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ABSTRACT 
  

Twenty-five percent of all people, aged fifty-five and over, have a family history of dementia. 

For most the family history is due to genetically complex disease- where multiple genetic 

variations of modest effect, interact to increase dementia risk. The lifetime dementia risk for 

these families is about 20%, compared to 10% in the general population. A small proportion 

of families have an autosomal dominant family history of early onset dementia. This is often 

due to Mendelian disease, caused by mutation in one of the dementia genes. Each family 

member has a 50% chance of inheriting the mutation, and with it, a lifetime dementia risk of 

over 95%. This review focuses on the evidence for, and our approach to, genetic testing in 

Alzheimer Disease (APP, PSEN1, and PSEN2 genes), Frontotemporal Dementia (MAPT, 

GRN, C9ORF72, and other genes), and other familial dementias. We conclude by discussing 

the practical aspects of genetic counseling. 
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Introduction 

Twenty-five percent of the general population, aged fifty-five and over, have a family history 

of dementia involving a first degree relative.1  As a consequence of family medical history 

awareness campaigns, and increasing media coverage of the Mendelian forms of dementia, a 

frequently asked question in the clinic is: ‘My mother had dementia, do I have “the gene” and 

can I test for it?’ 

Having a family history does not necessarily mean there is a Mendelian form of dementia (or 

genetic mutation) in the family. In fact, Mendelian forms of dementia are rare. For instance, 

there are just over five hundred families with Mendelian forms of Alzheimer Disease (AD) 

reported in the literature.2 Thus the vast majority of people with a family history does not 

require molecular genetic testing, and can be reassured.  

This review aims to help clinicians identify the small number of high risk Mendelian families 

and reassure the low risk majority. It also aims to help clinicians make informed choices, 

when prioritising genetic testing for the Mendelian families. It will begin with an overview of 

the genetics of Mendelian versus genetically complex diseases, and proceed to describe a 

framework for genetic testing in dementia. A guide to genetic testing in various dementia 

subtypes will then be provided, followed by a note on the practical aspects of genetic 

counseling. 

 

Mendelian diseases versus complex diseases 

Families share environmental as well as genetic influences, so familial diseases may not 

always be genetic in origin. The most striking example of an environmental factor causing 

familial dementia is Kuru. This is an infectious prion disease found in the New Guinean 

Highlands in the 1950s, where relatives consumed the deceased in funeral rituals. Indeed this 

was initially hypothesized to be a genetic illness due to familial segregation,3 until 
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experimental work demonstrated that it is a transmissible spongiform encephalopathy. 

Overall, however, the known risk factors for familial dementia are overwhelmingly genetic. 

Genetic factors can contribute to familial dementia in two ways- causing Mendelian forms of 

dementia, or as a contributing factor towards genetically complex disease.  

Mendelian diseases 

A Mendelian, or single gene disease, is due to a mistake or mutation in one of the 25,000 

genes in the nuclear genome (Figure 1). Many such genes were discovered in family genetic 

studies called linkage studies. In a linkage study, the location of a disease-causing gene is 

found by matching the inheritance pattern of disease in a family, and inheritance pattern of 

genetic location markers. The results of these studies are reported in LOD (logarithm of the 

odds) scores, where a LOD score of over 3 is regarded as significant evidence for linkage.4 

Mendelian diseases: clinical implications  

Since the known genes causing Mendelian forms of dementia are autosomal dominant with 

high penetrance, family trees for affected families usually show multiple affected members in 

consecutive generations. Genetic testing can be helpful in this context. While genetic 

escapees (i.e. people who carry a mutation but are not demented at an old age) do exist, in 

general, people carrying pathogenic mutations have a 95% or greater life-time dementia risk. 

The exact risk would vary depending the associated age of onset within the family and on 

penetrance of the gene. Penetrance of a gene is defined as the probability that an individual, 

who has inherited a mutation in a disease gene, goes on to develop the disease phenotype. 

People not carrying the mutations would have the same risk of dementia as the general 

population.  

Complex diseases 

A genetically complex, or polygenic/multifactorial disease, is caused by genetic and 

environmental factors, individually and in interaction with each other (Figure 1). These 
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genetic factors are genetic variations present in the normal population, and each factor tends 

to increase disease risk by a small degree only. Well known examples of complex disease 

include common diseases such as stroke and diabetes: diseases where we have traditionally 

regarded family history as a risk factor. These genetic variations are usually discovered in 

genetic association studies- which comprise association studies for candidate genes, and 

genome-wide association studies (GWAS). In a genetic association study, the frequency of a 

genetic variation among people with disease is compared against that in a normal control 

group. In association studies examining candidate genes, the genotyped variations usually 

have a known biological function relevant to disease pathogenesis. On the other hand, genetic 

variations in GWAS are chosen for their locations throughout the genome- so they may have 

regulatory rather than direct roles in gene functioning, or may even have no functional 

significance at all. The results of these studies are reported as Odds Ratios (ORs). Typically, 

the OR for a genetic variation is <2, indicating relatively modest effect. Further background 

on molecular genetics and GWAS can be found on the Human Genome Project website5 and 

other reviews.6 

Complex diseases: clinical implications 

Since multiple genetic variations of modest effect and environmental factors are required to 

cause complex disease, the pattern of inheritance in complex disease is not straightforward. 

In Mendelian diseases, passing on of the one genetic fault to the offspring suffices in causing 

disease, and parent-child transmission is clearly seen in the family tree. A person with a 

genetically complex disease is unlikely to pass on every one of the multiple genetic variations 

to her/his offspring. On the other hand, because these genetic variations are common, the 

offspring may also inherit other risk-conferring genetic variations from the other parent. 

