A KINETIC APPROACH TO SOIL PHOSPHORUS MOBILISATION
BY INOCULANT BIOFERTILISER

Mohammad Faruque Ahmed

Faculty of Agriculture, Food and Natural Resources
The University of Sydney
New South Wales
Australia

A THESIS SUBMITTED IN THE FULFILMENT OF THE REQUIREMENTS FOR THE
DOCTOR OF PHILOSOPHY IN AGRICULTURE

THE UNIVERSITY OF SYDNEY

2007
TABLE OF CONTENTS

CHAPTER 1 INTERATURE REVIEW-PHOSPHORUS FIXATION IN SOIL AND MOBILISATION BY BACTERIA ... 1
 1.1 Introduction ... 1
 1.2 Background and importance of phosphorus 2
 1.2.1 Phosphorus chemistry ... 3
 1.2.1.1 Historical perspective of phosphorus 3
 1.2.1.2 Atomic properties and bonding 5
 1.2.2 Soil phosphorus chemistry 6
 1.2.2.1 Soil organic phosphorus 6
 1.2.2.2 Inositol phosphates 8
 1.2.2.3 Nucleic acids ... 9
 1.2.2.4 Phospholipids and other esters 9
 1.2.3 Inorganic phosphorus compounds 9
 1.2.4 Phosphorus in the soil solution 10
 1.2.5 The phosphorus status in soil 11
 1.2.6 Phosphorus fixation in soil 12
 1.2.6.1 Phosphorus fixation in acid soil 14
 1.2.6.2 Phosphorus fixation by clay minerals 17
 1.2.6.3 Phosphorus fixation in alkaline soils 18
 1.2.7 Factors affecting phosphorus fixation in soils 19
 1.2.7.1 Nature and amount of soil components 19
 1.2.7.2 Effects of pH on predominantly insoluble phosphorus changes ... 21
 1.2.7.3 Ionic effects ... 22
 1.2.7.4 Saturation of the sorption complex 23
 1.3 Adsorption-desorption behaviour of soils phosphorus 24
 1.3.1 Adsorption behaviour of phosphorus in different types of soils and equilibrium solutions 24
 1.3.2 Phosphorus desorption by bacteria and phosphorus content in bacterial cells .. 29
 1.3.3 Materials used for microbial lysis and P extraction 32
 1.3.4 Effect of equilibrium time on phosphorus recovery 32
 1.3.5 Bacterial influence on phosphorus desorption and method of phosphorus determination 33
 1.4 Soil-root rhizosphere system .. 33
 1.4.1 What is the rhizosphere? 34
 1.4.2 What is the rhizoplane? 35
 1.4.3 Organic acid release under phosphorus deficiency 35
 1.4.4 Do organic acids cause acidification on rhizosphere? 37
 1.4.5 Al toxicity and its remedy at the rhizosphere 39
 1.5 Microbial effects on phosphorus mobilisation 40
 1.5.1 Phosphate mobilising ability of bacteria 42
 1.5.1.1 Phosphorus solubilising ability of bacteria under laboratory condition 42
 1.5.1.2 Phosphorus mobilisation by bacteria in plant experiments .. 47
 1.5.2 Factors affecting phosphate mobilisation by bacteria 49
 1.5.2.1 Effects of carbon and nitrogen sources on phosphate solubilisation 50
 1.5.2.2 Effects of high salt, high pH and high temperature on phosphate solubilisation 50
 1.5.2.3 Effect of calcium supplements on phosphate solubilisation 51
 1.5.2.4 Effects of different types of microorganisms on phosphorus mobilisation 51
 1.5.3 Possible bacterial mechanisms for solubilising phosphorus for plant growth .. 51
 1.5.3.1 Phosphorus solubilisation by changing rhizosphere pH using bacteria 52
 1.5.3.2 Phosphorus solubilisation by chelation 54
 1.5.3.3 Organic acids ... 57
 1.5.3.4 Mobilisation of phosphorus by bacterial ammonium assimilation 58
 1.6 Effects of plant growth promoting rhizobacteria (PGPR) 59
 1.6.1 What are endophytes? 59
 1.6.2 Examples of some PGPR effects 59
 1.6.3 Mechanism of PGPR effects 60
 1.7 The aims of this research project .. 61
CHAPTER 2 ISOLATION AND IDENTIFICATION OF PHOSPHORUS MOBILISING
BACTERIA

