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Abstract

We consider the problem of minimising the eigenvalues of the Laplacian with

Robin boundary conditions ∂u
∂ν

+αu = 0 and generalised Wentzell boundary condi-

tions ∆u+β ∂u
∂ν

+γu = 0 with respect to the domain Ω ⊂ RN on which the problem

is defined. For the Robin problem, when α > 0 we extend the Faber-Krahn in-

equality of Daners [Math. Ann. 335 (2006), 767–785], which states that the ball

minimises the first eigenvalue, to prove that the minimiser is unique amongst do-

mains of class C2. The method of proof uses a functional of the level sets to

estimate the first eigenvalue from below, together with a rearrangement of the

ball’s eigenfunction onto the domain Ω and the usual isoperimetric inequality.

We then prove that the second eigenvalue attains its minimum only on the

disjoint union of two equal balls, and set the proof up so it works for the Robin

p-Laplacian. For the higher eigenvalues, we show that it is in general impossible

for a minimiser to exist independently of α > 0. When α < 0, we prove that every

eigenvalue behaves like −α2 as α→ −∞, provided only that Ω is bounded with C1

boundary. This generalises a result of Lou and Zhu [Pacific J. Math. 214 (2004),

323–334] for the first eigenvalue.

For the Wentzell problem, we (re-)prove general operator properties, including

for the less-studied case β < 0, where the problem is ill-posed in some sense.

In particular, we give a new proof of the compactness of the resolvent and the

structure of the spectrum, at least if ∂Ω is smooth. We prove Faber-Krahn-type

inequalities in the general case β, γ 6= 0, based on the Robin counterpart, and

for the “best” case β, γ > 0 establish a type of equivalence property between the

Wentzell and Robin minimisers for all eigenvalues. This yields a minimiser of the

second Wentzell eigenvalue. We also prove a Cheeger-type inequality for the first

eigenvalue in this case.
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Chapter 1

Introduction

No question is so difficult to answer

as that to which the answer is obvious

— George Bernard Shaw

1.1. The isoperimetric problem

The application of isoperimetric inequalities to physical situations is, in a sense,

a study of the obvious. That the shape of an object affects its physical properties is

so trite as to be hardly worth saying. It is perhaps a more subtle observation that

a physical optimum should be attained by an object satisfying some appropriate

geometric optimum.

The most basic isoperimetric result states that the ball has the least surface

area of all objects of given volume. This result is even said to have been known in

some form to the ancient Greeks. Physical intuition thus suggests that the object

that minimises heat loss should be perfectly spherical, all other things being equal.

Similarly, the fundamental frequency of a vibrating membrane should be lowest

when the membrane is circular. This is the famous conjecture of Lord Rayleigh in

the 19th Century [97].

But the word “conjecture” is telling. It is easy to make such a claim, and even

to formulate it mathematically. However experience shows that such “obvious”

conjectures are often extremely difficult to prove in all branches of mathematics

— although possibly this is not quite what Shaw had in mind. The first full proofs

of Rayleigh’s conjecture appeared almost 50 years after it was made, with the

simultaneous but independent work of Faber [50] and Krahn [78] in the 1920s.

Even then some residual questions remained about the validity of the method they

used, and the issue was only completely resolved as late as 1951 with the seminal

work of Pólya and Szegö [96]. Such problems rank amongst the most interesting,

and arguably most challenging, in mathematics, involving a fascinating interplay

of analysis and geometry.

1



1.1. The isoperimetric problem 2

Mathematically, both Rayleigh’s conjecture and the problem of minimising heat

loss reduce to studying the smallest µ > 0 for which the Helmholtz equation

(1.1.1)
−∆u = µu in Ω,

u = 0 on ∂Ω.

has a solution. Here u can be interpreted as measuring the displacement from rest

of the membrane, or the amount of heat present in the object. ∆u :=
∑N

i=1
∂2u
∂x2

i

is the Laplacian of u and Ω ⊂ RN is some region or domain in N -dimensional

space, N ≥ 2, corresponding to the membrane at rest in Rayleigh’s problem or

the object suffering heat loss. Imposing the Dirichlet boundary condition u = 0 is

physically interpreted as having a fixed membrane or a fixed ambient temperature

at the surface, or boundary, of the object, and generally represents a convenient

mathematical approximation to physical reality. As is well known, the values µ

for which (1.1.1) has a solution, called eigenvalues of the Dirichlet Laplacian, form

a countable sequence 0 < µ1 ≤ µ2 ≤ . . . → ∞. We refer to the corresponding

functions solving (1.1.1) as eigenfunctions.

The fundamental frequency of a fixed membrane Ω corresponds exactly to µ1,

while the higher eigenvalues correspond to higher frequencies (also known variously

as normal modes, overtones or harmonics). Similarly, the long-term decay of heat in

an object Ω behaves like e−µ1t (where t > 0 is time). Thus finding the object which

optimises either of these physical properties can be mathematically reformulated

as finding the domain Ω which minimises µ1 amongst all domains in RN of fixed

volume. Thus interpreted, Rayleigh’s conjecture, since its proof called the Faber-

Krahn inequality or sometimes the theorem of Rayleigh-Faber-Krahn, asserts that

µ1(Ω) ≥ µ1(B), where B is a ball with the same volume of Ω. In fact this inequality

is strict if Ω is not “essentially” a ball. (We will give a precise statement of this

theorem in Chapter 2.)

Of course there are many mathematically and physically interesting variants

of this problem; the 40-year-old survey paper of Payne [93] still provides a good

introduction. One could study the other eigenvalues of (1.1.1) in the same way,

or combinations of eigenvalues, or – of course – other problems. Another starting

point in the field is the conjecture (long since proved) of Saint-Venant, which asserts

that the torsional rigidity of a beam is greatest when the beam’s cross-section is

circular (see [93, 100]).



1.1. The isoperimetric problem 3

In this thesis we will be interested principally in minimisation problems for

eigenvalues of the Laplacian, as in (1.1.1), but equipped with two different bound-

ary conditions. The first is the Robin, or third, boundary condition. This is also

referred to as the elastically supported membrane case, since for the vibrating

membrane model it describes a situation where the displacement on the edge of

the membrane is negatively proportional to the rate of change of displacement

leaving the membrane. This is as one would expect if the membrane is “elastically

supported”, that is, not firmly clamped but not perfectly free. The equation is

(1.1.2)

−∆u = λu in Ω,

∂u

∂ν
+ αu = 0 on ∂Ω,

where ∂u
∂ν

is the outer normal derivate to u on ∂Ω and α > 0 is an arbitrary

constant, which we will refer to as the boundary parameter of the Robin problem.

As with the Dirichlet problem, the solutions (eigenvalues of the Robin Laplacian)

λ = λ(Ω, α), on a fixed domain Ω, for each given value of α, form a countable set

0 < λ1 ≤ λ2 ≤ . . . → ∞. The dependence on α (which may also be a function

on the boundary or a real number) makes the situation far more interesting. The

case α = 0 corresponds to Neumann boundary conditions, and, at least formally,

α =∞ gives Dirichlet boundary conditions.

The other type of boundary condition is the generalised Wentzell boundary

condition, sometimes called the general Wentzell condition or the Wentzell-Robin

condition. This is a relatively new boundary condition that has only been inten-

sively studied in the last decade or so; see Chapter 5 for a full description. This

is

(1.1.3)

−∆u = Λu in Ω,

∆u+ β
∂u

∂ν
+ γu = 0 on ∂Ω,

The eigenvalues Λ = Λ(Ω, β, γ) of the Wentzell Laplacian now depend on two

parameters (or suitable functions) β and γ as well as Ω. We will study their

structure, which is more complicated than for the other boundary conditions, in

Chapter 6. One interpretation of this boundary condition, in the model of the

vibrating membrane, is that the boundary ∂Ω is itself affected by vibrations in the

membrane Ω and thus contributes to the total kinetic energy of the system. In

the model of the heat equation, it models a situation where there is a heat source
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(if β > 0) or sink (if β < 0) on the boundary. (For a full derivation of these, and

another interpretation of the Robin boundary condition, see [63].)

In this thesis we will prove and study Faber-Krahn-type inequalities for the

first eigenvalue of these Robin and Wentzell problems, as well as more general

problems of the form

(1.1.4) min{λk(Ω, α) : Ω ⊂ R
N bounded, Lipschitz; |Ω|, α fixed},

for some given k ≥ 1, or the corresponding minimisation problem for (1.1.3), with

Λk(Ω, β, γ) in place of λk(Ω, α). Such problems are sometimes called “shape opti-

misation problems”, as in [28], but we prefer the term “isoperimetric problems”;

hence the title of this thesis and of this section. Such extremal problems in partial

differential equations are often given this name, and we feel it better evokes the

link with the type of geometric problem to which (1.1.4) is related.

This thesis is essentially divided into two halves, the first devoted to the Robin

problem and the second to the Wentzell problem. In the remainder of this chapter

we present the standard theory of the Robin Laplacian – that is, existence and

regularity of solutions, spectral properties and so forth. This serves both as a

mathematical introduction to our problem and a repository of important results

that we will need later.

Chapter 2 is devoted to the Faber-Krahn inequality for the first eigenvalue of

the Robin problem (1.1.2). The actual inequality had been proven in [35]; our

contribution is to strengthen the method to prove sharpness of the inequality, that

is, that the ball is the unique minimiser of the first eigenvalue, at least amongst

bounded, C2-domains (see Theorem 2.1.2). However, for completeness’ sake (and

to an extent out of mathematical necessity) we sketch the full proof. We also

set it up to give an alternative proof in the Dirichlet case, albeit under relatively

restricted assumptions on the domain Ω. Instead of the usual symmetrisation

arguments, the proof uses a functional of the level sets of the domain Ω, together

with a rearrangement argument from the ball onto Ω.

In Chapter 3 we touch on a number of other problems, both solved and un-

solved, which are either related to the Robin problem, or else for which insight can

be gained from the method used in Chapter 2. So in Section 3.1, we mention the

Robin p-Laplacian. Subsequent to the publication of our results in Chapter 2, the

Faber-Krahn inequality was generalised to this operator with an adapted proof,
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so we mention it for the purpose of comparison. Conversely, the open problems

presented in Section 3.4, namely the case where α < 0 (where now the maximiser

should be a ball, but this is unproven) and a conjecture due to Pólya on poly-

gons, illustrate the apparent limitations of the method. Section 3.2 compares the

results for the functional method with a property of the Robin Laplacian involv-

ing supersolutions; the exact nature of the connection probably warrants further

exploration. Section 3.3 looks at a different type of inequality for the first Robin

eigenvalue, depending only on the geometry of Ω. This is usually called a Cheeger-

type inequality, after a corresponding one for the Dirichlet problem. This is a

consequence of the functional method of Chapter 2. We remark that it had al-

ready been noted by previous authors working in this area [20, 35], although we

generalise the result slightly.

In Chapter 4 we consider the higher eigenvalues of the Robin problem. We

start by proving an inequality for the second eigenvalue, namely that the (unique)

minimiser is the domain consisting of the disjoint union of two equal balls, as in

the Dirichlet case (see Theorem 4.1.1). In fact we set this up so it works for the

p-Laplacian. For the higher eigenvalues, we show that it is in general impossible

to find a minimising domain independent of the parameter α > 0 in the boundary

condition, or equivalently, independent of the volume of the domain for fixed α > 0

(see Theorem 4.3.1). When α < 0 we prove that every eigenvalue behaves like −α2

as α → −∞ if the underlying domain is bounded and C1, independent of the

domain’s geometry and volume (see Theorem 4.4.1). This generalises a result of

[86] for the first eigenvalue.