Consequently genetically complex diseases may ‘skip a generation’, or have people affected 

on both sides of the family. Genetic testing for any individual genetic variation has very poor 
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predictive power for dementia, and is not recommended in clinical practice. There has been 

some interest in testing panels of genetic variations for individual diseases- but the known 

genetic variations only account for a small proportion of the overall genetic risk, and this 

would be premature given our current state of scientific knowledge.7 

 

A framework for genetic testing in dementia 

The first step in considering molecular genetic testing for dementia is to obtain a detailed and 

accurate family history, in order to identify families with family histories consistent with 

Mendelian rather than complex inheritance. These are the families who will benefit most 

from genetic testing. The second step is to obtain an accurate phenotype for the family in 

order to inform the choice of genetic test. Then genetic testing can be considered, ideally 

starting with an affected family member. 

Obtaining an accurate family history  

Obtaining a detailed and accurate family history often involves interviewing multiple family 

members. Not surprisingly, reporting is more accurate from first-degree than second- or 

third-degree relatives,8 so, different informants may be needed for different branches of the 

family. Surviving spouses of older affected family members are often important sources of 

information for the earlier generations, including countries of origin which may help inform 

choice of genetic test. Maiden names of affected family members can prove crucial in 

connecting with other Mendelian families with a common founder. It is also important to note 

where family members lived. Age and mode of death should be noted for all family members, 

as early death can mask the transmission of mutations through the family tree. Obtaining 

written medical records for key family members can be helpful- because informants are less 

accurate in reporting the presence of disease in relatives, than the absence of disease in 
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relatives.8 Features in the family history that can help distinguish Mendelian from complex 

disease, are discussed in the disease-specific sections below. 

Obtaining an accurate phenotype 

A detailed history of dementia phenotype is also important, and there are validated 

retrospective informant-based questionnaires in the literature which may be helpful.9, 10 

Psychiatric history is an integral part of the family history, especially for Frontotemporal 

Dementia (FTD).11 An accurate record of age of onset is particularly helpful for AD families, 

and precise classification of clinical phenotype/ associated clinical features is helpful for FTD 

families. Estimation of age of onset can be achieved by a semi-structured interview in which 

family members are asked about the age of first progressive cognitive decline.12 Travelling to 

assess living affected family members in person can be very informative. For a 

comprehensive guide to clinical assessment of young onset dementia, see Rossor et al.13 

Genetests14 also provides a useful online database of disease-specific guides on genetic 

testing, and a directory of relevant laboratories performing the tests. Finally, histopathologic 

diagnosis in a family member can be invaluable. Some AD mutations may have atypical 

presentations suggesting a non-AD clinical diagnosis,15 and histopathologic diagnosis can 

also help determine the subtype of FTD in the family. 

Considerations for genetic testing 

The first person to be tested in a family must be an affected individual. If a pathogenic 

mutation is detected, this will confirm the diagnosis at a molecular level and makes testing 

available for other family members. Although requests are often made to test unaffected 

individuals, it is important to appreciate that a normal/negative genetic test result in a 

clinically unaffected family member cannot confirm her/his status as a non-mutation carrier, 

unless the causative mutation in the family is known. Patient knowledge in genetics and 

inheritance can be very variable. It is not uncommon to hear an individual in a Mendelian 
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family say that she/he has a ‘100% chance’ of becoming demented, when the true risk of 

carrying the mutation is only 50%.16 Thus early consultation with a geneticist can be very 

helpful, and further discussion on genetic counseling can be found at the end of this review.  

In the event of a negative result for genetic test in patients with a strong family history of 

disease, a possible strategy would be to suggest that they participate in genetic research that 

may ultimately result in the discovery of the causative gene. 

	
  

Genetic testing for Alzheimer Disease 

Clinically, typical AD is characterized by gradual onset and progressive impairment of 

episodic memory, and at least one other cognitive domain (the 1984 NINCDS–ADRDA 

criteria).17 Recently, these diagnostic criteria have been revised to recognize nonamnestic 

presentations of AD (with language, visuospatial or executive dysfunction), and the 

supportive role of biomarkers (the 2011 NIA-AA criteria).18 

Who to test? Identifying families with Mendelian forms of Alzheimer Disease 

Mendelian forms of AD are rare- there are over 35 million people living with AD in the 

world,19 but only just over 500 AD families with genetic mutations reported in the literature 

to date.2  For AD, the key elements in the family history which will help separate Mendelian 

from the genetically complex form of AD are multigenerational inheritance, and a young age 

of onset20 (Table 1). Families with multi-generational young onset AD, are the most likely 

ones to carry a pathogenic mutation in one of the currently recognized AD genes. For 

instance, Raux et al. 21 sequenced a cohort of 65 early onset AD families (<60 years), with 

affected family members in three generations. 86% of these families were found to have 

mutations in the AD causing genes- 78% with sequence mutations, and another 8% with 

pathologic duplication of one of the AD causing genes22. It is noteworthy, however, that 
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families satisfying this criterion are rare- the prevalence is about 5/100,000 for the 41-60 year 

old age group.23 

If the multigenerational inheritance criterion is relaxed, the yield for mutations will be lower. 

Janssen et al.24 sequenced a cohort of 31 families, where there was a family member with 

early onset AD (<61 years), but he or she was only required to have one or more affected first 

degree relative. 68% of these families were found to have mutations. If the cohort were 

restricted to the 23 early onset AD families with three or more family members in at least two 

generations, then the yield for mutation testing would have been 78%. 