2.1 Introduction .. 63
2.2 Materials and methods ... 64
 2.2.1 Soils ... 64
 2.2.2 Soil dispersing medium and agar medium for bacterial isolation .. 65
 2.2.2.1 Soil dispersing medium .. 65
 2.2.2.2 Agar medium .. 65
 2.2.3 Isolation of phosphorus mobilising bacteria from soils ... 65
 2.2.3.1 Preparation of bacterial suspensions from soil samples ... 65
 2.2.3.2 Culture of bacterial suspensions on agar plates ... 66
 2.2.3.3 Preparation of pure cultures and preservation of P-mobilising bacteria 66
 2.2.3.4 Phosphorus mobilising activity of freeze-dried samples ... 67
 2.2.4 Characterisation of P-mobilising bacteria by conventional classification 67
 2.2.5 Characterisation of P-mobilising bacteria by molecular methods .. 68
 2.2.5.1 Amplification of DNA .. 68
 2.2.5.2 Purification of DNA ... 69
 2.3 Results .. 70
 2.3.1 Soil physico-chemical properties .. 70
 2.3.2 Isolation of potential P-mobilising bacteria from three soils ... 71
 2.3.3 Culturing the ten strains and preparing freeze-dried culture ... 72
 2.3.4 Determination of phosphorus mobilising ability by measurement of ‘halo’ zone for seven bacterial
 strains ... 72
 2.3.5 Characterisation of potentially P-mobilising bacteria ... 74
 2.3.5.1 Characterisation by conventional classification ... 74
 2.3.5.2 Characterisation of bacteria using API strips ... 76
 2.3.6 Molecular classification of isolated bacteria using 16S rDNA technique 78
 2.4 Discussion ... 81
 2.5 Conclusion ... 85

CHAPTER 3 THE MOBILISATION OF INSOLUBLE PHOSPHATE IN LIQUID CULTURE BY
SEVERAL BACTERIAL STRAINS ... 87

3.1 Introduction ... 87
3.2 Materials and methods ... 88
 3.2.1 Materials .. 88
 3.2.1.1 Bacteria .. 88
 3.2.1.2 Media, agar plate and insoluble P samples ... 89
 3.2.2 Methods ... 89
 3.2.2.1 Preparation of liquid media .. 89
 3.2.2.2 Preparation of bacterial cultures from freeze-dried ampoules and estimation of numbers of
 bacteria .. 90
 3.2.2.3 Setting up of culture/inoculation and incubation .. 90
 3.2.2.4 Sampling and assay for pH, bacterial count and P-analysis ... 91
 3.2.2.5 Preparation of bacterial cultures for experiments to measure organic acid production 91
 3.2.2.5.1 Bacterial culturing .. 91
 3.2.2.5.2 HPLC assay .. 92
 3.2.2.6 Statistical analysis ... 92
 3.3 Results .. 93
 3.3.1 Solubilisation of phosphorus from Ca$_3$(PO$_4$)$_2$ in a medium containing (NH$_4$)$_2$SO$_4$
 as the source of N .. 93
 3.3.1.1 Phosphorus solubilisation .. 93
 3.3.1.2 pH changes (pH) ... 94
 3.3.1.3 Bacterial counts ... 96
 3.3.1.4 Changes in soluble P, pH and bacteria number (CFU mL$^{-1}$) of six cultures containing
 bacterial strains over a five day incubation period 97
 3.3.1.5 Production of organic acids in bacterial cultures containing Ca$_3$(PO$_4$)$_2$ and (NH$_4$)$_2$SO$_4$.. 99

ii
CHAPTER 4 INCREASING YIELD OF WHEAT USING PHOSPHORUS MOBILISING BACTERIAL STRAINS IN GLASSHOUSE EXPERIMENTS ...131

4.1 Introduction ..131
4.2 Materials and methods ...132
 4.2.1 Materials ...132
 4.2.1.1 Soil ..132
 4.2.1.2 Potting mix ...132
 4.2.1.3 Plant variety ...132
 4.2.1.4 Sources of phosphorus ..133
 4.2.1.5 Nutrient solutions ..133
 4.2.1.6 Glass house temperature ..134
 4.2.1.7 Bacterial strains ...134
 4.2.1.7.1 P-mobilising bacteria from Australian soils134
 4.2.1.7.2 Other bacteria ...134
 4.2.1.8 Fungus ..135
 4.2.2 Methods ..135
 4.2.2.1 Experiments to determine the effect of P-mobilising bacteria on wheat yields ..135
 4.2.2.1.1 Setting up pots with soil135
 4.2.2.1.2 Addition of P to the soil135
 4.2.2.1.3 Seed sterilisation, sowing and thinning136
 4.2.2.1.4 Inoculation with bacterial strains136
 4.2.2.1.5 Watering and nutrient supplying137
 4.2.2.1.6 Pest control ...137
 4.2.2.1.7 Plant parameters at harvest137
 4.2.2.1.8 Plant phosphorus uptake/content138
 4.2.2.2 Experiment to determine plant growth promoting rhizobacterial effects ..138
 4.2.2.2.1 Establishment of Experiment 3 and growth of wheat 139
 4.2.2.2.2 Harvesting of wheat plants140
 4.2.3 Data analysis ...140
5.3 Results ...140
4.3.1 Schedule summaries for Experiments 1, 2 and 3 ...140
4.3.1.1 Schedule summaries for Experiment 1 and 2 ..140
4.3.1.2 Schedule summary for Experiment 3 ..141
4.3.2 Soil properties ..141
4.3.3 Variation of temperature in the glasshouse ...142
4.3.4 Experiment 1: Phosphorus mobilising activity by bacteria (Oct 2003 – Jan 2004)143
4.3.4.1 Grain yield ..143
4.3.4.2 Straw yield ..144
4.3.4.3 Plant height (cm) ...145
4.3.4.4 Number of grain per spike ...146
4.3.4.5 Phosphorus uptake ..147
4.3.5 Experiment 2: Phosphorus mobilising activity by bacteria (June –October 2004)152
4.3.5.1 Grain yield ..152
4.3.5.2 Straw yield ..153
4.3.5.3 Plant height (cm) ...154
4.3.5.4 Number of grain per spike ...155
4.3.5.5 Phosphorus uptake ..156
4.3.6 Experiment 3: Plant growth promoting rhizobacterial activities (PGPR) (October 2003- January 2004) ..160
4.4 Discussion ...162
4.5 Conclusion ..165

