troponin-tropomyosin binding complex, displacement of the myosin 

head along the thin filament and adenosine triphosphate (ATP) hydrolysis, leading to 

force generation. Furthermore, TNNI3 is known to be exclusively expressed in 

cardiac muscles and plays an important role in cardiac muscle contraction and 

relaxation in response to changes in intracellular calcium (Bhavsar, Brand et al. 1996).  

 Several mutations in TNNI3 leading to FHC have been identified (Kimura, 

Harada et al. 1997, Niimura, Patton et al. 2002, Murphy and Starling 2005) with the 

majority of them being missense mutations (Bashyam, Savithri et al. 2003). Some of 

the mechanisms by which these mutations lead to FHC include: hypercontractility 

with diastolic dysfunction (Cooke 1998, James, Zhang et al. 2000, Lang, Gomes et al. 

2002), impaired relaxation (Elliott, Watkins et al. 2000) and increased calcium 

sensitivity of cardiac muscle contraction (Takahashi-Yanaga, Morimoto et al. 2001). 

Generally, FHC due to mutations in TNNI3 result in mild symptoms (Morner, 

Richard et al. 2000) but studies have shown that the Lys183 deletion has high 

significant disease penetrance and can lead to sudden cardiac death (Kokado, Shimizu 

et al. 2000). 
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1.5.6.5 Troponin C 
 The first FHC causing mutation in troponin C was identified in 2001 

(Hoffmann, Schmidt-Traub et al. 2001). This mutation, Leu29Gly, was found in a 60 

year old patient with septal hypertrophy and atrial fibrillation. Subsequent studies 

have shown that mutations in this gene lead to significant effects on the kinetics of 

opening and closing of the conformation of the regulatory N-domain and elimination 

of the inotropic effect of PKA phosphorylation of cardiac troponin I on the transition, 

thus suggesting an antagonistic role in the effect of phosphorylation signalling from 

cardiac troponin I to cardiac troponin C (cTnC) (Dong, Xing et al. 2008). Another 

independent study has demonstrated that the Leu29Gly mutation increases the calcium 

binding characteristics of cTnC and this alters myocyte contractility, however, the 

exact mechanism of changes in myofilament calcium sensitivity and the etiology of 

FHC is unknown (Liang, Chung et al. 2008). 

 

1.5.6.6 α-Tropomyosin 
 The gene encoding α-Tropomyosin is on chromosome 15 and mutations in this 

gene were first linked to hypertrophic cardiomyopathy in 1994. A few missense 

mutations have now been indentified and out of these, the two most common 

mutations are Asp175Asn and Glu180Gly, which occur in highly conserved residues. 

Studies have shown that these mutations increase the bending flexibility of 

tropomyosin both locally and globally (Li, Suphamungmee et al. 2012, Loong, Zhou 

et al. 2012, Ly and Lehrer 2012). Extrapolating this finding further, scientists are 

proposing that this increase in flexibility is likely to increase accessibility of the 

myosin-binding sites on F-actin, leading to destabilisation the low-Ca2+ relaxed state 

of cardiac muscle and this imbalance will lead to enhanced systolic activity, diastolic 

dysfunction and cardiac compensation associated with hypertrophic cardiomyopathy 

and heart failure (Li, Suphamungmee et al. 2012). Similarly, another study also 

proposed that increased flexibility together with hypersensitivity of calcium could 

overwork cardiac muscle, resulting in FHC (Loong, Zhou et al. 2012). 

 Clinical phenotypes vary from mild hypertrophy to severe hypertrophy 

and unfortunately, both the mechanism by which the mutations cause FHC and 

differences in phenotypes are not yet clear (Kremneva, Boussouf et al. 2004).  
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1.5.6.7 Myosin Essential Light Chain  
 Mutations in myosin light chains are much less frequent and account for less 

than 5% of hypertrophic cardiomyopathies (Keren, Syrris et al. 2008).  

 The gene encoding myosin essential light chain is MYL3 and to date, ten 

mutations have been shown to cause hypertrophic cardiomyopathy. Of these, four 

missense mutations are located in exon 3 (E56G, A57G, V79L and R81H) and the rest 

are located in exon 4 (G128C, E143K, M149V, E152K, R154H and H155D) 

(Andersen, Hedley et al. 2012).  

 Poetter et al (Poetter, Jiang et al. 1996) first identified the two MYL3 

mutations causing FHC (M149V and R154H) and these mutations were shown to be 

associated with a rare FHC phenotype. This involved marked papillary muscle 

hypertrophy and an unusually pronounced midventricular wall thickening, leading to 

midcavity obstruction.  

 Generally, the clinical phenotypes are shown to vary greatly, from mild to 

sudden cardiac death (A57G and M149V) and the penetrance is shown to be high in 

middle-aged mutation carriers (Hernandez, Jones et al. 2007). However, one novel 

mutation identified recently (V79L) was demonstrated to be present with low 

expressivity and late onset (Andersen, Hedley et al. 2012) 

 

1.5.6.8 Myosin Regulatory Light Chain (RLC) 
 In 1996, mutations in the gene encoding myosin regulatory light chain 

(MYL2) causing hypertrophic cardiomyopathy were first identified, along with 

mutations in MYL3 (Poetter, Jiang et al. 1996). Since then, 10 mutations have been 

identified (Harris, Lyons et al. 2011): eight missense mutations (A13T, F18L, E22K, 

N47K, R58Q, P95A, L103E and D166V) and two splice acceptor site mutations 

(IVS6-1G>C and IVS5-2A>G). 

 Although the exact mechanism of the above mutations leading to FHC remains 

unclear, studies have found some effects of these mutations that could contribute to 

FHC causation. Three of the above mutations, E22K, N47K and R58Q, were found to 

alter the Ca2+ binding of RLC, whereas the A13T mutation was found to alter the 

phosphorylation of RLC (Szczesna, Ghosh et al. 2001, Szczesna-Cordary, Guzman et 

al. 2004). More recent studies have also found that the E22K mutation has no effect 

on mechanical properties of cross bridges (Dumka, Talent et al. 2006) and the R58Q 
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mutation lowers both the kinetic rates of cardiac myofibril contractility and force per 

cross-sectional area of the muscle fibre and thus compromises the ability of the heart 

to pump blood efficiently (Mettikolla, Calander et al. 2011). 

 Most MYL2 mutations appear to cause mild or benign clinical phenotypes 

(Harris, Lyons et al. 2011), except R58Q, D166V and IVS5-2 mutations, which have 

been shown to be associated with malignant phenotypes at earlier ages and/or with 

sudden cardiac death (Flavigny, Richard et al. 1998, Kabaeva, Perrot et al. 2002, 

Morner, Richard et al. 2003, Richard, Charron et al. 2003). Furthermore, mid-cavity 

obstruction and papillary muscle thickening were both shown to be linked to MYL2 

mutations (Poetter, Jiang et al. 1996, Flavigny, Richard et al. 1998). 

 

1.5.6.9 Actin 
 Point mutations in the gene encoding the α-cardiac actin gene (ACTC) are 

known to cause FHC, albeit rarely (Mogensen, Murphy et al. 2004). In 1999, the first 

mutation, A295S, was found that results in impaired myosin binding, which leads to 

impaired force generation and compensatory hypertrophy (Mogensen, Klausen et al. 

1999). Since then, nine point mutations leading to hypertrophic cardiomyopathy have 

been identified (Muller, Mazur et al. 2012): H90Y, R97C, E99K, P164A, Y166C, 

A232V, A295S, M305L and A331P.  

 Not much is known about the functional significance of the above mutations 

but since actin is highly conserved and plays an important role in muscle contraction, 

mutations in the gene encoding this protein could affect the mechanics, kinetics and/or 

regulation of the actomyosin interaction (Debold, Saber et al. 2010). Studies of 

specific mutations have shown that the E99K mutant decreases both the binding 

affinity to the myosin S1-subfragment and actin filament velocity in an in vitro 

motility assay (Bookwalter and Trybus 2006). Recent studies further demonstrated 

that E99K inhibits the activation of the thin filament (Debold, Saber et al. 2010), 

increases the myofilament Ca2+ sensitivity and decreases the PKA phosphorylation 

response of troponin I (Song, Dyer et al. 2011). Additionally, mutations Y166C and 

M305L are shown to stimulate the cardiac ß-myosin ATPase to only 50% of wild-type 

(WT) cardiac F-actin and this might be the basis for the initiation of hypertrophy 

(Muller, Mazur et al. 2012). Although gene specific phenotypes need to be 
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investigated, the E99K mutant is shown to be linked with apical hypertrophy (Song, 

Dyer et al. 2011). 

1.5.6.10 Titin 
 So far, only two mutations in the gene encoding titin (TTN) have been 

identified. Mutation R740L, (Satoh, Takahashi et al. 1999) is a missense mutation and 

is proposed to cause FHC by an altered affinity to α-actin. Mutation Ser3799Tyr is 

shown to increase the titin binding to FHL2 (four and half LIM protein 2) and as 

FHL2 is known to tether metabolic enzymes to N2-B and is 2 regions of 

titin/connectic, this altered binding capacity is proposed to lead to altered recruitment 

of metabolic enzymes to the sarcomere, thus contributing to FHC (Matsumoto, 

Hayashi et al. 2006). 

 

1.6 Myosin Binding Protein C 
 Myosin binding protein C (MyBP-C) is a thick filament protein consisting of 

1274 amino acid residues (149kDa) and it was first discovered in 1973 (Offer, Moos 

et al. 1973). Since its discovery, it was largely ignored by researchers until the link 

between mutations in the gene encoding its cardiac isoform and familial hypertrophic 

cardiomyopathy (FHC) was made in 1993 (Carrier, Hengstenberg et al. 1993). While 

the basic structural organisation of the protein and some basic functions have been 

proposed, its precise tertiary structure, function and therefore, how the mutations in it 

lead to FHC are yet to be resolved. 

 

1.6.1 Isoforms of MyBP-C 
 MyBP-C has three isoforms: slow skeletal, fast skeletal and cardiac. These are 

encoded by the genes MyBP-C1, MyBP-C2 and MyBP-C3, respectively and are 

located in different chromosomes: 12, 19 and 11, respectively. Since the three 

isoforms map to different chromosomes, this suggests that the isoforms are not the 

result of alternative splicing (Winegrad 1999). Amino acid sequence analysis of all 

three human isoforms revealed a high homology (39.6%) (Vydyanath, Gurnett et al. 

2012). This thesis will focus on the cardiac isoform of MyBP-C (cMyBP-C). 
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1.6.2 Location of MyBP-C 
 MyBP-C molecules are present in the myofibrils of all striated muscle and are 

responsible for approximately 1~2% of the myofibrillar mass (Offer, Moos et al. 

1973). They are located in a portion of the A-band where crossbridges are found, 

namely the C-zone (Figure 1.10a), in 7 to 9 transverse stripes 43 nm apart (Sjostrom 

and Squire 1977, Bennett, Craig et al. 1986). This can be clearly seen under the 

electron microscope (Figure 1.10b). 

 

 

 
 
Figure 1.10. Location of MyBP-C.  
a) Position of cMyBP-C. Image from (Oakley, Hambly et al. 2004)  
b) Electron micrograph of cardiac muscle stained with antibody to MyBP-C. Eleven 
stripes are present in the A-band where 7 to 9 of these are believed to be due to 
MyBP-C (arrow). Image modified from (Craig and Offer 1976).  
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1.6.3 Structure of MyBP-C 
 Cloning and sequencing of different isoforms of MyBP-C from human (main 

focus of this thesis), chicken, rabbit and mouse have led to the determination of its 

basic structure (Weber, Vaughan et al. 1993, Yasuda, Koshida et al. 1995, 

Alyonycheva, Mikawa et al. 1997).  

MyBP-C belongs to the intracellular immunoglobulin superfamily. All three 

isoforms share conserved architectural features, composed of seven immunoglobulin 

(IgI) domains and three fibronectin type III (FnIII) domains, arranged in a uniform 

order Ig-Ig-Ig-Ig-Ig-Fn-Fn-Ig-Fn-Ig. The domains are numbered from the N-terminus 

as C1 to C10 (Figure 1.11) with a 105 amino acid myosin binding protein motif in 

between the domains C1 and C2. In this region, a proline and alanine rich (PA) 

domain is located, as well as a single phosphorylation site in the two skeletal isoforms 

(c.f. more than one phosphorylation site in cardiac isoform). 

The structure of the cardiac isoform differs from the two skeletal isoforms in 

4 ways (Yamamoto and Moos 1983, Winegrad 1999): 

1. cMyBP-C has an additional immunoglobulin module (C0) with 101 residues at 

the N-terminus 

2. There are three phosphorylation sites, not one, in the linker between C1-C2 

(Gautel, Zuffardi et al. 1995). However, recent studies have suggested 

additional phosphorylation sites for calmodulin kinase II, protein kinase C, 

protein kinase D and the 90-kDa ribosomal S6 kinase (Bardswell, Cuello et al. 

2012, Knoll 2012, Kuster, Bawazeer et al. 2012).  

3. A 25 residue loop is found in C5  

4. cMyBP-C is longer than skeletal isoforms, being approximately 40 to 44 nm in 

length 

Figure 1.11 Structure of cMyBP-C. It is made up of eight IgI domains and three Fn 
domains. C0 is a cardiac specific site. Three phosphorylation sites between C1-C2 and 
myosin and titin binding sites between C7-C10 are present. 
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1.6.4 Binding Partners of MyBP-C 
 MyBP-C has no enzymatic activity. This suggests that MyBP-C must fulfil its 

biological function in the heart through interactions with other relevant molecules. 

Since there is little or no sequence or structural evidence that MyBP-C binds with 

molecules such as zinc, calcium, nucleic acids and sugars, it is most likely that 

protein-protein interactions remain the most plausible main mechanism of its function 

(Pfuhl and Gautel 2012). 

 

Myosin 

 Studies have shown that phosphorylation of the MyBP-C motif (region 

between C1 and C2 domains) (Gautel, Zuffardi et al. 1995) affects the structure of the 

thick filament by changing the arrangement of the S1 heads (Weisberg and Winegrad 

1996, Levine, Weisberg et al. 2001), which in turn affects the formation of cross 

bridges. The crossbridges appear to be able to move further from the thick filament 

backbone. Recently, this theory was further supported by high-resolution observations 

of changes in the shape of thick filaments (Farman, Gore et al. 2011, Palmer, 

Sadayappan et al. 2011). 

 A number of binding sites for MyBP-C on myosin have been identified to 

possibly achieve the above regulatory mechanism.  

1. C10 domain in the C-terminus is shown to interatct with light meromyosin 

(LMM) via positively charged amino acids on its surface (Miyamoto, 

Fischman et al. 1999). Although C10 is the essential domain required for 

binding (Brown, Singh et al. 2002), this does not achieve the maximal binding 

to myosin. Hence, the three adjacent domains, C7-C9, also bind to LMM for 

maximum affinity and to ensure correct incorporation into the A-band 

(Gilbert, Kelly et al. 1996, Welikson and Fischman 2002).  

2. Domains C1-C2 (including the phosphorylatable linker region) in the N-

terminus have been shown to bind to S2 (Gruen and Gautel 1999). This 

interaction is phosphorylation dependent (Gruen, Prinz et al. 1999, Kunst, 

Kress et al. 2000) where binding occurs when the linker region is un-

phosphorylated. A corresponding effect of phosphorylation on force 

generation was also demonstrated (McClellan, Kulikovskaya et al. 2001).  
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3. A recent study demonstrated an interaction between the cardiac-specific 

domain C0 and the myosin regulatory light chain (RLC) (Ratti, Rostkova et al. 

2011). This interaction correlates well with previous experimental studies 

(Margossian 1985, Flavigny, Souchet et al. 1999, Gruen and Gautel 1999, 

Herron, Rostkova et al. 2006). 

 

Actin 

 Shortly after the discovery of MyBP-C binding to myosin, its binding with F-

actin was also discovered (Moos, Mason et al. 1978, Moos 1981, Yamamoto 1986). 

However, where exactly this binding occurs on MyBP-C, especially on cMyBP-C still 

remains unclear with a lot of controversial data (Weith, Sadayappan et al. 2012). 

 Based on electron microscopy and sequence analysis, this binding was initially 

thought to occur in the linker between the C0 and C1 domains (Squire, Luther et al. 

2003, Squire, Roessle et al. 2004) where the sequence of this linker is Pro/Ala rich 

and was proposed to form a rod like, actin-binding structure, based on similarity to the 

N-terminal extension of the essential light chain (ELC) which is another proposed 

actin-binding site (Timson, Trayer et al. 1998). However, subsequent studies revealed 

a completely different interaction of the ELC N-terminus to actin (Pliszka, Redowicz 

et al. 2001, Lowey, Saraswat et al. 2007). In addition,an NMR study (Jeffries, Lu et 

al. 2011) showed an unstructured and collapsed rather than an extended, rod-like 

formation, making the original hypothesis less straightforward. This interaction still 

remains unresolved as no further experimental or theoretical evidence for a Pro/Ala 

sequence as an actin-binding site has been looked at since (Pfuhl and Gautel 2012). 

  Subsequently, the cardiac specific domain C0 was proposed as the actin-

binding site (Kulikovskaya, McClellan et al. 2003). This was based on in vitro 

binding assays that showed no binding for the C1-C2 fragment. Since then, this work 

was further supported by more precise studies, such as small angle solution X-ray 

scattering (Whitten, Jeffries et al. 2008), electron microscopy (Kensler, Shaffer et al. 

2011, Mun, Gulick et al. 2011) and NMR spectroscopy (Lu, Kwan et al. 2011), which 

have all shown C0 as the binding site. 

 Contradictory to the above data, several studies have shown F-actin binding to 

C1-C2 and C0-C2, but no or very weak binding for C0-C1 (Razmumova et al 2006, 

Rybakova et al 2011, Shaffer et al 2009 on p85 Pfuhl & Gautel), suggesting that 
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domain C0 and the C0-C1 linker do not play a significant role in F-actin binding. 

Furthermore, the linker region between C1 and C2 domains was also proposed as an 

F-actin binding site (Razumova, Bezold et al. 2008, Saber, Begin et al. 2008, Whitten, 

Jeffries et al. 2008, Weith, Sadayappan et al. 2012), where the interaction was 

demonstrated to be negatively regulated by phosphorylation of the MyBP-C motif 

region (Shaffer, Kensler et al. 2009).  

Recently, one article concluded that no specific interaction of any N-terminal 

fragment with F-actin could be demonstrated but instead, the C-terminal half was 

shown to be able to bind to F-actin with high affinity (Rybakova, Greaser et al. 2011). 

However, this is yet to be confirmed and somewhat difficult to study as the C-terminal 

half is unequivocally associated with myosin and titin.  

 

Titin 

 MyBP-C also binds to titin but much more weakly. This interaction occurs 

through domains 8-10 (Freiburg and Gautel 1996), specifically the first IgI domain in 

each eleven-domain super-repeat of titin, which defines the ~43 nm interval of MyBP-

C localisation in the C-zone (Freiburg and Gautel 1996). 

 

Myosin binding protein-C 

 Moolman-Smook et al (Moolman-Smook, Flashman et al. 2002) proposed 

intermolecular interaction of MyBP-C which forms the basis of one of the models of 

MyBP-C within the sarcomere – the collar model. This will be further explained in 

Sectin 1.6.5. 

 

1.6.5 Assembly of cMyBP-C within the Sarcomere 
 The precise organisation of MyBP-C within the sarcomere is yet to be 

resolved (Vydyanath, Gurnett et al. 2012). However, there are currently two different 

models explaining the organisation of the cardiac isoform of MyBP-C (cMyBP-C) 

within the sarcomere: the axial and collar models. 
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Collar Model 

 In the collar model, also known as the “trimeric” collar model, three cMyBP-

C molecules form a collar/ring around the thick filament backbone with 

intermolecular interactions. These intermolecular interactions are thought to stabilise 

the cMyBP-C around the thick filament and occur between domains C5 and C8, and 

C7 and C10 (Figure 1.12) (Moolman-Smook, Flashman et al. 2002). One study has 

demonstrated that the addition of exogenous C5 to skinned myocytes impairs MyBP-

C function (McClellan, Kulikovskaya et al. 2004) and since C5 does not bind to actin 

or myosin, this impairment suggests that the addition of exogenous C5 disrupts the 

C5:C8 interaction and, therefore, the assembly of MyBP-C onto the think filament. 

This model also proposes that domains C0-C4 project outward to interact with the S2 

neck of myosin and possibly actin in the thin filament. 

 However, this model has a few challenges that are yet to be clarified. Firstly, 

there is a mismatch of the circumference of the thick filament backbone 

(approximately 41-47 nm) and the diameter of cMyBP-C wrapped around the thick 

filament. This model proposes the wrapping of 9 immunoglobulin domains of 

cMyBP-C around the thick filament backbone. Since the diameter of these 

immunoglobulin domains is approximately 3.4-3.9 nm (Pfuhl and Pastore 1995, 

Improta, Politou et al. 1996), the diameter of cMyBP-C that is wrapped around the 

backbone is estimated to be 35-36nm, which is 5-12 nm shorter than the estimated 

circumference of the thick filament. Currently, there is no data suggesting the possible 

stretch of the C-terminal motifs of MyBP-C. Secondly, this model lacks an 

explanation for how cMyBP-C binds to titin and LMM via domains C8-C10. 

Additionally, both X-ray diffraction and EM reconstructions do not support this 

model (Squire, Luther et al. 2003, Luther, Winkler et al. 2011, Vydyanath, Gurnett et 

al. 2012). 

 

Axial Model  

 This model suggests that C-terminal domains bind to the thick filament by 

running along it axially and the N-terminal domains project toward the thin filament 

perpendicularly (Figure 1.13) (Squire, Luther et al. 2003). In contrast to the collar 

model, this model incorporates the involvement of C7-C10 binding to titin by 

suggesting that the two proteins can run parallel to each other.  
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 Recent studies using electron microscopy (EM) reconstructions (Vydyanath, 

Gurnett et al. 2012) and electron tomography (Luther, Winkler et al. 2011) have 

strongly suggested the axial distribution of MyBP-C on the thick filament. 

Furthermore, Vydyanath et al (Vydyanath, Gurnett et al. 2012) has also shown that 

mutations in MyBP-C leading to hypertrophic cardiomyopathies do not alter its mean 

axial distribution along the thick filament (Vydyanath, Gurnett et al. 2012).  
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Figure 1.12. Collar model of MyBP-C arrangement in sarcomere. Image from 
(Oakley, Hambly et al. 2004). 
 

 
Figure 1.13. Axial model of MyBP-C arrangement in sarcomere. C7-C10 runs 
axially along the myosin backbone and interacts with titin. Image from (Oakley, 
Hambly et al. 2004)  
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1.6.6. Functional Implications for MyBP-C 
 
Sarcomere Assembly 

 MyBP-C plays an important role in sarcomere assembly, for example, studies 

with knockout mice have demonstrated greater sensitivity and loss of order in the 

filaments (Kensler and Harris 2008, Zoghbi, Woodhead et al. 2008). One study 

demonstrated that in the presence of MyBP-C, synthetic myosin filaments display an 

increase in length, a decrease in diameter and an increase in the uniformity of 

diameters (Koretz 1979). Another study has demonstrated the presence of defective 

formation of sarcomeres when the titin and/or myosin binding sites of MyBP-C are 

missing (Gilbert, Kelly et al. 1996, Yang, Sanbe et al. 1998).  

 Furthermore, MyBP-C is not found in non-striated myofibrils and it has been 

shown that MyBP-C first appears in the myofibril around the time when non-striated 

myofibrils evolve into mature myofibrils (Schultheiss, Lin et al. 1990, Lin, Lu et al. 

1994, Ehler, Rothen et al. 1999). The only type of striated cell in which MyBP-C is 

not present is the Purkinje cells in the heart whose function is electrical conduction 

not contraction. Instead, these cells have MyBP-H, which is homologous to the C-

terminal domains of MyBP-C (domains C7-C10) (Vaughan, Weber et al. 1993, 

Alyonycheva, Mikawa et al. 1997). MyBP-H is also found in skeletal muscle. These 

findings suggest that the role of MyBP-C in sarcomere assembly is perhaps mediated 

by the C-terminus.  

 

ATPase Activity 

 Another vital function of MyBP-C is its ability to regulate muscle contraction 

by alteration of myosin ATPase activity. This regulation of MyBP-C on ATPase 

activity has been shown to depend on the isoform of myosin as well as being dose 

dependent (Table 1.2). Cardiac or skeletal MyBP-C added to skeletal myosin at low 

ionic strength has been shown to decrease the ATP hydrolysis (Moos and Feng 1980, 

Yamamoto and Moos 1983) whereas the addition of MyBP-C to skeletal myosin at 

normal ionic strengths increased the ATPase activity slightly. However, the effect of 

cardiac or skeletal MyBP-C on cardiac myosin is an increase in ATPase activity at all 

molar ratios (Yamamoto and Moos 1983). Furthermore, no significant change has 

been found in the MyBP-C modified ATPase activity in the absence of actin or if one 
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part of the entire myosin molecule (rod, neck, head or light chains) is missing (Moos 

and Feng 1980, Hartzell 1985, Margossian 1985). Hence, the mechanism by which 

MyBP-C is thought to alter ATPase activity is believed to be related to an increase in 

the ordering of the filaments.  

 

Table 1.2. Summary of the effect of MyBP-C on myosin ATPase activity. 
Myosin MyBPC isoform Effect on myosin ATPase activity 
Skeletal Skeletal  ↓ at low ionic strengths 
 Skeletal Small ↑ at normal ionic strengths 
 Skeletal - phosphorylated Same effect as when dephosphorylated 
 Cardiac ↓ at low ionic strengths 
 Cardiac Small ↑ at normal ionic strengths 
 Cardiac - phosphorylated Same effect as when dephosphorylated 
Cardiac Skeletal ↑ ATPase activity 
 Cardiac ↑ ATPase activity 
 Cardiac  - phosphorylated ↑ ATPase activity but not as great as when 

cMyBPC is dephosphorylated 
 

 The relationship between the MyBP-C regulated ATPase rate and MyBP-C 

phosphorylation has also been studied. Both phosphorylation and dephosphorylation 

of cMyBP-C resulted in an inhibitory effect on the skeletal muscle ATPase rate, but 

resulted in an increase of the cardiac muscle ATPase rate, with greater effect when 

cMyBP-C was dephosphorylated (Hartzell 1985, Lim and Walsh 1986, Venema and 

Kuo 1993). Additionally, transgenic mice lacking the crucial phosphorylation site 

have revealed a decrease in the phosphorylation of myofibril samples and an increase 

in the maximal ATPase (Yang, Hewett et al. 2001). Other effects of phosphorylation 

on thick filament structure and MyBP-C contraction are discussed in the next section.  