In Chapters 5 and 6 we start on the Wentzell problem (1.1.3). After a brief

introduction in Section 5.1, we study basic properties of the associated operator in

the remainder of Chapter 5. The operator’s behaviour depends greatly on the sign

of the parameter β. The case β > 0 is the better-behaved and far more heavily

studied one. In this case, which we deal with in Section 5.2, the appropriately

realised operator generates a C0-semigroup with essentially all the properties of

the Dirichlet or Robin problems (it is convenient here to phrase our results in

terms of generation properties). Following [7], we use form methods, although we

generalise the approach to allow β 6≡ 1 and γ < 0. When β < 0, the operator

no longer generates a C0-semigroup, although it still has compact resolvent, at

least if Ω is sufficiently smooth. We now obtain two sequences of eigenvalues, one
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tending to ∞ and the other to −∞. We study this case in Section 5.3, adapting

an operator matrix approach from [44] originally designed for the case β > 0.

Chapter 6 then concentrates specifically on the properties of the eigenvalues

of the Wentzell problem. The key observation – although an elementary one –

is that every Wentzell eigenvalue and function solves a suitably chosen Robin

problem. We exploit this in various guises to prove a number of specific properties

of the Wentzell eigenvalues, including a fairly precise description of their structure,

of the regularity of the eigenfunctions, and also a number of variational results,

continuous dependence on perturbations in the parameters β and γ, and so on,

which are similar to the standard results for the Robin case that we present in

Section 1.3.

On the content of these two chapters, we remark that some of the results,

especially in Section 5.2, are probably not new, or are at best only a marginal

improvement on what was previously known. This latter comment applies also

to Section 5.3, although our approach there is new. We are unaware of a similar

analysis to that in Chapter 6 for the Wentzell problem elsewhere, but the content

is quite elementary. These chapters are present primarily to facilitate our study

in Chapter 7 of various isoperimetric properties of the Wentzell problem, although

it is hoped they may be of some independent interest. In Section 7.1 we obtain

Faber-Krahn-type inequalities for the principal eigenvalues as a direct consequence

of the Robin Faber-Krahn inequality. In some cases (depending on the sign of β

and γ) these rely on the conjectured Faber-Krahn inequality for the Robin problem

when α < 0 presented in Section 3.4. In Section 7.2, we extend this to prove that

in the main case when β, γ > 0, the isoperimetric problem for the kth Wentzell

eigenvalue is essentially the same as for the kth Robin eigenvalue. Section 7.3

contains a Cheeger inequality for the first Wentzell eigenvalue, again only in the

main case β, γ > 0. This is again a consequence of the corresponding Robin result

from Section 3.3, but the form of this inequality is somewhat more interesting.

In Appendix A, we collect a number of important background results that we

will use throughout, such as density, trace and compactness theorems for Sobolev

spaces, results on operator semigroups and the like. Appendix B contains the

proofs of some results from [35] that will be needed in Chapter 2. Appendix C

is devoted to auxiliary results needed in Chapter 5. While we doubt these are

new, it is difficult to find precise references in the literature (perhaps owing to



1.2. The Laplacian with Robin boundary conditions 7

the slight difference in emphasis between harmonic analysis and partial differential

equations), so we have included proofs.

Much of the notation used throughout is also described in the appendices. We

have tried to use standard modern notation as far as possible throughout; however,

here we explicitly mention two slightly non-standard conventions we will be using.

First, we will always use λ, λn for the eigenvalues of the Robin problem (1.1.2), µ,

µn for the Dirichlet problem (1.1.1) and Λ, Λn for the Wentzell problem (1.1.3).

Second, and perhaps more importantly, by a domain Ω ⊂ RN we understand

an open set, usually bounded, but not necessarily connected. The reason for this

is that it is often necessary to deal with disconnected domains when consider-

ing isoperimetric problems: the domain solving a problem of the form (1.1.4)

need not be connected. This assumption does not substantially change the na-

ture of the analysis, but it introduces a few minor annoying technicalities. See

also Remark 1.3.2. The new material in this thesis is in the papers and preprints

[38, 39, 75, 76, 77].

1.2. The Laplacian with Robin boundary conditions

We start out by looking at the Robin problem (1.1.2). In this section we prove

basic properties such as existence and uniqueness of solutions. Although all these

results are standard and for the most part very well established, for completeness’

sake we have included proofs, albeit often brief ones, and/or references to the

literature. Throughout this section we will be working with an arbitrary, fixed,

bounded Lipschitz domain Ω ⊂ RN , and the parameter α in the problem (1.1.2) will

be taken as an arbitrary fixed nonzero constant, although assuming α ∈ L∞(∂Ω)

would require only trivial changes to the results in this section. (Recall that α = 0

corresponds to Neumann boundary conditions; see Remark 1.3.9.)

We start with a summary of the theory of weak solutions to (1.1.2) and form

methods. For the sake of simplicity we restrict ourselves to the real case and hence,

for example, talk about bi- rather than sesquilinear forms. In what follows we will

consider the general problem

(1.2.1)

−∆u = f in Ω,

u = 0 on Γ0,

∂u

∂ν
+ αu = 0 on Γ1,
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where Ω ⊂ RN is a fixed bounded, Lipschitz domain, f ∈ L2(Ω) and Γ0 and Γ1 are

disjoint subsets of ∂Ω, open and closed in ∂Ω, such that ∂Ω = Γ0 ∪ Γ1. Here we

allow Γ0 = ∅ or Γ1 = ∅, corresponding to pure Robin and pure Dirichlet boundary

conditions, respectively; thus (1.2.1) is more general than (1.1.1) or (1.1.2). As we

will see, the correct solution space for (1.2.1) is the following Sobolev space.

Definition 1.2.1. For 1 < p < ∞, let W 1,p
0 (Ω; Γ0) be the closure in the W 1,p-

norm of C∞
c (Ω ∪ Γ1), the set of all C∞(Ω) functions whose support is compactly

contained away from Γ0. If p = 2, then in preference we will write H1
0 (Ω; Γ0).

In this chapter we will work only with the case p = 2 although we will use

the more general space in Chapter 4. The notation is ours, but it is based on

the notation H1
0 (Ω); indeed in this notation H1

0 (Ω; ∂Ω) ≡ H1
0 (Ω), while if Γ0 = ∅

then H1
0(Ω; ∅) ≡ H1(Ω). Note that H1

0 (Ω,Γ0) can also be characterised as the

space of all H1(Ω) functions having zero trace on Γ0. Note also that H1
0 (Ω; Γ0) is a

Hilbert space with respect to the usual H1-norm, and more generally W 1,p
0 (Ω; Γ0)

is a Banach space with respect to the W 1,p-norm.

Define a bilinear form Qα : H1
0 (Ω; Γ0)×H1

0 (Ω; Γ0)→ R by

(1.2.2) Qα(u, v) :=

∫

Ω

∇u · ∇v dx+
∫

Γ1

αuv dσ

for all u, v ∈ H1(Ω), where since there is no danger of confusion we have written

u in place of tru = u|Γ1 in the second integral, and similarly for v (recalling

tru = tr v = 0 on Γ0).

A straightforward calculation shows that if u ∈ C2(Ω) ∩ C1(Ω) is a classical

solution of (1.2.1), then

(1.2.3) Qα(u, v) =

∫

Ω

fv dx = 〈f, v〉

for all v ∈ H1
0 (Ω,Γ0), where 〈f, v〉 is the inner product on L2(Ω). Conversely, if

u ∈ H1
0 (Ω,Γ0) satisfies (1.2.3) and u ∈ C2(Ω)∩C1(Ω) then u is a classical solution

of (1.2.1). (Both calculations require the divergence theorem, which is valid for

Lipschitz domains. See Theorem A4.5.)

If a function u ∈ H1
0 (Ω,Γ0) satisfies (1.2.3) we call it a weak solution of the

problem (1.2.1). We are only interested in the cases when either α > 0 or else

α ≤ 0 and Γ0 = ∅. In either case, the following result is immediate, and we omit

the easy proof.
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Lemma 1.2.2. The function Qα : H1
0 (Ω; Γ0) × H1

0 (Ω; Γ0) → R is a bounded,

symmetric and bilinear form on H1
0 (Ω; Γ0).

It is also easy, although perhaps less trivial, to show that the form Qα is

bounded from below in the following sense. Such a form is often called an elliptic

form.

Lemma 1.2.3. There exists ω0 ≥ 0 such that for every ω ≥ ω0, there exists C > 0

for which

Qα(u, u) + ω‖u‖2L2(Ω) ≥ C‖u‖2H1(Ω)

for all u ∈ H1
0 (Ω; Γ0). If α > 0 or Γ1 = ∅ then we may choose ω0 = 0.

Proof. Since ∂Ω is Lipschitz it follows from Maz’ja’s inequality (see [88, Sec-

tion 4.11]) that there exists c = c(N, |Ω|) such that

‖u‖2L2(Ω) ≤ c(‖∇u‖2L2(Ω) + ‖u‖2L2(∂Ω))

for all u ∈ H1(Ω). Since H1
0 (Ω; Γ0) is a closed subspace ofH1(Ω) equipped with the

same norm, the conclusion of the lemma now follows easily. Note that if Γ1 = ∅,
Qα(u, u) =

∫
Ω
|∇u|2 dx is an equivalent norm to ‖u‖2H1(Ω) on H

1
0 (Ω). (This follows

from Friedrichs’ inequality, or alternatively, the Poincaré inequality, which in this

case may be viewed as a special case of Maz’ja’s inequality.) �

Let ω ≥ ω0 be as in Lemma 1.2.3, fix v ∈ H1
0 (Ω; Γ0) and define an element fv

in the dual space (H1
0 (Ω; Γ0))

′ by fv(u) = 〈fv, u〉 := Qα(u, v) + ω〈u, v〉L2(Ω). We

now define a linear operator

(1.2.4) T ωα : H1
0 (Ω; Γ0)→ (H1

0 (Ω; Γ0))
′

by T ωα v := fv, that is, 〈T ωα v, u〉 = Qα(u, v) + ω〈u, v〉L2(Ω).

Combining Lemmata 1.2.2 and 1.2.3 we see that T ωα is bounded and coercive,

and so by the Lax-Milgram lemma (Theorem A5.2) is invertible. By definition of

T ωα , this proves the existence of weak solutions to our problem. Since obviously

(T ωα )
−1 is unique, it also proves that weak solutions are unique. More precisely, we

have proved the following theorem.

Theorem 1.2.4. Let ω ≥ 0 satisfy the conclusions of Lemma 1.2.3. Then for every

f ∈ (H1
0 (Ω; Γ0))

′ there exists a unique weak solution (cf. (1.2.3)) u ∈ H1
0 (Ω; Γ0) to
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the problem
−∆u+ ωu = f in Ω,

u = 0 on Γ0,

∂u

∂ν
+ αu = 0 on Γ1.

We now prove existence of the eigenvalues and eigenfunctions of the problem

(1.2.1) (and so of the problem (1.1.2)). Denote by φ the dense compact embed-

ding H1
0 (Ω; Γ0) →֒ L2(Ω) and by φ′ the induced dense embedding (L2(Ω))′ →֒

(H1
0(Ω; Γ0))

′. Making the identification L2(Ω) = (L2(Ω))′, let Rω
α : L2(Ω)→ L2(Ω)

be given by Rω
α = φ ◦ (T ωα )−1 ◦ φ′.