If the age of onset criterion is relaxed, the yield for mutations will be lower still. Zekanowski 

et al.25 sequenced a cohort of 39 individuals, each with early onset AD (defined as <65, rather 

than<60 years), and one or more first degree relatives with early onset AD. Only 15% of 

these individuals were found to carry pathogenic mutations. Lleo et al.26 included 30 families 

with late onset AD (>65 years) in their mutation screen. Each of these families had at least 

two first degree relatives with AD, but none had three family members affected in two 

generations. None of these families were found to have mutations.  

In rare instances, mutations27 or rare variants28 can be identified in patients from families 

with mean age of onset later than 65 years. Although it should be noted that there will be an 

increased number of mutation free individuals with sporadic forms of the disease, which may 

require a more detailed explanation during genetic counseling 

Finally, among people with early-onset AD but no family history, mutations in the known 

AD genes are very rare. Nonetheless there are documented examples of mutations in this 

patient group, and some are thought to have arisen de novo.29 In addition, non-paternity and 

reduced penetrance can also conceal a family history. While it would not be fruitful to 

routinely test people with early-onset AD with no family history, a genetic cause should 
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remain in the differential diagnosis, particularly for people with an age of onset of 40 years or 

younger.   

What to test? Genetic testing for families with Mendelian forms of Alzheimer Disease 

Apart from multigenerational inheritance and young age of onset, Mendelian forms of AD 

tend to present with a similar clinical picture to the other forms of AD- although myoclonus 

in the early stages of disease can be a diagnostic clue.30 

There are three currently known causative genes for AD: Amyloid Precursor Protein (APP), 

Presenilin-1 (PSEN1), and Presenilin-2 (PSEN2). Based on the observation that people with 

Trisomy 21 (Down Syndrome) develop dementia with similar histopathology to AD, and 

supported by genetic linkage, APP on chromosome 21 was first proposed to be a candidate 

gene for AD in 1987.31 However it was not until 1991 that families with APP mutations were 

identified.32 The histopathologic hallmarks of AD (including the Mendelian forms of AD) are 

plaques and tangles. APP breaks down to form amyloid-β, the key component of plaques. 

This has led to the ‘Amyloid Hypothesis’, which hypothesized that amyloid-β production and 

degradation was not only the cause for this particular Mendelian form of AD, but also AD in 

general. Subsequently, family linkage studies identified two additional AD-causing genes:  

PSEN1 33 on chromosome 14 and PSEN2 34, 35 on chromosome 1. Both of these genes have 

been found to either increase the production of amyloid-β production, or in certain mutations, 

to alter the ratio of the amyloid β1-42 amino acid isoform to 1-40 amino acid isoform 

levels.36 This forms the basis of the Amyloid Hypothesis (Figure 2), which is further 

illustrated by the opposite situation where an APP mutation, which reduces amyloid 

formation, was found to be protective against AD.37 The Amyloid Hypothesis has been the 

dominant paradigm in AD research since, although the pathogenesis of AD in general is 

likely to be more complex.38, 39  
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Altogether, these three genes account for 86% of AD families with age of onset under 60 in 

three or more generations.21, 22 Mutation in PSEN1 is the most frequent cause- accounting for 

about 60% of Mendelian families.21, 24 About fifteen percent of Mendelian families are due to 

sequence mutations in APP,21, 24 although duplication of the APP gene may account for 

another 8% of these families.22 Mutations in PSEN2 are rare, with only 22 families reported 

in the literature to date.2 Our practice is therefore to screen for PSEN1 mutations first, 

particularly if the patients have very early age of onset, followed by APP. There are a few 

phenotypic clues that may help prioritize mutation screening however. Families with AD and 

spastic paraparesis are likely to have a PSEN1 mutation, and a variant histopathology 

characterized by ‘cotton wool plaques’.40 APP mutations can also cause cerebral amyloid 

angiopathy with cerebral haemorrhage.41 A great proportion of families with PSEN2 are of 

Volga German origin. Unlike PSEN1 and APP, age of onset for PSEN2 families can be as 

late as the 70s, and there are also examples of mutation carriers being dementia-free in their 

80s.42 Finally, if sequencing of all three genes are normal for a Mendelian family, then 

mutation of the APP gene by duplication should also be considered.22 

Finally, care should be taken when a genetic change is found in a new family, because some 

of these changes may only be polymorphisms with no clinical significance. The genetic 

change should be checked against the AD&FTD Mutation Database2, which provides an up 

to date and exhaustive repository of reported mutations for each gene. If the genetic change 

has not been reported in the past, Guerreiro et al. has also proposed a systematic algorithm to 

determine the probable pathogenicity of genetic variants, based on segregation within family, 

its frequency in clinically normal individuals, and functional studies in model systems.43 

 

Advice for the other families 
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While the vast majority of people with AD do not have mutations in these currently known 

genes, there are a number of other genetic variations which contribute to disease risk, in a 

genetically complex manner.  

Among these, Apolipoprotein E (ApoE) has the greatest effect and the evidence for this is the 

best replicated by far. Compared to people with the common ApoE E3/E3 genotype, people 

with the ApoE E2/E2, E3/E4 and E4/E4 genotypes are 0·5-, 3- and 8-fold more likely to 

develop AD respectively.44 Nonetheless, , up to 75% of people carrying 1 copy of the high 

risk E4 allele remain free of AD, and up to 50% of people with AD do not carry the high risk 

E4 allele.45 Thus testing of ApoE genotype is not recommended. Candidate gene studies and, 

more recently, GWAS, have identified a number of additional genetic variations associated 

with AD. However, only a small proportion of these variations have been confirmed in 

replication studies, and the replicated variations have even smaller effects on disease risk 

than ApoE (OR<2).46,47   

Recently, a rare variant in the TREM2 gene was also found have a significant association 

with AD, with an Odds Ratio of around 3.48, 49 Mutations in the TREM2 gene are typically 

associated with the rare bone and brain disease Nasu-Hakola Disease, however it can also 

lead to early onset dementia without bone lesions.50 Like ApoE, it is unlikely that the TREM2 

rare variant will be used for clinical testing. 