 

Phosphorylation 

 The phosphorylation of MyBP-C was discovered in 1980 (Jeacocke and 

England 1980) when a protein with a molecular weight of 150 kDa was found to 

contain a small amount of 32P in rat heart perfusate. Subsequently, this protein was 

found to increase with exposure to adrenaline, phosphorylated in response to α and β-

adrenergic stimulation, endothelin and Ca2+ and dephosphorylated in response to 

cholinergic receptor stimulation (Hartzell and Glass 1984).  
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Phosphorylation Sites 

MyBP-C can be phosphorylated by a number of kinases. These are listed below 

with phosphorylation sites in the mouse isoform and predicted sites in humans in 

brackets: 

1. protein kinase A (PKA): serines 273 (275), 282 (284), 302 (304) (Gautel, 

Zuffardi et al. 1995)  

2. protein kinase C (PKC): serines 273 (275), 302 (304) (Mohamed, Dignam et 

al. 1998) 

3. calmodulin dependent kinase II (CamKII): serine 302 (304) (Gautel, Zuffardi 

et al. 1995) 

4. protein kinase D (PKD): serine 302 (304) (Bardswell, Cuello et al. 2010)  

5. ribosomal S6 kinase (RSK): serine 282 (284) (Cuello, Bardswell et al. 2011)  

 

In skeletal MyBP-C, there is only one phosphorylation site and this is 

predicted to be at Ser172 in the human fast isoform and Ser178 in the human slow 

isoform. In contrast to the widely accepted presence of only one phosphorylation site 

in the skeletal MyBP-C, the number of phosphorylation sites on the cardiac isoform is 

still debatable (Knoll 2012). Nonetheless, there are three accepted phosphorylation 

sites (A-C) in the linker region that are found to be highly conserved between species 

and these correspond to Ser275 (A), Ser284 (B) and Ser304 (C) in human isoforms. The 

phosphorylation sites in skeletal isoforms align with site A in the cardiac isoform 

(Lim and Walsh 1986, Oakley, Hambly et al. 2004). More interestingly, these 

conserved sites appear to show substrate preferences or even absolute specificity for 

the different kinases (please refer to the previous paragraph) and not to be functionally 

equivalent - for example, Ser-282 is shown to markedly decrease the total cMyBP-C 

phosphorylation when it’s deleted or mutated (Gautel, Zuffardi et al. 1995, Kunst, 

Kress et al. 2000), possibly suggesting its role as a switch to allow the other 

phosphorylatable residues more or less access to the relevant kinases (Gautel, Zuffardi 

et al. 1995, Kunst, Kress et al. 2000).  
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Function of Phosphorylation 

One of the most significant functions of MyBP-C is its ability to modulate 

filament orientation and contractile mechanics via phosphorylation/dephosphorylation 

(Winegrad 2003, Decker, Decker et al. 2005).  

 When viewed under the electron microscope, PKA phosphorylation of isolated 

thick filaments resulted in several changes: 

1. increase in optical diffraction and filament thickness in the C-zone (Weisberg 

and Winegrad 1996, Weisberg and Winegrad 1998, Levine, Weisberg et al. 

2001)  

2. Myosin heads appeared extended from the backbone  

3. Increase in the degree of order  

4. Change in orientation 

Thus, it has been suggested by Weisberg and Winegrad (1998) that perhaps the 

change in myosin head position and its flexibility upon MyBP-C phosphorylation 

regulates myosin ATPase rate.  

 The effects of partial phosphorylation of cMyBP-C on the thick filament have 

been studied by Levine et al (Levine, Weisberg et al. 2001). This study showed: 

1. the addition of the first phosphate on MyBP-C (most likely to be at site B) 

induced a change from a disordered structure (myosin heads extending at 

different angles from the backbone) to a tight structure (myosin heads lie 

along the backbone).   

2. di- and tri-phosphorylated cMyBP-C resulted in a loose thick filament 

structure 

Therefore, these data support the idea that the cardiac isoform of MyBP-C plays a 

more significant role in muscle contraction than the skeletal isoform of MyBP-C. 

 

The relationship between MyBP-C phosphorylation and the regulation of muscle 

contractility, by affecting the force and Ca2+ sensitivity, is of considerable interest. It 

has been shown that as the level of MyBP-C phosphorylation increases, the maximum 

Ca2+ activated force (Fmax) increases (McClellan, Kulikovskaya et al. 2001) and 

conversely, the addition of un-phosphorylated C1-C2 to single skinned fibres 

decreases the Fmax (Kunst, Kress et al. 2000). In line with the above findings, MyBP-

C phosphorylation has been shown to increase the Ca2+-sensitivity, meaning a lower 
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concentration of Ca2+ is required to achieve the same muscle contractile force. Several 

animal model studies found: 

1. when the three phosphorylation sites, along with two adjacent sites that could 

be potentially phosphorylated, were replaced with alanines, thus leading to 

unphosphorylation of MyBP-C, there was contractile dysfunction 

(Sadayappan, Gulick et al. 2005)  

2. when the three phosphorylation sites (serines) were replaced with alanines, it 

resulted in hypertrophic systolic and diastolic defects, further supporting the 

idea that PKA phosphorylation of cMyBP-C is important for myocardial 

function (Tong, Stelzer et al. 2008). 

3. When the phosphorylation motif “LAGGGRRTS” was completely deleted, 

there was an increase in contractility and relaxation of about 22%. An increase 

in the phosphorylation of the remaining cMyBP-C and other proteins such as 

troponin I and phospholamban was also observed (Yang, Hewett et al. 2001) 

 

Upon dephosphorylaton of MyBP-C, it binds to myosin-S2 via some part of the 

N-terminal C1-C2 sequence. Tri-phosphorylation of cMyBP-C has been shown to 

interrupt this interaction (Gruen, Prinz et al. 1999) and subsequently it has been 

suggested that the myosin heads with MyBP-C attached are released from any steric 

constraint imposed by MyBP-C upon phosphorylation, which then may enable MyBP-

C to reach out and interact more readily with actin. Extrapolating these data, some 

suggest that phosphorylation enhances cMyBP-C interaction with the thin filament 

(Kulikovskaya, McClellan et al. 2003, Shaffer, Kensler et al. 2009).  

 

As well as the above tethering mechanism of MyBP-C, it has also been 

demonstrated to play a role in non-tethering mechanisms. When C1-C2 was added to 

MyBP-C knockout mice myofibrils, there was an increase in the myocyte Ca2+ 

sensitivity that the phosphorylation of C1-C2 reduced (Harris, Rostkova et al. 2004), 

suggesting a role of the N-terminus of MyBP-C in regulating contraction, independent 

of tethering, but perhaps dependant on binding to myosin-S2.  

 Lastly, an interesting association between MyBP-C phosphorylation and 

protein degradation has been demonstrated. Decker et al (Decker, Decker et al. 2005) 

found that in ischaemic tissue, there was an increase in dephosphorylation along with 

a degraded N-terminus of MyBP-C, found mostly in unphosphorylated MyBP-C. This 
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perhaps suggests that another role of MyBP-C phosphorylation is to protect the 

protein from degradation.  

 

1.7 Cofilin 
1.7.1 Amino Acid Sequence of Cofilin 

Cofilin was first discovered and purified from embryonic chicken brain 

extracts (Bamburg, Harris et al. 1980). Since then, the family has grown to include a 

number of related proteins sharing considerable (30-40%) amino acid sequence 

identity.  

There are two known isoforms of cofilin: muscle and non-muscle. The amino 

acid sequence of these two isoforms and their sequence comparison are presented in 

Figure 1.14 

 

 
Figure 1.14. Sequence comparison of the two isoforms of human cofilin. 
 

1.7.2 Distribution of Cofilin 
 Cofilin exists not only in all eukaryotic cells but also in the cytoplasm of 

quiescent cells. It is active within subcellular regions in which the actin cytoskeleton 

is highly dynamic, such as the cleavage furrow of dividing cells, the leading edge of 

ruffled membranes, and advancing neuronal growth cones (dos Remedios, Chhabra et 

al. 2003). Cofilin plays a crucial role in cytokinesis and is therefore widely distributed 

among tissues of developing animals and plants. Cofilin levels are especially found to 

be higher in haematopoietic tissues, osteoclasts and fibroblasts (Yonezawa, Nishida et 

al. 1987). 
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1.7.3 Structure of Cofilin 
 Atomic structures of yeast (Fedorov, Lappalainen et al. 1997) and human 

(Pope, Zierler-Gould et al. 2004) cofilin have been determined. Cofilin is part of the 

Actin Binding Proteins (ABPs) where structures in this family share a structural 

similarity – i.e. a central six-stranded mixed ß-sheets, flanked by several α-helices 

contributed to by residues at the N- and C- terminus (Gorbatyuk, Nosworthy et al. 

2006). Hence, not surprisingly, the atomic resolution structure of cofilin showed that 

cofilin consists of six-stranded ß-sheet, located in the centre with several α-helices 

surrounding the ß-sheets (Figure 1.15).  

 

 
Figure 1.15. The atomic structure of cofilin. Cofilin comprises of a central six-

stranded mixed ß-sheet, surrounded by six α-helices around N- and C- terminus. 

 
1.7.4 Cofilin Binding to F-actin 

Initially, it was thought that cofilin was primarily an F-actin binding protein. 

However, it is now known that cofilin is capable of binding to both G- and F-actin and 

also depolymerises F-actin (Yonezawa, Nishida et al. 1985). 

Studies have shown that the upper binding site is the G/F-actin binding site 

and binds to the actin monomer on subdomains 1 and 3, whereas the lower binding 

site is the F-actin binding site and binds to the actin monomer on subdomains 1 and 2 

(Figure 1.16) (McGough and Chiu 1999). Together these interactions provoke a twist 
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change in F-actin and weaken both lateral (McGough and Chiu 1999) and longitudinal 

(Bobkov, Muhlrad et al. 2002) contacts between subunits, promoting filament 

severing.  

The two cofilin-F-actin binding sites are located at opposite ends of the long 

axis of cofilin (McGough and Chiu 1999, Pope, Zierler-Gould et al. 2004). The G/F-

actin binding site is located within the half of cofilin that includes the mobile N-

terminus (Pope, Zierler-Gould et al. 2004) and consists primarily of residues located 

within the long, kinked α4 helix, with contributions from residues located in the β1 

strand near the N-terminus and within β6, the intervening loop and α5. The F-actin 

binding site, located at the opposite end of cofilin, involves residues from the N-

terminal segment of the β5 strand and the α6 helix, with a contribution from the 

adjacent C-terminal residues (Pope, Zierler-Gould et al. 2004).  

Phosphorylation at Ser3 in the N-terminus causes minor conformational 

alterations in 7 residues within α4, which forms much of the G/F-actin binding site, 

suggesting a structural mechanism by which phosphorylation prevents actin binding 

(Gorbatyuk, Nosworthy et al. 2006). On the other hand, phosphoinositide (PI) binding 

perturbs residues located in the C-terminal part of the sequence between β6 and β8, 

with Lys132 and His133, adjacent to the β6 strand, being directly involved in PI 

binding (Gorbatyuk, Nosworthy et al. 2006). This region of cofilin overlaps both the 

G/F-actin and F-actin binding sites. Therefore, PI binding probably prevents actin 

binding by perturbing residues in both the G/F-actin and F-actin binding sites.  

A model has been proposed for the mechanism by which cofilin binds to F-

actin and involves cofilin first binding to a monomer within F-actin via the G/F-actin 

binding site. The model proposes that the C-terminal F-actin binding site is then 

stabilised via an allosteric conformational change, allowing cofilin to bind to the 

adjacent actin monomer within the filament (Ono, McGough et al. 2001, Pope, 

Zierler-Gould et al. 2004). This allosteric effect is thought to be mediated by the β5 

strand that bridges the G/F-actin and F-actin binding sites. Thus, the model proposes 

that binding through the G/F-actin binding site is a pre-requisite for F-actin binding. 
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Figure 1.16. Model of cofilin binding sites on F-actin. The upper binding site is the 
G/F-actin binding site and binds to the green actin monomer on subdomains 1 and 3. 
The lower binding site is the F-actin binding site and binds to the pink actin monomer 
on subdomains 1 and 2.  
 

1.7.5 Cellular Functions of Cofilin 

1.7.5.1 Depolymerisation 
Cofilin binds and depolymerises F-actin in a pH sensitive manner (Yonezawa, 

Nishida et al. 1985). The extent of this action depends on several factors, for example, 

different isoforms may have differing pH sensitivities (McGough, Pope et al. 2001) 

and other ABPs may compete with cofilin for binding to actin due to overlapping 

binding sites.  

The high rate of treadmilling of monomers in actin filaments in vivo is 

achieved in part by increasing, by 30-fold, the off-rate (Ressad, Didry et al. 1998) at 

the pointed ends of filaments without changing the off-rate at the barbed ends 

(Carlier, Laurent et al. 1997). The resulting elevated concentration of cofilin-G-actin 

in the cytoplasm can be rapidly recycled at the barbed end of filaments, provided that 

ATP can replace the actin-bound nucleotide. 
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1.7.5.2 Severing 
It remains unclear whether cofilin can sever actin filaments like true severing 

proteins or whether the highly co-operative binding of cofilin at sub-stoichiometric 

ratios, makes the filaments ‘brittle’ at the points where the decorated and undecorated 

regions meet (Bamburg 1999). However, current opinion seems to favour the severing 

ability of cofilin (Pavlov, Muhlrad et al. 2007, Elam, Kang et al. 2013). 

 

1.7.5.3 Nucleation of Polymerisation  
Cofilin is capable of nucleating the assembly of actin (Du and Frieden 1998). 

Cofilin’s ability to nucleate actin polymerisation is probably pH-dependent and may 

vary between different isoforms of ADF/cofilin. Nonetheless, its precise mechanism 

is yet to be resolved. 

 

1.7.5.4 Recycling of Actin Filaments 
The faster rate of elongation at the barbed end of the actin filament than the 

pointed end means that subunits at the pointed end are likely to be older than at the 

barbed end. Consequently, the majority of subunits at the pointed end would contain 

bound ADP and the majority of subunits at the barbed end would contain ATP or 

ADP-Pi.  

Cofilin binds ADP-actin with about two orders of magnitude greater affinity 

than actin containing bound ATP or ADP-Pi in both the globular and filamentous 

forms (Carlier, Laurent et al. 1997). This allows for selection and turnover of older 

filaments that are more susceptible to disassembly than newly polymerised actin. 

Cofilin has been shown to inhibit nucleotide exchange (Nishida 1985) of actin 

monomers. This suggests that cofilin not only depolymerises older filaments, but by 

preventing nucleotide exchange, the rate-limiting step in the recycling of disassociated 

F-actin subunits (Teubner and Wegner 1998), prevents repolymerisation (Figure 

1.17). Sequestering of monomers by cofilin allows a concentration of monomeric 

actin, higher than the critical concentration to exist in vivo.  
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Figure 1.17. Schematic illustration of actin filament dynamics. Left diagram 
represents in the absence of cofilin and the right diagram represents in the presence of 
cofilin. 
 

1.7.5.5 Nuclear Translocation 
The cofilin sequence contains a putative nuclear localisation sequence (NLS) 

that enables it to migrate from its normal location in the cytoplasm to the nucleus 

under conditions of cellular stress (Nishida, Iida et al. 1987). Heat shock and other 

forms of stress are likely to affect a few residues immediately preceding the NLS. 

Subsequently, this will promote binding to a nuclear transport factor and thus passage 

through the nuclear pores (Bowman, Nodelman et al. 2000). Transport is an active 

process and actin accompanies cofilin into the nucleus, although the significance of 

this remains unclear. 

 

1.7.5.6 Phosphorylation 
Cofilin contains a residue capable of phosphorylation at Ser3 (Nebl, Meuer et al. 

1996). Phosphorylated cofilin is dispersed throughout the cytoplasm, and 

dephosphorylation correlates to its translocation into the nucleus. Translocation is 
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mediated by a stretch of five basic residues (30-34, KKRKK) comprising the nuclear 

localisation sequence (Iida, Matsumoto et al. 1992). Phosphorylation of cofilin 

reduces its affinity for actin by 10-30 fold (Morgan, Lockerbie et al. 1993).  

Phosphorylation of cofilin does not alter the tertiary structure of the protein, 

suggesting that abolition of actin-binding is a result of a steric hindrance (Blanchoin, 

Robinson et al. 2000).  

ADP exchange in G-actin is strongly inhibited by cofilin, but once cofilin is 

phosphorylated, the released ADP-actin monomer can exchange with cytoplasmic 

ATP, and it is now ready for reincorporation at the barbed-end of a growing filament. 

Typically, this occurs at the interface of the microfilaments and the membrane at the 

leading edge of the moving cell. Thus, cellular microfilament turnover can potentially 

be regulated by cycles of phosphorylation and dephosphorylation.  

Phosphorylation of vertebrate cofilin is by LIM-kinase proteins 1 and 2 

(LIMK-1 and LIMK-2). LIMK-1 is predominantly neuronal, whereas LIMK-2 is 

more widespread (Bernard, Ganiatsas et al. 1994). Although the signalling pathway 

for activation of the LIM kinases is not yet fully understood, it is known that LIMK-1 

is under the control of the small GTPase, Rac (Arber, Barbayannis et al. 1998, Yang, 

Sanbe et al. 1998), whereas LIMK-2 is regulated by both cdc42 and rho (Bamburg 

1999). Dephosphorylation of cofilin in mediated by Slingshot, a protein phosphatase 

with F-actin binding ability (Niwa, Nagata-Ohashi et al. 2002). 

 

1.8 Aims 
 The focus of this thesis lies in investigating two actin binding proteins: 

cMyBP-C and cofilin. The specific aims of this thesis are: 

1. Clone and express a fragment of cMyBP-C, C1-L, and its FHC mutants using 

a recombinant protein expression technology (Chapter 3).  

2. Assess binding capacity of C1-L and its FHC mutants to F-actin and myosin 

using a co-sedimentation assay and gel electrophoresis, subsequently finding 

the minimum domains required for binding (Chapter 4). 

3. Gain insight into the tertiary structure of the linker region of cMyBP-C using 

nuclear magnetic resonance (NMR) (Chapter 5). 

4. Design functional cofilin mutants suitable for selective labelling with extrinsic 

fluorescent spectroscopic probes for distance measurements (Chapter 6).  
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5. Determine secondary structure of a mutant cofilin using Circular Dichroism 

(CD) Spectroscopy (Chapter 6).  

6. Perform binding assays to determine the binding status of cofilin mutants to 

actin, both before and after labelling (Chapter 6) 

7. Use FRET spectroscopy to measure distances both within cofilin and between 

cofilin and actin (Chapter 6). 
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Chapter 2 

 

General Methods and Materials 

 

2.1 General Methods 
2.1.1 Chemicals and Media 
 All chemicals and reagents used were of analytical grade unless otherwise 

stated. Water was purified by reverse osmosis followed by ion exchange/organic 

filtration (Millipore RO and Milli Q). All media and water used for PCR, cloning and 

bacterial growth were autoclaved at 1.5 kg f/cm2 for a minimum of 20 minutes at 

122oC. The heat labile solutions such as antibiotics and IPTG were sterilised by 

passing the solution through a sterile 0.22 µM filter. These were then stored at -20oC. 

 

2.1.2 Tissue Samples for Muscle Proteins 
 Fresh skeletal muscle was acquired from male New Zealand White rabbits 

aged between 2-3 months and weighing 2.5 – 3 kg. Once the animal had been 

sacrificed using procedures approved by the University of Sydney Animal Care and 

Ethics Committee (ACEC K20/3-2006/3/4323), the back and leg muscles were 

obtained and immediately chilled on ice. The muscle was then minced to extract 

myosin and/or actin. 

 Generally multiple tissues were harvested from each carcass for a range of 

unrelated projects. The ACEC permitted this arrangement, principally because it 

avoided unnecessary euthanasia. 
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2.1.3 Lyophilisation of Proteins 
Lyophilisation or freeze drying is a process by which water is removed from a 

snap-frozen protein sample. Purified G-actin was lyophilised and stored at -20oC for 

up to three months. As freeze drying biological material primarily results in a dry 

product, enzymatic, bacterial and chemical changes are largely avoided.  

Prior to lyophilisation, the protein solutions were placed in a round bottom 

flask ensuring the volume of protein did not exceed 10 % of the flask volume. The 

solution in the flask was then snap frozen by rotating the flask rapidly in a liquid 

nitrogen bath. Once all the protein solution was frozen, the flask was immediately 

connected to a Braun Christ Alpha 1-4 freeze-drying unit (B.Braun Biotech 

International) and vacuum was generated by a Javac double stage teflon-lined vacuum 

pump. Water was removed under a vacuum of 0.31 mBar or less for at least 12 hours 

(usually left overnight).  

 

2.1.4 Determination of DNA Concentration 
 Concentration of DNA was measured either using a BioPhotometer 

(Eppendorf) or a NanoDrop 1000 spectrophotometer (Thermo Scientific). All 

measurements were done according to the manufacturer’s instructions. 

 Diluent buffer was used as a blank irrespective of which machine was used. 

Absorption measurements were carried out in the ultraviolet and visible light ranges 

(260 nm), where an absorption of 1 corresponds to 50 µg/ml dsDNA. The 

BioPhotometer calculates the concentration of an unknown sample by using the 

following equation (Equation 2.1): 

dsDNA con (µg/ml) = A260 nm x 50 x dilution factor          Equation. 2.1 

 

 Purity analysis was assessed by calculating the ratios of various absorption 

values.  

i. A260 nm /A280 nm : protein contamination can be measured as proteins absorb 

maximally at 280 nm  

 : ideal value is 1.8. This value will decrease with increased protein 

contamination 

ii. A260 nm /A230 nm  : absorption at 230 nm reflects impurities of peptides, phenols, 

carbohydrates or aromatic compounds 

 : ideal value is >2.0 for pure samples 
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iii. A320 nm :  dirty cuvettes and dust particles cause light scatter at 320 nm 

which can impact the absorbance at 260 nm. Since neither proteins 

nor nucleic acids absorb at 320 nm, BioPhotometer performs a 

background correction by making readings from a blank at 320 

nm. 

 : ideal value is 0 for pure samples 

 

2.1.5 Determination of Protein Concentration 

2.1.5.1 UV-Vis Spectroscopy 
 Protein concentration was measured using a Varian Cary 50 Bio 

spectrophotometer. The UV lamp was turned on 30 minutes prior to use to obtain 

uniform light emission. The machine was blanked with the diluent buffer and the 

samples were measured at 280 nm. However, any samples which contained ATP, 

such as actin, were measured at 290 nm to avoid the absorbance of bound and free 

nucleotide. Using the extinction coefficients provided in Table 2.1, concentrations in 

mg/ml were calculated according to the following equation (Equation 2.2): 

 

                                                       A = ε c l                                               Equation 2.2 

A: absorbance; ε: extinction coefficient; c: concentration (mg/ml); l: path length of the 

cuvette (cm) 

 

Table 2.1. Protein standard extinction coefficients. 
Absorbance 
wavelength 

Protein 
Extinction 
Coefficient 

Reference 

290 nm G-actin 0.63 cm-1 (Lehrer and Kerwar 1972) 
280 nm Myosin 0.56 cm-1 (Chock 1979) 

280 nm HMM 0.60 cm-1 (Margossian and Lowey 1982) 
 

2.1.5.2 Protein Assay 
 Concentrations for proteins without published extinction coefficients were 

determined using a Pierce BCA protein assay kit (Quantum Scientific Pty Ltd., 

Paddington, QLD). The method used was as recommended by the manufacturer. A 

standard curve was prepared using known concentrations of bovine serum albumin 
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(BSA). The reagent solution (which produces a colour change in the presence of 

protein) was added to both the standards and samples of unknown concentrations. 

Following an incubation period of 30 minutes at 37oC, the absorbance was measured 

at 562 nm using a Varian Cary 50 Bio spectrophotometer. Ultimately, the unknown 

concentrations were obtained from the standard curve. 

 

2.2 Electrophoresis 
Gel electrophoresis is a powerful analytical technique for assessing the purity 

and content of both protein and DNA samples. The samples are able to move through 

a gel matrix under the influence of an electric field. The rate at which the molecules 

migrate is dependent on their size, shape and charge, as well as the composition and 

the pH of the gel.  

In this project, gel electrophoresis was also used for preparative techniques to 

partially purify molecules prior to use for cloning (Chapter 3) and mass spectrometry 

(Chapter 3). All components required for electrophoresis are listed in Table 2.2.  

 

2.2.1 Agarose Gel Electrophoresis 
 Agarose gels were used to visualise DNA samples. The percentage of agarose 

gel used depended on the size of the DNA fragment of interest and hence, by 

adjusting the concentration of agarose, the pore size of the gel is altered, consequently 

changing the sieving properties of the gel.  

 The rate at which the DNA fragments depends on 3 factors: 

1. size 

Adjust the pore size of the gel by adjusting the concentration of agarose  

2. charge 

DNA has a negatively charged backbone. Generally, this is distributed 

evenly under alkaline conditions, such as in the presence of TAE buffer 

(pH8.0). Thus, the DNA migrates from cathode to anode. 

3. shape 

The conformation of the DNA affects the separation of DNA fragments, 

with supercoiled, linear and nicked circular DNA of the same molecular 

weight migrating at different rates. Supercoiled DNA moves the fastest 

due to its tight packing and smaller hydrodynamic radius and nicked 
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circular runs the slowest having lost all its superhelicity (Thorne 1967, 

Johnson and Grossman 1977). 

 

The appropriate amount of agarose was added to 1 x TAE buffer and the 

agarose/buffer solution was heated until the agarose was completely dissolved. The 

solution was then partially cooled before pouring. Prior to loading, the samples were 

mixed with 6x DNA sample buffer and loaded into the wells of the gel. A standard 

size marker ladder was also loaded to verify the relevant DNA fragment length. The 

gel was run at 80 V in TAE buffer for approximately 1 hour. Lastly, the gel was 

stained with ethidium bromide and visualised under UV illumination.  

 
Table 2.2. Components for SDS-PAGE, native-PAGE and agarose electrophoresis. 
 SDS-PAGE NATIVE-PAGE AGAROSE GELS 

Stacking 
gel 

0.125 M Tris-HCl pH 6.8 
0.1% SDS 
4% acrylamide-bis 

80 mM Tris-HCl, pH 
6.8 
4% acrylamide-bis 

NA 

Separating 
gel 

0.375 M Tris-HCl pH 8.8 
0.1% SDS 
12-15% acrylamide-bis 

80 mM Tris-HCl, pH 
8.8 
10% acrylamide-bis 

1 – 1.5% w/v agarose in 1 
× tank buffer (TAE) 

Sample 
Buffer 

5× 
50 mM Tris-HCl pH 6.8 
2% w/v SDS 
10% glycerol 
5% β-mercaptoethanol 
0.01% w/v bromophenol 
blue 

5× 
0.25 M Tris-HCl, pH 
6.8 
20% glycerol 
0.1% w/v 
bromophenol blue 

6× 
10mM Tris-HCl pH 7.5 
15% Ficoll® 400 
50mM EDTA pH 8.0 
0.4% orange G 
0.03% bromophenol blue 
0.03% xylene cyanol FF 

Tank 
buffer 

 
25 mM Tris, pH 8.3 
0.192 M glycine 
0.1% w/v SDS 

10× 
25 mM Tris, pH 8.6 
0.192 M glycine 
 

TAE 
4 mM Tris-HCl, pH 8.0 
1% v/v acetic acid 
2mM EDTA 

Staining 

Stain (overnight) 
0.1% Coomassie Blue 
R-250 
40% v/v methanol 
10% v/v acetic acid 
Destain (~6 hours) 
40% v/v methanol 
10% v/v acetic acid 

Stain (overnight) 
0.1% Coomassie 
Blue R-250 
40% v/v methanol 
10% v/v acetic acid 
Destain (~6 hours) 
40% v/v methanol 
10% v/v acetic acid 

Stain (30 minutes) 
2mg/L ethidium bromide 
in TAE 
Destain (5 minutes) 
ddH2O 

 



59 
 

 

 

 

2.2.2 SDS-PAGE 
 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) 

separates proteins according to the length of their polypeptide chain, thus according to 

their molecular weights. SDS, being an anionic detergent, binds, solubilises, partially 

unfolds and coats proteins. Therefore the proteins acquire a negative charge 

approximately proportional to their molecular weights. As this negative charge 

(acquired by binding with SDS) is very saturated, the contribution of intrinsic charge 

of the protein to its rate of migration through the gel is negligible.  

 The concentration of acrylamide and its cross-linker, bis-acrylamide, 

determines the pore size of the gel matrix. For low molecular weight proteins, a 15-

17% separating gel was used and for high molecular weight proteins, an 8-12% gel 

was used. A 30% stock solution of acrylamide was diluted to the desired 

concentration and polymerised by the addition of 1% (w/v) ammonium persulphate 

(APS) and 0.2% (v/v) N,N,N’,N’-trimethylethylenediamine (TEMED). 