Let Sα : D(Sα) → L2(Ω) be the operator associated with (1.2.1), where

D(Sα) = {u ∈ H1
0 (Ω; Γ0) : T 0

αu ∈ L2(Ω)} is the natural domain of Sα. Then

it is not hard to prove that Sα is closed. Moreover, Rω
α is of course the resol-

vent operator R(ω, Sα). In particular, we easily get the following properties of the

resolvent.

Lemma 1.2.5. Let ω ≥ 0 satisfy the conclusions of Lemma 1.2.3. The operator

Rω
α : L2(Ω)→ L2(Ω) is compact and self-adjoint.

Proof. Compactness follows from compactness of the embedding φ : H1
0 (Ω; Γ0)→

L2(Ω) while self-adjointness follows from the property 〈T ωα u, v〉 = 〈u, T ωα v〉 =

Qα(u, v) + ω〈u, v〉L2(Ω). �

Using the spectral theory for operators with compact resolvent, we obtain the

following important result about the eigenvalues of (1.2.1).

Theorem 1.2.6 (Structure of the eigenvalues). The eigenvalues of (1.2.1) are

denumerable, and form a sequence λ1 < λ2 < λ3 < . . .→∞ with λ1 > 0 if α > 0.

Moreover, the algebraic and geometric multiplicity of each eigenvalue is finite.

Proof. Since for each α the resolvent Rω
α = R(ω, Sα) is compact for some ω, by

[72, Theorem III.6.29] the spectrum of the closed operator Sα consists entirely of

isolated eigenvalues with finite multiplicities. For the form of the eigenvalues, by

[72, Theorem III.6.26] the only possible point of accumulation of the eigenvalues

of Rω
α is zero.

If α > 0 then we know all eigenvalues must be positive (just use Lemma 1.2.3

and the fact that any eigenvalue λ satisfies λ = Qα(ψ, ψ)/‖ψ‖L2(Ω) where ψ is a
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corresponding eigenfunction); moreover, they are of the form 1/κ, where κ is an

eigenvalue of R0
α (again, see [72, Section III.7]). In particular the eigenvalues of

Sα and hence (1.2.1) must have the form claimed in the theorem.

If α ≤ 0, we look at the operator given by Sα + ωI for some ω > 0. Then this

operator has eigenvalues of the same form as when α > 0, and since ωI : L2(Ω)→
L2(Ω) is bounded, it will merely shift the spectrum of Sα + ωI without changing

its structure. Hence the eigenvalues of Sα again have the claimed form. �

Remark 1.2.7. (i) Each eigenvalue λk, k ≥ 1 is really a function of α and the

domain Ω on which the problem is defined: λk = λk(Ω, α). At times for the sake

of brevity we may drop one or both these arguments from our notation if there is

no danger of confusion. However, at other times the arguments are important; we

will study some of the properties of these functions in the next section.

(ii) The weak theory outlined above has in fact been extended to arbitrary open

sets Ω ⊂ RN when α > 0. There are (at least) two somewhat different approaches.

One way is to use Maz’ja’s inequality and Hausdorff measure on the boundary as

in [33]; the other way is to use the idea of capacities and work with more general

measures as in [11]. Here we will make no use of these “weak” theories, although

the issue will briefly resurface when we look at Wentzell boundary conditions (see

Remark 5.2.4(i)).

(iii) It is an immediate and useful consequence of the above theory that each

eigenvalue λk with eigenfunction ψ = ψ(λk) can be characterised as Qα(ψ, ϕ) =

λk〈ψ, ϕ〉L2(Ω), that is,

(1.2.5)

∫

Ω

∇ψ · ∇ϕdx+
∫

Γ1

αψϕ dσ = λk

∫

Ω

ψϕ dx

for all ϕ ∈ H1
0 (Ω; Γ0).

Theorem 1.2.8 (Regularity of the eigenfunctions). Suppose Ω is Lipschitz. Every

eigenfunction ψ of the problem (1.2.1) satisfies ψ ∈ H1(Ω) ∩ C(Ω) ∩ C∞(Ω). If

Ω is of class C2 and α > 0, then in addition every ψ ∈ W 2,p(Ω) ∩ C1(Ω) for all

1 < p <∞.

Proof. Interior regularity follows from an easy and standard bootstrapping argu-

ment using for example [48, Theorem 6.3.2] (which actually works for Ω ⊂ RN

open arbitrary).
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For boundary regularity, note that we are assuming Γ0 and Γ1 are separated,

that is, Γ0 and Γ1 are open and closed subsets of ∂Ω. Since boundary regularity

is a local property, we may choose neighbourhoods covering ∂Ω such that in each

neighbourhood, either Γ0 = ∅ or Γ1 = ∅. Thus without loss of generality it suffices

to consider the cases ∂Ω = Γ0 and ∂Ω = Γ1 to prove the remaining assertions. If

∂Ω = Γ0, then it is known ψ ∈ C(Ω) if Ω is only Wiener regular (a much weaker

condition than Lipschitz); see for example [10]. Assume now for the meantime that

Ω is C2. By [59, Theorem 8.34] we have in fact ψ ∈ C1,η(Ω) for every η ∈ (0, 1)

since Ω is C1,η. That ψ ∈ W 2,p(Ω) follows from the seminal work of Agmon-

Douglis-Nirenberg [3]; see [59, Theorem 9.19] (with k = 0) for a precise statement

of this result in current notation.

Now suppose Γ0 = ∅ and we have a pure Robin problem. Then continuity up to

the boundary comes from combining [33, Corollary 5.5] with [108, Corollary 2.9])

when α > 0 and [36, Corollary 4.2] when α ≤ 0. If Ω is C2 and α > 0, then [4,

Theorem 4.2] implies ψ ∈ W 2,p(Ω) for all 1 < p <∞. We now use a bootstrapping

argument via results from [81]. By [81, Theorem 3.12.1], ψ ∈ C2,η(Ω) for some

η ∈ (0, 1). By [81, Theorem 10.2.1], ψ ∈ C1(Ω). �

1.3. Eigenvalue properties of the Robin Laplacian

Here we collect various properties of (1.1.2) that will be important to us in

what follows. As with Section 1.2, these are generally well-established, although

more specialised. We make the same assumptions on Ω and α as in Section 1.2.

We will be paying special attention to the first eigenvalue λ1. The results we

need are collected in the following theorem. Here, since Ω is fixed, we will be

treating the first eigenvalue as a function of α ∈ R only, λ1 = λ1(α).

Theorem 1.3.1 (Properties of the first eigenvalue). Suppose Ω ⊂ R
N is bounded,

Lipschitz and connected. Let λ1 = λ1(α) be the first eigenvalue of (1.1.2) on Ω,

where α ∈ R. Then

(i) λ1(α) is given by the variational characterisation

(1.3.1)

λ1(α) = inf
u∈H1(Ω)

Qα(u)

‖u‖2L2(Ω)

= inf
u∈H1(Ω)

∫
Ω
|∇u|2 dx+

∫
∂Ω
αu2 dσ∫

Ω
u2 dx
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where we have written Qα(u) for Qα(u, u). The infimum is attained by any

eigenfunction ψ corresponding to λ1(α);

(ii) the eigenspace of λ1(α) is one-dimensional;

(iii) any eigenfunction ψ of λ1(α) does not change sign in Ω;

(iv) if in addition Ω is of class C2 and Γ0 = ∅, then ψ can be chosen strictly

positive in Ω;

(v) for α ∈ R fixed, λ1(α) is the only eigenvalue of (1.1.2) having a positive

eigenfunction;

(vi) as a function of α, λ1(α) is analytic, strictly monotonically increasing and

strictly concave (that is, λ1
′(α) is strictly decreasing) for all α ∈ R;

(vii) as α→∞, λ1(α)→ µ1 from below, and λ1
′(α)→ 0;

(viii) λ1(0) = 0 and

(1.3.2) λ1
′(0) =

σ(∂Ω)

|Ω| ;

(ix) finally,

(1.3.3)
λ1(α)

−α2
≥ 1

for all α < 0, independent of Ω. There is equality in the limit as α→ −∞
if Ω is C1.

The ratio in (1.3.1) is usually called the Rayleigh quotient.

Remark 1.3.2. The theorem assumes that Ω is connected. However, we will in

general allow our domains to be disconnected. This does not substantially change

the problem, however: any disconnected bounded Lipschitz domain Ω will consist

of finitely many separated connected components (c.c.s for short), each having

Lipschitz boundary. In such a case the eigenvalues of Ω (for any operator or

boundary condition) can be found by collecting and reordering the eigenvalues of

the c.c.s. For such domains U, V , in a slight abuse of notation we will say U = V

if and only if their c.c.s are in bijective correspondence and for each pair Ũ , Ṽ of

c.c.s, there exists a rigid transformation τ such that τ(Ũ) = Ṽ . In particular,

their spectra will coincide. Actually, in general we can allow countably infinitely

many separated Lipschitz c.c.s, each one of which is bounded, and this remark is

still valid. In such a case, disconnectedness will not affect the regularity of the
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eigenfunctions (Theorem 1.2.8). We now have

λ1(α) = min{λ1(Ω̃, α) : Ω̃ is a c.c. of Ω}.

In particular, (i), (vii) and (ix) hold if Ω is disconnected, and λ1(α) is still con-

tinuous, strictly monotonically increasing and strictly concave, with λ1(0) = 0.

However, it is now possible that λ1 will be a repeated eigenvalue: 0 < λ1 = λ2. For

each c.c., there will be exactly one eigenvalue λp(Ω) with a positive eigenfunction

(the first eigenvalue on that c.c.), but we could arrange so that p is arbitrarily

large. Moreover, λ1 is in general no longer analytic as a function of α, and in

particular (1.3.2) will fail in general. To see this, suppose Ω is the disjoint union

of two c.c.s Ω1 and Ω2, where σ(∂Ω1)/|Ω1| < σ(∂Ω2)/|Ω2|. Then

lim
α→0−

λ1(α)

α
=
σ(∂Ω2)

|Ω2|
>
σ(∂Ω1)

|Ω1|
= lim

α→0+

λ1(α)

α
.

It is quite possible there could be similar “kinks” elsewhere. Another way to view

this is via the theory on analytic perturbations in [72, Chapter VII], which we will

use below to prove analyticity of λ1 when Ω is connected. The same theory implies

that in this case λ1(Ω, α) is analytic except at isolated “splitting” points, such as

above where λ1(Ω1, α) and λ1(Ω2, α) cross at α = 0.

Proof of Theorem 1.3.1. (i) The characterisation of the first eigenvalue as the

infimum of the Rayleigh quotient is standard; see for example [30, Chapter VI]

or [62, Section 1] (note that in the latter the sign of α is switched). For (ii) and

(iii), if α > 0 then the simplicity and positivity of the first eigenfunction ψ is

also standard and can be deduced directly from properties of Qα (use ψ+, ψ− as

test functions for positivity); alternatively, see [33, Section 5]. If α < 0, then

we may use the argument in [36] to rewrite the problem (1.1.2) as an equivalent

Robin problem with positive boundary parameter, albeit with a different (but still

uniformly elliptic) form. Our claim then follows from the form properties in this

case. Alternatively, see [60, 62], or see [80] if Ω is piecewise-C1.

(iv) If Ω is C2, then positivity up to the boundary follows from a simple ar-

gument involving the Hopf maximum principle (see, e.g., [85, Section 2] or [107,

Section 2]), since then the boundary condition holds pointwise everywhere on ∂Ω.