How then should we advise people with a non-Mendelian family history of AD? Green et al. 

carried out a clinic-based study, which included 2594 probands with AD.51 They compared 

the cumulative dementia risk in the probands’ first degree relatives, against the probands’ 

spouses as controls. Having a first degree relative with AD, means that one has a roughly 2·5 

times the lifetime risk of dementia, compared to the general population. For the White 

American subgroup, in absolute terms, they found the cumulative risk of dementia (by the 
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age of 80) to be about 18% and 6% for first degree relatives and spouses of probands 

respectively. For the African American subgroup, the risks were 30% and 13% respectively.   

 

Genetic testing for Frontotemporal Dementia 

Frontotemporal Dementia (FTD) is a heterogeneous group of disorders, characterised by 

progressive degeneration of the frontal and/or temporal lobes. Clinically it is characterized by 

progressive deterioration in behavior, speech production or language, with relative sparing of 

memory and visuospatial function.52, 53 FTD is heterogeneous in clinical presentation, 

imaging features, underlying histopathologic subtypes, and genetics among the Mendelian 

families (Figure 3). While there are general rules relating clinical presentations to imaging 

findings,54, 55 to pathologic subtypes56 and to genetic causes,57 these rules tend to have 

exceptions and there is not necessarily a one-to-one correspondence.  In addition, there is also 

a degree of overlap between FTD and two groups of neurodegenerative disorders- motor 

neuron disease (MND), and two of the Parkinson-plus syndromes, corticobasal syndrome 

(CBS) and progressive supranuclear palsy (PSP). A comprehensive family history, expert 

phenotypic classification, and ideally histopathologic diagnosis in a family member, will all 

help prioritize which gene(s) to test. Imaging can be very helpful in genetic studies for FTD 

because it helps refine patient phenotype, and also offers a way of assessing family members 

who cannot be assessed in person. In addition, imaging from deceased family members may 

help make relevant diagnoses retrospectively. For more information about FTD, see Panel 1. 

Who to test? Identifying Mendelian families in Frontotemporal Dementia 

In broad terms, 40-50% of people with FTD have family histories of dementia and related 

disorders, which may include other neurologic or psychiatric diseases.58 However, the 

proportion of people with an autosomal dominant family history is lower (10-30%).58 As with 

AD, families with multi-generational inheritance and young onset are more likely have 
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genetic mutations. This is well illustrated by the Queen Square series, where a cohort of 256 

probands with FTD were classified according to pattern of family history and screened for 

pathogenic mutations in the FTD-causing genes.59, 60 88% of patients with the strongest 

autosomal dominant family history were found to carry such mutations. These families were 

characterized as having at least three affected family members in two generations specifically 

with FTD, MND or one of the Parkinson’s Plus syndromes (CBS or PSP). In addition, one 

affected person must also be a first-degree relative of the other two affected family members. 

For the patient group where three or more family members had dementia in general, but not 

satisfying the above criteria, then 41% were found to have mutations. The probability of 

finding a mutation for patients with only one family member with dementia depends on the 

age of onset of the relative. 31% of patients with one relative demented before the age of 65 

were found to have mutations. In contrast, only 13% of patients with one relative demented 

after the age of 65 were found to have mutations.  Only 7% of patients without a family 

history were found to have mutations.  

What to test? Genetic testing for families with Mendelian forms of Frontotemporal Dementia 

Three causative genes explain over 80% of FTD families with strong autosomal dominant 

family history59, namely, Microtubule-associated protein Tau (MAPT), Granulin (GRN), and 

Chromosome 9 Open Reading Frame 72 (C9ORF72). MAPT was the first to be discovered in 

1998.61 It was discovered using a positional cloning approach, among families linked to 

chromosome 17 presenting with FTD and Parkinsonism. Tau is a microtubule binding protein 

involved in the transport of organelles and other cellular components. Mutations in MAPT 

can either disrupt Tau protein structure, or alter the proportion of different Tau isoforms 

available. This leads to impaired microtubule assembly/ axonal transport, and can promote 

pathologic Tau filament aggregation.62 It was soon realized that a number of other 

chromosome 17-linked FTD families did not have MAPT mutations, and had Ubiquitin rather 
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than Tau-based histopathology. These families were eventually found to have mutations in 

the GRN gene in 2006.63, 64 Most mutations in GRN are null mutations that lead to nonsense-

mediated decay of mutant GRN messenger ribonucleic acid (mRNA) and reduced expression 

of Progranulin (PGRN). Consequently it is possible to identify mutation carriers by 

measuring serum PGRN levels.65 Progranulin is a glycoprotein with a range of cellular 

regulatory functions and its exact role in neurodegeneration is still being investigated.66 

Finally, in 2011, a number of chromosome 9- linked families with FTD/ MND, and 

Transactive response DNA binding protein-43 (TDP-43) based pathology, were found to be 

have expanded GGGGCC hexanucleotide repeats in the intronic region of the C9ORF72 

gene.67, 68 Under 20 repeats is regarded as normal68, although there are now examples of 

people with normal cognition and >30 repeats.69 While the typical pathogenic C9ORF72 

repeat is in the hundreds, the lower limit of the pathogenic range may be as low as 65 

repeats.69  There are families with both mutations in C9ORF72 and other MND-related genes, 

suggesting that MND may be oligogenic in nature.70 The pathogenesis of C9ORF72- related 

FTD is still being elucidated. Function of the C9ORF72 encoded protein is currently 

unknown, but the GGCCCC repeats do form nuclear RNA foci in affected cells.67 This may 

indicate a shared, RNA-mediated neurodegenerative mechanism, with other noncoding repeat 

expansion disorders.  