 In this thesis, all the SDS-PAGE gels used were of a discontinuous type 

(Laemmli 1970), that is, there were different stacking and running gels. The 

acrylamide concentration for the upper stacking gel was 4% and pH 6.8. The pH for 

the lower running/separating gels was 8.8. The difference in pH values creates a 

chloride gradient and sharpens the bands, resulting in better resolution. Gels, 80 mm 

wide and 0.75 mm thick, were cast using the mini-gel caster for the Bio-Rad Mini 

PROTEAN II system (Bio-Rad Laboratories Pty. Ltd., Regents Park, NSW).  

Prior to loading, the samples were mixed with 5 x SDS-reducing buffer 

containing 5% (v/v) β-mercaptoethanol and 2.5% (w/v) SDS. The mixture was boiled 

for 4 minutes to reduce the disulphide bonds. Gels were run at 160 V in electrode 

buffer for approximately 60 minutes or until the bromophenol dye reached the bottom 

of the gel. A standard molecular weight marker set (Promega) was also used to 

estimate the molecular weight of the proteins of interest. 

Gels were stained with 0.1% Coomassie brilliant blue stain in 40% methanol 

and 10% acetic acid for approximately 1 hour and destained using two changes of 

40% ethanol and 10% acetic acid. 
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2.2.3 Native PAGE 
 Native PAGE is run in the absence of SDS and without boiling the samples. 

Consequently, the proteins are not denatured and do not have additional negative 

charge surrounding them. As a result, the mobility of proteins depends not primarily 

on their molecular weights but mainly on the protein’s charge and conformation. In 

this thesis, native-PAGE was used to analyse binding activities in order to not disturb 

the non-covalent interactions between proteins. All components of stacking and 

separating gels, sample buffer and running buffer are listed in Table 2.2. 

 

2.2.4 Gel Documentation 
 Coomassie blue stained protein bands were visualised and photographed under 

transilluminating white light using a UVP GDS 8000 gel documentation system (UVP 

Inc., Cambridge, UK) and an orange filter. The agarose gels were visualised and 

photographed under UV light using the same system.  

 

2.3 Protein Preparation 
2.3.1 Myosin Preparation 
 Myosin was prepared using an adapted method from Margossian and Lowey 

(Margossian and Lowey 1982) and this is outlined in Figure 2.1. The separation of 

myosin from other proteins is achieved by a series of precipitations and 

sedimentations. This method is based on differential solubility of myosin and other 

proteins at different ionic strengths.  

 Briefly, rabbit back muscle (approximately 350 g) taken from male New 

Zealand White rabbits, as described in section 2.1.2, was chilled on ice and minced 

thoroughly. Prior to mincing the muscle, any fat and connective tissue was removed 

and the minced meat was extracted in a high salt buffer with constant stirring and then 

centrifuged at 5,000 x g. The resultant supernatant was then filtered to ensure any 

remaining fat and large lumps of muscle were removed. The filtrate was then 

subjected to a series of precipitations and sedimentations in low salt and resuspended 

in high salt.  In low salt conditions (<0.3 M), myosin is insoluble due to the 

hydrophobic rod region. In salt concentrations similar to physiological conditions 

(~0.15 M), myosin aggregates to form bipolar thick filaments and precipitates out of 

solution. At high salt concentrations (>0.3 M) myosin becomes fully soluble. Finally, 
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myosin was further clarified by centrifuging at 156,000 x g for 2 hours. Purified 

myosin was snap frozen by adding drop-wise into liquid nitrogen and stored at -80oC 

for up to 3 months. The whole procedure was carried out at 4oC. 

 

Remove ~350 g of rabbit back muscle and place on ice for ~10 minutes 

↓ 

Mince the muscle by passing through a meat mincer 

↓ 

Extract the rabbit mince in 3 volumes of solution 1 for 30 minutes on ice with stirring 

↓ 

Centrifuge the homogenate at 5,000 x g for 15 minutes at 4oC 

↓ 

Filter the supernatant though a fine cheese-cloth. Store the pellet at -20oC or perform acetone 

powder preparation immediately (for thin filament proteins) 

↓ 

Precipitate the supernatant by adding 10 volumes of cold H2O and 0.2 mM DTT. Leave to 

stand until the precipitate settles (1-12 hours) 

↓ 

Decant the supernatant 

↓ 

Centrifuge the remainder at 5,000 x g for 15 minutes at 4oC 

↓ 

Completely dissolve the pellet in solution 2 (final [KCl] = 0.4 M) with stirring 

↓ 

Decrease the [KCl] from 0.4 M to 0.28 M by adding water. Stir gently for 

~15 minutes 

↓ 

Centrifuge at 51,000 x g for 30 minutes at 4oC 

↓ 

Add 10 volumes of water to the supernatant 

↓ 

Centrifuge at 5,000 x g for 15 minutes at 4oC 

↓ 

Dissolve the pellet in solution 3 

↓ 

Centrifuge at 156,000 x g for 120 minutes at 4oC 
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↓ 

Snap freeze the myosin by adding drop-wise to liquid N2 and store at -80oC 

 

Solution1: 0.3 M KCl, 0.1 M K-PO4, pH 6.8, 2 mM ATP, 1 mM MgCl2, 0.2 mM DTT and 0.5 

mM PMSF 

Solution 2: 2.4 M KCl, 20 mM K-PO4, pH 6.8, 0.2 mM DTT 

Solution 3: 0.6 mM KCl, 10 mM K-Pyrophosphate pH 7.0, 0.5 mM DTT, 1 mM NaN3 

 

Figure 2.1 Myosin preparation. All steps were carried out at 4oC unless otherwise 
stated. 
 

 

2.3.2 HMM Preparation  
 The heavy meromyosin fragment of myosin was prepared using an adapted 

method from Margossian and Lowey (Margossian and Lowey 1982) and is outlined in 

Figure 2.2.  

 Snap frozen myosin was rapidly defrosted in a 30oC water bath and diluted to 

10 mg/ml in 0.5 M KCl and 50 mM K-PO4 pH 6.5 (solution 1). The diluted myosin 

was then digested with α-chymotrypsin. The digestion process was terminated by 

adding the protease inhibitor PMSF and the solution was then dialysed in a low salt 

buffer (solution 2). During this dialysis, undigested myosin and myosin rod are 

precipitated and digested myosin containing HMM stays in solution. HMM is purified 

by centrifugation at 100,000 x g for 60 minutes at 4oC. HMM is either used 

immediately or is snap frozen in liquid N2 and stored at -80oC for up to 3 months. 
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Rapidly defrost the snap frozen myosin in 30oC water bath 

↓ 

Dilute myosin to 10 mg/ml in 0.5 M KCl and 50 mM K-PO4, pH 6.5 (solution 1) 

↓ 

Digest myosin for 90 seconds with stirring by adding 0.05 mg/ml α-chymotrypsin 

↓ 

Terminate digestion by adding PMSF to 0.5 mM 

↓ 

Dialyse the digested myosin for 24 hours at 4oC in 20 mM KCl, 10 mM K-PO4, pH 7.0, 1.5 

mM DTT with 2 x 1 L changes (solution 2) 

↓ 

Centrifuge at 100,000 x g for 60 minutes at 4oC (supernatant contains HMM) 

↓ 

Snap freeze HMM in liquid N2 and store at -80oC 

 

Figure 2.2 HMM preparation. All steps were carried out at room temperature unless 
otherwise stated. 
 

 

2.3.3 S2 Preparation  
 S2 was prepared using a method adapted from Lowey and Slayter (Lowey, 

Slayter et al. 1969) and this is outlined in Figure 2.3 

 Briefly, HMM was digested with α-chymotrypsin and the reaction was 

terminated by adding PMSF. The protein was precipitated by adding ethanol and then 

pelleted by centrifugation. The pellet was then dissolved in 20 mM K-PO4, pH 6.22 

and dialysed in 20 mM K-PO4, pH 6.22. The solubilised protein was obtained by 

centrifugation (located in supernatant) and dialysed in 20 mM K-acetate, pH 4.5 to 

precipitate the protein of interest. Finally, the desired protein, S2 was pelleted by 

centrifugation and dissolved in 40 mM KCl, 20 mM Tris-HCl, pH 8.0, 0.2 mM DTT, 

0.2 mM CaCl2, 2 mM MgCl2. To further remove contaminants, the dissolved S2 was 

centrifuged one more time. 

Digest HMM for 3.5 minutes by adding 0.05 mg/ml α-chymotrypsin. Gently stir 
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↓ 

Terminate digestion by adding PMSF to 0.5 mM 

↓ 

Precipitate protein by adding 3 volumes of 100 % ethanol 

↓ 

Centrifuge at 15,000 x g for 15 minutes at 4oC 

↓ 

Dissolve the pellet in 20 mM K-PO4, pH 6.2 with stirring for ~3 hours at 4oC (solution 1) 

↓ 

Dialyse in 20 mM K-PO4, pH 6.2 at 4oC overnight (2 x 1 L changes) (solution 2) 

↓ 

Centrifuge at 100,000 x g for 30 minutes at 4oC 

↓ 

Dialyse the supernatant in 20 mM K-acetate buffer, pH 4.5 overnight at 4oC 

(2 x 1 L changes) 

↓ 

Centrifuge at 50,000 x g for 30 minutes at 4oC (pellet contains S2) 

↓ 

Dissolve pellet in 40 mM KCl, 20 mM Tris-HCl, pH 8.0, 0.2 mM DTT, 0.2 mM CaCl2, 2 mM 

MgCl2 with stirring at 4oC for ~1 hour (solution 3) 

↓ 

Centrifuge at 100,000 x g for 30 minutes at 4oC (supernatant contains S2) 

↓ 

Store S2 at -20oC in aliquots 

 

Figure 2.3 S2 preparation. All steps carried out at room temperature unless 
otherwise stated. 
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2.3.4 Acetone Powder Preparation 
 Acetone powder was prepared as described by Carsten and Mommaerts 

(Carsten and Mommaerts 1963) and this is outlined in Figure 2.4. Finely minced 

rabbit back muscle was extracted in high salt solution and filtered though a double 

layer of cheese cloth supported by a 300 mm diameter Buchner funnel. The extract 

was put through several washes and then dehydrated with sequential washes of ice 

cold acetone followed by acetone at room temperature and air dried overnight. Once 

the extract was completely dry, it was blended into a fine powder. Lastly, the powder 

was stored for actin preparation in a sealed container at -20oC for up to 3 months. 

  

Mince ~350 g of rabbit back muscle 

↓ 

Extract in 3 volumes of 0.5 M KCl, 0.15 M K-PO4 buffer, pH 6.4 for 30 minutes 

↓ 

Centrifuge at 6,370 x g for 15 minutes at 4oC 

↓ 

Wash pellet in 5 volumes of 0.4 % sodium HCO3 for 15 minutes at room temperature (x2) 

↓ 

Filter through double cheese cloth 

↓ 

Wash residue in 3 volumes of cold water for 5 seconds 

↓ 

Filter through double cheese cloth 

↓ 

Wash residues in 3 volumes of cold water for 2 hours 

↓ 

Centrifuge at 6,370 x g for 15 minutes at 4oC 

↓ 

Wash pellet in 4 volumes of cold acetone for 5 seconds (x 2) 

↓ 

Filter through double cheese cloth 

↓ 

Wash in 4 volumes of acetone at room temperature for 15 minutes (x 3) 

↓ 
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Filter through double cheese cloth 

↓ 

Air dry overnight at room temperature 

↓ 

Blend at high speed for 20 seconds 

↓ 

Store at -20oC 

 

Figure 2.4 Acetone powder preparation. All steps were carried out at 4oC unless 
otherwise stated 
 

 

2.3.5 Actin Preparation 
 Actin was prepared using the method of Spudich and Watt (Spudich and Watt 

1971) with slight modification (Barden and dos Remedios 1984) and the steps are 

outlined in Figure 2.5. Actin was extracted from acetone powder and centrifuged. The 

supernatant, containing G-actin was then subjected to a 

polymerisation/depolymerisation process. G-actin is polymerised to F-actin by adding 

0.1 M KCl and 4 mM MgCl2. Then F-actin was sedimented by centrifuging at high 

speed. F-actin was again depolymerised into G-actin by homogenising the pellet using 

a Teflon-glass homogeniser and dialysed in G-buffer (2mM Tris pH 8.0, 0.2mM ATP, 

0.2mM CaCl2). Finally, G-actin was clarified by high speed centrifugation to remove 

any polymerised actin and other protein aggregates. The purified G-actin was 

lyophilised and stored at -20oC.  
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Extract 10 g acetone powder in 1 mM Tris, pH 8.0 for 15 minutes 

↓ 

Centrifuge at 31,000 x g for 30 minutes 

↓ 

Take supernatant and add KCl to 0.1 M and MgCl2 to 4 mM. Leave for 1 hour at 25oC 

↓ 

Increase [KCl] to 0.6-0.8 M. Leave for 2 hours at 25oC 

↓ 

Centrifuge at 130,000 x g for 90 minutes at 15oC 

↓ 

Homogenise the pellet in 60 mL of G-buffer 

↓ 

Dialyse against G-buffer overnight (2 x 1 L changes) (x2) 

↓ 

Centrifuge at 130,000 x g for 90 minutes at 4oC 

↓ 

Lyophilise the G-actin and store at -20oC 

 

G-buffer: 2 mM Tris-HCl, pH 8.0, 0.2 mM CaCl2, 0.2 mM ATP, 0.2 mM DTT 

 

Figure 2.5 Actin preparation. All steps were carried out at 4oC unless otherwise 
stated. 
 

2.4 Molecular Biology Methods 
2.4.1 Media Components 
 The required amount of Luria Bertani (LB) broth or Terrific Broth (TB) was 

measured and autoclaved at 1.5 kgf/cm2 for a minimum of 20 minutes at 122oC. Once 

it was cooled to below 50oC, selective media was prepared by adding 

chloramphenicol and ampicillin or kanamycin to 50 µg/mL each.  

 LB-agar plates were prepared by adding 20 g Bacto-agar to 1 L LB media. 

The mixture was then autoclaved. Once, the appropriate antibiotics were added, 

approximately 30 mL of the solution was decanted into sterile petri-dishes. The plates 



68 
 

 

 

were allowed to set at room temperature and dried for 30 minutes at 37oC. The entire 

procedure was carried out in a sterile environment. 

 Super Optimal broth with Catabolite repression (SOC) media containing 

tryptone, yeast extract, NaCl and KCl was also autoclaved. Once it was cooled, filter 

sterilised heat labile ingredients were added. These are MgCl2, MgSO4 and glucose. 

Lastly, the final solution was filtered through a 0.2 µm filter unit and stored as 

aliquots at -20oC. 

 All components required for media and stock solutions are listed in Table 2.3.  

 
Table 2.3. Components of bacterial media and stock solutions used for protein 
preparation 

Bacterial Media & 

Stock Solutions 
Components 

Ampicillin 50 mg/ml in sterile H2O; filter sterilise; store in aliquots at -20oC 

Kanamycin 50 mg/ml in sterile H2O; filter sterilise; store in aliquots at -20oC 

Chloramphenicol 50 mg/ml in sterile H2O; filter sterilise; store in aliquots at -20oC 

LB media 1 L consists of 10 g tryptone, 5 g yeast extract, 5 g NaCl, adjust pH 
with 5 M NaOH; autoclave at 122oC and 1.5 kgf/cm2 for 20 minutes, 
allow to cool before adding antibiotics 

TB Media 
1 L consists of 12 g tryptone, 24 g yeast extract, 4 g proprietary 
carbon source, 12.54 g K2HPO4, 2.31 g KH2PO4; autoclave at 121oC 
and 1.5kgf/cm2 for 20 minutes, allow to cool before adding 
antibiotics 

LB agar LB medium with 20 g/L Bacto-agar; autoclave at and 1.5 kgf/cm2 
for 20 minutes, allow to cool (<50 oC) before adding antibiotics 

SOC media 

100 mL consists of 2 g tryptone, 0.5 g yeast extract, 1 mL of 1M 
NaCL, 0.25 mL 1 M KCl; autoclave at and 1.5 kgf/cm2 for 20 
minutes, allow to cool (<50 oC) before adding 1 mL of 1 M 
MgCl2/1 M MgSO4 and 1 mL 2 M glucose (all filter sterilised 
through 0.2 µm filter unit); store in aliquots at -20 oC 

IPTG 1 M stock consist of 238 mg/ml in sterile H2O; filter sterilise, store 
in aliquots at -20 oC 
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2.4.2. Glycerol Stocks for Storage of Bacteria 
 For long term storage, the bacterial cell lines containing the expression 

plasmids were stored as glycerol stocks at -70oC. Cells were grown overnight in LB 

media with appropriate antibiotics at 30oC with shaking (200 rpm). In a sterile 

cryovial, glycerol was added to the overnight cultures to 15 % v/v. The solution was 

thoroughly mixed, avoiding formation of any air bubbles, and submerged in liquid 

nitrogen for 2 minutes before storage at -70oC. 

 

2.4.3 Primer Design and Synthesis 
In this thesis, primers were used for mutagenesis, cloning into bacterial 

expression vectors and sequencing. The critical elements to consider when designing 

primers are;  
1. Primer length: between 18 to 30 bases 

2. GC content: between 45 to 60 % 

3. Complementary primer sequences: avoid inter-primer homology to prevent primer 

dimer formation 

: avoid intra-primer homology beyond 3 base 

pairs to prevent loop formation 

4. Avoid PolyG and PolyC stretches to prevent non-specific annealing 

5. Avoid PolyA and PolyT as these can lower the efficiency of amplification 

6. Melting temperature: the primer pairs should have similar melting temperature.  

 : the following equation was used to calculate the melting  

temperature 

                                         Tm = 59.9 + 0.41 (%G+C) – 675/length   Eqn 2.3 

: the above formula can be used under standard PCR 

conditions where the Na+ or K+ concentration is 50 mM. 

7. The 3’ terminals were designed to be a G or C residue as this provides a “GC 

clamp” which helps to ensure correct binding at the 3’ end due to stronger hydrogen 

bonding of G/C residues. This was not possible for all the primers used in this thesis 

but maximum effort was made to meet this requirement.  

 All primers used in this thesis were commercially synthesised by GeneWorks 

Pty Ltd (Adelaide, SA) and were desalted following production on a 40 nmole scale. 
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2.4.4 Polymerase Chain Reaction 
 The polymerase chain reaction (PCR) is an extremely useful molecular 

biology technique. It allows amplification of specific regions of a DNA strand from a 

very small amount of DNA in vitro.  

 PCR was cycled 20-40 times through a three-step process of denaturaion, 

annealing and extension. In the first step, denaturation, was performed at 94oC. 

During this step, the hydrogen bonds that connect the two template DNA strands are 

broken. In the second step, annealing is usually performed at 55oC. This temperature 

depends on the melting temperature of the primers. The annealing process allows the 

primers to pair with their complementary sequences on the template DNA. Lastly, 

DNA is synthesised during the extension step at 72oC. Taq polymerase extends 

optimally at 72oC. A sample program is outlined in Table 2.4. 

 

Table 2.4 Basic thermal cycling program for PCR amplification. ^ The annealing 
temperature depended on the melting temperature (TM) of the primers. * The initial 
denaturation time depended on the type of DNA polymerase used. 

STEP TEMPERATURE TIME NUMBER OF 
CYCLES 

Initial denaturation 94oC 45 sec – 10 min* 1 cycle 

Denaturation 

Annealing 

Extension 

94oC 

55oC – 68oC^ 

72oC 

30 seconds 

30 seconds 

2 -5 minutes 

 

20 – 40 cycles 

Final extension 72oC 5 – 7 minutes 1 cycle 

Soak 4oC indefinite  

 

The components required for PCR are outlined in Table 2.5. The components 

are: template DNA, a synthetic primer pair, thermostable DNA polymerase, the four 

deoxyribonucleotides (dNTP), MgCl2, a reaction buffer and nuclease-free water. 

Nuclease-free water was prepared by autoclaving distilled (MilliQ) water at 1.5 

kgf/cm2 for 20 minutes at 121oC. The PCR reaction was set up as outlined in Table 

2.4 in a sterile 0.5 mL microcentrifuge tube. The PCR cycles were controlled using a 

GeneAmp PCR System 9700 machine (P.E. Applied Biosystems). A mineral oil 

overlay, used to prevent evaporation, was not necessary when using this system as it 

has a heated lid. 
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Table 2.5 Reaction volumes and final concentrations for PCR reactions.  

COMPONENT VOLUME FINAL 
CONCENTRATION 

MgCl2 (25 mM) 3 µL 1.5 mM 
10 × reaction buffer (500 mM KCl, 100 
mM Tris-HCl pH 9.0, 1.0% Triton® X-100) 5 µL 1 × 

dNTP mix (10 mM each) 2 µL 400 µM each 
Forward primer (100 ng/µL) 1 µL 2 µM 
Reverse primer (100 ng/µL) 1 µL 2 µM 
DNA polymerase (5 U/µL) 0.5 µL 2.5 U 
Template DNA variable < 0.5 µg 
Nuclease free water to a final volume of 50 µL  
 

2.4.5 Polymerase Chain Reaction Optimisation 
 Since PCR is very sensitive, it is crucial to obtain optimal conditions that take 

into account both specificity and yield. The optimal conditions were achieved by 

manipulating several factors. Decreasing the concentration of MgCl2 or DNA 

polymerase reduces non-specific amplification but decreases product yield. Likewise, 

decreasing the number of cycles and/or increasing the annealing temperature 

increases specificity but may decrease product yield.  

 The annealing temperature depends on the melting temperature (Tm) of the 

primers, which then depends on its length and content. Generally, the annealing 

temperature was 5oC less than the calculated Tm of the primers. However, by starting 

with a higher annealing temperature and reducing it after a number of cycles, 

formation of non-specific products could be reduced without a great reduction in 

yield.  

 The length of extension depends on the length of the target sequence. The 

longer the target sequence, the more time required to synthesise it.  

 Specific optimised PCR protocols are included in the relevant sections. 

 

2.4.6 DNA Sequencing 
 DNA sequencing and analysis of plasmids was performed on an ABI PRISM 

3730 automatic sequencer by the Sydney University and Prince Alfred Hospital 

Macromolecular Analysis Centre (SUPAMAC, N.S.W). Prior to sequencing, plasmids 

were purified from cell lines using the Midi QLA-filter plasmid kit (QIAGEN) 

according to the manufacturer’s instructions. Following the purification, the 
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concentrations of the purified plasmids were determined by UV spectrophotometry as 

described in Section 2.1.4. 

 

2.4.7 Concentration of DNA Samples 
 DNA samples with concentrations less than 0.15 mg/mL were concentrated 

for convenience. Firstly, DNA was mixed with 1/10 volume of 3 M sodium acetate, 

pH 5.2, and then 2.5 volume (calculated after salt addition) of ice-cold 100 % ethanol 

was added. After leaving the mixture at room temperature for 30 minutes, it was 

centrifuged at maximum speed (14,500 rpm) for 20 minutes. The supernatant was 

discarded and the pellet was washed with 1 mL of room temperature 70 % ethanol to 

remove salts and small organic molecules. The mixture was then centrifuged again at 

a maximum speed (14,500 rpm) for 5 minutes. The supernatant was discarded and the 

pellet was dried in a heat block at 90oC for 1 minute. Lastly, the dried pellet was 

dissolved in TE buffer to be stored indefinitely. TE buffer contains 10 mM Tris-HCl, 

pH 7.5 and 1 mM EDTA. 

 

2.4.8 Concentration of protein Samples 
 Protein was concentrated using commercially available Amicon Ultra-15 

Centrifugal Filter Units from Millipore (North Ryde, NSW). The unit concentrates the 

protein by using a filtration membrane to separate molecules of different molecular 

weights. The unit containing the protein to be concentrated was centrifuged in a fixed 

angle rotor at 5000 x g. The time of centrifugation was dependent on the volume and 

molecular weight of the protein. This was determined by using the graph in Figure 

2.6. 

 
Figure 2.6. Centrifugation times for protein concentration. 
(http://www.millipore.com/userguides.nsf/docs/pr01780)  
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2.5 Chromatography 
 Proteins expressed in bacteria were purified using ion exchange.  

 

2.5.1 Ion Exchange Chromatography 
 Ion exchange chromatography separates proteins based on their molecular 

surface charge. This type of chromatography is further subdivided into two types; 

1) cation exchange chromatography: positively charged ions bind to a negatively 

charged resin 

2) anion exchange chromatography: negatively charged ions bind to a positively 

charged resin 

 Once the proteins are bound, they are eluted using a gradient of buffer that 

steadily increases the ionic strength of the buffer. Thus, the various proteins that have 

bound to the resin will be progressively eluted, from the least strongly bound to the 

most strongly bound proteins. The eluted proteins are collected as individual fractions 

and analysed separately. In this thesis, SP-Sepharose, a cation exchange 

chromatography media, was used to purify C1-L and its FHC mutants using BioLogic 

LP chromatography system (Bio-Rad). 
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Chapter 3 

 

Cloning of C1-L of cMyBP-C and its FHC 

Mutants 

 

3.1 Introduction  
 There are many advantages in expressing proteins in vitro. These include: high 

protein yield, ability to generate pure samples, relatively rapid production, 

inexpensive and the most relevant aspect to this thesis is the ease of manipulation of 

the gene sequence. The expression of recombinant protein has allowed the preparation 

of smaller domains or fragments of functional regions of large proteins for subsequent 

analysis. This is particularly useful in preparation of protein for structural and 

functional analyses as there is often an upper limit on the size that can be studied (e.g. 

for NMR). Furthermore, smaller proteins have fewer folding complications and are 

expressed more easily. 

 This chapter describes the preparation of a fragment of cMyBP-C, C1-L and 

its FHC mutants using a recombinant technology. C1-L is composed of one IgI 

domain (C1) joined by a 100 amino acid linker (L). This region is known to contain 

the phosphorylation sites, hence playing an important role in the regulation of cardiac 

muscle contraction. Previously, in this laboratory and in others (Oakley, Hambly et al. 

2004), the entire C1-C2 region has been cloned, expressed and functionally 

characterised. Therefore, comparison of structural and functional analyses of C1-C2 

and C1-L will also form part of this thesis. Additionally, C1-L contains a number of 

residues which, when mutated, have been linked to familial hypertrophic 

cardiomyopathy (FHC). These point mutations are listed in Table 3.1 with the 

phenotypes associated with each mutation (Oakley, Hambly et al. 2004). Once the 
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samples had been prepared, attempts were made to assess their structural and 

functional properties and these are described in the remainder of this thesis.  

 The vector used for the protein expression of all the samples in this thesis was 

a pET3a vector (Novagen). The pET vector system is one of the most powerful 

systems developed for cloning and expression of recombinant proteins in E. coli. The 

vectors are called pET for ‘Plasmid for Expression by T7 RNA polymerase’ and as 

the name suggests, pET vectors use T7 RNA polymerase to direct expression of 

cloned genes and this expression is controlled by a strong bacteriophage T7 promoter. 

T7 RNA polymerase is very specific for T7 promoters and it does no recognise DNA 

from other sources as these promoter sequences are very rare. Also, termination 

signals for T7 RNA polymerase are rare, hence long transcripts can be made without 

premature truncation. The pET-3a vectors are translation vectors (Figure 3.1), that is, 

they contain a highly efficient ribosome binding site from the phage T7 major capsid 

protein and are used for the expression of target genes without their own ribosomal 

binding site. This vector has an ampicillin resistant gene and the vector does not 

incorporate a His-tag into the cloned sequence. The latter is of particular importance 

as extra amino acids can affect the folding, binding and function of native proteins.  