CHAPTER 5 PHOSPHORUS ADSORPTION IN SOME AUSTRALIAN SOILS AND THE INFLUENCE OF BACTERIA ON DESORPTION ...166

5.1 Introduction ...166
5.2 Experiment on phosphorus adsorption in some Australian soils ..168
5.2.1 Materials and methods ..168
5.2.1.1 Soil samples ...168
5.2.1.2 Analysis of soil samples ..169
5.2.2 Determination of phosphorus adsorption capacity of seven soil samples169
5.2.2.1 Experimental procedure ..169
5.2.2.2 Analysis of adsorption data ...170
5.2.3 Results ...171
5.2.3.1 Physico-chemical properties of soils ..171
5.2.3.2 Phosphorus remaining in solution after treatment of soil samples with potassium dihydrogen phosphate ..172
5.2.3.3 Phosphorus adsorbed to soils after treatment with potassium dihydrogen phosphate ..174
5.2.3.4 Relationships of adsorbed P and some physico-chemical properties of seven soils175
5.2.3.5 Adsorption Isotherms for the interaction of KH₂PO₄ with seven soil samples176
5.3 Experiment on P mobilisation from two soils by two bacterial isolates181
5.3.1 Materials ..181
5.3.1.1 Soil samples ...181
5.3.1.2 Preparation of soil samples with adsorbed P ..182
5.3.1.3 Bacterial samples ...182
5.3.1.4 Preparation of bacterial suspensions for inoculation of soils183
5.3.2 Methods ...183
5.3.2.1 Establishment of soil and bacterial treatments ..183
5.3.2.2 Determination of mobilised P ..184
5.3.2.3 Statistical data analysis ...185
5.3.3 Results ...185
5.3.3.1 Phosphorus extraction by 0.01 M CaCl₂ ...185
5.3.3.2 Phosphorus extraction by 0.5 M NaHCO₃ ..186
5.4 Discussion ...187
5.5 Conclusion ..193
CHAPTER 6 GENERAL DISCUSSION

6.1 General discussion..194
6.2 Future work ..199

References ..201
Appendices ...225
Relevant publications..239

LIST OF TABLES

Chapter 1

Table 1.1 Nutrient composition of the Pikovskaya medium and the National Botanical Research Institute’s phosphate growth medium (NBRIP) ..45

Chapter 2

Table 2.1 Physico-chemical properties of three soil samples used for isolating P-mobilising bacteria.........70
Table 2.2 Evaluating different strains based on the size of ‘halo’ zone created on agar plates....................74
Table 2.3 Results of conventional tests performed on seven bacterial strains..75
Table 2.4 Identification of isolated bacteria with per cent similarity by 16S rDNA sequencing (forward and reverse)..80