All three genes cause disease in an autosomal dominant manner. Mutations in C9ORF72 

tends to be the most common, with a lower but similar proportion of people carrying GRN 

and MAPT mutations in most case series.57 For instance, the Mayo clinic familial FTD series 

found 11·7%, 7·6% and 6·3% of people carrying C9ORF72, GRN and MAPT mutations 

respectively.67 GRN71 and C9ORF7272 can be associated with reduced penetrance, and are 

both found in apparently sporadic cases. Moreover, C9ORF72 appear to be more common in 
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familial MND patients of European ancestry (39%) and rarer in comparable East Asian 

patients (5%).73 

In addition to the three main FTD-causing genes, there are a number of rarer genetic causes 

of FTD. Mutations in the chromosome 9 Valosin-Containing Protein (VCP) gene cause 

autosomal dominant FTD together with inclusion-body myositis and Paget’s disease of the 

bone.74 Mutations in the chromosome 16 Fused in Sarcoma (FUS) gene most commonly 

cause MND without dementia75 although FUS mutations have also been associated with 

clinical FTD.76 Interestingly people with FTD and FUS histopathology, tend not to have 

mutations in the FUS gene.77 Mutations in the chromosome 3 Charged Multivesicular Body 

protein 2b (CHMP2B) gene has been found in a large autosomal-dominant Danish FTD 

pedigree,78 but is very rare otherwise. People with CHMP2B mutations also have an unusual 

Ubiquitin positive, but TDP and FUS negative pathology (FTLD-UPS). 

Clinical FTD has also been reported for people with mutations in a number of genes typically 

associated with other diseases. These include the chromosome 2 Dynactin-1 gene,79 

Presenilin-1 gene,80, 81 and the chromosome 1 Transactive response (TAR)-DNA-binding 

protein (TARDBP) gene.82 

Genotype-phenotype correlation for the FTD genes has been summarized in two excellent 

reviews.57, 83 While there is strict correspondence between causative gene and histopathology, 

there is much overlap in the relationship between causative gene and clinical presentation, 

and one may not be able to predict the causative gene based on phenotype alone. For 

instance, all three of the main FTD genes can cause behavioral variant FTD, or have 

Parkinsonism as part of the clinical presentation. Our practice is therefore to utilize 

histopathologic data when available, then prioritise gene testing according to some of the 

more specific phenotypes associated with each causative gene (Table 2). While the typical 

FTD/MND family is likely to have a C9ORF72 mutation, occasionally MND can also be 
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seen in families with GRN mutations.84 Traditionally, Corticobasal Degeneration (CBD) has 

been thought to be a Tau-based disease, but a CBD like clinical picture is not uncommon in 

families with GRN mutations.85 Consequently that constellation of signs and symptoms have 

been renamed Corticobasal Syndrome (CBS) and we suggest considering both GRN and 

MAPT when genetic testing for CBS families. Psychotic symptoms can occur up to 38% of 

people with C9ORF72 mutations,86 but hallucinations can also be part of the presentation for 

people with GRN mutations.71 A somewhat unique finding in FTD families with C9ORF72 

mutations is cerebellar involvement clinically,87 by imaging,88 and in histopathology.89 This 

may be yet another pointer to testing for C9ORF72 mutations. There are emerging 

neuroimaging features that point to underlying genetic mutations on a group-wise basis,88 

although there is no easy way to apply this to individual patients in the clinic at present.  

Finally, in the absence of pathology data, there can be significant overlap in clinical 

presentation between AD and FTD.90 In such cases where the diagnosis is unclear, patients 

may be advised to have both AD and FTD genes tested. 

Advice for the other families 

For people with a non-Mendelian family history of FTD, the best information for dementia 

risk comes from a population-based study in the Netherlands.91 Using a case-finding 

approach, Stevens et al. identified and verified all cases of FTD in a population of 15 million. 

Among the 411 first-degree relatives of people with FTD, the cumulative incidence of 

dementia before age 80 was 22%. The cumulative incidence was lower (18%), once the 

Mendelian families with MAPT mutations were excluded (MAPT was the only FTD causative 

gene known at the time). This compared to 11% among 2934 first-degree relatives of 

matched population-based controls. In other words, people with a non-Mendelian family 

history of FTD have roughly twice the life time risk of dementia compared to the general 

population, and this increase in risk is similar to that found in relatives of people with AD. 
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Genetic testing for familial dementia with additional neurologic features 

Cognitive impairment is common in neurogenetic conditions, and familial dementia often 

presents with additional neurologic features. We have summarized some of the more 

common conditions in Table 3 and Rossor et al. also provides a comprehensive review.13 

Two conditions deserve a special mention: Huntington Disease and Dementia with Lewy 

Body Disease. Huntington Disease is one of the most common neurogenetic disorders92 and 

can  present without chorea (Table 3). It is a particularly important differential for any patient 

with very early onset dementia (onset age 20s-30s). Dementia with Lewy Bodies (DLB) 

typically presents in a sporadic manner.93 However there is a small increase in risk of DLB 

among siblings of people with DLB, compared to siblings of people with AD,94 and families 

with autosomal dominant pattern of inheritance do exist.95 Dementia is also common in 