 In order for the pET vector system to work, a source of T7 RNA polymerase 

must be supplied to the cells and in this project, E. coli strain BL21(DE3)pLysS has 

been used. The BL21(DE3) hosts are lysogenic for a fragment of the phage DE3 and 

this fragment contains the lacI gene, the lac UV5 promoter, the start of lacZ 

(β-galactosidase) and the T7 RNA polymerase gene. The lac UV5 promoter is 

responsible for driving the expression of T7 RNA polymerase and this is inducible by 

adding IPTG (isopropyl-β-D-thiogalactoside). BL21(DE3)pLysS contains pLysS 

plasmid, which contains the gene encoding T7 lysozyme. T7 lysozyme minimises the 

background expression level of target genes under the control of the T7 promoter but 

does not interfere with the level of expression achieved following induction with 

IPTG. Another advantage of using E. coli strain BL21(DE3) is that these strains do 

not contain the lon protease and are also deficient in the outer membrane protease, 

OmpT. The lack of these two key proteases reduces degradation of heterologous 

proteins expressed in the strains. 
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Table 3.1. Summary of FHC point mutations in cMyBPC. Table from (Oakley, 
Hambly et al. 2004) 

Region 
(Motif) Mutation Phenotype Reference 

C0 Thr59Ala Mild, elderly onset (Niimura, Patton et al. 2002) 
C1 Asp228Asn Rare form of midventricular 

hypertrophy  
(Andersen, Havndrup et al. 
2001) 

C1 Tyr237Ser Mild hypertrophy (Morner, Richard et al. 2003)  
C1 or 

Linker 1-2 
His257Pro No specific information (Richard, Charron et al. 2003) 

C1 or 
Linker 1-2 

Glu258Lys Delayed onset (Niimura, Bachinski et al. 1998, 
Nanni, Pieroni et al. 2003, 
Girolami, Olivotto et al. 2006) 

Linker 1-2 Gly278Glu No specific information (Richard, Charron et al. 2003) 
Linker 1-2 Gly279Ala No specific information (Richard, Charron et al. 2003) 
Linker 1-2 Arg326Gln Elderly onset. Also seen in 

healthy controls (Jaaskelainen, 
Kuusisto et al. 2002, Niimura, 
Patton et al. 2002) 

(Maron, Niimura et al. 2001, 
Daehmlow, Erdmann et al. 
2002, Morner, Richard et al. 
2003) 

Linker 1-2 Leu352Pro No specific information (Richard, Charron et al. 2003) 
C2 Glu451Gln Delayed onset, incomplete 

penetrance, long life expectancy 
(Niimura, Bachinski et al. 
1998) 

C3 Arg495Gln Delayed onset, incomplete 
penetrance, long life expectancy 

(Niimura, Bachinski et al. 1998, 
Maron, Niimura et al. 2001) 

C3 Arg502Gln 
Arg502Trp 

Delayed onset, incomplete 
penetrance, long life expectancy 

(Niimura, Bachinski et al. 1998, 
Richard, Charron et al. 2003) 

C5 Arg654His Mild hypertrophy, elderly onset (Moolman-Smook, Mayosi et 
al. 1998) 

C5 Arg668His Early onset, one instance of 
sudden death 

(Morner, Richard et al. 2003)  

C5 Asn755Lys Severe (Yu, French et al. 1998) 
C6 Arg810His Mild (Nanni, Pieroni et al. 2003) 
C6 Lys811Arg No specific information (Richard, Charron et al. 2003) 
C6 Arg820Gln Burnt out phase in elderly left 

ventricular dysfunction/dilation 
(Konno, Shimizu et al. 2003, 
Nanni, Pieroni et al. 2003) 

C6 Ala833Val 
Ala833Thr 

Mild hypertrophy, lacks definite 
proof of being disease causing 

(Morner, Richard et al. 2003, 
Richard, Charron et al. 2003) 

C7 Pro873His Mild / moderate (Nanni, Pieroni et al. 2003) 
C7 Val896Met May disease causing or 

modifying (Jaaskelainen, 
Kuusisto et al. 2002, Richard, 
Charron et al. 2003). 

(Moolman-Smook, De Lange et 
al. 1999, Morner, Richard et al. 
2003) 

C7 Asn948Thr Dilated, severe (Daehmlow, Erdmann et al. 
2002) 

C8 Arg1002Gln Mild, elderly onset (Niimura, Patton et al. 2002) 
C10 Ala1194Thr No specific information (Richard, Charron et al. 2003) 
C10 1253 insert 

GGIYVC 
Early onset, one instance of 
sudden death 

(Watkins, Conner et al. 1995) 

C10 Ala1255Thr No specific information (Richard, Charron et al. 2003) 
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Figure 3.1. pET-3a expression vector. The location of the origin of replication (ori), 
ampicillin resistant gene marker (amp), T7 promoter (615-631), T7 tag coding 
sequence (519-551) and T7 terminator (404-450) are shown. The arrow indicates the 
direction of transcription.  
Image modified from http://www.emdbiosciences.com/docs/docs/PROT/TB026.pdf  
 

3.2 Materials and Methods 
3.2.1 Gel Electrophoresis 
 The gel electrophoresis technique used in this chapter is described in Section 

2.2. Agarose gels (1.0 – 2.0%) were used to analyse and purify DNA samples (Section 

2.2.1). 12% discontinuous SDS-PAGE was used to locate the expressed protein and 

also to analyse the purity of expressed and purified proteins (Section 2.2.2). All the 

components of the electrophoresis are outlined in Table 2.2. For both methods, 

molecular weight markers were used to estimate the size of the samples of interest. A 

UVP GDS8000 gel documentation system was used to view the gels (Section 2.2.4) 

and Phoretix 1D Advanced Version 3.01 (Phoretix International) was used to estimate 

the molecular weight of expressed proteins.  

 

3.2.2 Expression Vectors, Bacterial Strain and Enzymes 
The expression vectors used for all cMyBP-C samples in this thesis was the 

pET-3a vector, purchased from Novagen. 
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Initial plasmid transformations of C1-L and its FHC mutants in pET-3a vector 

were carried out in E.coli strains DH5α™ - T1R (Invitrogen) and XL1-Blue 

supercompetent cells (Stratagene), respectively. For protein expression, 

BL21(DE3)pLysS competent cells (Promega) were used for all the samples. 

DNA polymerases PfuUltra HF DNA polymerase and Taq DNA polymerase 

with their 10x reaction buffers were purchased from Stratagene and Invitrogen, 

respectively. DNA methylase with 10 x methylation buffer, T4 DNA ligase with 10 x 

ligase were purchased from Invitrogen. The restriction enzymes NcoI and Dpn I with 

their 10 x digestion buffers were purchased from Roche and Strategene, respectively. 

All media and agar plates were prepared as described in Section 2.4.1. All other 

chemicals were of analytical grade.  

 

3.2.3 Preparation of plasmid C1-L   

3.2.3.1 Selection of Module Boundaries for C1-L  
 cMyBP-C has been predicted to contain a series of domains which are 

homologous to IgI and FnIII motifs (Einheber and Fischman 1990, Weber, Vaughan 

et al. 1993). The protein of interest in this thesis, C1-L, contains the IgI domain C1 

and then a 100 amino acid linker. The appropriate boundary for C1-L was selected 

from a previous analysis of the published sequence of human cMyBP-C (Oakley, 

Hambly et al. 2004) and was found to be from Pro152 to Asp358 . However, the final 

C1-L construct was N and C- terminally extended, as part of the C4-C5 linker was 

shown to be integral to the IgI fold of C5 (Idowu, Gautel et al. 2003). Therefore, the 

C1-L was boundaries were from Thr 145 to Lys 361.  

 

3.2.3.2 cMyBP-C DNA Template 
 C1-linker-C2 (C1-C2) DNA template in pET-3a vector was produced by Dr 

Cecily Oakley (Department of Pathology, University of Sydney) and this template 

was used to produce C1-linker (C1-L). 

 

3.2.3.3 Site Directed Mutagenesis for C1-L 
 C1-L was prepared by inserting a stop codon (TGA) at the end of the linker in 

the C1-C2 construct. A commercially available kit, GeneTailorTM Site-Directed 
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Mutagenesis System (Invitrogen), was used to prepare C1-L and the method used was 

as recommended by the manufacturer. 

 Prior to mutagenesis, C1-C2 plasmid was methylated for 1 hour at 37oC where 

DNA methylase methylates cytosine residues within a specific sequence throughout 

the double-stranded DNA. Then, mutagenesis was performed with the methylated 

plasmid, the forward and reverse mutagenic primers (Table 3.2) and Taq polymerase. 

During this process, it was important to ensure that the primer concentration was 

always in excess of the template, i.e. the methylated plasmid. The primers (Table 3.2) 

were designed as described in Section 2.4.3 with some additional specifications:  

1. primers had an overlapping region at the 5’ ends of 15-20 nucleotides for 

efficient end-joining of the mutagenesis product 

2. the mutation site was located on only one of the primers, downstream from 

and adjacent to the overlapping region 

3. on the mutagenic primer, at least 10 nucleotides downstream of the mutation 

site was ensured for efficient annealing 

An example of primer design is illustrated in Figure 3.2. 

 

    Mutation site 

 

         overlapping region                extended region 
Forward primer 5’                                        TGAGGCGCGATGAGAAGAAGTGAACAGCCTTTCAGAAG 3’ 

Reverse primer 3’    CTCCGAGTTCCCGTACTCCGCGCTACTCTTCTTC 

                         Extended region      overlapping region 

 

Figure 3.2. Primer design of C1L. Adequate overlapping and extended regions were 

incorporated to ensure optimal mutagenesis. 

 

A single PCR cycle was used and this is shown in Table 3.3. 

One of the advantages of using this kit was that there was no need for an in vitro 

digestion step after the mutagenesis reaction to get rid of the methylated DNA 

template. Instead, the DH5α™ - T1R cells used during transformation and 

immediately after the mutagenesis reaction, had an inherent McrBC endonuclease that 

digests the methylated template DNA, leaving only the unmethylated mutated 

product.  



81 

 

 

A mutagenesis control was also performed to test the mutagenesis efficiency. The 

control plasmid (3.4 kb) contains the lacZα gene, whose wild type produces blue 

colonies on plates containing LB + ampicillin (100 µg/ml) + X-gal (400 µg/ml). 

However upon mutagenesis, a Hind III site and stop codon within the lacZα gene is 

produced, hence the stop codon generates a truncated LacZα protein which produces 

white colonies on plates containing X-gal. Finally, the mutagenesis efficiency (ME) 

for the control plasmid was calculated using the following formula: 

ME = number of white colony forming units       × 100 % 
   total number of colony forming units 
 

Lastly, the mutated C1-L DNA was concentrated as described in Section 2.4.7. 

 
 

Table 3.2. Primers for C1-L mutagenesis and sequencing into pET-3a vector. 
 

Primer Sequence (5’ → 3’) 

C1-L forward TGAGGCGCGATGAGAAGAAGTGAACAGCCTTTCAGAAG 

C1-L reverse CTTCTTCTCATCGCGCCTCATGCCCTTGAGCCTC 

Forward sequencing TAATACGACTCACTATAGGG 

Reverse sequencing GCTAGTTATTGCTCAGCGG 

 
 
Table 3.3. PCR cycle for C1-L mutagenesis. 

 

STEP TEMPERATURE TIME NUMBER OF 
CYCLES 

Initial 

denaturation 
94oC 2 min 1 cycle 

Denaturation 

Annealing 

Extension 

94oC 

55oC 

68oC 

30 seconds 

30 seconds 

5 minutes 

 

20 cycles 

Final extension 68oC 10 minutes 1 cycle 

Soak 4oC indefinite  

 

3.2.3.4 Detecting the Presence of the Insert: Restriction Enzyme 
Digest 
 Restriction digestion was carried out by adding 500 ng DNA with the 

appropriate restriction enzyme and its buffer. The final volume was made up to 20 µL 



82 

 

 

using autoclaved ddH2O. The mixture was gently mixed using a pipette and incubated 

at 37oC for 1.5 hours. The samples were analysed on a 1% agarose gel. 

 An appropriate restriction enzyme is one that cuts the prepared DNA but does 

not cut the vector. A list of restriction enzymes that cut the pET-3a vector was 

obtained from their manufacturer. A list of restriction enzymes that cut C1-L was 

obtained by using online software program RestrictionMapper version3 

(http://www.restrictionmapper.org/). 

 C1-L was digested with NcoI. It cuts the sequence CCATGG at its 5’ end. It 

cuts C1-L at position 344 once. 

 

3.2.3.5 Plasmid Constructs Sequencing 
 The DNA sequence for C1-L was confirmed as described in Section 2.4.6. 

Two sequencing reactions were performed for each plasmid, forward and reverse, 

using the sequencing primers for pET3a vector (Table 3.2). Once the mutagenesis had 

been confirmed by sequencing, the C1-L plasmid was transformed into suitable 

competent cells for protein expression as described in Section 3.2.5.1 and glycerol 

stocks were also prepared according to the method in Section 2.4.2. 

 

3.2.4 Preparation of plasmid C1-L FHC mutants 
 Six FHC mutants were created based on disease causing missense mutations 

present in human cMyBP-C (Table 3.1). 

 

3.2.4.1 Primers 
 FHC mutagenic primers were designed with the aid of an online software 

program, http://labtools.strategene.com/QC specifically for use in the QuickChange II 

Site-Directed mutagenesis kit (Strategene). The aspects considered were: 

1. forward and reverse primers were made complementary and contained the 

desired mutation 

2. the mutation was in the middle of the primer, flanked by 10 -17 bases of 

homologous sequence 

3. All FHC mutant primers were designed to have a melting temperature (Tm) of 

78oC – 80oC so that mutagenesis reactions could proceed in parallel 

The FHC mutagenic primers are listed in Table 3.4. 
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Table 3.4. FHC mutagenic primers. The codons in blue indicate the mutations. The 
reverse primers were the reverse-complementary sequence of the forward primers. 

FHC Mutation Primer Sequence 
Asp228Asn Forward  GCTGCACATCACCAATGCCCAGCCTG 
His257Pro Forward CTTCAATCTCACTGTCCCTGAGGCCATGGGCAC 
Gly278Glu Forward CGAGCCTGGCTGAAGGTGGTCGGCG 
Gly279Ala Forward CCTGGCTGGAGCTGGTCGGCGGA 
Arg326Gln Forward GTGGGAGATCCTACAGCAGGCACCCCC 
Leu352Pro Forward GCATGCTAAAGAGGCCCAAGGGCATGAGG 
 

3.2.4.2 PCR Mutagenesis 
 C1-L FHC mutants were prepared by mutagenesis using a QuickChangeII 

Site-Directed Mutagenesis Kit (Strategene), according to the manufacturer’s 

instructions. Each C1-L FHC mutant PCR reaction consisted of: template DNA (30 ng 

of C1-L plasmid in pET3a vector), 125 ng of forward and 125 ng reverse primers 

(Table 3.4), dNTP mix, 10x reaction buffer and 2.5 units of PfuUltra HF DNA 

polymerase (Stratagene). For the PCR mixtures, it was important to ensure that the 

primer concentration was always in excess of the template. The PCR protocol used is 

outlined in Table 3.3. This cycle produced a mutated plasmid containing staggered 

nicks and the extension time (1 minute/kb of plasmid length) was lengthy in order to 

ensure that the whole plasmid was synthesised.  

 Once the PCR cycle was complete, the supercoiled plasmid was then digested 

with 10 units of a restriction enzyme called Dpn I for 60 minutes at 37oC. This step 

digests methylated DNA and ensures the template DNA (which does not contain the 

mutation) is digested and the mutated plasmid (which is not methylated) remains 

intact to be transformed.  

A mutagenesis control was also performed to test the mutagenesis efficiency. The 

control plasmid (pWhitescript 4.5 kb) contained a stop codon in the ß-galactosidase 

gene that converts the stop codon into a glutamine codon. Consequently, the control 

plasmid produced blue colonies on IPTG and X-gal supplemented plates and the 

mutagenesis efficiency (ME) was calculated by the following formula: 

ME = number of blue colony forming units (cfu)      × 100 % 
   total number of colony forming units (cfu) 
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3.2.4.3 Transformation of FHC mutants 
 Upon completion of PCR cycle and restriction enzyme digestion of C1-L 

mutant plasmids, they were transformed into XL1-Blue supercompetent cells 

(Strategene) according to the method described in Section 3.2.5.1.  

 Single colonies obtained from this transformation step were used for plasmid 

purification (Promega), which were then used for plasmid sequencing (Section 

3.2.4.2) 

 

3.2.4.4 Sequencing of FHC mutants 
 The DNA sequence for C1-L FHC mutants was confirmed as described in 

Section 2.4.6. For all mutants, two sequencing reactions were performed for each 

plasmid, forward and reverse, using the sequencing primers for pET3a vector (Table 

3.2). Once the mutagenesis had been confirmed by sequencing, the plasmids were 

transformed into suitable competent cells for protein expression as described in 

Section 3.2.5.1 and glycerol stocks were also prepared according to the method in 

Section 2.4.2. 

 

3.2.5 Protein Expression and Purification of C1-L and its 
FHC mutants 

3.2.5.1 Transformation of Plasmid Constructs into Host Cell Lines 
 Once the desired DNA fragments have been inserted into appropriate vectors, 

the plasmid constructs were transformed into E. coli competent BL21(DE3)pLysS 

(Promega) strain for protein expression. 

Competent cells were thawed on ice and gently mixed by flicking the tube. 

Then either 1-50 ng of DNA or 1 µL of competent cell control DNA was added to 100 

µL of competent cells. The mixture was mixed by gently flicking the tube several 

times and was incubated on ice for 10 minutes. To facilitate the uptake of plasmid 

DNA, the mixture was heat shocked at exactly 42oC for 45 seconds (without shaking) 

and incubated on ice for another 2 minutes. 900 µL of cold (4oC) SOC medium (Table 

2.3) was then added to the transformation reaction and incubated at 37oC for 60 

minutes with shaking (225 rpm). Upon completion, the transformation reaction was 

plated on LB agar plates with ampicillin (50 µg/mL) and incubated overnight at 37oC. 
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Different transformation volumes were plated to ensure well spaced colonies on at 

least one plate. 

 When working with competent cells, extreme care should be taken as these 

cells are highly sensitive to changes in temperature and mechanical lysis caused by 

pipetting. Hence, transformation should be started immediately after thawing the cells 

on ice and the reaction should be mixed by swirling or tapping the tube gently, not by 

pipetting. 

 

3.2.5.2 Growth Media and Chemicals 
 Luria-Bertani (LB) broth and terrific broth powder (TB) were purchased from 

Sigma Aldrich and Mo Bio Laboratories, respectively. Isopropyl-β-D-thiogalactoside 

(IPTG) was purchased from Promega. SP-Sepharose resin for cation exchange 

chromatography was purchased from Pharmacia Biotech and a BioLogic LP 

chromatography system from Bio-Rad was used for chromatography. All other 

chemicals used were of analytical grade. 

 

3.2.5.3 Protein Expression 
 A flamed wire loop was allowed to cool and a loop-full of glycerol stock was 

inoculated into 10 mL of LB broth with ampicillin (50 µg/mL) and chloramphenicol 

(34 µg/mL). This starter culture was grown to saturation (overnight) with shaking 

(250 rpm) at 37oC. The overnight culture was then diluted into 500 mL of pre-warmed 

LB broth without any antibiotics in a 2L conical flask. This mixture was grown at 

37oC with shaking (200 rpm) until the optical density at 600 nm reached an 

absorbance of 0.1 cm-1. Once the appropriate OD600 value has been reached, protein 

expression from the lac promoter/T7 RNA polymerase promoter was induced by 

adding 1 mM IPTG. The culture was grown for another 4 to 5 hours at room 

temperature with shaking (200 rpm). Finally the cells were harvested by 

centrifugation at 6,000 rpm for 10 minutes at 4oC and stored at -20oC. Samples were 

taken from before and after induction and analysed by SDS-PAGE electrophoresis. 

Additionally, a time course after induction was performed. The samples were 

analysed by SDS-PAGE electrophoresis to determine the optimal time for induction 

and protein expression. 
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3.2.5.4 Protein Location  
 The first step in purification of a recombinant protein from bacteria is to 

determine the location within the bacteria where the protein of interest is being 

expressed, that is, within the cytoplasm or within insoluble inclusion bodies. 1 mL of 

cells in LB broth was grown for 4 hours after induction, and then was centrifuged at 

6,000 rpm at 4oC for 10 minutes. The cell pellet was resuspended in 10 mL/g lysis 

buffer (300 mM NaCl, 20 mM Tris-HCl, pH 7.0), followed by sonication for 3 x 10 

second bursts at 10 watts and then left on ice for 30 minutes. The mixture (lysate) was 

again centrifuged at 8,500 rpm at 4oC for 30 minutes. The pellet was dissolved in 1 

mL of 8 M urea, 20 mM Tris-HCl, pH 7.0. Both soluble fraction (supernatant) and 

insoluble fraction (pellet) were analysed by SDS-PAGE electrophoresis.  

 

3.2.5.5 Cell Lysis and Cytoplasm Purification 
 In this project, adequate amounts of C1-L and its FHC mutant proteins were 

present in the cytoplasm for it to be used for purification. 

 The bacterial pellet containing the protein of interest in the cytoplasm was 

thawed and resuspended (10mL/1g of pellet) in buffer A (40 mM NaCl, 1 mM EDTA, 

1 mM DTT, 20 mM Tris-HCl, pH 7.0). The mixture was sonicated for 3 x 10 second 

pulses and incubated on ice for about 30 mins. It was then centrifuged at 8,500 rpm 

for 30 minutes at 4oC. The resulting supernatant contains the soluble protein and was 

therefore applied directly onto an appropriate column to be purified, in this case, SP-

Sepharose cation exchange chromatography with approximately 30 mL in column 

size. 

 Once the lysed total cell protein was bound, it was eluted using a gradient of 

buffer that steadily increases the ionic strength of from 40 mM to 200 mM NaCl. The 

buffers used to achieve the optimal gradient were: 

    Buffer A:  40 mM NaCl, 1 mM EDTA, 1 mM DTT, 20 mM Tris-HCl, pH 7.0 

    Buffer B:  200 mM NaCl, 1 mM EDTA, 1 mM DTT, 20 mM Tris-HCl, pH 7.0 

The protocol used for BioLogic LP chromatography system (Bio-Rad) varied 

according to the sample size but the typical protocol used is outlined in Table 3.5. The 

eluted proteins were collected as individual fractions for analysis by SDS-PAGE 

electrophoresis. Once the program was complete, the column was washed with a high 

salt concentration (1M NaCl) buffer to elute any proteins that were still adhering to 



87 

 

 

the column. These fraction/s were also collected for analysis. Finally, all the fractions 

collected were analysed by 12% SDS-PAGE electrophoresis. 

 
 Table 3.5. Method for C1-L purification. 

 
Volume (mL) Buffer mL/min 

0.00 to 70.00 Buffer A 2.00 

70.00 to 250.00 0 – 100 % Buffer B 2.00 

250.00 to 300.00 Buffer B 2.00 

 

3.2.5.6 Mass Spectrometry  
 The presence of C1-L protein was confirmed by using Matrix-Assisted Laser 

Desorption/Ionisation Time-Of-Flight Mass Spectrometry (MALDI-TOF MS). Mass 

spectrometry reports both the mass and mass to charge ratios of peptides. This work 

was done in collaboration with Mr Alistair Edwards (Australian Proteome Analysis 

Facility, Cordwell Laboratory, Departments of Biochemistry and Pathology, 

University of Sydney).  

 The SDS-PAGE gel band corresponding to the approximate molecular weight 

of C1-L (24,000 Da) was excised and stored in ddH2O until ready to be used. The 

excised band was destained with 25 µL wash buffer (40% acetonitrile, 30 mM 

NH4HCO3) for one hour and dried by vacuum centrifugation for 30 minutes. The 

dried band was then rehydrated in 12 µL 50 mM NH4HCO3 buffer with sequencing 

grade trypsin (12 ng/µL) for one hour at 4oC, and excess trypsin-NH4HCO3 buffer was 

removed. Digestion was continued by adding 15 µL 50 mM NH4HCO3 and incubating 

at 37oC overnight.  

 Peptides were concentrated and desalted by using C18 Zip-Tips (Millipore) and 

the method used was as recommended by the manufacturer. The peptides were 

analysed by MALDI-TOF MS and the peptide mass map was created using an ABI 

QSTAR mass spectrometer (Applied Biosystems). The result was confirmed by 

comparing it with predicted tryptic masses based on the simulated digest of the 

protein. The simulated digest was performed using the online software, PeptideMass 

(http://ca.expasy.org/tools/peptide-mass.html). This program displayed monoisotopic 

masses greater than 500 Da and allows for one missed cleavage. 
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3.3 Results 
3.3.1 Preparation of C1-L and its FHC Mutants 

3.3.1.1 C1-L and its FHC mutatagenic plasmids in pET-3a Vector 
 C1-L was generated using site-directed mutagenesis to insert a stop codon at 

the end of the C1-C2 fragment and the mutagenesis efficiency calculated from its 

control was 99.7 % (calculation below).  

ME = number of white colony forming units    × 100 % 
   total number of colony forming units 
 

= 300 × 100 % 
   301 
  

  =  99.7 % 

  

 From the plates acquired during transformation, several single colonies were 

selected for mini-plasmid preparations. The plasmid achieved from here was 

concentrated and was analysed by 1 % agarose gel (Figure 3.3). The size of C1-L in 

pET-3a vector was 5246 bp. As C1-L was in circular form, it did not migrate 

according to its mass but formed two distinct bands as shown in lanes 2, 4 and 5 in 

Figure 3.3. The top and bottom bands correspond to the nicked circles and supercoiled 

forms, respectively. A negative control was also performed to check for 

contamination (lane 3). Lastly lanes 4 and 5 show the concentrated C1-L.  
 

                               
Figure 3.3 C1-L in pET-3a vector. Lane 1: molecular weight marker. Lane 2: C1-L 
in pET-3a vector before concentration. Lane 3: negative control. Lanes 4 and 5: C1-L 
in pET-3a vector after concentration. 

4000 bp 

2000 bp 

   1            2             3                                4        5 
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 C1-L FHC mutant plasmids were also generated as described in Section 3.2.4. 

The template used here was the correctly inserted C1-L in a pET3a vector and the 

mutagenesis efficiency calculated from mutagenesis control was 99.5% (calculation 

below).  

ME = number of blue colony forming units (cfu)      × 100 % 
   total number of colony forming units (cfu) 
 

  = 430 x 100% 

   432  

 

  =  99.5% 

3.3.1.2 Restriction Enzyme Digest of C1-L with NcoI 
 Restriction enzyme digest of C1-L plasmid with NcoI was performed to 

confirm the presence of C1-L in the pET-3a vector and the samples were run on 1% 

agarose gel (Figure 3.4). The undigested circular C1-L produced two bands, nicked 

circles and supercoiled (lane 1). However, when plasmid C1-L was digested with 

NcoI, there was a shift in the band to 5246 bp (the nicked and supercoiled forms ran 

as one linear form) (lane 2).  