Chapter 3

Table 3.1 P-mobilisation (mg L⁻¹) from Ca₃(PO₄)₂ with time, using (NH₄)₂SO₄ as source of N, for six cultures containing bacterial strains and a culture without bacteria ..93
Table 3.2 pH changes (-ΔpH) with time in six cultures containing bacterial strains and a control culture containing Ca₃(PO₄)₂, and using (NH₄)₂SO₄ as a source of N over a five day period95
Table 3.3 Number of bacteria (log₁₀ CFU mL⁻¹) in cultures containing Ca₃(PO₄)₂, and (NH₄)₂SO₄ as source of N over a five day period ...97
Table 3.4 Organic acids identified in 7 cultures containing bacterial strains after incubation for 2 d in a medium containing Ca₃(PO₄)₂, and (NH₄)₂SO₄ as the source of N ..100
Table 3.5 P-mobilisation (mg L⁻¹) from Ca₃(PO₄)₂ with time, using NH₄NO₃ as source of N for six cultures containing bacterial strains and a culture without bacteria ..101
Table 3.6 pH changes (-ΔpH) with time in six cultures containing bacterial strains and a control culture containing Ca₃(PO₄)₂, and using NH₄NO₃ as a source of N over a five day period102
Table 3.7 Number of bacteria (log₁₀ CFU mL⁻¹) in cultures containing Ca₃(PO₄)₂, and NH₄NO₃ as source of N over a five day period .. 104
Table 3.8 P-mobilisation (mg L⁻¹) from rock phosphate with time, using NH₄NO₃ as source of N, for six cultures containing bacterial strains and a control culture without bacterial ..106
Table 3.9 pH changes (-ΔpH) with time in six cultures containing bacterial strains and a control culture containing rock phosphate using NH₄NO₃ as a source of N over a five day period107
Table 3.10 Number of bacteria (log₁₀ CFU mL⁻¹) in cultures containing rock phosphate and NH₄NO₃ as source of N over a five day period ..109
Table 3.11 P-mobilisation (mg L⁻¹) from AlPO₄ with time, using NH₄NO₃ as source of N, for six cultures containing bacterial strains and a culture without bacterial ..111
Table 3.12 pH changes (-ΔpH) with time in six cultures containing bacterial strains and a control culture containing AlPO₄, using NH₄NO₃ as a source of N over a five day period ...113
Table 3.13 Number of bacteria (log₁₀ CFU mL⁻¹) in cultures containing AlPO₄ and NH₄NO₃ as source of N over a five day period .. 115
Table 3.14 P-mobilisation (mg L⁻¹) from FePO₄ with time, using NH₄NO₃ as source of N, for six cultures containing bacterial strains and a culture without bacterial ..116
Table 3.15 pH changes (-ΔpH) with time in six cultures containing bacterial strains and a control culture containing FePO₄, using NH₄NO₃ as a source of N over a five day period ...117
Table 3.16 Number of bacteria (log₁₀ CFU mL⁻¹) in cultures containing FePO₄ and NH₄NO₃ as source of N over a five day period ..119
Table 3.17 Net P mobilisation (mg L⁻¹) in cultures containing the bacterial strains FA001 and FA010119
Table 3.18 The average pH changes (-ΔpH) in cultures containing the bacterial strains, FA001 and FA010, and the other four strains, FA002, FA003, FA004 and FA009 ..120
Table 5.8 Soil and bacterial treatments set up to examine P-mobilisation from the Griffith and Narrabri soils by FA001 and FA010 bacteria ... 183
Table 5.9 Phosphorus extracted from cultures of Griffith and Narrabri soils with and without P-mobilising bacteria by 0.01 M CaCl2 with and without treatment with CHCl3 .. 185
Table 5.10 Phosphorus extracted from cultures of Griffith and Narrabri soils with and without P-mobilising bacteria by NaHCO3 with and without treatment with CHCl3 186

LIST OF FIGURES

Chapter 1

Figure 1.1 Structure of adenosine triphosphate (ATP) (http://www.its.bris.ac.uk, 2006) ... 3
Figure 1.2 The common stereochemical configurations of 3, 4, 5 and 6-connected P compounds (Figures 1.3a-1.3f) and various unstable spectroscopic molecules (Figures 1.3g-1.3l) 6
Figure 1.3 Soil-plant phosphorus cycle (from Sims and Sharpley, 2005) .. 7
Figure 1.4 Structural configuration of inositol hexametaphosphate (Hesse, 1971) ... 8
Figure 1.5 A schematic illustration of the relative proportions of phosphate ions in solution at different pH levels in a Ca-H2PO4 system. The dashed lines show the upper limit of available P in solution imposed by the solubility of calcium phosphates above pH 6.5 or iron and aluminium phosphate below pH 6.5 (Troeh and Thompson, 1993) .. 11
Figure 1.6 Displacement of (a) water and (b) hydroxyl groups from a metal oxide surface by phosphate (modified from Tisdale et al., 1985) ... 14
Figure 1.7 Structural configuration of phosphate fixation with iron (monodentate complex) in acidic soil conditions (modified from Tan, 1993) ... 15
Figure 1.8 Structural configuration of phosphate fixation with iron (bidentate complex) in acidic soil conditions (modified from Tan, 1993) ... 15
Figure 1.9 Phosphate availability and fixation as related to soil pH (from Brady and Weil, 2002) 21
Figure 1.10 Major physiological factors associated with plant roots and soil microorganisms that influence the availability of soil P in the rhizosphere (after Richardson, 2001) 35
Figure 1.11 Structures of some undissociated organic acids .. 38