(v) Since our associated operator is a self-adjoint operator on the Hilbert space

L2(Ω), its eigenfunctions can be chosen to form an orthonormal basis for L2(Ω),
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possibly after a rescaling and after an orthogonalisation of eigenfunctions associ-

ated with an eigenvalue of multiplicity larger than 1. Since the first eigenfunction

is positive, it follows that every other eigenfunction must change sign. If α < 0, we

consider the rescaled operator Sα + ωI, ω >> 0, as in the proof of Theorem 1.2.6,

which merely shifts the eigenvalues by ω without affecting the eigenfunctions.

(vi) We first prove analyticity. Observe that for any given u ∈ H1(Ω) the

form Qα(u) is analytic in α. This means that the associated family of self-adjoint

operators T 0
α is holomorphic of type (B) in the sense of [72] (see Section VII.4.2

there. In fact we can actually show that the operators are of type (A) since their

domain will be independent of α, but we do not need this). It follows from the

theory in [72, Sections VII.3 and VII.4] (see Section VII.3.1 in particular) that any

finite system of eigenvalues of T 0
α depends locally holomorphically (i.e. analytically)

on α; the only possibility we have to rule out is the “splitting of eigenvalues”. But

this is impossible since it would require an eigenspace of dimension two at the

point of splitting. Hence λ1 depends analytically on α.

Concavity of λ1(α) follows from the characterisation of λ1 as the infimum of a

family of functions Qα(u)/‖u‖2L2(Ω) which are affine with respect to α. To prove

strict concavity, note that if λ1 is only weakly concave on an interval (α1, α2) ⊂ R

then it must be linear on this interval. Since λ1 is analytic, unique continuation

implies λ1 must be linear on R. This is impossible since 0 ≤ λ1(α) < µ1 for all

α > 0 by (vii) and (viii). (These parts of (vii) and (viii) follow purely from the

variational characterisation and do not use (vi), so there is no circularity.) Thus

λ1 is strictly concave everywhere.

We finally prove monotonicity. Since Qα1(u) < Qα2(u) if α1 < α2 ∈ R for any

u ∈ H1(Ω), it is immediate that λ1(α) is (weakly) monotonically increasing. But

strict concavity now implies strict monotonicity.

(vii) Clearly λ1(α) < µ1, as can be seen by comparing variational characteri-

sations. That we actually have λ1(α)→ µ1 as α→∞ is noted in [62, Section 1].

That λ1
′(α)→ 0 as α→∞ follows immediately from combining the observations

that λ1(α) is monotonically increasing and λ1(α) ≤ µ1 for all α > 0.

(viii) It is immediate that λ1(0) = 0, since then we have a Neumann problem

(see also Remark 1.3.9). Since λ1
′(α) exists, (1.3.2) follows directly from [62,

Equation 5], which states that limα→0 λ1(α)/α = σ(∂Ω)/|Ω|, combined with the

observation that λ1(0) = 0. See also [80, Section 2.1] if ∂Ω is smooth.
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(ix) Finally, (1.3.3) is established using a test function argument in the vari-

ational characterisation (1.3.1), adapted from [60, Theorem 2.3]. Our claim here

is a direct consequence of Lemma 4.4.3, which is in slightly more general form

that what we need here; we will omit the proof here to avoid repetition. For the

limiting behaviour, proved using different techniques, see [80, Theorem 2.2] and

[86, Theorem 1.1]. �

Remark 1.3.3. It is easy to modify the above results and proofs so that everything

remains valid if we consider the problem (1.2.1) with α > 0 instead of (1.1.2),

albeit with appropriate modifications: for example now the infimum in (1.3.1) is

over H1
0 (Ω; Γ0) rather than H

1(Ω). Since it is quite standard, we will not go into

the proof of this. We note in particular that we still have a simple first eigenvalue

with eigenfunction ψ strictly positive in Ω, and that eigenfunction ψ will be strictly

positive on Γ1.

It is also important to know under what circumstances we can “approximate”

a given Lipschitz domain Ω with a sequence Ωn such that λ1(Ωn) → λ1(Ω). The

following basic result will be very useful.

Theorem 1.3.4. Let Ω ⊂ RN be a bounded Lipschitz domain. There exist se-

quences of C∞ domains Vn ⊂ Ω ⊂ Un such that λ1(Un), λ1(Vn) → λ1(Ω) as

n→∞.

Proof. Using [43, Theorem 5.1] it is possible to approximate Ω from the outside by

a sequence of C∞ domains Vn in such a way that |Vn| → |Ω| and [32, Theorems 4.4

and 6.2] may be applied to give λ1(Vn)→ λ1(Ω) as n→∞. This is also explained in

[35, Section 4]. For the Un, we can use exactly the same approximation argument,

even though our sequence is now interior rather than exterior to Ω. In particular,

[43, Theorem 5.1] remains valid, by considering the domain B \ Ω, where B is a

large ball containing Ω, and Theorems 4.4 and 6.2 of [32] still apply in this case,

as noted in Remark 5.10 there. �

We next have a couple of analogous results for the higher eigenvalues. Just as

many of the properties of the first eigenvalue can be deduced from its variational

characterisation (1.3.1), here the so-called minimax formula for the kth eigenvalue
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will play an important role. This is given by

(1.3.4) λk(α) = max
M

(
inf

06=u∈M

∫
Ω
|∇u|2 dx+ α

∫
∂Ω
u2 dσ∫

Ω
u2 dx

)
,

α ∈ R, where the maximum is taken over all subspaces M of H1(Ω) of codimen-

sion k − 1 (see [30, Chapter VI]). The infimum is attained by any eigenfunction

associated with λk, and the maximal subspace can be obtained by removing the

L2 span of the eigenfunctions associated with the previous k−1 eigenvalues. That

is, all functions in the maximal subspace M will be orthogonal in L2 to the first

k− 1 eigenfunctions. (Here we stress it is important that eigenvalues are repeated

according to their multiplicities!)

Theorem 1.3.5. Suppose Ω ⊂ R
N is a fixed bounded, Lipschitz domain. Let

α1, α2 ∈ R and k ≥ 1. If α1 ≤ α2, then for any k ≥ 1, λk(α1) ≤ λk(α2).

Moreover, for all α ∈ R, λk(α) is continuous, and λk(α) ≤ µk.

Proof. Consider the minimax formula for the kth eigenvalue (1.3.4). For fixed M ,

the infimum appearing in (1.3.4) is a (certainly weakly) monotonically increasing

function of α. Hence the same must be true of the maximum over all such M .

(This result is explicitly contained in [30, Theorem VI.2.6]. Although they only

treat the case N = 2 it is clear that the dimension of the space will not affect any

of the arguments.)

Continuity also follows directly from the minimax formula. That is, since for

every u ∈ H1(Ω) the Rayleigh quotient Qα(u) is continuous with respect to α, for

a given subspace M of H1(Ω) the same must be true of its infimum; hence the

same is also true of of the maximum over all such subspaces.

That λk(α) ≤ µk follows immediately from (1.3.4), since we recover µk if we

replace H1(Ω) by the smaller subspace H1
0 (Ω). �

In fact the same arguments used in the proof of Theorem 1.3.1 to show ana-

lyticity of λ1(α) imply that λk(α) is now a piecewise-analytic function of α. Even

if Ω is connected, there may be splitting (or bifurcation) points. However, it is

not clear if λk is concave with respect to α, since given α1 < α2 and α ∈ (α1, α2),

there is no reason to expect an eigenfunction ψ associated with λk(α) will lie in

the maximal subspace M for αi.

We also have the following remarks on the topic of domain monotonicity. We

start with the idea of homothety. For any Ω ⊂ RN and t > 0, we can define the
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domain

(1.3.5) tΩ := {tx ∈ R
N : x ∈ Ω};

then ∂(tΩ) = t(∂Ω) and |tΩ| = tN |Ω|. We can think of this as “blowing up” Ω by

a factor of t.

Remark 1.3.6. (i) The Dirichlet problem scales well. Making a change of variables

x 7→ tx in the Rayleigh quotient, it is easy to show that µ1(tΩ) = t−2µ1(Ω). In

the special case when N = 2 this means the product |tΩ|µ1(tΩ) is invariant with

respect to t. Let us now consider the Robin problem. Because of the boundary

term in the Rayleigh quotient, the eigenvalues will not scale cleanly with respect

to t for fixed α. However, by making the homothety substitution x 7→ αx, we see

the problem (1.1.2) is equivalent to the problem

(1.3.6)
−∆u =

λ

α2
u in αΩ,

∂u

∂ν
+ u = 0 on ∂(αΩ).

In particular, instead of considering a fixed domain Ω and varying α, we could

assume α ≡ 1 (or any other pre-specified constant) and vary |Ω| (that is, consider
the family tΩ). Of course, this only works if we do not change the sign of α or t.

(ii) Another property of the Dirichlet problem is a domain monotonicity prop-

erty: if U ⊂ V ⊂ RN , then µk(U) ≥ µk(V ) for any k ≥ 1. This follows from

the variational characterisation of µk (cf. (1.3.4) but with H
1
0 in place of H1: then

H1
0(U) may be regarded as a subset of H1

0 (V ) by extending functions in H1
0 (U)

by zero in V \ U). However, it is well known that this monotonicity property fails

for the Robin problem, even if k = 1; see [62, 94] for counterexamples. This

will be an important point in Section 4.3. We will also prove there that even if

λk(U, α) ≤ λk(V, α) for some α ∈ (0,∞), this may not be true for all α ∈ (0,∞)

(this result is probably not new, but we know of no reference).

Lemma 1.3.7. Let B(x, r) denote the ball of radius r centred at x. For α > 0

fixed the first eigenvalue λ1(B(x, r)) is a strictly decreasing, continuous function

of r > 0.

Proof. See for example [22, Lemma 4.1]. �
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Remark 1.3.8. Note that Lemma 1.3.7 remains true, with the same proof, for

the p-Laplacian, 1 < p <∞ (see Section 3.1).

We conclude with a couple of comments about the Neumann problem.

Remark 1.3.9. We will denote the nth eigenvalue of the Neumann problem

−∆u = λu in Ω,

∂u

∂ν
= 0 on ∂Ω,

which (as has been mentioned) occurs when we set α = 0 in (1.1.2), by λk(0) =

λk(Ω, 0), since from both a theoretical and practical perspective this seems to be

most convenient. Of course, all the results we have listed in this section for the

case α ≤ 0 and Γ0 = ∅ in (1.2.1) apply here.

Lemma 1.3.10. If Ω ⊂ RN is connected, bounded Lipschitz, then λ2(Ω, 0) > 0.

Proof. This certainly follows from the fact that if Ω is connected then the first

Neumann eigenvalue (i.e. 0, in our notation given by λ1(Ω, 0)) is simple and the

only eigenfunctions are constant. (To see this, for example, use that any such

eigenfunction u satisfies ∆u = 0 in Ω, ∂u
∂ν

= 0 on ∂Ω, that is, u is harmonic and

locally constant on ∂Ω; cf. [59, Problem 2.2].) �



Chapter 2

An Inequality for the First Eigenvalue of the Robin

Laplacian

This chapter is devoted entirely to the study of a Faber-Krahn type inequality

for the first eigenvalue of the Robin problem (1.1.2).

2.1. The Faber-Krahn inequality

We start by stating the main theorems we will prove in this chapter. The

notation is as in Chapter 1; however, since we will fix α > 0 throughout this

chapter, we will denote by λ1(Ω) > 0 the first eigenvalue of (1.1.2) on Ω.

Theorem 2.1.1 (Faber-Krahn for Robin problems). Let Ω ⊂ R
N be a bounded

Lipschitz domain and let B denote a ball having the same volume as Ω. Then

λ1(Ω) ≥ λ1(B).

Theorem 2.1.2 (Sharpness of the inequality). If in Theorem 2.1.1 the domain Ω

is of class C2, then λ1(Ω) = λ1(B) if and only if Ω = B after a translation.