 

                                    
Figure 3.4 Restriction enzyme digest of C1-L with NcoI. Lane 1: undigested C1-L 
Lane 2: digested C1-L 

6 kb 

4 kb 
5 kb 

8 kb 

5, 246 bp 

  1          2 
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3.3.1.3 C1-L and its FHC mutants: DNA Sequencing 
The correct DNA sequence of C1-L and its FHC mutants was confirmed by 

the DNA sequencing method described in Section 2.4.6. The plasmids were prepared 

by selecting several single colonies from the plates acquired during transformation for 

mini-plasmid preparation. At the end of the analysis, an electrophoretogram was 

produced where each peak represents a single base. DNA sequencing for all the 

samples in this thesis was performed using both forward (Figure 3.5a) and reverse 

(Figure 3.5b) sequencing primers. Electrophoretograms generated from both analyses 

confirmed the correct sequence of C1-L and its FHC mutants. An example of 

electrophoretogram generated is shown in Figure 3.5. 
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b) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.5 Electrophoretograms of C1-L with forward (a) and reverse (b) sequencing primers. Both have proven C1-L to consist of the 
correct sequence.
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3.3.1.4 C1-L & its FHC Mutagenic Protein Expression and Location 
Once the C1-L DNA sequence was confirmed, its protein was expressed 

according to the methods described in Section 3.2.5.3 using E.coli BL21(DE3)pLysS 

cells. The Optimisation of this method included a number of aspects: 

1. Induction point 

When C1-L protein was induced at OD600 = 3.0, i.e. at stationary phase, C1-L 

protein (24 kDa) was not expressed. On the contrary, C1-L protein was expressed 

when induced at both OD600 = 0.1 and 0.5 (mid log phase), although when induced at 

OD600 = 0.5, the protein of interest started to degrade faster. Furthermore, when the 

protein was grown overnight after induction, it resulted in degradation of the C1L 

protein. Therefore, the subsequent samples were induced at OD600 = 0.1 and grown 

for 3~4 hours. Figure 3.6 shows expression of C1-L protein at OD600 = 0.1, where C1-

L was successfully expressed but started to degrade when left to grow overnight. 

Protein expression of C1-L FHC mutants yielded similar results. 

 

 
Figure 3.6. Expression of C1-L protein (Total Cell Protein). C1-L protein 
expression is presented in blue box. MW represents molecular weight marker. Lanes 1 
to 7 corresponds to 0, 0.5, 1, 2, 3, 4 hours and overnight samples respectively after 
induction at OD600 = 0.1 with 1 mM IPTG at 37oC. 
 

2. Growth temperature 

 C1-L was left to grow at various temperatures: at room temperature (24oC) 

and at 37oC. Figure 3.7 shows that C1-L was capable of growing at both temperatures. 

1 2 3 6 5 4 M
W 

7 
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Figure 3.7. Expression of C1-L protein at various temperatures. Lanes 1 and 2 
represent before and after induction at room temperature (24oC) respectively. Lanes 3 
and 4 represent before and after induction at 37oC respectively. Protein of interest 
(C1-L) is highlighted in blue box. 
 

3. Location of C1-L protein 

An important issue for the expression of recombinant proteins in bacteria is 

the location of the accumulated expressed protein within the bacteria, either in the 

cytoplasm or within insoluble inclusion bodies. If the expressed protein is 

accumulated substantially within the cytoplasm, there is usually no need to use protein 

denaturants during purification, circumventing the need to consider the use of a re-

folding strategy.  

Prior to purification, the location of C1-L within the bacteria was determined 

as described in Section 3.2.5.4 and then the samples were analysed by 12 % SDS-

PAGE electrophoresis. Figure 3.8 shows that when C1-L protein was grown at room 

temperature (24oC), the majority of the protein was present in supernatant whereas at 

37oC, it was present in both supernatant and pellet.  

Hence, the optimal growth condition for C1-L protein was for it to be induced 

at OD600 = 0.1, grown for 3 ~ 4 hours at room temperature (24oC) and its supernatant 

(obtained after lysis) was used for purification 

 

   1   2  3  4 
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Figure 3.8. Location of C1-L Protein. Lanes 1 and 2 represent pellet and supernatant 
samples respectively grown at room temperature (24oC). Lanes 3 and 4 represent 
pellet and supernatant samples respectively grown at 37oC. Protein of interest (C1-L) 
is highlighted in blue box. Note that pellet contains the insoluble parts of the bacteria, 
mainly the insoluble inclusion bodies whereas the supernatant contains the soluble 
proteins from the cytoplasm.  
 

 Similarly, C1-L FHC mutagenic proteins were expressed using the same 

protocol as for C1-L protein. Its samples were analysed using 12% SDS-PAGE where 

it produced similar outcome to C1-L protein, i.e. all samples were shown to be 

expressed and were present in the soluble fraction in an adequate amount to be used 

for protein purification under the optimal condition described for C1-L protein. 

 

3.3.1.5 C1-L & its FHC mutants: Protein Purification 
C1-L and its FHC mutagenic proteins in the supernatant were purified using 

cation exchange chromatography as described in Section 3.2.5.1. Purification was 

done using BioLogic LP chromatography system (Bio-Rad) and this yielded a 

chromatogram consisting of two readings, conductivity and absorbance. Conductivity 

was measured to monitor the salt gradient and the unit used was milliSiemens per 

centimetre mS/cm where a Siemen is the standard unit for conductivity which is the 

reciprocal of resistance in electrical terms (1/Ohm). Absorbance was measured in 

optical density (OD). Figure 3.9a shows a typical chromatogram obtained during the 

purification. The first peak corresponds to the void peak and this contains part of the 

sample that was not retained by the SP-Sepharose resin. The second peak, which 

shoulders the first, contains DNA and the third peak corresponds to the elution of the 

    1   2 3         4 
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protein of interest, C1-L. At the end of each run, a high salt wash with 1M NaCl was 

performed (Figure 3.9b) to elute any remaining proteins from the column. 

The salt gradient protocol was optimised each time according to the sample 

size to ensure that it began after the void peak and rose steadily until the end of the 

run. The isoelectric point (pI) of the sample determined the pH of the buffer and this 

pI was predicted using its amino acid sequence. Table 3.6. lists the predicted pI, salt 

gradient, pH of the buffer and the approximate salt conductivity at which the protein 

was eluted.  

 

Table 3.6: Ion-exchange purification of C1-L and its FHC mutation constructs.   
The pH and salt conditions used to purify mutants is listed, along with the conductivity 
at which the protein eluted from the column. 

Protein Predicted pI Salt gradient pH Elutes @ 
C1-L 7.78 40 – 200mM 7.0 16 mS/cm 
FHC mutants 
Asp228Asn    D84N 8.48 40 – 200mM 7.0 18 mS/cm 
His257Pro     H113P 7.76 40 – 200mM 7.0 16 mS/cm 
Gly278Glu     G134E 6.97 40 – 200mM 6.5 17 mS/cm 
Gly279Ala      G135A 7.78 40 – 200mM 7.0 16 mS/cm 
Arg326Gln      R182Q 6.97 40 – 200mM 6.5 17 mS/cm 
Leu352Pro      L208P 7.78 40 – 200mM 7.0 16 mS/cm 
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a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 

Figure 3.9. Chromatogram of C1-L. ○S : start of the run, ○M : event marker and ○E : 
end of the run. a) Majority of C1-L was eluted in fraction 7 at 0.2550 O.D and 16.68 
mS/cm. b) chromatogram of salt wash with 1 M NaCl 
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All fractions collected were analysed by 12 % SDS-PAGE and an example of this 

is shown in Figure 3.10. Figure 3.10 shows the purified C1-L protein in fractions 7 

and 8. Lane a contains total cell protein sample of the cell culture after cell lysis, 

before purification. Lanes 1 and 2 contain the run-through from the chromatography 

column. C1-L FHC mutant proteins generated similar outcome to C1-L protein.  

 

 
 

Figure 3.10. Purification of C1-L. Lane a contains total cell protein sample of the 
cell culture after cell lysis, before purification. Lanes 1 and 2 contain the run-through 
from the chromatography column. Purified C1-L protein is represented in lanes 7 and 
8.  
 

3.3.1.6 C1-L Protein Identification by Mass Spectrometry 
 The identity of C1-L protein was confirmed by MALDI-TOF MS with 

sequence coverage of 60 %. The sequence covered by mass spectrometry is 

highlighted in green in Figure 3.11 and the peaks in Figure 3.12 represent peptide 

masses generated by MALDI-TOF MS. The only two peptide masses that cover from 

position 1 (4678.4734: from 1 to 46 and 3418.6769: from 1 to 33) were too large for 

the machine to detect efficiently. Similarly, the peptide masses that cover from 

position 203 to 213 are less than 550. Hence the machine was not able to detect these 

peaks either. 

 
1   MTPGAPDDPI GLFVMRPQDG EVTVGGSITF SARVAGASLL KPPVVKWFKG KWVDLSSKVG  
61  QHLQLHDSYD RASKVYLFEL HITDAQPAFT GSYRCEVSTK DKFDCSNFNL TVHEAMGTGD 
121 LDLLSAFRRT SLAGGGRRIS DSHEDTGILD FSSLLKKRDS FRTPRDSKLE APAEEDVWEI 
181 LRQAPPSEYE RIAFQYGVTD LRGMLKRLKG MRRDEKKS 
 
Figure 3.11. Amino acid sequence of C1-L. Sequences highlighted in green were 
covered by mass spectrometry.

a     1    2     3    4    5     6     7    8     9  10    11     
12  
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Figure 3.12. Tryptic mass/charge ratio of C1-L obtained by MALDI-TOF MS
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3.4 Discussion 
 Fragments of the phosphorylation region of the N-terminus of cMyBP-C (C1-

L and its FHC mutants) were generated successfully by site-directed mutagenesis.  

Initial plasmid transformation of C1-L in a pET-3a vector was carried out in 

E.coli DH5αTM – T1R and there were advantages in selecting this cell. They were 

shown to produce sufficient colonies and generate high plasmid yield. Most 

importantly, use of this cell line made an in vitro digestion step after the mutagenesis 

reaction redundant. This is due to its inherent McrBC endonuclease, where it digests 

the methylated template DNA, leaving only unmethylated, mutated product. FHC 

mutagenic plasmids on the other hand, were initially transformed into XL-1 Blue 

supercompetent cells which did not contain inherent endonuclease. Therefore, an 

extra digestion step with an appropriate restriction enzyme was necessary prior to its 

transformation. Regardless whether or not the cells contained the inherent 

endonuclease, both cells generated the desired plasmids with high mutagenesis 

efficiency (>99 % for both).  

Following mutagenesis, the plasmid DNA was expressed into a bacterial 

expression system, BL21(DE3)pLysS. This system generally provides a higher yield 

of the expressed protein than eukaryotic systems. However, they are unable to make 

post-translational modifications to the expressed proteins, which may interfere with 

the correct folding of the expressed protein. Furthermore, the protein will most likely 

be packaged as insoluble inclusion bodies if the protein is toxic to the cell or large 

quantities are produced. In this work, the protein of interest was initially found to be 

present in inclusion bodies. This meant unfolding of the protein using urea was 

required during the purification step, followed by refolding by slowly decreasing the 

urea concentration to minimise the precipitation. This was not ideal for this project for 

a few reasons – firstly, unfolding and refolding of the protein can interfere with its 

structural analysis (Chapter 5) and secondly, it was not possible to produce high 

enough concentrations of the protein for use in nuclear magnetic resonance (NMR) 

experiment. 

These problems were overcome by inducing the protein at an early mid log 

phase (OD600 = 0.1) and growing at room temperature to maximise the yield in 

soluble form, that is, in cytoplasm. The purification protocol for FHC mutants were 

optimised mostly by trial and error but the buffer pH was predicted by calculating 
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each mutant’s predicted pI. This was to ensure sufficient binding of the protein to the 

column.  

The Novagen pET-3a expression vector used did not have any fusion or 

purification tags. Although this has an advantage of not having to remove the tag, it 

also necessitates the protein identification of the purified product by MALDI-TOF 

mass spectrometry. This identification was a crucial step as functional and structural 

analyses will be performed in subsequent experiments. Mass spectrometry performed 

using the corresponding gel band from SDS-PAGE gels (24kDa and this was the 

major protein in the cell lysates) and the resultant peptide map confirm the identity.  

In conclusion, both the pET3a expression vector and BL21(DE3)pLysS cells 

were proven to be effective in producing C1-L and its FHC mutagenic proteins. The 

desired proteins were present in the soluble form in an adequate amount for the 

structural and functional analyses, which form the rest of this thesis.  
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Binding Studies of 
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Chapter 4 

 

Binding Studies of C1-L and its FHC mutants 

 

4.1 Introduction 
 Myosin binding protein C (MyBP-C) is a thick filament protein and interest in 

it began to rise when researchers found the link between mutations in the gene 

encoding it’s cardiac isoform and familial hypertrophic cardiomyopathy (FHC). Its 

precise tertiary structure and function is not well understood and therefore, little is 

known concerning how the mutations in it lead to the FHC phenotype. 

 MyBP-C has been shown to bind to myosin, actin and titin, however the 

specific binding site(s) remain to be determined. MyBP-C includes an N-terminal 

region, which projects out from the thick filament and is believed to be able to interact 

with both actin and the myosin crossbridge. Of this N-terminal region, domains C1 

and C2 and the motif (linker) region connecting the two domains (collectively 

denoted as C1-C2) are of interest in this thesis. C1-C2 is of special interest as its 

cardiac isoform (related to FHC) contains multiple phosphorylation sites 

(phosphorylates in response to α and ß adrenergic stimulation) and controls S2 

binding, which in turn allows an increase in systolic force. Phosphorylation may also 

regulate actin binding, thus making this region a crucial component of MyBP-C 

function.  

Furthermore, the C2 domain alone has been shown to have minimal capacity 

to bind to actin, raising the question whether the minimum functional unit is the C1 

domain and motif (linker). Numerous confirming and confounding studies have been 

discussed in detail in Sections 1.6.  



104 
 

 

 

 Therefore, C1-linker and its FHC mutants of cMyBP-C were constructed 

(Chapter 3) and experiments presented in this chapter aim to address their in vitro 

functional activities. 

 

4.2 Materials and Methods 
4.2.1 Proteins 
 cMyBP-C C1-L and its FHC mutagenic proteins were expressed and purified 

from the pET3a protein expression vector as described in Chapter 3. 

 Briefly, the cMyBP-C C1-C2 protein was produced from its glycerol stock 

(see Section 2.4.2), which was kindly provided by Dr Cecily Oakley. General protein 

expression and purification steps for C1-L also applied to C1-C2. A starter culture of 

10 mL LB broth with 50 µg/mL ampicillin was inoculated with a bacterial glycerol 

stock scraping and this culture was incubated for 16 hours (overnight) at 37oC with 

shaking (250 rpm). The saturated culture was then diluted in 500 mL TB with 

ampicillin in a 2 L conical flask and was grown at 37oC with shaking (200 rpm) until 

the optical density at 600 nm reached an absorbance of 0.5 – 0.8 cm-1. Once the 

desired optical density was reached, T7 RNA polymerase promoter was induced by 

the addition of 1 mM IPTG. The culture was let to grow for additional 4-5 hours 

before harvesting by centrifugation at 6,000 rpm at 4oC for 20 minutes. The cell pellet 

was stored at -20oC until purification. C1-C2 was purified using the same protocol 

except for the salt gradient concentration, which was from 40 – 150 mM NaCl.  

 Filamentous (F)-actin was prepared from lyophilised (freeze dried) globular 

(G)-actin as described in sections 2.1.3 and 2.3.5. An adequate amount of freeze dried 

G-actin was dissolved (on ice) and dialysed in G-buffer (2 mM Tris, pH 8.0, 0.2 mM 

ATP, 0.2 mM CaCl2) overnight at 4oC. The following day, the solution was clarified 

by high speed centrifugation, 100 000xg at 4oC for 60 minutes and the concentration 

was determined as described in section 2.1.5.1. Lastly, its salt concentration was 

increased to 100 mM KCl and 5 mM MgCl2 to polymerise the G-actin to F-actin.  

 Myosin used in this chapter was prepared by myosin mini-filament preparation 

using the myosin prepared as described in section 2.3.1. The snap frozen myosin balls 

were rapidly defrosted in 30oC water bath and placed on ice. The protein 

concentration was determined by UV/Vis-spectroscopy (section 2.1.5.1) and was 

diluted to 5 mg/mL in a high salt buffer (0.5 M NaCl, 50 mM K-PO4, pH 6.5) and 
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dialysed extensively at 4oC against the co-sedimentation buffer to form mini-

filaments. 

 All proteins used for binding studies were dialysed against the same buffer 

prior to the binding assay and its concentrations were measured by using a BCA 

protein assay (section 2.1.5.2). 

 

4.2.2. Sedimentation Binding 
 Binding studies of cMyBP-C samples with actin or myosin mini-filaments 

were performed using a co-sedimentation assay, where both components were mixed 

in varying molar ratios and incubated at room temperature for 30 minutes to allow 

adequate binding to take place. Following the incubation period, the mixtures were 

then centrifuged at 14,000xg for 30 minutes at 4oC for binding studies with myosin or 

at 100,000xg for 30 minutes at 4oC for binding studies with actin. Pellets were 

dissolved in an equal volume of 8 M urea and finally, both the soluble supernatant and 

the dissolved pellet samples were analysed by 12 % SDS-PAGE. 

 Specifically, a fixed concentration of actin (5 µM) and myosin (7 µM) were 

used in each binding assay sample, to which increasing concentrations of C1-C2 or 

C1-L were added, in the range 0 – 6-fold molar excess for the actin binding studies, 

and 0 – 2-fold molar excess for the myosin binding studies. 

 To quantitate the amount of protein in the gel bands the gels were digitised 

and the bands were quantitated using ImageJ V1.42q software (National Institutes of 

Health, USA). The values obtained for each band were then normalised by the 

molecular weight of the protein, and a molar binding ratio was derived. Additionally, 

the association/dissociation constants were calculated by using GraphPad Prism 

Version 6 using the non-linear fit of saturation binding data module (San Diego, 

USA). 

 

4.3 Results  
4.3.1 Binding Interactions with F-actin 

4.3.1.1 Binding between C1-C2 and F-actin 
The interaction between MyBPC fragments and F-actin has been demonstrated 

using a co-sedimentation assay between F-actin and C1-C2. The different molar ratios 

analysed were C1-C2:actin = 1:0, 0:1, 0.5:1, 1:1 and 2:1 in low ionic strength buffer 
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C1-C2 

(40 mM KCl, 20 mM Tris-HCl, pH 7.0, 1 mM DTT, 1 mM EGTA). Upon 

centrifugation, F-actin is expected to sediment and form a pellet, whereas C1-C2 is 

expected to be present in the supernatant. However, if binding occurs between C1-C2 

and F-actin, C1-C2 will co-sediment with F-actin and thus, be present in the pellet. 

Samples were taken after interaction and were analysed by 12 % SDS-PAGE (Figure 

4.1). 

 As shown in Figure 4.1, all supernatant samples contained C1-C2 (34 kDa), 

except 0:1 sample as this sample did not contain C1-C2. A small proportion of F-actin 

was also present in all supernatant samples that contained F-actin, as not all F-actin 

has sedimented, due to the F-actin critical concentration. All pellet samples, except 

the 1:0 sample, contained F-actin (43 kDa) as expected. Additionally, C1-C2 was 

present in pellet samples, 0.5:1, 1:1 and 2:1. Thus, C1-C2 binds to F-actin. Notably, 

the binding of C1-C2 to F-actin is not stoichiometric, suggesting a low affinity 

interaction. 

 Quantification of the result showed that at a molar ratio of 1:1 65 % of the C1-

C2 remained in the supernatant, consistent with weak binding (Kd = 6.93 ± 0.36  µM).  

 In order to determine the minimum fragment required to bind to F-actin, 

binding studies of F-actin with smaller fragments of C1-C2 were performed as a next 

step. 

 

 
 
 
 
 
Figure 4.1. Binding study of C1-C2 with F-actin. Presence of C1-C2 in pellet with 
F-actin suggests binding interaction between the two proteins. 
 

4.3.1.2 Binding between C1-L and F-actin 
 A sedimentation binding study of C1-L with F-actin was performed using the 

same method described for C1-C2 with F-actin.  

 As shown in Figure 4.2, all supernatant samples contained C1-L (24 kDa), 

except the 0:1 sample as this did not contain C1-L. A small quantity of F-actin was 

F-actin 

  1:0  0:1  0.5:1 1:1   2:1             1:0 0:1  0.5:1  1:1  2:1 
          supernatant                                 pellet 
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also present in all supernatant samples that contained F-actin, as not all F-actin has 

sedimented. 

 All pellet samples, except the 1:0 sample, contained F-actin (43 kDa) as 

expected. Additionally, C1-L was present in pellet samples, 0.5:1, 1:1 and 2:1. Thus, 

C1-L binds to F-actin.  

 Quantification of the result showed that at a molar ratio of 1:1 75 % of the C1-

L remained in the supernatant, consistent with weak binding (Kd = 6.6 ± 0.4 µM). 

This value was very similar to the binding affinity for C1-C2 (Kd = 6.93 ± 0.36 µM). 

 

 
Figure 4.2. Binding study of C1-L with F-actin. Presence of C1-L in pellet with F-
actin suggests binding interaction between the two proteins. 
 

4.3.1.3 Binding between C1-L FHC mutants and F-actin 
 The impact of FHC-causing mutations on cMyBP-C fragment C1-L on F-actin 

binding was studied using a co-sedimentation assay between F-actin and C1-L 

constructs containing various FHC mutations.  

 The binding affinity of the five mutant constructs of C1-L containing FHC 

mutations were determined using the same method as described for C1-L WT. All the 

mutants bound to F-actin, but with a lower affinity than C1-L WT, yielding 

substantially higher Kd values (Figure 4.3 and Table 4.1). Specifically, the Leu352Pro 

mutant bound with a 3 fold lower affinity (Kd = 19.5 ± 0.5  µM), while the other 

mutants bound with affinities between 30 and 50 µM. Examples of the pellet fraction 

showing the binding of mutant C1-L are shown in Figure 4.4. 

1:0  0:1 0.5:1 1:1  2:1       1:0  0:1 0.5:1 1:1  2:1        
 Supernatant   Pellet  

 

F-actin 

C1-L 
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Table 4.1. Kd values of F-actin binding interaction with C1-L and its FHC 
mutants. 

 C1-L Asp228Asn Gly278Glu Gly279Ala Arg326Gln Leu352Pro 

Kd 6.6 38.0 37.1 30.1 47.3 19.5 
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Figure 4.3. Binding curve of C1-L and its FHC mutants to F-actin. All C1-L FHC 
mutants bind to F-actin, but with lower affinity than C1-L WT. 
 
 

 
  
Figure 4.4. Pellet samples of co-sedimentation binding assay of C1-L FHC 
mutant Gly279Ala with F-actin. Lanes 1 to 9 represent a decrease in C1-L over F-
actin. More precisely, the lanes correspond to molar ratios of C1-L Gly279Ala to F-
acin of 6:1, 5:1, 4:1, 3:1, 1:1, 0.5:1, 0:1 and 1:0 respectively. Presence of C1-L 
Gly279Ala in pellet with F-actin suggests binding interaction of the two proteins. 
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4.3.2 Binding Interactions with Myosin 

4.3.2.1 C1-C2 and myosin 
 The binding of C1-C2 to myosin was examined using a centrifugation binding 

assay as described in Section 4.2.4. Myosin molecule concentration was 7 µM. Five 

different molar ratios were examined: C1-C2:myosin = 1:0, 0:1, 0.5:1, 1:1 and 2:1. 

Upon centrifugation, myosin is expected to sediment and form a pellet, whereas C1-

C2 is expected to stay in the supernatant. However, if binding of C1-C2 to myosin 

occurs, C1-C2 will co-sediment with myosin and be present in the pellet. Samples 

were taken for analyses by 12 % SDS-PAGE (Figure 4.5) and quantitation using 

ImageJ software. 

 All supernatant samples contained C1-C2 (34 kDa), except the 0:1 sample, 

where C1-C2 had not been added. Myosin was absent in all supernatant samples 

(Figure 4.5). 

 All pellet samples, except the 1:0 sample, contained myosin (150 kDa), as 

expected. Note that the volume of the pellet samples that were loaded on the gels was 

5 times less than the supernatant samples. Importantly, C1-C2 was present in all pellet 

samples, 0.5:1, 1:1 and 2:1, with the amount of C1-C2 present in the pellet increasing 

in proportion to the loading. Thus, C1-C2 bound to myosin.  

 Figure 4.6 shows the binding curve for C1-C2 binding to myosin. This curve 

yields an affinity constant of Kd = 6.1 ± 0.9  µM. 

 

C1-C2

LC1

LC2

1:0    0:1   0.5:1    1:1      2:1     1:0  0:1  0.5:1          1:1    2:1

Supernatant Pellet

C1-C2

LC1

LC2

1:0    0:1   0.5:1    1:1      2:1     1:0  0:1  0.5:1          1:1    2:1

C1-C2

LC1

LC2

C1-C2

LC1

LC2

1:0    0:1   0.5:1    1:1      2:1     1:0  0:1  0.5:1          1:1    2:1

Supernatant Pellet  
Figure 4.5 Binding assay of C1-C2 with myosin. LC1 denotes myosin light chain 1 
and LC2 denotes myosin light chain 2. The presence of C1-C2 in the pellet suggests 
binding of C1-C2 to myosin. Note: trace of low molecular weight contaminants within 
the dye front are seen in the supernatant. 
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Figure 4.6. Binding curve of C1-L to myosin. C1-C2 binds to myosin with similar 
affinity to C1-L binds to myosin. 

4.3.2.2 C1-L and myosin 
 Binding studies of C1-L with myosin were performed in order to determine 

the minimum construct required for binding with myosin. This binding study was 

performed using the same method as used for C1-C2 with myosin. 

Figure 4.7 shows that myosin was absent in all the supernatant samples. This 

was as expected as myosin sediments upon centrifugation at low ionic strengths. C1-L 

was present in all supernatant samples, except in 0:1 sample as it did not contain 

C1-L.  

Myosin was present in all pellet samples except in the 1:0 as myosin had not 

been added. The pellet was very concentrated, so the band representing myosin heavy 

chain could not be viewed as a single band, but rather as a smear.  Pellets obtained 

from samples that contained both C1-L and myosin (0.5:1, 1:1 and 2:1) contained 

both C1-L and myosin, consistent with C1-L binding to myosin.  

 Interestingly, the light chains of myosin in this gel are well visualised. This gel 

shows that the myosin LC1 (myoLC1) band has a similar density to the C1-L band, 

consistent with the stoichiometry of binding of both C1-L and myoLC1 to the myosin 

heavy chain being similar (their molecular weights are very similar, which facilitates 

comparison).  

 Notably, if C1-L is binding stoichiometrically to the myosin heavy chain, the 

myoLC1 band should be slightly more intense (approximately 30%) than the C1-L 

band. The explanation for this is that myoLC1 binds the myosin heavy chain with a 

stoichiometry of approximately 0.7 (the other 0.3 is contributed by the other essential 

light chain, myoLC3), while we predict that C1-L will bind the myosin heavy chain 
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with a stoichiometry of 0.5, ie since the S2 region of myosin consists of both heavy 

chains, two myosin heavy chains are required for the binding of each C1-L fragment.  

 The densitometry analysis in Figure 4.6 revealed that the strength of the 

interaction between myosin and C1-L (Kd = 23.36 ± 9.2 µM) was similar to C1-C2 

and myosin (Kd = 6.1 ± 0.9  µM). Although the Kd differs by 3 fold, the observation 

that C1-L can bind to myosin tells us that the C2 domain is not essential for the 

interaction between C1-C2 and myosin.  
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Figure 4.7. Binding assay of C1-L with myosin. LC1 denotes myosin light chain 1 
and LC2 denotes myosin light chain 2. The presence of C1-L in the pellet suggests 
binding of C1-L to myosin. 
 

4.4 Discussion 
Our data show that C1-L is able to bind to both actin and myosin with similar, 

affinity to the C1-C2 construct. Both constructs bind with low affinity (~10 µM) to 

both F-actin and myosin. When mutants of C1-L were tested for binding affinity to 

F-actin, all mutants were found to bind with lower affinity than the C1-L WT. Mutant 

C1-L (Leu352Pro) bound to F-actin with an affinity close to WT (3-fold reduction in 
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affinity), while all other C1-L mutants bound to F-actin with affinities close to an 

order of magnitude lower. 