Chapter 2

Figure 2.1 'Halo' zone created by FA001 on minimal agar plate containing insoluble Ca3(PO4)2 .. 72
Figure 2.2 'Halo' zone created by FA002 on minimal agar plate containing insoluble Ca3(PO4)2 .. 72
Figure 2.3 'Halo' zone created by FA003 on minimal agar plate containing insoluble Ca3(PO4)2 .. 73
Figure 2.4 'Halo' zone created by FA004 on minimal agar plate containing insoluble Ca3(PO4)2 .. 73
Figure 2.5 'Halo' zone created by FA005 on minimal agar plate containing insoluble Ca3(PO4)2 .. 73
Figure 2.6 'Halo' zone created by FA009 on minimal agar plate containing insoluble Ca3(PO4)2 .. 73
Figure 2.7 'Halo' zone created by FA010 on minimal agar plate containing insoluble Ca3(PO4)2 .. 74
Figure 2.8 Oxidation fermentation test using bacteria FA001, FA002, FA003, FA004, FA005, FA009 and FA010 .. 76
Figure 2.9 API 20E test strip for FA001 strain .. 77
Figure 2.10 Agarose gels of PCR products using forward (1), reverse (3) and reverse (5) primers .. 79

Chapter 3

Figure 3.1 The changes in pH in six cultures containing bacterial strains and a control culture containing Ca3(PO4)2 and using (NH4)2SO4 as the source of N over a five day period 94
Figure 3.2 Relationship between soluble P and pH values in the liquid medium containing Ca3(PO4)2 for six cultures containing bacterial strains and a control culture incubated for 5 days .. 95
Figure 3.3 Relationship between mean soluble P and mean pH values in the liquid medium containing Ca3(PO4)2 for each strain for six cultures containing bacterial strains and a control culture incubated for 5 days .. 96
Figure 3.4 The number of bacteria, soluble P and pH of the strain FA001 in liquid medium containing Ca3(PO4)2 and (NH4)2SO4 as the source of N over a 5 day incubation period 98
Figure 3.5 The number of bacteria, soluble P and pH of the strain FA002 in liquid medium containing Ca\(_3\)(PO\(_4\))\(_2\) and (NH\(_4\))\(_2\)SO\(_4\) as the source of N over a 5 day incubation period.................................98
Figure 3.6 The number of bacteria, soluble P and pH of the strain FA003 in liquid medium containing Ca\(_3\)(PO\(_4\))\(_2\) and (NH\(_4\))\(_2\)SO\(_4\) as the source of N over a 5 day incubation period.................................98
Figure 3.7 The number of bacteria, soluble P and pH of the strain FA004 in liquid medium containing Ca\(_3\)(PO\(_4\))\(_2\) and (NH\(_4\))\(_2\)SO\(_4\) as the source of N over a 5 day incubation period.................................98
Figure 3.8 The number of bacteria, soluble P and pH of the strain FA009 in liquid medium containing Ca\(_3\)(PO\(_4\))\(_2\) and (NH\(_4\))\(_2\)SO\(_4\) as the source of N over a 5 day incubation period.................................99
Figure 3.9 The number of bacteria, soluble P and pH of the strain FA010 in liquid medium containing Ca\(_3\)(PO\(_4\))\(_2\) and (NH\(_4\))\(_2\)SO\(_4\) as the source of N over a 5 day incubation period.................................99
Figure 3.10 The changes in pH in six cultures containing bacterial strains and a control culture containing Ca\(_3\)(PO\(_4\))\(_2\) and using NH\(_4\)NO\(_3\) as the source of N over a five day period incubation period........102
Figure 3.11 Relationship between soluble P and –ΔpH values in the liquid medium containing Ca\(_3\)(PO\(_4\))\(_2\) for six cultures containing bacterial strains and a control culture incubated for 5 days.........................103
Figure 3.12 Relationship between mean soluble P and –ΔpH values in the liquid medium containing Ca\(_3\)(PO\(_4\))\(_2\) for six cultures containing bacterial strains and a control culture incubated for 5 days...103
Figure 3.13 The number of bacteria, soluble P and pH of the strain FA001 in liquid medium containing Ca\(_3\)(PO\(_4\))\(_2\) and NH\(_4\)NO\(_3\) as the source of N over a 5 day incubation period..105
Figure 3.14 The number of bacteria, soluble P and pH of the strain FA002 in liquid medium containing Ca\(_3\)(PO\(_4\))\(_2\) and NH\(_4\)NO\(_3\) as the source of N over a 5 day incubation period.................................105
Figure 3.15 The number of bacteria, soluble P and pH of the strain FA003 in liquid medium containing Ca\(_3\)(PO\(_4\))\(_2\) and NH\(_4\)NO\(_3\) as the source of N over a 5 day incubation period.................................105
Figure 3.16 The number of bacteria, soluble P and pH the strain FA004 in liquid medium containing Ca\(_3\)(PO\(_4\))\(_2\) and NH\(_4\)NO\(_3\) as the source of N over a 5 day incubation period.................................105
Figure 3.17 The number of bacteria, soluble P and pH the strain FA009 in liquid medium containing Ca\(_3\)(PO\(_4\))\(_2\) and NH\(_4\)NO\(_3\) as the source of N over a 5 day incubation period.........................106
Figure 3.18 The number of bacteria, soluble P, pH of the strain FA001 in liquid medium containing Ca\(_3\)(PO\(_4\))\(_2\) and NH\(_4\)NO\(_3\) as the source of N over a 5 day incubation period.................................106
Figure 3.19 Relationship between soluble P and –ΔpH values in the liquid medium containing rock phosphate for six cultures containing bacterial strains and a control culture incubated for 5 days...108
Figure 3.20 Relationship between mean soluble P and mean –ΔpH values in the liquid medium containing rock phosphate for six cultures containing bacterial strains and a control culture incubated for 5 days...108
Figure 3.21 Rate of change in number of bacteria, available P, and pH of FA001 in liquid medium containing NH\(_4\)NO\(_3\), and rock phosphate as source of N and P, respectively.........................110
Figure 3.22 Rate of change in number of bacteria, available P and pH of FA002 in liquid medium containing NH\(_4\)NO\(_3\), and rock phosphate as source of N and P, respectively.........................110
Figure 3.23 Rate of change in number of bacteria, available P, and pH of FA003 in liquid medium containing NH\(_4\)NO\(_3\), and rock phosphate as source of N and P, respectively.........................110
Figure 3.24 Rate of change in number of bacteria, available P and pH of FA004 in liquid medium containing NH\(_4\)NO\(_3\), and rock phosphate as source of N and P, respectively.........................110
Figure 3.25 Rate of change in number of bacteria, available P and pH of FA009 in liquid medium containing NH\(_4\)NO\(_3\), and rock phosphate as source of N and P, respectively.........................111
Figure 3.26 Rate of change in number of bacteria, available P and pH of FA010 in liquid medium containing NH\(_4\)NO\(_3\), and rock phosphate as source of N and P, respectively.........................111
Figure 3.27 Relationship between soluble P and –ΔpH values in the liquid medium containing AlPO\(_4\) for six cultures containing bacterial strains and a control culture incubated for 5 days..............113
Figure 3.28 Relationship between mean soluble P and –ΔpH values in the liquid medium containing AlPO\(_4\) for six cultures containing bacterial strains and a control culture incubated for 5 days......114
Figure 3.29 Relationship between soluble P and –ΔpH values in the liquid medium containing FePO\(_4\) for six cultures containing bacterial strains and a control culture incubated for 5 days......................117
Figure 3.30 Relationship between mean soluble P and –ΔpH values in the liquid medium containing FePO\(_4\) for six cultures containing bacterial strains and a control culture incubated for 5 days.....118
Chapter 4