The first complete proof of Theorem 2.1.1 appeared recently in [35]; our con-

tribution here is a proof of Theorem 2.1.2 for the first time.

The original and famous theorem of Faber [50] and Krahn [78], proved in the

1920s, which resolved the conjecture of Lord Rayleigh [97], is as follows.

Theorem 2.1.3 (Faber-Krahn). Let Ω ⊂ RN be a bounded open set and let B

denote a ball having the same volume as Ω. Then µ1(Ω) ≥ µ1(B), with equality if

and only if Ω is a ball up to a set of capacity zero.

See also [96]. For a definition and properties of capacity, see [65]. This theorem

is sometimes referred to as the theorem of Rayleigh-Faber-Krahn. The usual proof

uses a technique called Schwarz symmetrisation; see for example [13, 74, 96].

Roughly speaking, given a function u ∈ W 1,p(Ω)∩C(Ω) we construct a new function

u∗ ∈ W 1,p(B) ∩ C(B), such that the (upper) level sets {x ∈ B : u∗(x) > t} are

20
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concentric balls, and |{x ∈ B : u∗(x) > t}| = |{y ∈ Ω : u(y) > t}|. It can

be shown, although this is not trivial, that Schwarz symmetrisation preserves the

Lp-norm, but decreases the integral
∫
Ω
|∇u|p dx. In particular, when p = 2 we

symmetrise the eigenfunction u = ϕ ∈ H1
0 (Ω) associated with µ1(Ω). The new

function ϕ∗ ∈ H1
0 (B) has smaller Dirichlet integral

∫
Ω
|∇ϕ∗|2 dx. By comparing

Rayleigh quotients (cf. (1.3.1) with H1
0 (Ω) in place of H1(Ω)), the result follows.

The proof that the inequality is sharp, that is, that the ball is the only min-

imiser, is harder: one has to show that if Ω is not a ball, then the symmetrisation

process strictly decreases the Dirichlet integral. Despite this (or possibly because

of it?), the issue of uniqueness of the minimiser is omitted from many of the stan-

dard works on the subject, including the seminal book of Pólya and Szegö [96];

see the discussion in [74, Section II.8].

Given that the Robin problem (1.1.2) is in many ways so similar to the Dirichlet

problem (1.1.1), it is natural to ask if the Faber-Krahn inequality holds in this

case, and indeed it is claimed Krahn himself asked the question. (This seems to

be folklore; see for example the review on MathSciNet of [20]. But we cannot find

the source.) But the symmetrisation techniques which work in the Dirichlet case

do not seem to work here, since in general it is not clear if symmetrisation will

decrease the expression Qα(u) appearing in the Rayleigh quotient (1.3.1).

In fact the first result in the direction of Theorem 2.1.1 was in 1957 with a

paper of Payne and Weinberger [94], where they proved that λ1(Ω) ≥ λ1(B̃) if B̃

is a ball containing Ω. Unlike in the Dirichlet case this is not an obvious result since

the domain monotonicity property fails (see Remark 1.3.6(ii)). Other techniques

for estimating λ1(Ω) from below were described in a paper of Hersch [67]. The

next major development was the introduction in the 1980s of a new method in

[19, 20], the ideas for which came from [67] and a conformal invariant called

extremal length due to Ahlfors and Beurling (see [5, Chapter 4]). This involves

the use of a functional of the level sets of the first eigenvalue ψ on Ω, which we

describe in Section 2.2. This was used to sketch the proof of Theorem 2.1.1 in

dimension N = 2, albeit with a number of significant details omitted. These

were provided just a few years ago in [35], which also generalised the result to N

dimensions, thus completing the proof of Theorem 2.1.1. As mentioned earlier,

our contribution here is to strengthen substantially the method and estimates in
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[20, 35]. This enables us to give a proof of Theorem 2.1.2 for the first time, thus

providing a complete answer to the problem.

We will include the background results from [35] leading up to and including

the proof of Theorem 2.1.1, both for completeness’ sake, and because the exposi-

tion would be rather difficult to follow otherwise. We include some of the more

important or illustrative proofs from there in this chapter; the others, especially

the more technical proofs, have been reproduced in Appendix B. Finally, as in

[35], we will set the proof up so it works for Dirichlet boundary conditions as well,

thus giving a new proof of the sharpness of the inequality in Theorem 2.1.3. Note

however that our method only works for Wiener (or Dirichlet) regular bounded

domains; see Remark 2.2.2. The new material in this chapter has been published

in [39]; since publication the results have been generalised and developed in other

directions in [22, 23, 31].

2.2. A functional HΩ of the level sets

In order to cover the Robin and Dirichlet cases simultaneously, in this section

we will consider the eigenvalue problem

(2.2.1)

−∆u = λu in Ω,

u = 0 on Γ0,

∂u

∂ν
+ αu = 0 on Γ1,

on a given bounded domain Ω ⊂ RN , where Γ0, Γ1 are disjoint open and closed

subsets of ∂Ω with Γ0 ∪ Γ1 = ∂Ω (see also (1.2.1)). Here we will assume either

Ω is of class C2, or else Ω is Wiener regular (see Remark 2.2.2) and Γ1 = ∅. If

Γ1 = ∅, then we have a pure Dirichlet problem, while if Γ0 = ∅, then we have

a pure Robin problem. We will also assume that α > 0 is a constant, although

for this section and the next we could assume without loss of generality that (for

example) α ∈ C1(Γ1). Finally, we may assume without loss of generality that

Ω is connected. Indeed, for disconnected Ω, given the Faber-Krahn inequality for

connected domains it is immediate that λ1(Ω) > λ1(B). This follows from applying

the Faber-Krahn inequality to each connected component of Ω (see Remark 1.3.2)

and then using strict monotonicity of λ1(B) with respect to the volume of B (see

Lemma 1.3.7).
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We introduce the following notation. For open sets U ⊂ Ω we denote the

interior and exterior boundaries by ∂iU := ∂U∩Ω and ∂eU := ∂U∩∂Ω, respectively
(see also (A1.1)). We will be interested in the case where the subsets U are the

level sets of the first eigenfunction ψ of (2.2.1). Recall that λ1(Ω) is simple, and

that ψ can be chosen to be strictly positive in Ω (see Remark 1.3.3). We will

normalise ψ ≥ 0 so that ‖ψ‖∞ = 1, and denote the level sets of ψ by

(2.2.2) Ut := {x ∈ Ω : ψ(x) > t}

and the level surfaces by

(2.2.3) St := {x ∈ Ω : ψ(x) = t},

where t ∈ [0, 1]. Note that since ψ ∈ C(Ω) ∩ C∞(Ω) by Theorem 1.2.8, Sard’s

lemma [68, Theorem 3.1.3] implies St is, locally, a C
∞ (N − 1)-manifold inside Ω

for almost every t ∈ (0, 1), although a priori the intersection with ∂Ω could be

nasty. Moreover the level sets Ut are open. In particular St must coincide with

the interior boundary ∂iUt of Ut for almost all t ∈ (0, 1) with respect to Lebesgue

measure on (0, 1) (cf. also the comments around (A4.6)).

The principal reason for assuming that Ω is of class C2 is so that we have the

extra regularity of the eigenfunction from Theorem 1.2.8, namely that

ψ ∈ C∞(Ω) ∩ C1(Ω) ∩W 2,p(Ω)

for all p ∈ (1,∞). If Γ1 = ∅, then Ut is compactly contained in Ω since the sets

{x ∈ Ω : ψ(x) = 0} ⊇ ∂Ω and U t = {x ∈ Ω : ψ(x) ≥ t} are compact and

disjoint. In this case, by Sard’s lemma, St = ∂Ut is a C∞ manifold for almost

every t ∈ (0, 1). We also set

m := min
x∈Ω

ψ(x) ≥ 0.

By Theorem 1.3.1(iv) and Remark 1.3.3, ψ(x) > 0 for all x ∈ Γ1, and ψ attains its

minimum m on ∂Ω; if Γ0 = ∅ then m > 0, while clearly otherwise m = 0. Finally,

we observe that St = ∅ if t /∈ (m, 1], and U t ∩ Γ0 = ∅ for all t ∈ (m, 1).

We next recall the following rather technical result from [35] concerning the

behaviour of the level surfaces St, which will needed in the sequel.

Lemma 2.2.1 ([35], Lemma 2.3). The following are true.

(i) The function t 7→ σ(St) is in L1((0,∞)).
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(ii) The St are of class C∞ and the Ut are Lipschitz for almost all t ∈ (m, 1).

(iii) If Γ1 6= ∅, then there exist c > 0 and t1 ∈ (m, 1) such that σ(St) ≤ cσ(∂Ω)

for all t ∈ (m, t1].

The proof can be found in Appendix B. We observe that (i) uses the coarea

formula, (ii) uses Sard’s lemma, and (ii) and (iii) both require Ω to be “reasonably

smooth” if Γ1 6= ∅. The situation is different if Γ1 = ∅.

Remark 2.2.2. (i) If Γ1 = ∅, the only regularity assumption on ∂Ω we need is

that ψ ∈ C(Ω) in order to ensure all level sets Ut are compactly contained in

Ω. This assumption on ψ is equivalent to the assumption that Ω is Wiener (or

Dirichlet) regular (see, e.g., [10]). We remark that this is a far weaker condition

than Lipschitz regularity.

(ii) Note also that the actual inequality in Theorem 2.1.3 can be obtained for all

domains Ω of finite volume, not necessarily bounded, using a standard perturbation

argument as in [35, Section 4]. The sharpness of the inequality can be obtained for

all bounded domains Ω, but it requires a different method from the one above. A

proof using symmetrisation is included in [39, Section 4]. For arbitrary bounded

domains the sharpness only holds up to sets of capacity zero, since removing a

set of capacity zero from a domain Ω will not increase its eigenvalues (this is well

known; see for example [24, Section 2] and the references therein).

With this background material in mind, we are ready to look at the method

behind the proof of Theorems 2.1.1 and 2.1.2. The key is the following functional.

If U ⊂ Ω is open with U ∩ Γ0 = ∅, and ϕ ∈ C(Ω) is non-negative, then as in

[20, 35], we let

(2.2.4) HΩ(U, ϕ) :=
1

|U |
(∫

∂iU

ϕdσ +

∫

∂eU

α dσ −
∫

U

|ϕ|2 dx
)
.

Since ϕ is continuous, each of these integrals makes sense; moreover, we will be

working with restricted choices of U and ϕ for which the last integral is finite.

Thus HΩ will always be well-defined, although HΩ(U, ϕ) = ∞ is possible. More

precisely, the subsets U will be the level sets Ut of ψ; in particular, for almost all

t the ∂iU will be the level surfaces St. If Γ0 = ∅, we also restrict our choice of test

functions ϕ; see Section 2.3.

The main reason why the functional HΩ is useful is that it can be used to

obtain an estimate of the first eigenvalue λ1(Ω) of (2.2.1) (see Section 2.3). For
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this, the function |∇ψ|/ψ = |∇(lnψ)| will play an important role. The following

proposition motivates the definition of HΩ. Although this was already proved in

[35, Proposition 2.1], we include the straightforward but informative proof.

Proposition 2.2.3. Let ψ be a positive first eigenfunction of the problem (2.2.1).

Then

(2.2.5) HΩ(Ut,
|∇ψ|
ψ

) = λ1(Ω)

for almost all t ∈ (m, 1).