 Similar data were obtained previously for the binding of the full C1-C2 

construct to F-actin (Kd 10.9 µM) (Shaffer, Kensler et al. 2009). The majority of 

mutant C1-C2 constructs bound with much lower affinities to F-actin, with the 

exception of Asp228Asn C1-C2. This contrasts with the data obtained in this study, 

where C1-L (Leu352Pro) [Kd 19.5 µM] was found to bind with an affinity close to WT 

C1-L [Kd 6.6 µM]. On the other hand, Asp228Asn C1-L bound with a substantially 

reduced affinity. 

 The reasons for these differences are unclear. Leu352Pro is located in the linker 

region, close to its C-terminus. It is predicted to be located centrally within an 

α-helical segment. Leu352Pro bound with near normal affinity in the mutant form of 

C1-L, but demonstrated substantially impaired binding in the mutant form of C1-C2. 

The insertion of a Pro residue into an α-helix is highly likely to disrupt helical 

structure, since Pro residues are secondary structure breakers (Chou and Fasman 

1978). The disruption of the predicted α-helix within the linker, located close to the 

C2 domain in the C1-C2 construct, would be likely to disrupt the folding of this part 

of the linker.  On the other hand, it is possible that the absence of the C2 domain in 

the C1-L construct may have allowed this part of the linker to become more 

unstructured, hence reducing the impact of the Leu352Pro mutation on the binding 

configuration of the C1-L structure when binding to F-actin.  

Asp228Asn is located in the C1 domain, in the loop between the E and F 

ß-strands, involving the loss of an acidic residue. This mutation in the C1-C2 

construct had a minimal impact on F-actin binding, but in the C1-L construct, 

Asp228Asn substantially impaired binding. There is no obvious explanation for this 

difference in binding. Notably, Asp228Asn is known to impair binding of C1 to the S2 

region of myosin (Ababou, Rostkova et al. 2008).  

 The four other mutations of C1-L (Gly278Glu, Gly279Ala, Arg326Gln and 

Leu352Pro) are all located within the linker region. With the exception of the 

C-terminally located Leu352Pro, the three other linker mutations bound to F-actin with 

much lower affinity. These data would support the hypothesis that all these residues 

are involved in binding to F-actin, either directly, or by contributing to the overall fold 

of the linker region. Two of these mutations, studied here, Gly278Glu and Gly279Ala 

(Richard, Charron et al. 2003) occur within the conserved, cardiac-specific 
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LAGGGRRIS sequence (Gautel, Zuffardi et al. 1995), and are in close proximity to 

two of the phosphorylation sites (site A - Ser275 and site B - Ser284). The Arg326Gln 

mutation is also located within a predicted α-helix within the linker region, likely to 

be involved in the fold of the linker.  

 Our data also show that the C1-L construct bound to the myosin molecule with 

similar affinity to C1-C2. Unfortunately, time constraints prevented us from further 

investigations into the effects of FHC mutations on this interaction.  

The binding affinity of C1-L to other contractile proteins has only been 

evaluated for the binding of C1-L to F-actin (Shaffer, Kensler et al. 2009, Kensler, 

Shaffer et al. 2011). The affinity constant for the binding of C1-C2 and C1-L to 

F-actin obtained in our study was similar to that obtained previously (Kd 10.9 vs 6.93 

µM for C1-C2 and 8.7 vs 6.6 µM for C1-L) (Shaffer, Kensler et al. 2009). These data 

have led to the conclusion that C2 makes little contribution to the binding of the 

C1-C2 construct to F-actin. However, the capacity of the C1-L to bind to myosin has 

never previously been determined. The data obtained in our study, showing that the 

binding of C1-L is similar to the binding of C1-C2 to myosin, supports the conclusion 

that the C2 domain also makes little contribution to the binding of C1-C2 to myosin. 

 In summary, our data have shown that C1-L is capable of binding to both 

F-actin and myosin with a similar affinity to the full C1-C2 construct, albeit with a 

weak, µmolar affinity. These data are consistent with the hypothesis that the C2 

domain makes little contribution to binding to F-actin or myosin. Additionally, our 

data have shown that FHC mutations result in reduced binding to F-actin, suggesting 

that, at least in part, these mutations may exert their effects on sarcomeric function by 

inhibiting normal physiological interactions with F-actin during the contractile cycle. 

From a physiological point of view, the capacity of the linker region to bind to F-actin 

appears to be sufficiently important that when this fails to take place efficiently the 

resulting stress on the heart is sufficient to cause pathological cardiac hypertrophy.  
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Chapter 5 

Structure Prediction of cMyBP-C C1-L 
 

5.1. Introduction 
 The C1-linker domain of cMyBP-C plays functionally important roles in a 

number of ways. Most importantly, it contains phosphorylatable residues, where the 

phosphorylation of these sites controls the interaction of cMyBP-C with myosin-S2 

and possibly with actin (Shaffer, Kensler et al. 2009). In-depth discussion of the 

functional implications of this domain is presented in Section 1.6.6.  

 Despite the functional importance of the C1-linker domain, its structure 

remains unclear. Therefore, experiments have been conducted by a previous PhD 

candidate in our laboratory, using circular dichroic (CD) spectroscopy, to investigate 

the secondary structure content of the linker region. The results of these experiments 

showed that the linker region contains some α-helix, but is mostly random coil. In 

contrast to our CD data, small-angle X-ray scattering has been interpreted as 

suggesting that the linker domain is compact and has dimensions that are consistent 

with the immunoglobulin fold superfamily of proteins (Jeffries, Whitten et al. 2008). 

Furthermore, these data were further supported by homology modelling, calculated 

using the PHYRE protein structure prediction server. This modelling concluded that 

the amino acid sequence of the linker region fits into an immunoglobulin-like 

predicted structure, where a major characteristic of that structure was the absence of 

any α-helix (Jeffries, Whitten et al. 2008). This inconsistency of data compared to our 

own data led us to attempt our own modelling using an homology approach, where 

there is no bias towards a particular structure.  

 The online homology protein structure prediction program Robetta 

(http://robetta.bakerlab.org/) was used to generate ten different possible models of the 

linker region. Multiple sequence alignment of these ten models is presented in Figure 

5.1, where the locations of α-helix, β-sheet and random coil are coloured in red, blue 
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and grey, respectively. Figure 5.2 shows a collage of the ten structures generated by 

Robetta. Some common features of many of the diverse structures predicted include 

the presence of at least some α-helix in the C-terminal half of the linker (probably at 

least three α-helices), while variable predictions of the N-terminal half of the linker 

have tended to suggest almost any secondary structure, but certainly a significant 

amount of random coil. Therefore, although the homology approach has revealed no 

unique structure, this approach did support the exclusion of an immunoglobulin-like 

structure and demonstrated the consistent presence of several α-helices. Additionally, 

the modelled structures suggested that the N-terminal half of the linker seems to be 

more random than the C-terminal half. While this homology prediction was able to 

provide some constraints to the final structure, in the form of the high likelihood of 

α-helix, the variety of tertiary structures generated propelled us towards attempting to 

use an atomic resolution method to determine the structure, in this case we used 

nuclear magnetic resonance (NMR).  

The aim of this chapter is to gain insight into the tertiary structure of the linker 

region of cMyBPC, by using the C1-L construct described in Chapter 3. The rationale 

for using the C1-L construct was that this construct appears to be the minimum 

construct required for functional binding to F-actin and myosin (see Chapter 4). 

Ideally, NMR spectroscopy is most effective if the minimum sized, functional 

construct is used, since this will reduce the number of resonances in the NMR 

spectrum. Thus, we eliminated the C2 domain. Additionally, we aimed to evaluate the 

binding of C1-L to myosin-S2 (the putative myosin binding site for C1-L) using 

NMR, both to demonstrate specific binding to this region, and to detect any structural 

change that may be induced in C1-L upon myosin-S2 binding. Since our CD data and 

our homology modelling had suggested that the linker region may be poorly 

structured in solution, we hypothesised that binding may stabilise the structure of the 

linker region. 
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Model 1 K F E C S N F N L T V H E A M G T G D L D L L S A F R R T S L A G G G R R L S D S H E D T G L 
Model 2 K F E C S N F N L T V H E A M G T G D L D L L S A F R R T S L A G G G R R L S D S H E D T G L 
Model 3 K F E C S N F N L T V H E A M G T G D L D L L S A F R R T S L A G G G R R L S D S H E D T G L 
Model 4 K F E C S N F N L T V H E A M G T G D L D L L S A F R R T S L A G G G R R L S D S H E D T G L 
Model 5 K F E C S N F N L T V H E A M G T G D L D L L S A F R R T S L A G G G R R L S D S H E D T G L 
Model 6 K F E C S N F N L T V H E A M G T G D L D L L S A F R R T S L A G G G R R L S D S H E D T G L 
Model 7 K F E C S N F N L T V H E A M G T G D L D L L S A F R R T S L A G G G R R L S D S H E D T G L 
Model 8 K F E C S N F N L T V H E A M G T G D L D L L S A F R R T S L A G G G R R L S D S H E D T G L 
Model 9 K F E C S N F N L T V H E A M G T G D L D L L S A F R R T S L A G G G R R L S D S H E D T G L 
Model 10 K F E C S N F N L T V H E A M G T G D L D L L S A F R R T S L A G G G R R L S D S H E D T G L 

 
L D F S S L L K K R D S F R T P R D S K L E A P A E E D V W E L L R Q A P P S E Y E R L A F Q Y G V T D L R 
L D F S S L L K K R D S F R T P R D S K L E A P A E E D V W E L L R Q A P P S E Y E R L A F Q Y G V T D L R 
L D F S S L L K K R D S F R T P R D S K L E A P A E E D V W E L L R Q A P P S E Y E R L A F Q Y G V T D L R 
L D F S S L L K K R D S F R T P R D S K L E A P A E E D V W E L L R Q A P P S E Y E R L A F Q Y G V T D L R 
L D F S S L L K K R D S F R T P R D S K L E A P A E E D V W E L L R Q A P P S E Y E R L A F Q Y G V T D L R 
L D F S S L L K K R D S F R T P R D S K L E A P A E E D V W E L L R Q A P P S E Y E R L A F Q Y G V T D L R 
L D F S S L L K K R D S F R T P R D S K L E A P A E E D V W E L L R Q A P P S E Y E R L A F Q Y G V T D L R 
L D F S S L L K K R D S F R T P R D S K L E A P A E E D V W E L L R Q A P P S E Y E R L A F Q Y G V T D L R 
L D F S S L L K K R D S F R T P R D S K L E A P A E E D V W E L L R Q A P P S E Y E R L A F Q Y G V T D L R 
L D F S S L L K K R D S F R T P R D S K L E A P A E E D V W E L L R Q A P P S E Y E R L A F Q Y G V T D L R 

 
G M L K R L K G M R R 
G M L K R L K G M R R 
G M L K R L K G M R R 
G M L K R L K G M R R 
G M L K R L K G M R R 
G M L K R L K G M R R 
G M L K R L K G M R R 
G M L K R L K G M R R 
G M L K R L K G M R R 
G M L K R L K G M R R 

 
Figure 5.1. Multiple sequence alignment of the linker region based on the ten models. The locations of α-helix, β-sheet and random coil are 
coloured in red, blue and grey, respectively.  
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Figure 5.2. Ten structural models of the linker region between C1 and C2 of 
cMyBP-C. Red = α-helix, blue = ß sheet and grey = random coil. Each model has the 
N-terminal to the left of the picture and the C-terminal to the right. The models were 
produced by Robetta and are displayed in solid ribbon format. 
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5.2. Methods 

5.2.1. Media Components 
 All components of media and stock solutions required for sample preparation 

for NMR are listed in Table 5.1. 

 
Table 5.1. Components of media and stock solutions used for protein preparation 
for NMR. 

Bacterial Media 

& Stock Solutions 
Components 

Ampicillin 50 mg/ml in sterile H2O; filter sterilise; store in aliquots at -20oC 

LB media 
1 L consists of 10 g tryptone, 5 g yeast extract, 5 g NaCl, adjust pH 
with 5 M NaOH; autoclave at 122oC and 1.5 kgf/cm2 for 20 minutes, 
allow to cool before adding antibiotics. 

5x M9 salts 
100 mL consists of 3.39 g Na2HPO4, 1.5 g KH2PO4, 0.25 g NaCl. 
Autoclave at 122oC and 1.5 kgf/cm2 for 20 minutes, allow to cool 
before adding antibiotics. 

Minerals Mixture 2.2 mL consists of 0.1232 g/mL MgSO4, 6.25 mM ZnSO4, 0.25 mM 
FeCl3. Each of these components were filter sterilised. 

100x BME 
Vitamins Solution 

This solution was purchased from Sigma (B6891). This product 
contains (/L): 0.1 g D-Biotin, 0.1 g choline chloride, 0.1 g folic acid, 
0.2 g myo-Inositol, 0.1 g Niacinamide, 0.1 g D-Pantothenic 
Acid•1/2 Ca, 0.1 g Pyridozal.HCl, 0.01 g riboflavin, 0.1 g 
thiamine•HCl, 8.5 g NaCl. 

Minimal Media 

25mL consists of 5mL 5x M9 salts, 5 g/L C13D-glucose, 0.25 mL 
100x BME, 0.1 mL minerals mix, 0.1 mM CaCl2, 1 g/L 15NH4Cl, 50 
µg/mL ampicillin. Each of the components are either autoclaved or 
filter sterilised. 

IPTG 1 M stock consists of 238 mg/ml in sterile H2O; filter sterilise, store 
in aliquots at -20 oC. 
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5.2.2. Protein Preparation 

5.2.2.1. C1-L 
 Starter culture of C1-L was prepared by inoculating C1-L from glycerol stock 

into 5 mL Luria Bertani (LB) media with ampicillin (50 µg/mL) and grown overnight 

at 37oC. 2 mL of the above overnight grown starter culture was then added to 50 mL 

fresh minimal media and was left to grow at 37oC. Once this culture reached 

oversaturation, the whole culture was added to 1 L fresh minimal media and left to 

grow at 37oC until OD600 reached 0.1~0.3. The culture was then induced with 1 mM 

IPTG and left to grow overnight at room temperature. The following morning, the 

cells were harvested by centrifugation at 6,000 rpm for 10 minutes at 4oC. Once the 

cells were harvested, they were resuspended and purified as described in Section 

3.2.5.5. The concentration of protein was measured as described in Section 2.1.5.2. 

 The protein sample was concentrated to desired concentration as described in 

Section 2.4.8.  

 

5.2.2.2. Myosin-S2 
 Myosin-S2 was prepared as described in Section 2.3.3. Myosin-S2 fragment is a 

considerably large fragment with a molecular weight of 60 kDa (Lowey, Slayter et al. 

1969). Additionally, studies have shown that the proximal 126 residues of the myosin-

S2 fragment, close to the lever arm domain of the myosin head is the cMyBP-C 

binding site (Gruen and Gautel 1999). Note that myosin-S2 is not labelled hence it 

will not be seen in the NMR spectrum. 

 

5.2.3. NMR spectroscopy 
 NMR experiments were carried out on samples with protein concentrations of 

at least 100 µM in NMR phosphate buffer (20 mM NaPO4, pH 7.0, 50 mM NaCl, 1 

mM DTT, 1 mM EDTA). Both 15N and 13C15N labelled C1-L protein samples were 

prepared but to date, experiments have only been performed on the 15N sample.  

 A C1-L 2D 1H-15N heteronuclear single quantum coherence (HSQC) spectrum 

was acquired on a 600 MHz spectrometer (700 MHz Bruker at Florida State 

University, USA and 600 MHz Bruker at Macquarie University, Australia) in 

collaboration with Prof Tim Logan (Institute of Molecular Biophysics, Florida State 

University, USA). The samples were analysed for 2.5 hours at 20oC. This experiment 
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provides correlations between the 1H spins and their directly-attached 15N spins of the 

protein backbone. 

 

5.3. Results 

5.3.1 15N and 13C15N labelled C1-L expression and 
purification 
 15N and 13C15N labelled C1-L bacterial growth was initially attempted using 

minimal media for both the starter culture and the final grow-up media. However, it 

was observed that the nutrient in this media was not sufficient to supply growth for 

overnight cultures and this was evident by lack of protein expression shown in 12% 

SDS PAGE. Therefore, LB media was used as the starter culture to maximise the 

growth, then added to a smaller amount of minimal media, followed by addition to the 

larger grow-up media. This was found to provide sufficient nutrient for successful 

protein expression. Figure 5.3 shows successful C1-L protein expression.  

 

 
 
Figure 5.3. Protein expression of 15N & 13C labelled C1-L. MW represents 
molecular weight marker. Lane 0 represents before induction and lanes 1-5 represents 
1, 2, 3, 4 and 5 hours after induction. 
 

 Following successful protein expression, C1-L was purified using a salt 

gradient with cation exchange chromatography. Figure 5.4. shows purified C1-L 

protein in lanes 4,5,6 and 7.  

 

C1-L 

MW  0       1        2       3       4      5 
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Figure 5.4. Purification of 15N & 13C labelled C1-L. Lane labelled a contains C1-
L sample of before purification. Purified C1-L protein is present in lanes 4, 5, 6 and 7. 
 

5.3.2. C1-L NMR spectroscopy 
 Both 15N and 13C15N labelled C1-L protein samples were prepared but to date, 

experiments have only been performed on the 15N sample. We planned to use the 
13C15N labelled C1-L for structure determination, but this was not possible, as 

discussed later in this chapter.   

The C1-linker protein with the 15N labelled was examined using NMR 

spectroscopy. Initially, the sample was examined alone and later, in the presence of 

the S2 fragment of myosin, which is believed to be a binding target of C1-L. The 2D 

HSQC spectra (Figure 5.5) provide correlations between the 1H spins and their 

directly-attached 15N spins of the protein backbone, hence this experiment provides a 

fingerprint of the protein, but not the actual structure. 

 

C1-L NMR 
The 2D HSQC spectrum of C1-L (Figure 5.5) has shown a number of 

findings. 

1. There is excellent chemical shift dispersion and good line-shapes. This 

high chemical shift dispersion is consistent with high β-strand content, 

as expected for the IgI C1 domain.  

2. Wide dispersion suggests that C1 domain is structured and the pattern 

appears to correspond to the published data (Ababou, Zhou et al. 

2004). Published data allows us to make tentative assignments that 

have yet to be confirmed. 

a       1     2     3     4      5      6      7      8      9       10 

C1-L 
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3. Peaks clustered in the middle of the spectrum correspond to 

unstructured peptide, which in this case is the linker region. This is 

supported by published NMR structure of C1 domain (Ababou, Zhou et 

al. 2004), where it lacks this cluster in the middle of the spectrum. 

Hence, we deduce this region to be due to the linker region.      

4. C1 domain does not seem to be interacting with the linker region as the 

identified published dispersed peaks from C1 domain have not been 

shifted. However, not all the peaks corresponding to C1 domain are 

visible as part of these are located in the central region that in our 

spectrum is dominated by the random coil in the linker. 

5. There is a cluster of resonances at approximately 129 ppm in the 15N 

and 8.2 ppm in the 1H dimension. This is indicative of α-helix i.e. 

limited proton shift range and downfield shift in 15N. Since this is not 

seen in the published C1 spectrum and C1 is known to contain no α-

helix (Ababou, Zhou et al. 2004), we predict this α-helix to be located 

in the linker region, consistent with the hypothesis outlined in the 

introduction. The extent of the dispersion indicates that these helices 

are stable, but their interactions may also involve some tertiary contacts 

to stabilise the helices. 

 

C1-L + myosin S2 NMR 
 Addition of the myosin S2 fragment resulted in some clear changes in the 

HSQC spectrum (Figure 5.5). 

1. There were changes to the intensity of peaks. The peak intensity correlates 

with the number of protons of that type and is calculated by integration where 

line width is taken into account. The line width represents the rate of inter-

conversion of conformers i.e. the rate of dynamic change. 

2. There were changes to resonance frequency with some large and small shifts. 

Note these changes are population weighted averages. 

3. The above two changes (intensity and resonance frequency) are consistent 

with interaction between two proteins, where many residues are involved, 

although many of these residues may not be in direct contact. Indeed, the 

largest changes probably correspond to residues that are in direct contact 
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leading to stabilisation of helices. This is evident with more red at the bottom 

of the spectrum. 

4. The larger number of red resonances (C1-L in the presence of S2) and their 

generally greater intensity is consistent with an increase in structure as a 

consequence of myosin S2 binding. This is particularly apparent in the “helical 

region”, since the helix is more dispersed which makes it more visible. 

5. The clustered region in the middle is extremely hard to evaluate and, hence, to 

determine whether there is more random coiled or not.  

6. The cluster of resonance at approximately 121 ppm in the 15N and 7.2 ppm in 

the 1H dimension corresponds to a cluster of arginine (Arg) sidechains. Often 

this cluster is due to the His tag incorporated into the protein, however, C1-L 

does not contain a His tag. It is evident from the spectrum that this cluster of 

Arg sidechains in the C1-L spectrum (black) becomes dramatically dispersed 

on the addition and binding of myosin S2. This result is consistent with a 

significant change in structure and a possible charge interaction between the 

two proteins. 
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Figure 5.5. C1-L 2D 1H-15N HSQC spectra. Black represents C1-L by itself and 
red represents C1-L plus myosin-S2.  
 

5.4. Discussion 
 Our data show that the NMR spectroscopy was able to identify dispersed 

resonances that corresponded well with the published spectrum of the C1 IgI domain. 

However, our NMR spectra had superimposed on them a cluster of poorly dispersed 
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resonances in the centre of the spectrum that were consistent with additional peptide, 

most likely corresponding to the linker region, that contained a substantial proportion 

of random coil. The poor dispersion of many of the resonances precludes their 

specific assignments to amino acids and thus this makes 3-D atomic resolution 

structure determination impossible. Importantly, our NMR spectra also revealed that 

there was a clear α-helical component within C1-L, and since no α-helix occurs within 

the known structure of the C1 IgI domain, this α-helix is almost certainly located 

within the linker region. Nonetheless the structure of the remainder of the linker 

region is unknown, although it is likely to be disordered given the high levels of 

dispersity for many of the remaining residues. Furthermore, when the binding target 

of C1-L, the myosin S2 α-helical coiled-coil was added to C1-L, the NMR spectrum 

revealed that a specific interaction took place, and that the interaction involved Arg 

residues.   

 Structure prediction obtained using the homology approach has shown that 

there are several areas of highly predicted α-helix and the rest of the linker region 

corresponds to no known structure. Since the homology structures obtained were not 

unique, except for the consistently predicted location of α-helices, it is highly likely 

that the linker region is highly disordered and flexible and lacks a globular structure. 

Secondary structure prediction (Figure 5.1) predicts the majority of remaining 

sequence to be random coil. The NMR data we have acquired is consistent with this 

structural interpretation. Additionally, the linker region also appears to have several 

well formed α-helices, interspersed with minimally structured random coil. These data 

contrast with published reports (Jeffries, Whitten et al. 2008) that the linker is a well-

structured modified Ig domain, containing prominent β-sheets and no α-helices. Our 

NMR data show no evidence of β-sheet within the linker. 

 While this thesis was being written a report was published on the use of NMR 

to assess the structure of the linker region alone (we examined the linker plus the C1 

IgI domain in this Chapter) (Howarth, Ramisetti et al. 2012). Our NMR data, which 

shows that the linker region is largely disorganised with some α-helical content, is in 

good agreement with the published data of Howarth et al. (2012), who believe that the 

linker region is divided into two regions: a well folded C-terminal end, containing 

three α-helices and an N-terminal end that is largely disordered and flexible (Figure 

5.6). The three C-terminal α-helices correspond exactly with those predicted by us 

using the Robetta homology structure prediction programme (Figure 5.1).  
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N C

 
 

Figure 5.6. Schematic representation of the cMyBP-C linker region. Arg (R) 
residues that have been implicated in myosin S2 binding are shown. 
 

Additionally, Howarth et al. (2012) believe that the C-terminal end of the 

linker region, containing three α-helices packed into a cluster, has an electrostatic 

surface including the α3 helix containing exposed Arg342, Lys346, Arg347 and Lys349, 

combined with a largely hydrophobic belt around the middle of the structure, due to 

the packing of the helix bundles (Figure 5.6). These findings suggest the possibility of 

both hydrophobic and electrostatic interactions with either neighbouring molecules in 

cMyBP-C or sarcomeric proteins, for example myosin-S2. Of interest is the 

observation that eight out of the ten structures we generated using Robetta (Figure 

5.2) show the three C-terminal helices (α1 – α3) packing into a cluster, similar to the 

cluster seen by Howarth et al. (2012). 

Upon addition of myosin S2 to C1-L, there were changes in both intensity and 

resonance frequency, suggesting the specific interaction between the two proteins. 

Specifically, the resonances for several Arg residues became dispersed upon myosin 

S2 binding, directly implicating these residues in the process of binding, probably as 

part of the binding interface. This finding is supported by recent published data 

(Bhuiyan, Gulick et al. 2012), who have suggested a strong interaction between the 

linker region and myosin-S2. Furthermore, they were able to predict some critical 

residues required for binding, by mutating sets of amino acids to alanine. These 

residues were R266A, R270A, R271A, R279A, R280A, T281A, K298A, K299A and 
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R300A (in the mouse cMyBPC sequence). These charged residues are located in the 

unstructured N-terminal half of the linker region (Figure 5.6). Thus, these Arg 

residues may correspond to the Arg residues identified in our NMR spectra, that 

became dispersed upon myosin S2 binding. Taking these data together, Arg residues 

located in the N-terminal half of the linker region have been identified as being 

involved in myosin S2 binding (Bhuiyan, Gulick et al. 2012), and Arg residues on the 

surface of the C-terminal cluster of α-helices have been identified as being available 

for potential electrostatic interactions with other molecules (Howarth, Ramisetti et al. 

2012). Our NMR data are consistent with these data that propose that electrostatic 

interactions involving Arg residues within the linker region are involved in myosin S2 

binding.  

In conclusion, the NMR studies have demonstrated that the linker region is 

important for the physiological interaction with myosin-S2. Thus, mutations of either 

the linker or myosin-S2 will interfere with this physiological interaction. This is the 

first time that NMR spectroscopy has been used to demonstrate specific binding 

between the linker and myosin-S2.  
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Chapter 6 

Structural and Functional Studies of Cofilin 
 

6.1. Introduction 
 Actin filaments (F-actin) are comprised of actin monomers (G-actin) and play 

many important roles in cellular processes including muscle contraction, cell motility, 

cell division, cytokinesis, vesicle and organelle movement, cell signaling, and the 

establishment and maintenance of cell junctions and cell shape. Actin is discussed in 

more depth in Section 1.3.2.1.  

Cofilin is an actin binding protein that regulates actin polymerisation and 

depolymerisation and is known to play a crucial part in cell division, apoptosis and 

cancer. Although it is known to bind to both globular (G-actin) and filamentous (F-

actin) actin, the exact binding sites and its quaternary structure are still yet to be 

solved. One of the major functions of cofilin is its ability to depolymerise actin 

filaments at the minus end (pointed) and this activity is regulated by various factors, 

including phosphorylation, phosphatidylinositides and pH. Furthermore, cofilin is 

known to sever actin filaments and is involved in nuclear translocation. Cofilin is 

discussed in more depth in Section 1.7. 

One of our ultimate aims is to track cofilin interactions within the cytoplasm 

and the nucleus of cells. This objective has been hampered by our inability to attach 

extrinsic fluorescent probes to cofilin, while retaining the capacity to bind actin. 

Therefore, we aimed to design a cofilin that could be labelled with a fluorescent probe 

and still bind actin. Additionally, such probe sites can be used to elucidate the 

quaternary structure of the actin-cofilin complex. 