Parkinson Disease (PD),96 and it is helpful to consider Parkinson Disease Dementia and DLB 

as diseases in the same ‘Lewy Body Disorder’ (LBD) spectrum.97 For the rare LBD families, 

testing for PD-causing genes98 should be considered, especially Alpha-Synuclein. Mutations 

in the Glucocerebrosidase (GBA) gene cause the lysosomal storage disease Gaucher Disease 

in a recessive manner, requiring mutations in both copies of the gene. However in one case 

series, carriage of one abnormal copy of the GBA gene has also been found in 23% of people 

with pathologically confirmed DLB.99  

 

Practical aspects of genetic counseling 

Genetic testing can be carried out on a symptomatic or on a predictive basis. Symptomatic 

testing is for people already diagnosed with dementia, while predictive testing is for people 

who are clinically well. Genetic counseling is helpful in both situations, but formal 
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counseling with a geneticist is essential for people undergoing predictive testing. There are 

now a number of guidelines for genetic testing in AD and FTD. 20, 100 

Generally speaking, symptomatic genetic testing in dementia does not change clinical 

management, however it can help confirm the diagnosis if there had been any uncertainty. It 

is also a good opportunity for information-giving to the patient’s family members and to offer 

genetic counseling. Table 4 contains a checklist of information for patients, about the 

genetics of Mendelian forms of dementia. 

Unaffected individuals tend to request predictive testing for three reasons: memory 

symptoms, future life planning, and more specifically, reproductive planning. A neurologic 

review may be helpful, especially for the subgroup with memory symptoms.  Formal 

counseling from a clinical geneticist/ genetic counselor is essential. People requesting 

predictive testing require additional support and information, as there is currently no curative 

treatment to offer them if they test positive. Examples of support resources can be found on 

the websites of the UK Alzheimer’s Society101 and the US Alzheimer’s Association.102 Many 

individuals at one in two risk, when adequately informed, choose not to proceed with testing.   

The principles of predictive testing are well established for Huntington Disease, and the 1994 

guideline remains a helpful document.103 In general, predictive testing is only recommended 

for adults, and testing should be delayed if there is evidence of significant psychological or 

psychiatric problems. The testee is encouraged to involve a family member or friend as a 

support person throughout the testing process. The testee should be aware of the lack of 

specific preventative interventions if she/he tests positive, and potential harms including 

psychological harms, and difficult access/exclusion from certain insurance policies. There 

should be a significant time period between information giving and the final decision to test, 

and there should also be post-test follow-up counseling. Suicide is a known risk in genetic 

testing, and the Columbia Suicide Severity Rating Scale is one helpful assessment tool in this 
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context.104 If genetic testing is considered in the context of reproductive planning, the 

possibilities of prenatal genetic testing and pre-implantation diagnosis105 should be discussed. 

Finally, individuals identified as unaffected mutation carriers may also consider the 

opportunity to join treatment trials for genetic at-risk groups, such as those announced as part 

of the Alzheimer’s Prevention Initiative (http://endalznow.org/) and Dominantly Inherited 

Alzheimer Network initiatives (http://dian-info.org/).   

 

Conclusions 

Dementia is a common condition and family history of dementia is also common. Fortunately 

Mendelian forms of dementia are rare. This means that for relatives of most people with 

dementia, their life-time risk of dementia is around 20%, compared to about 10% in the 

general population. However, in the small proportion of families where there is a strong 

autosomal dominant family history of early onset dementia, mutation in one of the dementia-

causing genes can often be found. Each offspring of the affected person will then have a 

50:50 or 1 in 2 chance of inheriting the mutation, and with the mutation, a lifetime dementia 

risk of over 90%.  

In this review we have highlighted the importance of a detailed family history, and clinical 

clues to help clinicians prioritise which gene(s) to test first. At the time of writing, the field of 

genomic analysis in human inherited disease is undergoing a process of rapid change. The 

advent of technical advances such as exome sequencing (reading the sequence of the coding 

regions of every gene in one test) and whole genome sequencing (reading the entire 

sequence, coding and noncoding regions, for the human genome in one test)106 is already 

transforming the process of genetic testing. These massively parallel sequencing techniques 

allow us to sequence a large number of genes simultaneously, at the cost of sequencing two 

or three genes using previous technology. This approach is particularly attractive for 
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conditions where the there are multiple causative genes with overlapping phenotypes, such as 

FTD, and remove the need to prioritise genetic testing in a probabilistic manner. This 

approach has yielded some unexpected results, such as identification of a mutation in the 

NOTCH3 gene, for a patient with clinical AD.107 There are already examples of successful 

genetic diagnosis using these techniques.108, 109 While these techniques still require validation 

before routine clinical use, and will generate new clinical and ethical dilemma110 (eg. 

interpretation of rare and novel variants), they will revolutionize the way we think about 

genetic testing and bring us closer to the ideal of  personalized medicine. 
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TABLE 1 

Probability of finding a pathogenic mutation in one of the recognized Alzheimer Disease 

genes, among multiplex families 	
  

 

Pattern of inheritance Age of onset Probability of having a 

genetic mutation 

Affected family members in 

three generations 

<60 years 86% 

Two or more affected, first 

degree relatives 

<61years 68% 

Two or more affected, first 

degree relatives 

<65years 15% 

Two or more affected, first 

degree relatives 

>65years <1% 

  

Legend: see main text for detailed explanation and references. 
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TABLE 2 