Proof. Fix t ∈ (m, 1) such that Lemma 2.2.1(ii) holds for this t. Since −∆ψ =

λ1(Ω)ψ in Ut, we have

λ1(Ω) =
1

|Ut|

∫

Ut

−∆ψ
ψ

dx

=
1

|Ut|

∫

Ut

− div
(∇ψ
ψ

)
− |∇ψ|

2

ψ2
dx.

Now since ψ ∈ W 2,p(Ω) for all p ∈ (1,∞) and ψ ≥ t > 0 on U t, we have |∇ψ|/ψ ∈
W 1,p(Ut) for all p ∈ (1,∞). Since Ut is Lipschitz, we may apply the divergence

theorem, Theorem A4.5(i), to obtain
∫

Ut

− div
(∇ψ
ψ

)
dx =

∫

St

− 1

ψ

∂ψ

∂νUt

dσ +

∫

∂eUt

− 1

ψ

∂ψ

∂νΩ
dσ.

But observe that St is a smooth level surface of ψ. Hence |∇ψ| = − ∂ψ
∂νUt

on St.

Moreover, by the boundary condition

α = − 1

ψ

∂ψ

∂νΩ

on ∂eUt ⊂ Γ1. Hence
∫

Ut

− div
(∇ψ
ψ

)
dx =

∫

St

|∇ψ|
ψ

dσ +

∫

∂eUt

α dσ.

Putting this all together yields

λ1(Ω) =
1

|Ut|
(∫

St

|∇ψ|
ψ

dσ +

∫

∂eUt

α dσ −
∫

Ut

|∇ψ|2
ψ2

dx
)
,

as required. �
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Remark 2.2.4. Another way of looking at the above argument is via the weak

formulation. That is, we use 1/ψ as a test function in the weak form Qα(ψ, v) =

λ1
∫
Ω
ψv dx for all v ∈ H1(Ω). Note that since ψ ≥ m > 0 on Ω, 1/ψ ∈ H1(Ω).

This yields ∫

Ω

∇ψ · ∇
( 1
ψ

)
+

∫

∂Ω

α dσ = λ1(Ω)

∫

Ω

dx,

or, after rearranging,

λ1(Ω) =
1

|Ω|
(∫

∂Ω

α dσ −
∫

Ω

|∇ψ|2
ψ2

dx
)
.

More generally, to obtain HΩ for a general level set Ut, we do the same thing for

the problem

−∆ψ = λ1(Ω)ψ in Ut

∂ψ

∂νΩ
+ αψ = 0 on ∂eUt

∂ψ

∂νUt

+
( |∇ψ|

ψ

)
ψ = 0 on ∂iUt,

since inserting 1/ψ into the weak equation for this problem will clearly yield (2.2.5)

whenever Ut is Lipschitz (i.e. whenever everything in the above expression makes

sense). This does not by itself weaken the smoothness requirement on Ω; however

this has subsequently been achieved in [22] by combining this idea with a cut-off

argument.

We will use Proposition 2.2.3 to obtain a characterisation of λ1(Ω) in terms of

HΩ for arbitrary ϕ ∈ C(Ω) non-negative. For this we need another technical result

from [35]; a proof is in Appendix B. Given ϕ ∈ C(Ω) non-negative we set

(2.2.6) w := ϕ− |∇ψ|
ψ

.

We also define

(2.2.7) F (t) :=

∫ 1

t

1

τ

∫

Sτ

w dσ dτ

for all t ∈ (m, 1).

Lemma 2.2.5 ([35], Lemma 3.3). Suppose that ϕ ∈ C(Ω) is non-negative such

that ϕ ∈ L1(U) for every open set U ⊂ Ω with U ⊂ Ω ∪ Γ1. Then F is absolutely
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continuous on [ε, 1) for every ε ∈ (0, 1) and

d

dt
F (t) = −1

t

∫

St

w dσ

for almost all t ∈ (0, 1).

The proof makes use of the coarea formula (see Theorem A4.6). Note that

absolutely continuous functions are differentiable almost everywhere (for a defini-

tion and discussion of them, see [99, Chapter 7]). We can now give the important

characterisation of λ1(Ω) mentioned earlier.

Theorem 2.2.6. Let ϕ ∈ C(Ω) be non-negative. Then

(2.2.8) HΩ(Ut, ϕ) = λ1(Ω)−
1

|Ut|
(1
t

d

dt

(
t2F (t)

)
+

∫

Ut

|w|2 dx
)

for almost all t ∈ (m, 1).

Proof. We use the definition of w to obtain an expression for the difference be-

tween HΩ(Ut, ϕ) and HΩ(Ut, |∇ψ|/ψ). First,

|ϕ|2 =
(
w +

|∇ψ|
ψ

)2
= |w|2 + 2w

|∇ψ|
ψ

+
|∇ψ|2
ψ2

.

Now fix t ∈ (m, 1) such that the results of Section 2.2 hold. We apply the coarea

formula (Theorem A4.6), valid for any non-negative measurable, not necessarily

integrable, function to obtain
∫

Ut

w
|∇ψ|
ψ

=

∫ 1

t

∫

Sτ

w

ψ
dσ dτ =

∫ 1

t

1

τ

∫

Sτ

w dσ dτ,

where we have also used ψ = τ on Sτ . Now if we use the definition of HΩ and the

characterisation (2.2.5) of λ1(Ω), we see that

HΩ(Ut, ϕ) =
1

|Ut|
(∫

St

|∇ψ|
ψ

+ w dσ +

∫

∂eUt

α dσ −
∫

Ut

(
w +

|∇ψ|
ψ

)2
dx
)

= λ1(Ω) +
1

|Ut|
(∫

St

w dσ − 2

∫ 1

t

1

τ

∫

Sτ

w dσ dτ −
∫

Ut

|w|2 dx
)
.

Finally, using Lemma 2.2.5, note that

1

t

d

dt

(
t2F (t)

)
=

1

t

(
2tF (t) + t2F ′(t)

)
= 2F (t) + tF ′(t)

= 2

∫ 1

t

1

τ

∫

St

w dσ dτ −
∫

St

w dσ.

Since this holds for almost every t ∈ (m, 1), this gives us the desired result. �
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2.3. An estimate of the first eigenvalue

In this section we will show how the functional HΩ can be used to give a lower

bound for λ1(Ω). The estimates we present strengthen the corresponding bounds

obtained in [20, 35]. The extra information we obtain will allow us to prove the

uniqueness of the minimiser, which we will do in the next section.

We start with the case of pure Robin boundary conditions Γ0 = ∅ in (2.2.1).

In this case we restrict our choice of test functions 0 ≤ ϕ ∈ C(Ω) to a subset

Mα :=Mα(Ω) of {u ∈ C(Ω) : u ≥ 0 in Ω} given by

Mα := {u ∈ C(Ω) : u ≥ 0 in Ω and lim sup
x→z

u(x) ≤ α(z) for all z ∈ ∂Ω}.

Such functions are called admissible repartitions in [20]. If Γ0 6= ∅ we will continue
to use the unrestricted class {u ∈ C(Ω) : u ≥ 0 in Ω}. Observe that the restriction

in the Robin case is a natural analogue of the unrestricted Dirichlet case, since in

the latter case where α = ∞, we have “M∞ = {u ∈ C(Ω) : u ≥ 0 in Ω}” in some

sense.

Lemma 2.3.1. If α ∈ C1(∂Ω), then Mα ⊂ L∞(Ω).

Proof. Suppose u ∈ Mα. By definition, given z ∈ ∂Ω there exists rz > 0 such

that u(x) ≤ α(z) + 1 for all x ∈ B(z, rz) ∩ Ω. The sets {B(z, rz) : z ∈ ∂Ω} form
an open cover of ∂Ω. Extract a finite subcover of balls Bi = B(zi, rzi) centred at

zi, i = 1, . . . , n, and let U =
⋃n
i=1Bi. Then supx∈U∩Ω u(x) ≤ maxi α(zi) + 1 <∞,

so u ∈ L∞(U ∩ Ω). Now let V ⊂⊂ Ω be such that Ω ⊂ U ∪ V . Then u ∈ C(V ) ⊂
L∞(V ) and so we conclude u ∈ L∞(Ω). �

It is now clear that HΩ(Ut, ϕ) will always be well-defined for ϕ ∈ Mα, since

the volume integral in (2.2.4) is always finite. It is of course still possible that

HΩ(Ut, ϕ) = ∞ for some Ut and ϕ. If Γ0 6= ∅, then the situation becomes more

interesting if U t ∩ Γ1 6= ∅ for some t ∈ (0, 1). In this case we assume 0 ≤ ϕ ∈
C(Ω) ∩ L2(Ut) for all t ∈ (0, 1).

Remark 2.3.2. In the case Γ0 = ∅, in general |∇ψ|/ψ ∈ Mα if and only if ψ is

locally constant on ∂Ω. To see this, suppose |∇ψ|/ψ ∈ Mα. Using the boundary

condition in (2.2.1),

|∇ψ|
ψ
≤ α = − 1

ψ

∂ψ

∂νΩ
≤ |∇ψ|

ψ
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at every point on the boundary. The only possibility is that ∂ψ
∂νΩ

= −|∇ψ|, which
can only be the case if ψ is locally constant on ∂Ω. Conversely, if ψ is locally

constant on ∂Ω, then each component of ∂Ω is a level surface St for some t. This

implies ∂ψ
∂νΩ

= −|∇ψ| and from the boundary condition |∇ψ|/ψ = α on ∂Ω.

The above remark also implies |∇ψ|/ψ ≥ α on ∂Ω. This leads to the following

estimate of w = ϕ− |∇ψ|/ψ for ϕ ∈Mα. It follows from an elementary argument

using the compactness of ∂Ω. A proof can be found in Appendix B.

Lemma 2.3.3 ([35], Lemma 3.4). Let ϕ ∈Mα. Then for every ε > 0 there exists

δ > 0 such that w(x) ≤ ε for all x ∈ Ω with dist(x, ∂Ω) < δ.

In the next theorem we will use the characterisation (2.2.8) of HΩ to estimate

the first eigenvalue from above. That estimate is the key to proving Theorems 2.1.1

and 2.1.2. The theorem we present significantly strengthens [35, Theorem 3.1]

(which in turn strengthened [20, Theorem 1], which first gave the estimate), giving

a strict inequality for a larger set of t ∈ (m, 1).

Theorem 2.3.4. Suppose Γ0 = ∅ and let ϕ ∈ Mα. If ϕ 6= |∇ψ|/ψ, then there

exists a set S ⊂ (m, 1) of positive measure such that

HΩ(Ut, ϕ) < λ1(Ω)

for all t ∈ S.

Proof. Assume that ϕ 6= |∇ψ|/ψ, and suppose for a contradiction thatHΩ(Ut, ϕ) ≥
λ1(Ω) for almost all t ∈ (m, 1). By Theorem 2.2.6, we see that

(2.3.1)
d

dt

(
t2F (t)

)
≤ −t

∫

Ut

|w|2 dx ≤ 0

for almost all t ∈ (m, 1). We can also write this as

(2.3.2) 2F (t) +

∫

Ut

|w|2 dx ≤
∫

St

w dσ

for almost all t ∈ (m, 1). Using the fundamental theorem of calculus for abso-

lutely continuous functions [99, Theorem 7.18], (2.3.1) shows that t2F (t) is non-

increasing on (m, 1). Now ϕ 6= |∇ψ|/ψ implies w 6= 0, and since w ∈ C(Ω),
∫

Um

|w|2 dx =

∫

Ω

|w|2 dx > 0.
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Moreover, since the Ut are level sets, if s ≥ t, then
∫

Us

|w|2 dx ≤
∫

Ut

|w|2 dx,

while obviously ∫

U1

|w|2 dx = 0

since U1 = ∅ by definition. Hence there exists t∗ ∈ (m, 1] satisfying

t∗ = sup{t ∈ (m, 1) :

∫

Ut

|w|2 dx > 0}.