The intrinsic Cys residue in cofilin is difficult to label and, after labelling, 

prevents actin binding. Consequently, we have designed several cofilin mutants to 

assess their capacity to bind actin when labelled. Additionally, these cofilin mutants 

have been utilised to investigate the quaternary structure of the actin-cofilin complex. 
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The role of cofilin in actin dynamics within the cell requires that an 

understanding at the molecular level should be determined. However, such an 

understanding is hampered by the lack of a high resolution structure of the complex. 

The most recent structure proposed from high-resolution electron microscopy, 

combined with dynamic molecular simulations has recently been published (Galkin, 

Orlova et al. 2011). We have generated an array of unique spectroscopic probe sites in 

cofilin, which when combined with known unique probe sites in actin, allow us to use 

spectroscopic techniques to measure distances within the quaternary complex, that 

can directly test the model of Galkin et al. (Galkin, Orlova et al. 2011). 

Thus, the aims of this chapter were to: 

1. Use fluorescent spectroscopic techniques to measure distances within the actin-

cofilin quaternary complex to directly test the model of Galkin et al. (Galkin, 

Orlova et al. 2011). Thus, functional cofilin mutants suitable for selective labelling 

with extrinsic fluorescent spectroscopic probes were designed.  

 The mutants generated were: 

i) N6-cys-cofilin: six additional amino acids including a Cys were added at the 

N-terminus 

ii) Cys170 cofilin: four additional amino acids including a Cys were added at 

the C-terminus (C170) 

iii) Cys170 W104 cofilin: Cys at the C-terminus (C170) + only the 1st Trp 

(W104) is present and the 2nd Trp W135 has been mutated to Leu 

iv) Cys170 W135 cofilin: Cys at the C-terminus (C170) + only the 2nd Trp 

(W135) is present and the 1st Trp W104 bas been mutated to Phe 

2. Prior to performing spectroscopic measurements, structure and function of mutants 

were determined by: 

i) Circular Dichroism (CD) spectroscopy to compare the secondary structure 

content of the mutant cofilins to wild-type cofilin 

ii) Perform binding assays to determine the binding status of cofilin mutants to 

actin, both before and after labelling, compared to wild-type cofilin 

The hypothesis was that the inter-molecular distances obtained in the actin-

cofilin quaternary complex, using fluorescence spectroscopy, would correspond 

closely with those seen in the model of Galkin et al. (Galkin, Orlova et al. 2011). 
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6.2. Materials and Methods 
6.2.1. Preparation of actin 
 Actin was prepared as described in Section 2.3.5. 

 

6.2.2. Preparation of Cofilin Mutants 
 Plasmid encoding native cofilin (pCof) was a kind gift from Dr. Takashi 

Obinata (Chiba University, Japan). Recombinant avian embryonic skeletal muscle 

cofilin was prepared as previously described (Chhabra, Nosworthy et al. 2005). 

Purified cofilin was dialysed for 24 h against G-buffer without ATP (2 mM Tris, pH 

8.0, 0.2 mM CaCl2). The final concentration of native cofilin was determined from the 

OD280, where E0.1% = 0.93 cm-1 (Abe, Endo et al. 1990).  

The above native cofilin plasmid, in pGEX-2T vector, was used as a template 

for generating cofilin mutants used in this chapter. Prior to the preparation of the 

mutants, the native cofilin plasmid was amplified using Wizard Plus SV Minipreps 

DNA Purification System (Promega). The protocol was as suggested by the 

manufacturer and the culture used was an overnight LB culture with ampicillin (50 

µg/ml) from fresh colonies obtained by transformation into Bl21(DE3) cells as 

described in section 3.2.5.1. 

 The four cofilin mutants generated were N6-cys-cofilin, Cys170 cofilin, 

Cys170 W104 cofilin and Cys170 W135 cofilin.  For generation of N6-cys-cofilin, six 

additional residues (MACGCA) were cloned onto the N-terminus of native cofilin to 

produce cys-cofilin. N6-cys-cofilin is reported to have a reactive cysteine capable of 

conjugation with a fluorescent dye while retaining its actin-binding activity (Nagaoka, 

Kusano et al. 1995). The additional residues were coded for in the forward primer: 

5’GGAATTCCATATGGCGTGCGGTTGCGCGATGGCTTCTGGAGTAACAGTG 

For PCR amplification of the cDNA fragment for cloning the reverse primer was:  

5’-CGCGGATCCTTATAAGGGTTTTCCTTCAAGTGAAACTAC. The forward 

and reverse primers contained Nde1 and BamH1 restriction sites, respectively. The 

PCR product was treated with Nde1 and BamH1 and inserted into a pET-3c vector 

that was pre-digested with Nde1 and BamH1. Integrity of the construct was confirmed 

by DNA sequencing. The rest of the mutants were all produced by site directed 

mutagenesis using the same method for C1-L preparation as described in section 



133 
 

 

 

3.2.3.3. The primers used for all mutants are listed in table 6.1. Upon completion of 

mutagenesis, the correct DNA sequence was confirmed as described in section 2.4.6. 

 
Table 6.1. Primers for Cofilin mutagenesis and sequencing into pGEX-2T vector. 

 
Primer Sequence (5’ → 3’) 
N6-cys-cofilin forward GGAATTCCATATGGCGTGCGGTTGCGCGATGGCTTCTGGAGTAACAGTG 

N6-cys-cofilin reverse CGCGGATCCTTATAAGGGTTTTCCTTCAAGTGAAACTAC 

Cys170 cofilin forward AGGAAAACCCTTAGCGGGTTGCGCGTAAAAAGACA 

Cys170 cofilin reverse TAAGGGTTTTCCTTCAAGTGAAACTACCACGTTGCC 

Cys170 W104 cofilin 

forward 
CAGGTATTAAACATGAGCTGCAAGTAAATGGTTTGG 

Cys170 W104 cofilin 

reverse 
CCAAACCATTTACTTGCAGCTCATGTTTAATACCTG 

Cys170 W135 cofilin 

forward 
CCTGGTATTTATATTCTTTGCTCCTGAAAGCGCACC 

Cys170 W135 cofilin 

reverse 
GGTGCGCTTTCAGGAGCAAAGAATATAAATACCAGG 

Forward sequencing CGCGTGGATCCATGGCTTCTGGAGTAACAGTGA 

Reverse sequencing AGGAAAACCCTTAGCGGGTTGCGCGTAAAAAGACA 

 

6.2.3. Transformation of Cofilin Mutants 
 Once the correct DNA sequence had been confirmed, the mutants were 

transformed into Escherichia coli (E.coli) BL21(DE3)pLysS cells for protein 

expression and glycerol stocks were prepared for long term storage as described in 

sections 3.2.5.1 and 2.4.2 respectively. 

 

6.2.4. Protein Expression of Cofilin and its Mutants 
 Protein expression of all cofilin samples in this thesis was in E.coli 

BL21(DE3)pLysS cells as a glutathione-S-transferate (GST) fusion protein.  

A flamed wire loop was allowed to cool and a loop-full of glycerol stock was 

inoculated into 10 mL of LB broth with ampicillin (50 µg/mL) and chloramphenicol 

(34 µg/mL). This starter culture was grown to saturation (overnight) with shaking 

(250 rpm) at 37oC. The overnight culture was then diluted into 500 mL of pre-warmed 

LB broth with ampicillin (50 µg/mL) and chloramphenicol (34 µg/mL) in a 2L conical 

flask and was let to grow at 37oC with shaking (200 rpm) until the optical density at 

600 nm reached an absorbance of 0.5 cm-1. Once the appropriate OD600 value had 
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been reached, protein expression from the lac promoter/T7 RNA polymerase 

promoter was induced by adding 1 mM IPTG and the culture was grown for another 4 

to 5 hours at room temperature with shaking (200 rpm). Finally the cells were 

harvested by centrifugation at 6,000 rpm for 10 minutes at 4oC and stored at -20oC. 

Samples were taken from before and after induction and analysed by SDS-PAGE. 

Additionally, time courses after induction were performed. The samples were 

analysed by SDS-PAGE to determine the optimal time for induction and protein 

expression. 

 

6.2.5. Protein Purification of Cofilin and its Mutants 
 The bacterial pellet containing the protein of interest in the cytoplasm was 

thawed and lysed in lysis buffer (50 mM Tris, pH8.0, 1mM EDTA, 0.5 mM PMSF, 1 

mM DTT, 50 mM NaCl, 1 % Triton-X100). The mixture was sonicated for 3 x 10 

second pulses and incubated on ice for about 30 mins. It was then centrifuged at 8,500 

rpm for 30 minutes at 4oC. The resulting supernatant contains the soluble protein and 

was therefore applied directly onto an appropriate column to be purified, in this case, 

glutathione Sepharose 4B column (Sigma). 

 Prior to loading the samples onto the column, the column was sequentially 

washed with three column volumes of Milli Q water, 20mM glutathione in 50 mM 

Tris, 8 M urea and phosphate buffered saline (PBS; 0.15 M NaCl, 2 mM KCl, 10 mM 

PO4, pH 7.4) containing 0.5 mM PMSF and 1.0 mM EDTA. The supernatant was 

applied to the column and washed with three column volumes of thrombin buffer (50 

mM Tris, 2.5 mM CaCl2, 50 mM NaCl, pH 8.0). Following this, thrombin (100 U of 

thrombin/L of culture) was directly added into the column and was incubated at 4oC 

overnight to cleave the GST tag. Finally, cofilin was eluted with two to three volumes 

of thrombin buffer the next day. Throughout the procedure, all the samples were 

collected for analysis using 12% SDS-PAGE gel. The protein concentration was 

measured and concentrated as described in Sections 2.1.5 and 2.4.8, respectively. 

Notably, after thrombin cleavage, two additional residues (G and S) remained at the 

N-terminus, compared to the native structure, but this has a negligible effect on the 

structure and function of cofilin, as demonstrated by subsequent CD and binding 

analysis (Section 6.3.4 – 6.3.8). 
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6.2.6. Fluorescent Labelling of Cofilin mutants and actin 
 Various fluorescent probes were used for this chapter. These include: 

1. IAEDANS (5-({2-[(iodoacetyl) amino] ethyl} amino) naphthalene-1-sulphonic 

acid). The molecular weight of this probe is 434.25 with an extinction coefficient of 

6100 M-1cm-1 at absorption maxima wavelength of 336 nm and a peak emission 

wavelength of 490 nm (Xing and Cheung 1995). 

2. DABMI (4-dimethylaminophenylazophenyl-4'-maleimide). This probe is widely 

used for labelling of Cys sulphydryls. It has a molecular weight of 320.35 and has an 

extinction coefficient of 24,800 M-1cm-1 at an absorption maxima wavelength of 

460nm (Xing and Cheung 1995). 

3. DHNBS (dimethyl (2-hydroxy-5nitrobenzyl) sulphonium bromide). This is a 

chromophoric, water-soluble tryptophan-reactive reagent that does not fluoresce. It 

has a molecular weight of 294.2 and a large extinction coefficient of 18,000 M-1cm-1 

at an absorption maxima wavelength at 410 nm, which makes it an excellent acceptor 

for FRET measurements (Barman and Koshland 1967).  

4. εATP (1,N6-ethenoadenosine 5’-triphosphate). This is an etheno ATP analog that 

can mimic ATP in both binding and function. This probe was used to label the 

nucleotide binding site of G-actin. 

 Table 6.2 shows list of fluorophores with its extinction coefficient and 

absorption maxima wavelength. 

 

Table 6.2. Standard fluorophores’ extinction coefficients and absorption maxima 
wavelengths. 
Fluorophore Absorption maxima Extinction Coefficient Reference 

IAEDANS 336 nm 6,100 M-1cm-1 
(Xing and Cheung 

1995) 

DABMI 460 nm 18,000 M-1cm-1 
(Xing and Cheung 

1995) 

DHNBS 410 nm 24,800 M-1cm-1 
(Barman and 

Koshland 1967) 
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Labelling  N6-cys-cofilin  with IAF 

N6-cys-cofilin was labelled on a cysteine residue by overnight incubation at 

4°C with a three-fold excess of fluorescein conjugated to iodoacetamide (5-IAF). The 

reaction was stopped by addition of DTT to a final concentration of 10 mM. Excess 

label was removed by overnight dialysis against 10 mM Pipes, pH 6.8, 1 mM EDTA, 

1 mM EGTA, followed by passage through a Sephadex G-25 column. The resultant 

IAF-N6-cys-cofilin was dialysed for 24 h against G-buffer without ATP. 

 

Labelling  C170 cofilin  with IAEDANS 

 Prior to labelling, the protein was dialysed against IAEDANS buffer (100 mM 

NaCl, 20 mM Na-PO4, pH 8.0) and IAEDANS was dissolved in either DMF or 

DMSO. Cofilin C170 was then labelled with a 20x molar excess of IAEDANS at 

room temperature for 1.5 hours on a rocker. The reaction was stopped with 1 mM 

DTT and was dialysed exhaustively against appropriate buffers to remove any excess 

fluorophore probes. IAEDANS is a light sensitive fluorophore, hence the labelled 

samples were covered by foil at all times to prevent exposure to light, subsequently 

preventing photobleaching of the fluorophore. 

 

Labelling cys170 W135 cofilin with DHNBS 

 Prior to labelling, the protein was dialysed against DHNBS buffer (100 mM 

NaCl, 20 mM Na-PO4, pH 7.0) and DHNBS was dissolved in ddH2O. Cofilin W104 

was then labelled with a 20x molar excess of DHNBS at room temperature for 10 

minutes on a rocker. The reaction was stopped with 1 mM DTT and was dialysed 

exhaustively against appropriate buffers to remove any excess fluorophore probes.  

 

Labelling G-actin Cys374 with DABMI 

 DTT treated G-actin (incubate G-actin with 10 mM DTT for 4 hours on ice, 

then dialyse against G-buffer) was incubated with a 2 molar excess of DABMI 

overnight at 4oC. Following the incubation, the protein was dialysed exhaustively 

against G-buffer to remove excess probes.  
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Labelling G-actin with IAEDANS 

 Prior to labelling, G-actin was dialysed against G-buffer containing no DTT 

and IAEDANS was dissolved in either DMF or DMSO. G-actin was then polymerised 

to F-actin by adding 50 mM KCl and 2 mM MgCl2 for 1 hour on a rocker. Once the 

actin had been polymerised, it was incubated with a 7 molar excess of IAEDANS at 

room temperature for an hour and the reaction was stopped with 1 mM DTT. The 

solution was centrifuged at 100,000 xg for 90 minutes at 15oC. The pellet, which 

contains F-actin, was dissolved in G-buffer and dialysed exhaustively against 

G-buffer to remove any excess fluorophores. IAEDANS is a light sensitive 

fluorophore, hence the labelled samples were covered by foil at all times to prevent 

exposure to light, subsequently preventing photobleaching of the fluorophore. 

 

Labelling G-actin with εATP 

 Labelling of the nucleotide-binding site of G-actin with εATP was carried out 

as described by Miki et al (Miki, dos Remedios et al. 1987). Free ATP was removed 

from non-labelled G-actin by treating with 0.1 volumes of Dowex-1 by filtration at 

0oC for 10 minutes. Immediately after removing Dowex-1 by filtration, the actin 

solution was incubated with 0.5 mM εATP, 0.1 mM CaCl2 and 1 mM Tris HCl, pH 

8.0 and left overnight at 0oC. This process was repeated again to ensure a complete 

replacement of bound ATP with εATP. Just before fluorescene measurements, free 

εATP were removed by another treatment with Dowex-1. Actin containing εATP was 

used in fluorescence experiments within one day of the final Dowex-1 treatment. 

 

6.2.7. Binding interaction of Cofilin and its mutants with 
actin 

6.2.7.1. Binding interaction of Cofilin and its mutants with G-actin 
Native cofilin and its mutants were incubated with G-actin at room 

temperature for 1 h at equimolar concentration, unless otherwise stated. Upon 

completion of the binding, the samples were analysed by native-PAGE (non-

denaturing gel) according to Section 2.2.3. 
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6.2.7.2. Binding interaction of N6-cys-cofilin with F-actin  
The binding of N6-cys-cofilin to F-actin was examined by ultracentrifugation. 

G-actin (50 µM) was polymerised by addition of 0.1 M KCl and 5 mM MgCl2 for 1 h 

at room temperature.  The resultant F-actin solution was incubated with IAF-cys-

cofilin (70 µM) for 10 min. The F-actin / cys-cofilin mixture was sedimented at 

100,000 × g for 10 min and the resultant pellet was analysed by SDS-PAGE. SDS-

PAGE was performed as described for native-PAGE with two important 

modifications: 1) 0.1% SDS was included in all buffers; and 2) protein samples were 

boiled for 10 minutes prior to electrophoresis. IAF-cys-cofilin was immediately 

visualised following electrophoresis using a UV-302 nm transilluminator (UVItec 

Limited, Cambridge, England). This was followed by Coomassie blue staining as 

described above. 

 

6.2.8. Circular Dichroism (CD) Spectroscopy 
Samples were prepared for CD spectroscopy by dialysis for 48 h at 4°C 

against CD buffer (10 mM Na-PO4, pH 7.0, 30 mM NaF) with a change in dialysate 

after 24 h. Samples were diluted to 0.1 mg ml-1 in CD buffer and analysed using a 

Jasco J-720 CD spectropolarimeter (Jasco, Tokyo, Japan) calibrated with a known 

ammonium-D-camphor-10-sulphonic acid (CDA) reference standard. Protein samples 

were analysed in a 0.1 cm pathlength quartz cuvette, using a temperature regulated 

cuvette holder in a N2 atmosphere. Four samples were collected over the range 260-

190 nm using the following spectral parameters: resolution 0.2 nm, band width 1 nm, 

sensitivity 10 mdeg, response time 1 s and scan rate 20 nm min-1. 

Mean residue weight ellipticity (MRE) was calculated from raw ellipticity 

values using the following equation: 

[θ]MRE =  ([θ] × 100 × MRW) / c × d 

Where [θ] is the baseline corrected ellipticity, MRW is the mean residue weight, c is 

the concentration of protein in mg ml-1, and d is the optical pathlength in cm. [θ]MRE 

has the units 10-3  × deg cm2 dmol-1. CD spectra were de-convoluted using CDSSTR, 

an online circular dichroism analysis program available from DichroWeb Department 

of Crystallography, University of London http://www.cryst.bbk.ac.uk/cdweb/html/ 

home.html (Whitmore and Wallace 2004). Reference data set #4, incorporating 43 

known protein spectra was used as it covered the relevant wavelength range 
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(Provencher and Glockner 1981, Pancoska and Keiderling 1991, Bonne, Carrier et al. 

1995, Sreerama, Venyaminov et al. 1999).  

 

6.2.9. Fluorescence Resonance Energy Transfer (FRET) 
Spectroscopy  
 FRET is a biophysical measurement that can be used to convert fluorescence 

measurements into distances. This method requires two probes: a donor and an 

acceptor, attached to specific loci on the molecule. Once the probes are attached, 

fluorescence occurs when the excited donor transfers some of its energy to the 

acceptor, which then emits energy at its own emission wavelength.  

 FRET experiments in this chapter were performed using Shimazu UV3600 

steady-state photon counting fluorimeter, operated in the ratio mode. Samples were 

placed in 1 cm path quartz cuvettes at a concentration of 10 µM. The fluorescence 

emission spectra were recorded from 350 nm to 600 nm. The transfer of energy or 

quench was monitored at the emission maxima for each of the respective donor 

probes listed in Table 6.3. The emission spectra were plotted using Jandel Sigmaplot 

(V. 5.0). R0 is the distance that corresponds to 50% quench of the donor fluorescence 

by the acceptor molecule. R0values used were obtained from published data (Table 

6.3), except for the probe pair ε-ATP and HNB. The overlap intergral for the probe 

pair ε-ATP – HNB was calculated from our absorption spectrum of HNB bound to 

cofilin and our fluorescence emission spectrum of ε-ATP bound to actin. The 

quantum yield (FD) of G-actin labelled with ε-ATP was taken to be 0.8 (Miki, dos 

Remedios et al. 1987, Shaffer, Kensler et al. 2009). The overlap intergral was 

calculated as previously described (Palm, Sale et al. 1999). 
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Table 6.3. FRET spectroscopy parameters for probe pairs used. 

Donor/ acceptor pairs 
label sites Probe 

Excitation 
maxima 
(Ex λ) 

Emission 
maxima 
(Em λ) 

Ro Reference  

Cof W104  (Donor) Intrinsic W 280 340 24.2 (Boey, Huang et al. 1994) Cof  C170  (Acceptor) IAEDANS   
 
Cof  C170  (Donor) IAEDANS 340 470 28.4 (Boey, Huang et al. 1994) Cof W104  (Acceptor) HNB   
 
Cof  C170  (Donor) IAEDANS 340 470 

38 (Palm, Sale et al. 1999) G-actin C374  (Acceptor) DABMI   
 
G-actin C374  (Donor) IAEDANS 340 470 28.4 (Boey, Huang et al. 1994) Cof W104  (Acceptor) HNB   
 
G-actin ATP  (Donor) ε-ATP 340 470 37.6 N/A (calculated by the 

author) Cof W104  (Acceptor) HNB   
 

6.3. Results 
6.3.1. Cofilin Mutants: DNA Sequencing 
 The correct DNA sequence of cofilin mutants was confirmed by the DNA 

sequencing method described in section 2.4.6. This DNA sequencing confirmed 

successful mutagenesis. 

 

6.3.2. Protein Expression 
 Once the DNA sequence was confirmed, its protein was expressed according 

to the method described in Section 6.2.4. Post-induction samples were taken at 

various time points to optimise the protein expression. These samples were then 

analysed using SDS-PAGE and an example is shown in Figure 6.1. Figure 6.1 shows 

an example of expression of native cofilin protein at various time points post-

induction. The first lane contains molecular weight marker (MW) with the various 

weight markers labelled, then 0-4 represents number of hours after induction with 

IPTG. The cofilin is expressed as a fusion protein with GST, hence a molecular 

weight of approximately 47 kDa. The most intense band of cofilin protein expression 

was at 4 hours post induction, thus representing the optimal cofilin protein expression. 

Gels of other mutants showed similar expression profiles. 
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Figure 6.1. Expression of native cofilin. MW represents molecular weight marker 
with various molecular sizes labelled. Lanes 0-4 contain total cell protein samples 
taken at 0, 1, 2, 3 and 4 hours, respectively, post-induction of native cofilin. The most 
strongly expressed native cofilin protein (~47 kDa) is shown at 4 hours post-
induction.   
 

6.3.3. Protein Purification 
 All expressed cofilin samples, including native and its mutants were purified 

using a glutathione Sepharose 4B column, as described in Section 6.2.5. Samples 

were taken at various points for analysis using SDS-PAGE and an example of this is 

presented in Figure 6.2, with purified native cofilin labelled (lanes 5 and 6). 

Purification of other cofilin mutants generated a similar outcome. 

 

 
Figure 6.2. Purification of native cofilin. MW represents molecular weight markers. 
Lane 1 represents native cofilin protein sample before purification. Lane 2 contains 
run-through of the column. Lanes 3, 4, 7 and 8 represent samples obtained during 
wash phase of the column and lanes 5 and 6 shows the purified native cofilin protein 
(20 kDa). 

25 kDa 

15 kDa 

GST tagged cofilin 

MW         1            2          3            4             5            6           7          8 
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6.3.4. Analysis of interaction between N6-cys-cofilin and G-
actin 

Native gel electrophoresis was used to determine the binding of native and 

mutant analogues of cofilin to G-actin. The advantage of using native gel 

electrophoresis is that the protein samples are not denatured, and hence when a 

protein complex is formed, the protein complex remains intact. The disadvantage of 

using native gel electrophoresis is that the direction and extent of migration of 

individual proteins and protein complexes is dependent on the net positive or negative 

charge of the complex under the running buffer conditions of the gel, in addition to its 

overall size. Thus, it can be difficult to predict the migration of a particular protein, so 

consequently the actual migration of a particular protein often has to be observed 

empirically.  

Figure 6.3 shows a polyacrylamide gel run under non-denaturing conditions 

demonstrating the interactions of actin with native cofilin and with N6-cys-cofilin. 

Lane 1 contains 150 picomoles actin. Monomeric actin is seen as an intensely stained 

band running near the bottom of the gel. A small number of lighter staining bands are 

seen running above the G-actin band, probably corresponding to short oligomers of 

actin. Lane 2 contains 110 picomoles native cofilin. Due to the high isoelectric point 

of cofilin (≈ 8.0), the protein possesses a low net charge under the running conditions 

(pH = 8.3). Consequently, cofilin migrated relatively slowly and is seen as a light-

staining band near the top of the gel. Lane 3 contains 70 picomoles N6-cys-cofilin. 

The addition of six residues at the N-terminus of cofilin has resulted in a slight shift in 

its migration. N6-cys-cofilin is observed as a light-staining band running slightly 

above native cofilin. Lane 4 contains a mixture of G-actin (150 picomoles) and native 

cofilin (110 picomoles). This results in formation of a new, intensely stained band 

comprising the native cofilin-actin complex. This correlates with removal of the 

isolated native cofilin band. Lane 5 contains a mixture of actin (150 picomoles) and 

N6-cys-cofilin (70 picomoles). The bands in this lane correspond to the sum of bands 

in lanes 1 and 3. In other words, no new bands are formed and no existing bands 

removed suggesting that monomeric actin and N6-cys-cofilin do not participate in 

formation of a complex. Lane 6 contains a mixture of actin (150 picomoles), native 

cofilin (110 picomoles) and N6-cys-cofilin (70 picomoles). The presence of N6-cys-

cofilin has no effect on the interaction between actin and native cofilin.  
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Figure 6.3. Non-denaturing polyacrylamide gel showing the interaction between 
G-actin, native cofilin and/or N6-cys-cofilin. Lane 1: actin (150 picomoles); Lane 2: native 
cofilin (110 picomoles); Lane 3: N6-cys-cofilin (70 picomoles); Lane 4: G-actin (150 picomoles) plus 
native cofilin (110 picomoles); Lane 5: actin (150 picomoles) plus N6-cys-cofilin (70 picomoles); Lane 
6: actin (150 picomoles) plus native cofilin (110 picomoles) plus N6-cys-cofilin (70 picomoles). 
Electrophoresed at pH 8.3; stained with Coomassie Blue. 
 

6.3.5. Analysis of interaction between N6-cys-cofilin and F-
actin 

Figure 6.4 shows a co-sedimentation assay of F-actin and IAF-N6-cys-cofilin upon (A) 

Coomassie blue staining and (B) UV transillumination. Panel A shows the migration of molecular 

weight standards (lane 1) and total protein in the pellet (lane 2); Panel B shows the presence of IAF-

N6-cys-cofilin in the pellet. Co-sedimentation of F-actin and IAF-N6-cys-cofilin demonstrates the 

capacity of IAF-N6-cys-cofilin to bind to actin in its filamentous form. 

 



144 
 

 

 

20

24
29

36

45

55

66

MW (kDa)

cys-cofilin

actin

MW 
markers

F-actin +
IAF-cys-cofilin

Panel A:
Coomassie stained

Panel B:
UV transillumination

MW 
markers

F-actin +
IAF-cys-cofilin  

Figure 6.4. Co-sedimentation assay of F-actin and IAF-N6-cys-cofilin. Panel A: 
Coomassie blue staining; Lane 1: Molecular weight standards; Lane 2 total protein pellet after 
centrifugation of a mixture of F-actin and IAF-N6-cys-cofilin; Panel B: UV transillumination; Lanes 
are the same as in Panel A.  
 

6.3.6 Circular dichroic spectroscopy of native and N6-cys-
cofilin 

The secondary structures of native cofilin and N6-cys-cofilin were 

investigated by circular dichroism (CD) spectroscopy. 