Clinical clues which may help prioritise genetic testing in familial FTD  

Clinical clue Suggestions for priortised genetic 

testing1,2 

Histopathology available  
FTLD-tau (MAPT), FTLD-TDP (GRN 

or C9ORF72), FTLD-FUS (consider 

FUS mutations but often absent), 

FTLD-UPS (CHMP3B) 

Motor Neuron Disease is part of the 

phenotype 

C9ORF72 then GRN 

Corticobasal Syndrome is part of the 

phenotype 

GRN then MAPT 

Psychosis is part of the phenotype C9ORF72, GRN 

Highly variable age of onset or reduced 

penetrance  

GRN, C9ORF72 

Cerebellar involvement C9ORF72 

Other associations Inclusion Body Myositis/ Paget’s 

Disease of the Bone (VCP), Danish 

ancestry (CHMP2B) 

 

1. Genetic testing may proceed to other genes if the suggested genes are normal/negative 
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2.  See main text and Panel 1 for full names of abbreviations, and detailed explanations of 

the genetic and histopathologic subtypes  
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TABLE 3 

Genetic testing for familial dementia with additional neurologic features 

Clinical presentation Gene(s) to consider Comments 

Dementia with 

myoclonus 

Prion (PRNP) 

gene111 

Genetic Prion disease has three clinical 

subtypes: Familial Cruetzfeldt- Jakob disease, 

Gerstmann-Straussler-Scheinker disease, and 

Fatal Familial Insomnia- with some genotype-

phenotype correlation.112 Rarely mutations in 

the PRNP gene can also produce progressive 

memory loss similar to AD.113, 114 

AD-causing genes Myoclonus can also present as an early feature 

in familial AD.115 

Dementia with 

chorea 

Huntingtin (HTT) 

gene116 

People with Huntington Disease may not 

present with chorea as the first symptom. 

Cognitive impairment can precede chorea for 

decades,117 and the Westphal variant is 

characterized by rigidity rather than chorea.118  

Genes causing 

Huntington-like 

phenotype 

These include genes causing Spinocerebellar 

Ataxia Type 3, Spinocerebellar Ataxia Type17, 

Dentatorubropallidolysian Atrophy, Neuro-

acanthocytosis, Neuroferritinopathy, & 

Junctophilin-3 mutations.119, 120 
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Dementia with 

ataxia  

Genes causing 

cerebellar ataxia121, 

122 

Examples of genetic forms of ataxia with 

cognitive impairment include: Spinocerebellar 

Ataxia Type 2, 123 Spinocerebellar Ataxia Type 

3,124 Spinocerebellar Ataxia Type 17,125 

DRPLA,126 and neuroacanthocytosis . This list 

is likely to grow. 

Dementia with 

dystonia 

ATPase-7b 

(ATP7B) gene for 

Wilson Disease127, 

128 

 

Wilson Disease is Autosomal Recessive so 

there may not be a family history. Nonetheless 

it is an important differential as it is potentially 

treatable.129 

Niemann-Pick 

Disease Type C1 

(NPC1) and 

Niemann-Pick 

Disease Type C2 

(NPC2) genes 

Niemann-Pick Disease Type C is an autosomal 

recessive lysosomal lipid storage disease, which 

sometimes presents in young adulthood with a 

spectrum of clinical findings including 

cognitive impairment, supranuclear 

ophthalmoplegia, dystonia, ataxia, and 

splenomegaly.130 It is diagnosed by biochemical 

testing of fibroblast culture or genetic testing, 

and is potentially treatable.131 

Dementia with white 

matter changes on 

imaging 

Genes causing 

paediatric white 

matter diseases132 

This in a young adult raises the possibility of 

metabolic, mitochondrial and other inherited 

disorders. Differential is broad but serum 
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 lactate, serum amino acid, urinary organic acids, 

and consult with a metabolic physician would 

be a good starting point. 

NOTCH 3 

(NOTCH3) gene133 

Cerebral autosomal dominant arteriopathy with 

subcortical infarcts and leukoencephalopathy 

(CADASIL) is an autosomal dominant 

condition with migraines, young onset strokes, 

dementia and white matter changes on MRI.134 

Skin biopsy has been used to diagnose 

CADASIL in the past but molecular genetic 

testing is now the preferred method. Although 

frequently considered as a differential 

diagnosis, this is a comparatively rare disorder 

with a prevalence of about 2 per 100,000.135 

Dementia with 

progressive 

myoclonic epilepsy 

(PME) 

Specific genes for 

each disease 

causing PME136, 137 

This is a heterogeneous group of disorders, 

which include: Myoclonus epilepsy and ragged 

red fibres,  Unverricht-Lundborg Disease, 

Lafora Body Disease, Neuronal Ceroid 

Lipofuscinoses, and Type I Sialidosis. In the 

past diagnosis had required tissue biopsies but 

the causative genes have now been found for 

many of these disorders. 
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TABLE 4 

Information for patients, when considering molecular genetic testing for an autosomal 

dominant disorder 

1. We have approximated 25000 genes each, and a fault in any one of these can be 

sufficient to cause disease. 

2. We have two copies of each nuclear encoded gene, one from each parent. 

3. In ‘autosomal dominant’ conditions, a mistake in one of the two copies of a gene, is 

sufficient to cause disease.  

4. In autosomal dominant dementia, an affected person carries one faulty copy of a 

dementia gene, as well as a normal copy of that gene. 

5. Each offspring of the affected parent will therefore have a one in two, or 50:50 chance 

of inheriting the faulty copy of the gene, and a one in two, or 50:50 chance of 

inheriting a normal copy of the gene. These probabilities apply to each offspring, 

regardless of the gene status of her/his brothers or sisters. Each offspring will also 

inherit a normal copy of the gene from the unaffected parent. 