Figure 4.2a Temperature measurements in Parramatta Road Glasshouse from 10th October to 17th November 2003. ... 142
Figure 4.1b Temperature measurements in Parramatta Road Glasshouse from 18th November 2003 to 7th January 2004. ... 142
Figure 4.2 The relationship between grain yield and straw yield for wheat grown in Experiment 1 in pots containing three kinds of insoluble P and six bacterial strains. .. 145
Figure 4.3 The relationship between grain yield and straw yield for wheat grown in Experiment 2 in pots containing three kinds of insoluble P and six bacterial strains. .. 154

Chapter 5

Figure 5.1 The relationship between mean adsorbed P and physico-chemical properties of soils; (a) CEC (b) OM (c) clay and (d) pH. ... 176
Figure 5.2 Langmuir adsorption isotherm for P adsorption in (a) Camden, (b) Griffith, (c) Narrabri, (d) Rutherglen, (e) Wagga Wagga, (f) Wee Waa, and (g) Yanco soils. .. 177
Figure 5.3 Freundlich adsorption isotherms for P adsorption in (a) Camden, (b) Griffith, (c) Narrabri, (d) Rutherglen, (e) Wagga Wagga, (f) Wee Waa, and (g) Yanco soils. .. 178
Figure 5.4 Temkin adsorption isotherms for P adsorption in (a) Camden, (b) Griffith, (c) Narrabri, (d) Rutherglen, (e) Wagga Wagga, (f) Wee Waa, and (g) Yanco soils. .. 179
Figure 5.5 Relationship between maximum P adsorption capacity and the P-buffering capacity of soils. .. 180
STATEMENT OF ORIGINALITY

Unless otherwise stated, the results presented in this thesis are the original work of the author.

Mohammad Faruque Ahmed
FOR MY PARENTS
ACKNOWLEDGEMENTS

All praise is due to Allah (God), the most Merciful, the most Gracious, for the uncountable bounties He has granted me!

There are many people and organisations involved in helping me complete this research work. Firstly, I am grateful for the advice and guidance of my supervisor Professor Ivan Kennedy and to Dr. Edith Lees who helped me enormously when revising this thesis.

I acknowledge the help of Dr. Misi Kecskés for providing scientific, technical and software support these past few years. I always asked him only “ONE” question every time! Thanks Misi!

My sincere thanks to Dr. Rosalind Deaker, for her continuous help in scientific and technical matters throughout my candidature. Thanks also go to Dr. Ali Choudhury for his comments in Chapter 5 of this thesis.