But then
d

dt

(
t2F (t)

)
≤ −t

∫

Ut

|w|2 dx < 0

for almost all t ∈ (m, t∗), so t2F (t) is strictly decreasing on (m, t∗).

We showed earlier that t2F (t) is non-increasing on [t∗, 1), and that F is con-

tinuous with F (1) = 0. It follows that there exist ξ > 0 and t0 ∈ (m, t∗) such that

F (t) > ξ for all t ∈ (m, t0]. By Lemma 2.2.1(iii), there exist t1 ∈ (m, t0] and c > 0

such that σ(St) < cσ(∂Ω) for all t ∈ (m, t1]. If we set

ε :=
ξ

cσ(∂Ω)
,

then by Lemma 2.3.3, there exists δ > 0 such that w(x) ≤ ε for all x ∈ Ω with

dist(x, ∂Ω) < δ. Since ψ attains a strict minimum on ∂Ω, there exists t ∈ (m, t1]

such that dist(x, ∂Ω) < δ for all x ∈ St. For such t, using (2.3.2), and by our

choice of ε, ξ,

0 < 2ξ < 2F (t) ≤
∫

St

w dσ ≤ εσ(St) ≤ ξ,

a contradiction. Hence we have shown that if ϕ 6= |∇ψ|/ψ, then there exists

t ∈ (m, 1) such that HΩ(Ut, ϕ) < λ1(Ω), as claimed. �

We now prove an analogous theorem for the general case Γ0 6= ∅ in (2.2.1), which

requires a different method of proof. This theorem strengthens [35, Theorem 3.5]

in the same way that Theorem 2.3.4 strengthens [35, Theorem 3.1].

Theorem 2.3.5. Suppose Γ0 6= ∅, and suppose ϕ ∈ C(Ω) is non-negative, with

ϕ ∈ L2(Ut) for every t ∈ (0, 1). If ϕ 6= |∇ψ|/ψ, then there exists a set S ⊂ (0, 1)

of positive measure such that

HΩ(Ut, ϕ) < λ1(Ω)
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for all t ∈ S.

Proof. As with Theorem 2.3.4, assume ϕ 6= |∇ψ|/ψ, and suppose for a contra-

diction that HΩ(Ut, ϕ) ≥ λ1(Ω) for almost all t ∈ (0, 1). As before, there exists

t∗ ∈ (0, 1] satisfying

t∗ = sup{t ∈ (0, 1) :

∫

Ut

|w|2 dx > 0},

so that G(t) := t2F (t) and F (t) are positive and strictly decreasing on (0, t∗), with

G(t∗) ≥ G(1) = 0. Hence

g(t) :=
1

G(t)

is well-defined and strictly increasing on (0, t∗). Now since F (t) ≥ 0, and

G′(t) =
d

dt

(
t2F (t)

)
≤ −t

∫

Ut

|w|2 dx ≤ 0

as with (2.3.2), it follows that
∫

St

w dσ ≥ 2F (t) +

∫

Ut

|w|2 dx ≥ 0

for almost all t ∈ (0, 1). Hence, by the coarea formula (Theorem A4.6) and the

Cauchy-Schwarz inequality,

G(t) = t2F (t) = t

∫ 1

t

t

τ

∫

Sτ

w dσ dτ

≤ t

∫ 1

t

∫

Sτ

w dσ dτ = t

∫

Ut

w|∇ψ| dx

≤ t
(∫

Ut

|w|2 dx
) 1

2
(∫

Ut

|∇ψ|2 dx
) 1

2

for all t ∈ (0, 1). By choice of t∗,

G′(t) =
d

dt

(
t2F (t)

)
< −t

∫

Ut

|w|2 dx

for almost all t ∈ (0, t∗). Combining these inequalities, we get

tg′(t) = − tG′(t)

(G(t))2
>
(∫

Ut

|∇ψ|2 dx
)−1

for almost all t ∈ (0, t∗). Fix t1 ∈ (0, t∗). Since the last integral is a decreasing

function of t, if we set

c := ‖∇ψ‖−1
2 ,
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then we have

g′(t) >
c

t
for almost all t ∈ (0, t1].

Since G is absolutely continuous and positive on [ε, t∗) for all ε ∈ (0, t∗), so is

g. By the fundamental theorem of calculus for such functions [99, Theorem 7.18],

g(t1) ≥ g(t1)− g(ε) =
∫ t1

ε

g′(τ) dτ > c

∫ t1

ε

1

τ
dτ = c(log t1 − log ε)

for all ε ∈ (0, t1]. This implies that − log ε is bounded from above as ε→ 0, which

is a contradiction. This completes the proof. �

2.4. Proof of the Faber-Krahn inequality

In this section we will prove Theorems 2.1.1 and 2.1.2 as well as sketch the

proof of Theorem 2.1.3. We will keep the latter fairly brief, since the method is

essentially the same as for the Robin case, and also since the result is well-known

with a different proof.

We will start by looking at the Robin case Γ0 = ∅. We first need to consider

some properties of (2.2.1) when Ω is a ball B of radius R, without loss of generality

centred at the origin. Denote the eigenvalue by λ1(B) and the corresponding

eigenfunction by ψ∗, as before chosen positive and normlised so that ‖ψ∗‖∞ = 1.

Clearly ψ∗ is radially symmetric; that is, there exists a function v ∈ C1([0, R])

such that ψ∗(x) = v(|x|). In fact we can describe v explicitly as a positive solution

to the ordinary differential equation

v′′(r) +
N − 1

r
v′(r) + λ1(B)v(r) = 0

for r ∈ (0, R]. The boundary condition is then v′(r)
r

+ αv(r) = 0 at r = R; by

normalisation and symmetry v(0) = 1 and v′(0) = 0. This may transformed via

the substitution w(r) := r
N
2
−1v(r) into Bessel’s equation of order N

2
− 1 (see [79,

Section 4.5]). The solution is given by

(2.4.1) v(r) = cr1−
N
2 JN

2
−1(
√
λ1(B) r),

where Jµ is the Bessel function of the first type of order µ and c is a normalising

constant.

Now we set ϕ∗ : B → R, ϕ∗ := |∇ψ∗|/ψ∗. Since it is clear that ∇ψ∗ is

radially symmetric, the same must be true of ϕ∗. In particular, by Remark 2.3.2,



2.4. Proof of the Faber-Krahn inequality 33

ϕ∗ ∈Mα(B) is constant and identically equal to α on ∂Ω. Moreover, we may write

ϕ∗(x) = g(|x|) for some g ∈ C([0, R]). The next lemma uses properties of these

Bessel functions. Its proof is in Appendix B.

Lemma 2.4.1 ([35], Lemma 4.1). The function g : (0, R) → (0,∞) is strictly

increasing.

As in [20, 35], we define a function ϕ ∈Mα(Ω) by constructing a rearrangement

of ϕ∗. We will denote by Br the ball of radius r centred at the origin, and let r(t)

be the radius of the ball with the same volume as Ut ⊂ Ω, so that |Br(t)| = |Ut|.
Since Ω and B have the same volume and Um = Ω we have r(m) = R. Given any

t ∈ (m, 1] we define

ϕ(x) := g(r(t))

for all x ∈ St. Since Ω is a disjoint union of the St, t ∈ (m, 1], the function

ϕ : Ω → (0,∞) is well-defined. The following comparison of ϕ and ϕ∗ uses the

isoperimetric inequality; hence we give the proof here.

Lemma 2.4.2 ([35], Lemma 4.2). The function ϕ constructed above lies inMα(Ω)

and

(2.4.2) λ1(B) = HB(Br(t), ϕ
∗) ≤ HΩ(Ut, ϕ)

for all t ∈ (m, 1).

Proof. Since g is increasing, {x ∈ Ω : ϕ > t} = Ω \ U t and {x ∈ Ω : ϕ < t} = Ut

are open in Ω for every t, that is, ϕ is continuous on Ω. Moreover, by construction

and since g > 0 is increasing we have 0 < ϕ ≤ α, so that ϕ ∈Mα(Ω).

Now we prove (2.4.2). The first equality follows immediately from Proposi-

tion 2.2.3. For the inequality, since by construction the level sets of ϕ∗ and ϕ have

the same volume,
∫

Ut

|ϕ|2 dx =

∫

Br(t)

|ϕ∗|2 dx

for all t ∈ (m, 1] by Cavalieri’s principle (see [88, Section 1.2.3]). Since |Ut| =
|Br(t)|, the isoperimetric inequality (see for example [13]) states that σ(∂Ut) ≥



2.4. Proof of the Faber-Krahn inequality 34

σ(∂Br(t)), for every t ∈ (m, 1]. Since ϕ(x) = g(r(t)) ≤ α for x ∈ St,
∫

∂Br(t)

ϕ∗ dσ = g(r(t))σ(∂Br(t)) ≤ g(r(t))σ(∂Ut)

=

∫

St

g(r(t)) dσ +

∫

∂eUt

g(r(t)) dσ

≤
∫

St

ϕdσ +

∫

∂eUt

α dσ.

That is, we preserve the volume integral and decrease the surface integral. It

follows that

HB(Br(t), ϕ
∗) =

∫

∂Br(t)

ϕ∗ dσ −
∫

Br(t)

|ϕ∗|2 dx

≤
∫

St

ϕdσ +

∫

∂eUt

α dσ −
∫

Ut

|ϕ|2 dx = HΩ(Ut, ϕ),

completing the proof of (2.4.2). �

We also have the following lemmata, which will be used in the proof of The-

orem 2.1.2. They will allow us to conclude that almost all the level sets Ut of

Ω are concentric balls if λ1(Ω) = λ1(B). These use the extra information from

Theorem 2.3.4.

Lemma 2.4.3. Suppose that λ1(Ω) = λ1(B). Then ϕ = |∇ψ|/ψ and HΩ(Ut, ϕ) =

λ1(B) for almost all t ∈ (m, 1).

Proof. If λ1(Ω) = λ1(B), then by Lemma 2.4.2, λ1(Ω) = λ1(B) ≤ HΩ(Ut, ϕ)

for all t ∈ (m, 1). Hence by Theorem 2.3.4, ϕ = |∇ψ|/ψ, and in particular, by

Proposition 2.2.3,

(2.4.3) HΩ(Ut, ϕ) = λ1(Ω) = λ1(B)

for almost all t ∈ (m, 1). �

Lemma 2.4.4. Suppose Ut is Lipschitz for some t ∈ (m, 1). Then HΩ(Ut, ϕ) =

λ1(B) if and only if Ut is a ball and σ(∂eUt) = 0.

Proof. We know that λ1(B) = HB(Br(t), ϕ
∗) for all t ∈ (m, 1). Also, by con-

struction, the level sets of ϕ∗ and ϕ have the same volume. So as in the proof of

Lemma 2.4.2 we have ∫

Ut

|ϕ|2 dx =

∫

Br(t)

|ϕ∗|2 dx
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for all t ∈ (m, 1]. Hence, using the definition of HΩ,

HΩ(Ut, ϕ) =
1

|Ut|
(∫

St

g(r(t)) dσ +

∫

∂eUt

α dσ −
∫

Ut

|ϕ|2 dx
)

=
1

|Br(t)|
(
g(r(t))σ(St) + ασ(∂eUt)−

∫

Br(t)

|ϕ∗|2 dx
)
.