The CD spectrum of native cofilin (Figure 6.5 – green trace) suggests the 

presence of both α-helical and β-strand contents. The negative intensities at 208 nm 

and 217 nm are indicative of α-helix and β-strand, respectively. The positive intensity 

at 193 nm is due to the presence of both α-helix (maximum intensity at 190 nm) and 

β-strand (maximum intensity at 195 nm). Upon de-convolution, the spectra yields 

13% α-helix, 32% β-strand, 26% turns and 29% random coil with root mean square 

deviation (RMSD) of 0.069, where values less than 0.1 are considered reliable 

(Whitmore and Wallace 2004).   
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Figure 6.5. CD spectroscopy of native cofilin and N6-cys-cofilin. Green trace 
represents native cofilin and red trace represents N6-cys-cofilin.  
 

The secondary structural content of N6-cys-cofilin was investigated in a 

similar manner (Figure 6.5 – red trace). When compared to the native cofilin 

spectrum, there is an increase in negative mean residue ellipticity at 220 nm, 

suggesting an increase in α-helical content for N6-cys-cofilin (58% compared to 

13%). Likewise, an increase in positive mean residue ellipticity at 193 nm suggests an 

increase in the sum of α-helical and β-strand contents (77% compared to 45%). Upon 

de-convolution, the N6-cys-cofilin spectrum yields 56% α-helix, 21% β-strand, 2% 

turns and 20% random coil with RMSD of 0.002.  

 

6.3.7. Binding Interactions between cofilin mutants and G-
actin 

Native gel electrophoresis was used to determine the binding of native and 

mutant analogues of cofilin to G-actin. As mentioned in Section 6.3.4., cofilin has 

severely limited mobility in the native gel electrophoresis used in this chapter and 

either does not enter or barely enters the native electrophoretic gel. Cofilin has a high 

pI (~8.0) and thus a very low net charge under the running conditions. In the case of 

this series of binding studies, part of cofilin did not enter the polyacrylamide running 

gel. The cofilin–actin complex is the dark-staining band that migrates essentially as 

reported previously (Chhabra, Nosworthy et al. 2005). 
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Figure 6.6 shows the electrophoretic mobility of G-actin, native cofilin, cofilin 

mutants and various cofilin - G-actin complexes. G-actin is clearly shown in lane 1 

quite contrary to native cofilin and its mutants (from lanes 2-5) where the samples 

were barely able to enter the gel. When native cofilin and G-actin were added together 

(lane 6), a new band is observed corresponding to the cofilin – G-actin binary 

complex. Similarly, Cys170 cofilin – G-actin (lane 7) and Cys170 W104 cofilin – G-

actin (lane 8) complexes produce new bands corresponding to these binary 

complexes. Note that these samples also produced a band corresponding to G-actin, 

suggesting unbound G-actin. Lastly, lane 9 represents the Cys170 W135 cofilin and 

G-actin interaction. The lack of a band corresponding to the cofilin – G-actin binary 

complex suggests that this mutant does not bind to G-actin.  
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Figure 6.6. Binding assay of unlabelled native cofilin and its mutants with G-

actin.  
 

6.3.8. Fluorophores Labelled Cofilin/Actin Binding Assay 
Modification of either cofilin or its mutants and/or G-actin with fluorescent 

probes could impair or abolish binding between these two proteins. Consequently, we 

tested this binding using native gel electrophoresis, as described above. In all cases, 
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labelling had no effect on binding. An example of a binding study using labelled 

cofilin and labelled actin is shown in Figure 6.7. In this figure, lanes 1 and 6 show the 

large mobility of DABM-labelled G-actin, lanes 2 and 7 show that labelled cofilin 

does not enter the gel, lanes 3-5 show the binding of Cys170-cofilin labelled with 

IAEDANS (at increasing molar ratios) to DABMI labelled G-actin and lanes 8-10 

show the binding of Cys170-W104 cofilin labelled with HNB (at increasing molar 

ratios) to DABMI labelled G-actin.  
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Figure 6.7. Binding assay of labelled mutants with G-actin.  
 

6.3.9. FRET spectroscopy 
Five distance measurements were performed using the labelled protein 

samples in various combinations.  

 

Cys 170 cofilin to Cys170 W104 Cofilin  
 

This distance was measured using 2 sets of probe pairs: 

1. Cys170 cofilin labelled with IAEDANS as the acceptor, using the intrinsic 

fluorescence of the single W104, i.e. Cys170 W104 cofilin mutant, where W135 

had been mutated into phenylalanine. 

2. Cofilin Cys170 labelled with IAEDANS as the donor, using the single W104 

residue on Cys170 W104 cofilin mutant labelled with HNB as the acceptor. 
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The donor fluorescence emission spectra for the intrinsic tryptophan 

fluorescence of the Cys170 W104 cofilin mutant and the absorption spectra for 

Cys170 cofilin +IAEDANS are shown in Figure 6.8. The donor fluorescence emission 

spectra for cofilin C170+IAEDANS and the absorption spectra for cofilin 

Trp104+HNB are shown in Figure 6.9.  

 

 
Figure 6.8. The intrinsic tryptophan fluorescence of the cys170 W104 cofilin  and 

Cys170 cofilin (IAEDANS).  
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Figure 6.9. The donor fluorescence emission spectra for Cys170 cofilin and the 

absorption spectra for Cys170 W104 Cofilin (DHNBS). 
 

To measure the distance between the various extrinsic probe pairs, the 

fluorescence emission of the donor was measured in the absence or presence of the 

acceptor, using a cofilin concentration of 5 µM. Figure 6.10 shows the intrinsic 

fluorescence intensity of the single Trp 104 of cofilin, excited at 280 nm, in the 

absence and presence of the acceptor IAEDANS bound to cofilin Cys 170. The extent 

of acceptor labelling was 76%. After correction for the extent of IAEDANS labelling 

the efficiency of transfer (E) was calculated to be 0.87. Note that an additional 

fluorescent peak can be seen at 470 nm in the IAEDANS-labelled sample, which 

corresponds to the IEADANS fluorescence as a result of FRET between the donor 

Trp and the IAEDANS acceptor.  
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Figure 6.10. The intrinsic fluorescence intensity of the single W104 of cofilin, 
excited at 280 nm, in the absence and presence of the acceptor IAEDANS bound 
to Cys170 cofilin. Blue curve is the single W104 of Cys170 W104 cofilin sample 
being excited at 280 nm in the absence of the acceptor bound to Cys170 cofilin. Pink 
curve is single Cys170 W104 Cofilin excited at 280 nm in the presence of acceptor 
bound to Cys170 cofilin.  
 

Figure 6.11 shows the fluorescence emission of IAEDANS bound to Cys170 

of cofilin, in the absence and presence of the acceptor label HNB bound to W104. The 

extent of labelling of the IAEDANS was 100% and of the HNB was 71%. After 

correction for the extent of labelling, the efficiency of transfer was determined to be 

0.94.  
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Figure 6.11. The fluorescence emission of IAEDANS bound to Cys170 cofilin in 
the absence and presence of the acceptor label HNB to Trp 104 of Cys170 W104 
cofilin. Blue curve is 5 µM C170-IAEDANS cofilin (76% labelled) to Cys170 W104 
cofilin. Pink curve is 5 µM Cof C170-IAEDANS (100% labelled) to Cys170 W104 
cofilin-HNB (71% labelled). 
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Table 6.4 summarises the fluorescence data for these two experiments. Assuming a Ro 

of 28.4 Å, the measured distances were calculated to be 21 Å using the intrinsic Trp 

fluorescence as the donor, and 18.1 Å using IAEDANS as a donor. 

 

Cofilin Cys 170 to G-actin Cys 374 
 

This distance was measured using the following probe pair: Cys170 cofilin 

labelled with IAEDANS as the donor, and G-actin labelled at Cys 374 with DABMI 

as the acceptor. The donor fluorescence emission spectra for the Cys170 cofilin 

labelled with IAEDANS and the absorption spectra for G-actin labelled at Cys 374 

with DABMI are shown in Figure 6.12.  

 

 
Figure 6.12. The donor fluorescence emission spectra for the Cys170 cofilin 

labelled with IAEDANS (red) and the absorption spectra for G-actin 
labelled at Cys 374 with DABMI (yellow). 

 

To measure the distance between these two extrinsic probes, the fluorescence 

emission of the donor was measured in the absence or presence of the acceptor, using 

a fixed cofilin concentration of 5 µM and increasing concentrations of G-actin 
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Cys374+DABMI, ranging between 10 – 20 µM G-actin. A 2-4 fold excess of G-actin 

over cofilin was used, to ensure that all cofilin was bound to a G-actin molecule.  

 

Figure 6.13 shows the fluorescence emission of IAEDANS bound to Cys170 

cofilin, in the absence and presence of the acceptor label DABMI bound to G-actin 

Cys374+DABMI. Note that substantial quench is observed after the addition of a 2 

fold molar excess of actin, with only a small additional quench observed after the 

addition of a 4 fold molar excess of actin, indicating that essentially all cofilin 

molecules had bound to G-actin at these concentrations. The extent of labelling of the 

DABMI on actin was 75%. After correction for the extent of labelling, the efficiency 

of transfer was determined to be 0.69.  
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Figure 6.13. The donor fluorescence emission spectra for the Cys170 cofilin 
labelled with IAEDANS in the absence and presence of G-actin labelled at Cys 
374 with DABMI. Green curve is 5 µM cof Cys170 cofilin IAEDANS and purple 
curve is 5 µM cof Cys170 cofilin IAEDANS + 20µM G-actin DABMI. 
 

Table 6.4 summarises the fluorescence data for this experiment. Assuming a 

Ro of 38 Å, the measured distances were calculated to be 33.2 Å. 

 

Cys170 W104 Cofilin to G-actin Cys 374 
 

This distance was measured using the following probe pair: G-actin labelled at 

Cys 374 with IAEDANS as the donor, and W104 labelled with DHNBS as the 

acceptor. The donor fluorescence emission spectra for the G-actin Cys374 labelled 
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with IAEDANS and the absorption spectra for cofilin labelled at W104 with DHNBS 

are shown in Figure 6.14.  

 

 
Figure 6.14. The donor fluorescence emission spectra for the G-actin Cys374 

labelled with IAEDANS and the absorption spectra for cofilin 
labelled at W104 with HNB. 

 

To measure the distance between these two extrinsic probes, the fluorescence 

emission of the donor was measured in the absence or presence of the acceptor, using 

a G-actin concentration of 5 µM and a 4 fold molar excess (20 µM) of cofilin 

W104+HNB, to ensure that all G-actin molecules were bound to a cofilin.  

Figure 6.15 shows the fluorescence emission of IAEDANS bound to Cys374 

of G-actin, in the absence and presence of the acceptor label HNB bound to cofilin 

W104. Substantial quench is observed after the addition of a 4 fold molar excess of 

cofilin. The extent of labelling of the HNB on cofilin was 78%. After correction for 

the extent of labelling, the efficiency of transfer was determined to be 0.6.  
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Figure 6.15. The fluorescence emission of IAEDANS bound to Cys374 of 
G-actin, in the absence and presence of the acceptor label HNB bound to W104 
of Cys170 W104 cofilin. Yellow curve represents 5 µM G-actin IAEDANS and 
orange curve represents 5 µM G-actin IAEDANS + 20 µM Cys170 W104-HNB 
cofilin. 
 

Table 6.4 summarises the fluorescence data for this experiment. Assuming a 

Ro of 28.4 Å, the measured distances were calculated to be 27.9 Å. 

 

Cys170 W104 Cofilin to G-actin nucleotide (ATP) site 
 

This distance was measured using the following probe pair: G-actin labelled at 

the nucleotide site with ε-ATP as the donor, and Cys170 W104 cofilin labelled with 

HNB as the acceptor. The donor fluorescence emission spectra for the G-actin ε-ATP 

and the absorption spectra for cofilin labelled at Trp104 labelled with HNB are shown 

in Figure 6.16.  
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Figure 6.16. The donor fluorescence emission spectra for G-actin ε-ATP and the 

absorption spectra for cofilin labelled at W104 with HNB. 
 

To measure the distance between these two extrinsic probes, the fluorescence 

emission of the donor was measured in the absence or presence of the acceptor, using 

a G-actin concentration of 1 µM and a 2-4 fold molar excess (2-4 µM) of Cys170 

W104 cofilin+HNB, to ensure that all G-actin molecules were bound to a cofilin.  

Figure 6.17 shows the fluorescence emission of ε-ATP bound to G-actin, in 

the absence and presence of the acceptor label HNB bound to W104. Substantial 

quench is observed after the addition of both  2 and 4 fold molar excess of cofilin. 

The extent of labelling of the HNB on cofilin was 70%. After correction for the extent 

of labelling, the efficiency of transfer was determined to be 0.65.  
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Figure 6.17. The fluorescence emission of ε-ATP bound to G-actin, in the absence 
and presence of the acceptor label HNB bound to W104 of Cys170 W104 cofilin. 
Purple curve represents 1 µM G-actin ε-ATP + 2 µM Cys170 W104 cofilin and bright 
blue curve represents 1 µM G-actin ε-ATP + 4 µM Cys170 W104 cofilin. 
 

Table 6.4 summarises the fluorescence data for this experiment. Assuming a 

Ro of 37.6 Å, the measured distances were calculated to be 33.9 Å. 
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 Table 6.4. Summary of distance measurements obtained using FRET 
spectroscopy. 

Site Probe Label 
Ratio 

Excitation 
maxima 
(Ex λ) 

Emission 
maxima 
(Em λ) 

E 
corr Ro R (2/3) 

Galkin 
model 

distance 

Cof W104 Intrinsic 1 280 340 

0.87 24.2 17.6 Unknown 

Cof C170 IAEDANS 0.76 Nil Nil 

 

Cof C170 IAEDANS 0.76 340 470 

0.94 28.4 18.1 
Unknown 

[W104 to 

E151=18A] Cof W104 HNB 0.71 Nil Nil 

  

Cof C170 IAEDANS 0.76 340 470 

0.69 38 33.17 

Unknown 

[Actin C374 

to cofilin 

E151 (α6 

helix)=32 A] 

G-actin 
C374 

DABMI 0.75 Nil Nil 

  

G-actin 
C374 

IAEDANS 0.95 340 470 
0.6 28.4 27.9 30.6 

Cof W104 HNB 0.78 Nil Nil 

  

G-actin 
ATP 

ε-ATP 0.2 340 470 

0.65 37.6 33.9 31.6 

Cofilin 
W104 

HNB 0.7 Nil Nil 

 

6.4 Discussion 
6.4.1 Summary of results 

We were able to successfully mutate and express four mutant cofilins, that 

each contained unique spectroscopic probe sites. We were hampered in this process 

by the apparent sensitivity of the structure of cofilin to mutagenesis. Thus, we found 
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that mutagenesis of the N-terminus abolished G-actin binding, while still permitting 

F-actin binding. On the other hand, mutation of the C-terminus of cofilin and W135 

had no effect on the binding of cofilin to G-actin, while mutation of W104 abolished 

G-actin binding. Fortunately, the mutant forms of cofilin that retained binding to 

G-actin (Cys170 cofilin and Cys170 W104 cofilin) retained their capacity to bind to 

G-actin after modification with extrinsic spectroscopic probes, allowing us to measure 

one distance within cofilin and three distances between cofilin and G-actin. The 

distances between cofilin and G-actin corresponded closely to the predicted distances 

from the Galkin model (Table 6.4).  

 

6.4.2 Perturbation of actin-cofilin binding by mutagenesis of 
cofilin 

Cofilin is believed to bind to F-actin via two sites. The upper actin monomer 

binds to cofilin at the G/F-actin binding site, spanning subdomains 1 and 3 of actin, 

whereas the cofilin F-actin binding site binds the lower actin and spans actin 

subdomains 1 and 2 (McGough and Chiu 1999) (Figure 6.18). The two cofilin-F-actin 

binding sites are located at opposite ends of the long axis of cofilin (McGough and 

Chiu 1999, Pope, Zierler-Gould et al. 2004).  

The G/F-actin binding site is located within the half of cofilin that includes the 

mobile N-terminus (Pope, Zierler-Gould et al. 2004) and consists primarily of 

residues located within the long, kinked α4 helix, with contributions from residues 

located in the β1 strand near the N-terminus and within β6, the intervening loop and 

α5 (Figure 6.19).  

The F-actin binding site, located at the opposite end of cofilin, involves 

residues from the N-terminal segment of the β5 strand and the α6 helix, with a 

contribution from the adjacent C-terminal residues (Pope, Zierler-Gould et al. 2004).  
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Figure 6.18. Model of cofilin binding sites on F-actin. The upper binding site is the 
G/F-actin binding site and binds to the green actin monomer on subdomains 1 and 3. 
The lower binding site is the F-actin binding site and binds to the hot pink actin 
monomer on subdomains 1 and 2. 
 

 
Figure 6.19. The atomic structure of cofilin. It comprises of a central six-stranded 
mixed β sheet, flanked by several α helices contributed by residues at the N-  and 
C-terminus. 
 

Phosphorylation at Ser3 in the N-terminus causes minor conformational 

alterations in 7 residues within α4, which forms much of the G/F-actin binding site, 

suggesting a structural mechanism by which phosphorylation prevents actin binding 

(Pope, Zierler-Gould et al. 2004, Gorbatyuk, Nosworthy et al. 2006). On the other 
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hand, PI binding perturbs residues located in the C-terminal part of the sequence 

between β6 and β8, with Lys132 and His133, adjacent to the β6 strand, being directly 

involved in PI binding (Gorbatyuk, Nosworthy et al. 2006). This region of cofilin 

overlaps both the G/F-actin and F-actin binding sites. Therefore, PI binding probably 

prevents actin binding by perturbing residues in both the G/F-actin and F-actin 

binding sites.  

A model has been proposed for the mechanism by which cofilin binds to 

F-actin and involves cofilin first binding to a monomer within F-actin via the 

G/F-actin binding site. The model proposes that the C-terminal F-actin binding site is 

then stabilised via an allosteric conformational change, allowing cofilin to bind to the 

adjacent actin monomer within the filament (Ono, McGough et al. 2001, Pope, 

Zierler-Gould et al. 2004). This allosteric effect is thought to be mediated by the 

β5 strand that bridges the G/F-actin and F-actin binding sites. Thus, the model 

proposes that binding through the G/F-actin binding site is a pre-requisite for F-actin 

binding. 

6.4.2.1 Mutant N6-cys-cofilin abolishes G-actin but not F-actin 
binding  
 The insertion of an N-terminal extension of six amino acids into cofilin 

(N6-cys-cofilin) was found to prevent binding of N6-cys-cofilin to G-actin, but not to 

F-actin. The N6-cys-cofilin structure also exhibited a substantial change (increase) in 

the secondary structure content compare to wild-type cofilin. This study is the first to 

demonstrate that a modification of cofilin can selectively uncouple G-actin, but not 

F-actin, binding. The location of the mutation within the N-terminus of cofilin 

confirms the importance of the N-terminus in regulating cofilin interactions with 

actin. We hypothesise that the uncoupling of G-actin binding from F-actin binding, by 

the N-terminal mutation, is due to an alteration in the structure of the G/F-actin 

binding site. 

 Several studies have shown that modifications in the F-actin binding site 

selectively abolish F-actin, but not G-actin, binding. A mutation at residues 95/96, 

located in the loop region between the β4 and β5 strands, can selectively abolish 

F-actin binding, while retaining G-actin binding (Pope, Zierler-Gould et al. 2004). 

Similarly, removal of the C-terminal region of cofilin (residues 100-166) (Boey, 

Huang et al. 1994) or removal of the C-terminal residue of UNC-60B (residue 152), 
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the nematode homologue of cofilin, (Ono, McGough et al. 2001) results in a loss of 

both F-actin binding and severing ability but still allows interaction with G-actin, 

suggesting that the C-terminus of cofilin is important for binding to F-, but not 

G-actin. The importance of the C terminus to the β4-β5 loop for F-actin binding is 

further supported by the observation that in twinfilin, which binds G-actin, but not 

F-actin, this loop is oriented away from the C terminus, and hence the F-actin binding 

surface of cofilin, rather than toward it (Paavilainen, Merckel et al. 2002). 

 The current model for cofilin binding to F-actin proposes that sequential 

binding of the G/F-actin, then the F-actin binding sites is mandatory for F-actin 

binding (Ono, McGough et al. 2001, Pope, Zierler-Gould et al. 2004). This model 

proposes that binding at the G/F-actin site induces a pre-requisite allosteric 

conformational change in the F-actin binding site on cofilin, possibly mediated via the 

β5 strand that extends the length of cofilin between the two sites. The data presented 

in this study, showing that F-actin binding of cofilin can be uncoupled from G-actin 

binding, argues against this current model. Binding to actin by the G/F binding site of 

cofilin may not be a pre-requisite for F-actin binding. The modification of the 

N-terminus of cofilin described in this study may be sufficient to alter the G/F-actin 

binding site, of which the N-terminus of cofilin is a part, without altering the F-actin 

binding site located at the other end of cofilin. This explanation also argues against a 

substantial pre-requisite allosteric conformational change occurring within the 

C-terminus of cofilin, following binding to actin via the G/F-actin binding site.  

 Alternatively, it is possible that the N-terminal modification selectively 

disrupts G/F-actin binding, while still inducing an appropriate allosteric 

conformational change within the C-terminus that promotes F-actin binding. 

Investigation of these possibilities will require atomic resolution studies to 

unequivocally validate a model for the structure and mechanism of cofilin binding to 

G- and F-actin. 

 In conclusion, the observation that modification of the N-terminus of cofilin 

can selectively uncouple G-actin binding from F-actin binding, argues against a model 

of cofilin binding to actin that requires sequential bind to the G/F-actin, then the 

F-actin binding sites. Additionally, the importance of the phosphorylatable 

N-terminus in the subtle regulation of cofilin binding to actin is emphasised. 

 



162 
 

 

 

6.4.2.2 Mutation of cofilin W104 abolishes G-actin binding, but 
mutation of W135 or the C-terminus has no effect on G-actin binding 

W104 is highly conserved, being always present in cofilins from yeast to 

humans and the cofilin-like molecules actotrophin, coactosin and ADF (Wong and 

Sept 2011). On the other hand, W135 is poorly conserved, being present only in chick 

cofilin, and being replaced variously by Leu, Val, Ile or Phe in other isotypes and 

related molecules.  

 W104 is located at the C-terminal end of the β5 strand, which is part of the 

large, 5 stranded β-sheet that forms the hydrophobic core of cofilin. It is also 

immediately adjacent to the α4 helix, which is an essential binding element for the 

G/F actin binding site (Wong and Sept 2011). The α4 helix is stabilised by the 

underlying core β-sheet. Thus, a mutation of W104 is likely to perturb the structure of 

the hydrophobic core of the cofilin molecule and consequently alter the orientation, 

and possibly the stability, of the α4 helix.  

Glu 107 is located within the loop that connects the β5 strand to the alpha4 

helix and is predicted to be an actin contact point (Wong and Sept 2011).  

Additionally, it has been proposed that for F-actin binding to take place an 

allosteric effect is thought to be mediated by the β5 strand that bridges the G/F-actin 

and F-actin binding sites, although the data we have presented above argues against 

this. Never the less, the mutation of W104, located at the C-terminal end of the β5 

strand is likely to perturb any allosteric effect that may occur.  

 The F-actin binding site, located at the opposite end of cofilin, involves 

residues from the N-terminal segment of the β5 strand and the α6 helix, with a 

contribution from the adjacent C-terminal residues (Pope, Zierler-Gould et al. 2004). 

We did not observe any perturbation of binding of the C-terminal mutated cofilin. 

However, we only tested this cofilin for binding to G-actin, which does not involved 

the F-actin binding site. We expect that the C-terminal modification may interfere 

with F-actin binding. 

6.4.3Measurement of distances within cofilin using FRET 
spectroscopy  

We measured the distance between W104 and the mutant C-terminal Cys 170 

using two sets of donor-acceptor pairs. The distances obtained were 17.6 and 18.1 Å. 

Since a four residue peptide that contains Cys 170 has been added to the C-terminus 
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of cofilin a corresponding residue is not available in the structure of cofilin. 

Consequently, we can only poorly predict the likely location of Cys 170, although we 

expect that it will be located on the surface of cofilin in the vicinity of the C-terminus. 

The distance obtained is consistent with this location. The distance between C-alphas 

of W104 and the C-terminal Leu 166 is 23.4 Å. Thus, it is likely that Cys 170 is 

adjacent to the α6 helix. 

 

6.4.4. Measurement of distances between cofilin and G-actin 
using FRET spectroscopy 

Cofilin is capable of binding to and severing F-actin, one of the most abundant 

and highly conserved eukaryotic proteins. The molecular mechanism by which cofilin 

binds to F-actin, and under appropriate conditions is able to sever F-actin, is unknown 

due to the absence of a high resolution atomic model of the complex of cofilin and 

G-actin or F-actin. A recent atomic resolution model of cofilin-F-actin proposes a 

possible mode of assembly of these proteins (Galkin, Orlova et al. 2011). We sought 

to test this model by undertaking distance measurements both within cofilin and 

between cofilin and G-actin.  

FRET was used to measure distances between 4 loci, two located on cofilin 

and two on actin. Table 6.4 summarises these distances and compares them to the 

most recent model of cofilin bound to F-actin. Three distances were measured 

between cofilin and actin (and the corresponding predicted distances were): 

 - Actin Cys374 to cofilin W104 28 Å (30.6 Å) 

 - Actin nucleotide to cofilin W104 34 Å (31.6 Å) 

 - Actin Cys374 to cofilin Cys 170 33 Å (Unknown) 

 

The distance between cofilin W104 and the two actin loci, actin Cys 374 and 

actin ATP were able to directly test the model of cofilin-G-actin binding. These 

measured distances corresponded very well with the model distances, provided strong 

support for the validity of the model proposed by (Galkin, Orlova et al. 2011). 

However, this model makes two assumptions. Firstly, the model is a structure of 

cofilin bound to F-actin. We assume that the cofilin binds to G-actin via the G/F 

cofilin binding site, which is highly likely (McGough and Chiu 1999). Secondly, we 

assume that no major re-orientation of cofilin occurs with respect to the actin 

monomer to which it is bound in the model F-actin structure. 
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 Ideally, to more fully test the model a third distance measurement would be 

required to positively identify a unique position in space of loci within cofilin with 

respect to actin. Unfortunately, we did not have access to a suitable probe site. 

Additional mutagenesis would be required to insert a suitable probe site on cofilin. 

Other sites are available on actin, although these sites are more difficult to uniquely 

label.  

The distance between actin Cys 374 and cofilin Cys 170 was found to be 33 Å 

(Table 6.4). As described above, we had no model location for Cys 170 within the 

cofilin structure. Therefore, we could not use this distance to test the model of actin 

cofilin binding. However, when we combine the intra-molecular distance between 

cofilin W104 with the inter-molecular distance between actin Cys 374 and cofilin Cys 

170, a location in the vicinity of the cofilin surface residue Glu 151 meets these 

distance criteria. Glu 151 is located centrally in the α6 helix on the surface of cofilin 

near the C-terminus of cofilin. Thus, it is likely that cofilin Cys 170 is located near the 

α6 helix.  

 

6.4.5. Conclusions 
 

The mutagenesis studies described in this Chapter have allowed us to develop 

appropriate cofilin mutants (Cys170 cofilin and Cys170 W104 cofilin) that can be 

labelled with fluorescent probes and is still capable of binding to G-actin. These 

cofilin mutants are consequently suitable for intra-cellular localisation and intra-

cellualar FRET studies in fixed cells with permeabilised cell membranes. 

Our data also reinforced the importance of the N-terminus of cofilin in binding 

to actin. The discovery that mutation of W104 prevents actin binding highlights the 

importance of the β5 strand - α6 helix in actin binding via the G/F actin binding site 

on cofilin. As expected, the C-terminal mutation did not alter G-actin binding, 

consistent with this region of cofilin not being involved in the G/F binding site.  

Finally, our inter-molecular distance measurements provide strong support for the 

cofilin-F-actin model of Galkin et al. (2011). 
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