6. An offspring who has inherited the faulty copy of a dementia-causing gene, is highly 

likely to develop this form of dementia within her/his lifetime, as these faults tend to 

be of ‘high penetrance’. However the genetic test does not predict age of onset. 

Her/his children will also have the one in two, or 50:50, chance of inheriting the 

faulty copy of the gene. 

7. An offspring that has not inherited the faulty copy of the dementia-causing gene, will 

not develop this form of dementia, and neither will her/his offspring. 
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PANEL 1 

Frontotemporal Dementia (FTD) 

Clinically, FTD is a heterogeneous group of syndromes characterized by progressive 

deterioration in behavior, speech production or language, with relative sparing of memory 

and visuospatial function. FTD can be subdivided into three clinical subtypes: behavioral 

variant FTD (bvFTD), Progressive Non-Fluent Aphasia (PNFA) and Semantic Dementia 

(SD). PNFA and SD are sometimes grouped together under the umbrella term Primary 

Progressive Aphasia (PPA). The Neary criteria52 remains a helpful description of the FTD 

clinical subtypes.  However, there is a revised criteria for bvFTD which is likely to improve 

the sensitivity and specificity of clinical diagnosis.138 This incorporates imaging and genetic 

data, thus allowing earlier diagnosis in some cases, and exclusion of other non-progressive 

cases. Another development is the recognition of a third subtype of PPA- the logopenic 

variant,139 which is characterized by slow and reduced verbal output with sparing of 

grammar, and word finding difficulties without impairment in single word comprehension. 

As such, this group of patients appears to be distinct from PNFA and SD, although only a 

small proportion of non-PNFA and non-SD patients fits into this subtype.140 Generally 

speaking, these clinical subtypes correlate well with specific imaging findings.54 (Figure 3) 

Clinical subtypes also correlate with specific histopathologic subtypes to a certain degree- 

although clinical prediction of underlying histopathology is not straight forward. The 

nomenclature of histopathologic subtype of frontotemporal lobar degeneration (FTLD) was 

updated in 2010.141 FTLD histopathologic subtypes are classified according to 

immunohistochemical reactivity to a number of proteins, including: tau (FTLD-tau), 

Transactive response DNA binding protein-43 (FTLD-TDP), and Fused in sarcoma protein 

(FTLD-FUS). Prior to discovery of the roles of TDP and FUS in FTLD, FTLD-TDP and 

FTLD-FUS were both classified under ‘FTLD with ubiquitinated inclusions (FTLD-U)’. The 
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small number of FTLD-U cases that do not stain positive for TDP or FUS, are now denoted 

FTLD-UPS (Ubiquitin Proteosome System). Semantic Dementia has the most consistent 

underlying histopathology- 75% of cases in a histopathologic series were found to have 

FTLD-U, and the retrievable cases were all TDP positive.142 Histopathology is much more 

variable for bvFTD (can be any of the FTLD subtypes) and PNFA (FTLD-tau or FTLD-

TDP). It should also be noted that these clinical subtypes are not 100% specific for FTLD 

either, and other neurodegenerative diseases such as Alzheimer Disease may also mimic   

FTD, PNFA and SD clinically. Other clues for clinico-histopathologic correlation include: 

FTD associated with motor neuron disease is associated with FTLD-TDP,143 and very early 

age of onset without a family history may predict FTLD-FUS.144 

The relationship between genetic mutations and histopathology is more straight forward. In 

general, mutations in a specific gene only lead to one histopathologic subtype (Table 2). 

Histopathologic diagnosis in a family member will remove the uncertainty of predicting 

histopathologic subtype based on clinical phenotyping alone, and is invaluable in genetic 

studies. 
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FIGURE LEGENDS 

Figure 1  

Pathogenesis in Mendelian versus Complex disease. In a Mendelian disease, mutation in a 

single gene is necessary and sufficient to cause disease. In a Complex disease, normal 

variation in multiple genes interact with the environment to increase disease risk. 

Figure 2 

The Amyloid Hypothesis and pathogenesis in Alzheimer Disease. All three of the AD-

causing genes are involved in Amyloid-β production, although other factors are likely to also 

play a role in the pathogenesis of Alzheimer Disease in general. APP= Amyloid Precursor 

Protein , PSEN1=Presenilin-1 , PSEN2= Presenilin-2  

Figure 3 

Frontotemporal dementia (FTD) is a group of disorders characterised by degeneration of the 

frontal and/or temporal lobes, but is heterogeneous in clinical presentation, imaging features, 

underlying histopathologic subtypes, and genetics among the Mendelian families. 

 

Legend: FTLD= Frontotemporal Lobar Degeneration, TDP= Transactive response DNA 

binding protein-43, FUS= Fused in sarcoma protein, UPS= Ubiquitin Proteosome System 

  



	
   43	
  

SEARCH STRATEGY AND SELECTION CRITERIA 

 

We searched MEDLINE (1946-Feb2013) using the OvidSP platform. A typical search uses 

explode and textword functions. For example, genetics of frontotemporal dementia was 

searched using the strategy (exp Frontotemporal Dementia/ OR frontotemp$.tw) AND (exp 

genetics/ OR (gene OR genes OR genet$).tw). Further studies were identified by searching 

reference lists of review articles, and by searching Web of Science to identify studies citing 

seminal papers. Studies were chosen for their currency, scientific merit/study design and 

sample size. If there are multiple studies with the same observation we chose the first 

definitive study. 
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