I would like to thank to Professor Peter Martin for providing me soil samples for glasshouse experiments and scientific advice and Dr. Peter New for his constructive criticism. I would like to extend my thanks to Dr. Bob Caldwell for helping me use the HPLC.

Many thanks to faculty members, Andrea, Colin, Iona, Kevin, and in the glasshouse Jarka and Ivan Desailly who helped me greatly.

I would like to extend my sincere thanks to all my friends, who always encouraged me to complete this thesis.

Finally, thanks to my family, my son Rihab Ahmed (10), daughter Rabita Ahmed (7) and wife Nasrin Sultana for allowing me to be away from home for extended periods of time. Thanks go to my youngest brother (Shamsuddin Ahmed) and sister in law (Farzana Ahmed) for helping to take care of my family. Also to my Mum (Ashia Khutan), eldest brother (Shahjahan Mollah), younger brother (Mohammad Hossain) and other relatives in Bangladesh who took an interest and encouraged me to complete the thesis.

This research was funded by the W.C. Turland Postgraduate Scholarship, University of Sydney and BioCare Technology Ltd. I am grateful to these funding organisations for their support.
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>degree Celsius</td>
</tr>
<tr>
<td>cfu</td>
<td>colony forming unit</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>g</td>
<td>gravitational force</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>µg</td>
<td>microgram</td>
</tr>
<tr>
<td>mL</td>
<td>millilitre</td>
</tr>
<tr>
<td>L</td>
<td>litre</td>
</tr>
<tr>
<td>cm</td>
<td>centimetre</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre</td>
</tr>
<tr>
<td>µm</td>
<td>micrometre</td>
</tr>
<tr>
<td>nm</td>
<td>nanometre</td>
</tr>
<tr>
<td>v/v</td>
<td>volume per volume</td>
</tr>
<tr>
<td>w/w</td>
<td>weight per weight</td>
</tr>
<tr>
<td>%</td>
<td>per cent</td>
</tr>
<tr>
<td>CEC</td>
<td>cation exchange capacity</td>
</tr>
<tr>
<td>cmolc</td>
<td>centi mole charge</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>sec</td>
<td>second</td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
</tr>
<tr>
<td>mM</td>
<td>millimolar</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>spp.</td>
<td>species</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>rRNA</td>
<td>ribosomal ribonucleic acid</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>kb</td>
<td>kilo base</td>
</tr>
<tr>
<td>Ltd</td>
<td>limited</td>
</tr>
<tr>
<td>Co.</td>
<td>company</td>
</tr>
<tr>
<td>PPB</td>
<td>phosphate peptone buffer</td>
</tr>
<tr>
<td>S</td>
<td>strain</td>
</tr>
<tr>
<td>FA</td>
<td>Faruque Ahmed</td>
</tr>
<tr>
<td>Ca$_3$(PO$_4$)$_2$</td>
<td>tricalcium phosphate</td>
</tr>
<tr>
<td>CaHPO$_4$.2H$_2$O</td>
<td>dicalcium phosphate</td>
</tr>
<tr>
<td>AlPO$_4$</td>
<td>aluminum phosphate</td>
</tr>
<tr>
<td>FePO$_4$</td>
<td>ferric phosphate</td>
</tr>
<tr>
<td>G</td>
<td>guanine</td>
</tr>
<tr>
<td>C</td>
<td>cytosine</td>
</tr>
<tr>
<td>T</td>
<td>thymine</td>
</tr>
<tr>
<td>A</td>
<td>adenosine</td>
</tr>
<tr>
<td>SP</td>
<td>super phosphate</td>
</tr>
<tr>
<td>Rock P</td>
<td>rock phosphate</td>
</tr>
<tr>
<td>Max</td>
<td>maximum</td>
</tr>
<tr>
<td>Diam</td>
<td>diameter</td>
</tr>
</tbody>
</table>

Website references: All website references have been included in the text giving the basic website address. The sites have been listed at the end of the references list with further details and date of use.
ABSTRACT

The research reported in this thesis examines the feasibility of selecting soil bacteria able to convert insoluble forms of soil phosphorus (P) to mobile forms more available for plant growth. A kinetic approach was used in which rates of P-mobilisation were measured.

Bacteria were isolated from soils sampled from three locations, 1) a neutral to alkaline vertisol soil cultivated with cotton and wheat (Narrabri, NSW), 2), a neutral grassland rhizosphere soil (Wee Waa, NSW), and 3) an acid red soil cultivated with wheat (Wagga Wagga, NSW). Seven bacterial strains were successfully isolated using minimal medium containing Ca$_3$(PO$_4$)$_2$ as the sole source of P. The isolates were characterised using selective media and identified using 16S rDNA sequence analysis. The P-mobilising bacteria were identified by the clear ‘halo’ zones surrounding their colonies on agar containing insoluble P. The most effective P-mobilising bacterial isolates were obtained from the grassland and acid wheat soils and identified as Pantoea ananatis (FA001) and Pantoea agglomerans (FA010), respectively, belonging to the Enterobacteriaceae family. The other strains isolated were classified as Enterobacter cloacae, also belonging to the Enterobacteriaceae family, and several Burkholderia sp.; these were found to be less effective in P-mobilisation, indicated by smaller halos surrounding their colonies and solubilisation in liquid culture.

Several tests were conducted to validate the P-mobilising ability of these bacteria. In liquid minimal media containing 500 mg L$^{-1}$ of different types of insoluble P, the strain (FA001) identified as Pantoea ananatis mobilised the highest P from Ca$_3$(PO$_4$)$_2$ at the highest kinetic rate (50.32 mg L$^{-1}$ day$^{-1}$) followed by the strain FA010 identified as Pantoea agglomerans (45.77 mg L$^{-1}$ day$^{-1}$), using (NH$_4$)$_2$SO$_4$ as source of N. With NH$_4$NO$_3$ as source of N, P. ananatis (FA001) also mobilised the highest amount of P (35.31 mg L$^{-1}$ day$^{-1}$) from Ca$_3$(PO$_4$)$_2$ followed by P. agglomerans (FA010) (18.68 mg L$^{-1}$ day$^{-1}$). But this was reversed when rock phosphate was the source of P. P. agglomerans (FA010) mobilised the highest P (27.27 mg L$^{-1}$ day$^{-1}$), followed by P. ananatis (FA001) (24.53 mg L$^{-1}$ day$^{-1}$) from rock phosphate-containing medium. Of these isolated strains, P. ananatis (FA001) mobilised small amounts of P from AlPO$_4$ and FePO$_4$. P. agglomerans (FA010) also mobilised small amounts of P from AlPO$_4$, but not from FePO$_4$.

There was very good correlation between acid production and P mobilisation, suggesting acid production as a major mechanism used for mobilising P by these isolated strains. There was some indication that chelation may also play a role, since both P. ananatis (FA001) and P. agglomerans (FA010) produced citric acid (2.55 mg L$^{-1}$ day$^{-1}$ and 2.89 g L$^{-1}$ day$^{-1}$, respectively). The strong organic anion, citrate, can potentially chelate cations such as Ca$^{2+}$ and Al$^{3+}$, reducing their chance of immobilising P.
To confirm that the results of these *in vitro* experiments were relevant for plant growth, glasshouse experiments were conducted in a P-depleted soil to examine the effect of the P-mobilising bacteria on the grain yield of wheat. Two yield experiments were conducted, using Ca$_3$(PO$_4$)$_2$, CaHPO$_4$.2H$_2$O and rock phosphate as sources of P. Consistent with the *in vitro* data results, for all the sources of P, *P. ananatis* (FA001) and *P. agglomerans* (FA010) resulted in significantly higher grain and straw yields in trials conducted in 2003 (Experiment 1) and in 2004 (Experiment 2). In Experiment 2 the percentage P content of the grain and straw was the same in treatments with bacteria and the controls. Another glasshouse experiment (Experiment 3) was conducted to evaluate the plant growth-promoting (PGPR) effects of these bacteria, using soluble phosphorus with Hoagland solution. In this experiment, *P. ananatis* (FA001) and *P. agglomerans* (FA010) were compared with some other recognised PGPR strains. The results suggest that both of these bacteria can increase grain yield of wheat by about 10 per cent compared to uninoculated controls, independently of the P-mobilising effects.

Since understanding the role of bacteria in P-mobilisation in relation to the chemical behaviour of P in soil was a principal objective of this thesis, *P. ananatis* (FA001) and *P. agglomerans* (FA010) were also used in an experiment to examine P adsorption to and desorption from soil. Two soils i) a brown sandy clay loam of pH 4.07 from Griffith, and ii) a heavy clay vertisol of pH 7.42 (Narrabri soil), were used for the desorption experiment. It was revealed that both these bacteria (*P. ananatis* (FA001) and *P. agglomerans* (FA010)) could significantly mobilise P from the vertisol with neutral pH, but not from the sandy clay soil with low pH. From Langmuir and Temkin adsorption isotherms which are indicative of P adsorption behaviour of these soils, it was concluded that for soils having high P-buffering capacity and high maximum P adsorption capacity these bacteria could not significantly mobilise phosphorus. Therefore it can be concluded that before applying P mobilising biofertiliser, maximum adsorption capacity and retention behaviour of soil should be estimated, so that the feasibility of effectively applying a particular biofertiliser can be predicted.

From the set of P-mobilising biofertiliser strains studied in this thesis, *P. ananatis* (FA001) was indicated as the best strain, meeting the criteria for mobilisation in the different tests. It is, therefore recommended for further testing as a biofertiliser strain in different soil types. However, whether this strain will be effective under field conditions remains to be tested.