Now if Ut is a ball with σ(∂eUt) = 0, then σ(St) = σ(∂Br(t)), and

HΩ(Ut, ϕ) =
1

|Br(t)|
(
g(r(t))σ(∂Br(t))−

∫

Br(t)

|ϕ∗|2 dx
)

= HB(Br(t), ϕ
∗) = λ1(B),

proving one implication. Conversely, if HΩ(Ut, ϕ) = λ1(B), then for this t we have

g(r(t))σ(St) + ασ(∂eUt) = g(r(t))σ(∂Br(t)).

Since t ∈ (m, 1), 0 < g(r(t)) < α. This is only possible if
∫

∂eUt

α dσ = 0

and σ(St) = σ(∂Br(t)). Since α > 0 on ∂Ω by assumption, this means σ(∂eUt) = 0.

Now since ∂Ut is the disjoint union of St and ∂eUt, if σ(∂eUt) = 0, then we get

σ(∂Ut) = σ(∂Br(t)). But we know that the ball is the unique minimiser of the

isoperimetric inequality, at least among Lipschitz domains [25, Theorem 10.2.1].

Hence Ut = Br(t) up to translation. �

Lemma 2.4.5. Assume −∆u = λu in Ω for some λ > 0. Suppose that for some

t ≥ 0, the level set {x ∈ Ω : u(x) > t} = B(x0, r) for some x0 ∈ Ω and r > 0. If

u ∈ C(B(x0, r)) and σ(∂eB(x0, r)) = 0, then u is radially symmetric with respect

to x0 in B(x0, r).

Proof. Set v(x) := u(x)− t. Then

−∆v = −∆u = λu = λ(u− t) + λt = λv + λt

in B(x0, r). Since u ∈ C(B(x0, r)) and σ(∂eB(x0, r)) = 0, we get u(x) = t for all

x ∈ ∂B(x0, r). So v = 0 on ∂B(x0, r). That is, if we let f(v) := λv + λt, then v

solves a Dirichlet problem

−∆v = f(v) in B(x0, r)

v = 0 on ∂B(x0, r)
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Now f(v) = λv + λt ≥ 0 if v ≥ 0, and by assumption, in B(x0, r), u > t, so

v = u − t > 0. Hence by [58, Corollary 3.5], v is radially symmetric on B(x0, r)

with respect to x0. �

Remark 2.4.6. (i) By unique continuation of solutions to elliptic equations, if

the eigenfunction ψ on Ω satisfies the assumption of Lemma 2.4.5, then ψ on Ω

equals the solution given by the Bessel function extending the solution on the ball

B(x0, r). It is possible to use this observation to give a slightly different proof of

the sharpness result. Namely, if we know one level set of ψ is a ball, then this is

sufficient to conclude that Ω is a ball. We do not go into details here, but the full

argument can be found in [39].

(ii) We could state Lemma 2.4.5 in greater generality: if the level set has an

axis of symmetry, then the solution u will be symmetric with respect to that axis.

The proof is the same, except we refer to [58, Corollary 3.4].

We can now prove Theorems 2.1.1 and 2.1.2. The proof of the former is divided

into two parts: (i) proof that λ1(B) is minimal amongst C2 domains using the

method detailed above; and (ii) proof that λ1(B) is minimal amongst Lipschitz

domains using an approximation argument.

Proof of Theorem 2.1.1. (i) Let ϕ ∈Mα(Ω) be the function constructed above.

By Theorem 2.3.4 either there exists t ∈ (m, 1) such that

λ1(B) ≤ HB(Br(t), ϕ
∗) ≤ HΩ(Ut, ϕ) < λ1(Ω)

(where we have also used Lemma 2.4.2) or else ϕ = |∇ψ|/ψ, in which case we have

λ1(B) = HB(Br(t), ϕ
∗) ≤ HΩ(Ut, ϕ) = λ1(Ω)

for almost all t ∈ (m, 1) (again using Lemma 2.4.2, and also Proposition 2.2.3).

(ii) Suppose Ω is a bounded Lipschitz domain and let Ωn be such that |Ωn| →
|Ω| and λ1(Ωn)→ λ1(Ω) as in Theorem 1.3.4. If we let Bn denote the ball centred

at the origin such that |Ωn| = |Bn|, then by part (i) λ1(Ωn) ≥ λ(Bn) for all n.

Since |Ωn| → |Ω|, also |Bn| → |B| as n→∞ and so λ1(Bn)→ λ1(B). That is,

λ1(Ω)← λ1(Ωn) ≥ λ1(Bn)→ λ1(B)

as n→∞, completing the proof of (ii). �
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Proof of Theorem 2.1.2. Again assume Ω is a bounded C2 domain, and suppose

that λ1(Ω) = λ1(B). By Lemma 2.4.3, HΩ(Ut, ϕ) = λ1(B) for almost all t ∈ (m, 1).

Since Ut is Lipschitz for almost every t, by Lemma 2.4.4, Ut is a ball for almost

every t ∈ (m, 1). For every such t, Lemma 2.4.4 also tells us that σ(∂eUt) = 0,

and so by Lemma 2.4.5 the eigenfunction ψ corresponding to λ1(Ω) is radially

symmetric inside Ut, and all interior level sets Uτ , τ ∈ (t, 1] are concentric balls.

It follows that for all t ∈ (m, 1], the level sets Ut are concentric balls, and so

Ω =
⋃

t∈(m,1]

Ut

is a ball. �

We will now deal with the pure Dirichlet boundary condition Γ1 = ∅. Since

we no longer have a Robin or mixed boundary condition, we will denote the first

eigenvalue of Ω by µ1(Ω) in order to maintain consistency with (1.1.1) and later

sections. We will assume Ω is Wiener regular. If we consider the problem (2.2.1)

on the ball B of centre 0 and radius R, then as in the case of Robin boundary

conditions, the function ϕ∗ = |∇ψ∗|/ψ∗ : B → R is radially symmetric and con-

tinuous, so that ϕ∗(x) = g(|x|), g ∈ C([0, R)). Moreover, g : [0, R) → [0,∞) is

strictly increasing with g(0) = 0 and g(r) → ∞ as r → R (we omit the proof).

We then define a rearrangement of ϕ∗, call it ϕ ∈ C(Ω), exactly as in the Robin

case. Then Lemma 2.4.2 carries over to this case exactly, the only difference to

the proof being that Ut ⊂⊂ Ω, so that ∂eUt = ∅ for all t ∈ (0, 1). Lemma 2.4.4

also holds with the proof the same except for this detail. In this case Lemma 2.4.3

also carries over without change, and finally Lemma 2.4.5 is directly valid in the

Dirichlet case also, since it made no assumptions as to the boundary condition u

satisfies.

Proof of Theorem 2.1.3. Let ϕ ∈ C(Ω) be the rearrangement of ϕ∗ as above.

By Theorem 2.3.5, either HΩ(Ut, ϕ) < µ1(Ω) on a set of t-positive measure, or else

ϕ = |∇ψ|/ψ. In the former case, Lemma 2.4.2 implies

µ1(B) = HB(Br(t), ϕ
∗) ≤ HΩ(Ut, ϕ) < µ1(Ω)

for all such t. In the latter case, we have

(2.4.4) µ1(B) = HB(Br(t), ϕ
∗) ≤ HΩ(Ut, ϕ) = µ1(Ω)
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for almost every t ∈ (0, 1), using Proposition 2.2.3. Now if µ1(Ω) = µ1(B), the

only possibility is that (2.4.4) holds with equality for almost every t ∈ (0, 1). By

Lemma 2.4.4, Ut is a ball for almost every t ∈ (0, 1). Using Lemma 2.4.5, every

level set is a concentric ball and, as in the proof of Theorem 2.1.2, Ω is a ball. �



Chapter 3

Variations and Applications

In this chapter we consider a number of problems related either to the problem

or to the method considered in Chapter 2. We will start in Section 3.1 with a

short look at the p-Laplacian. Since the publication of the theory in Chapter 2,

the method has been developed and extended elsewhere so as to apply to this

quasi-linear operator. We will briefly discuss the operator’s properties, as well as

the generalisation of earlier results, including ours, from the case p = 2. We will

use some of these in later chapters to present some of our own results in greater

generality.

In Section 3.2 we will give an application of the method in Chapter 2 to proving

non-existence of certain types of supersolutions to the problem (1.2.1). While our

result, Theorem 3.2.1, is not new, the method of proof certainly is and it would be

interesting to know how it is connected with the other method of proof involving

the Serrin sweeping principle; see [107] and [85].

In Section 3.3 we look at a different type of isoperimetric inequality for the

first eigenvalue of the Robin problem, analogous to Cheeger’s inequality for the

corresponding Dirichlet problem (cf. [29]). This is based on a constant, usually

called Cheeger’s constant, which in some sense describes the geometry of a given

domain.

Finally, in Section 3.4 we consider two open problems. The first is the Robin

problem (1.1.2) with α < 0, which as we saw in Chapter 1 has many of the same

properties as when α > 0. The method involving HΩ used when α > 0 seems to

break down here and so we present the likely result as a conjecture. The other is

a famous conjecture of Pólya on polygonal domains in R2 with Dirichlet boundary

conditions. We consider these two problems mostly to illustrate the limitations of

the method in Chapter 2.

39
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3.1. The p-Laplacian with Robin boundary conditions

The eigenvalue problem in this case is

(3.1.1)

− div(|∇u|p−2∇u) = λ|u|p−2u in Ω,

|∇u|p−2∂u

∂ν
+ α|u|p−2u = 0 on ∂Ω,

where Ω ⊂ RN is bounded, Lipschitz and div(|∇u|p−2∇u) =: ∆pu is the p-

Laplacian of u, p ∈ (1,∞). Note that here we assume α > 0. When p = 2

this reduces to the problem (1.1.2). An eigenvalue λ with eigenfunction ψ is a

solution to (3.1.1) (in the weak sense) if it satisfies

(3.1.2)

∫

Ω

|∇ψ|p−2∇ψ · ∇ϕdx+
∫

∂Ω

α|ψ|p−2ψϕ dσ = λ

∫

Ω

|ψ|p−2ψϕ dx

for all ϕ ∈ W 1,p(Ω). The structure of the set of eigenvalues is not as yet completely

known; nor can we expect the eigenfunctions to be quite as regular as in the case

p = 2. We will summarise below much of what is currently known. Note that

everything will remain true with obvious modifications if we replace the boundary

condition in (3.1.1) with the Dirichlet condition u = 0 on ∂Ω. This is mostly taken

from [82], and the reader is referred there for the general existence theory for the

p-Laplacian.

Proposition 3.1.1. Suppose Ω ⊂ RN is a bounded, connected Lipschitz domain

and α > 0. Then

(i) there exists a sequence of eigenvalues (λn)n∈N of (3.1.1) of the form 0 <

λ1 < λ2 ≤ . . .;

(ii) the first eigenvalue λ1 = λ1(Ω, α, p) > 0 satisfies

(3.1.3) λ1 = inf
ϕ∈W 1,p(Ω)

∫
Ω
|∇ϕ|p dx+

∫
∂Ω
α|ϕ|p dσ∫

Ω
|ϕ|p dx ;

(iii) the second eigenvalue satisfies

λ2 = inf{λ > λ1 : λ is an eigenvalue of (3.1.1)};

(iv) the first eigenvalue λ1 > 0 is simple and every eigenfunction ψ associated

with λ1 satisfies ψ > 0 or ψ < 0 in Ω;

(v) only eigenfunctions associated with λ1 do not change sign in Ω;

(vi) every eigenfunction ψ of (3.1.1) lies in W 1,p(Ω)∩C1,η(Ω)∩C(Ω) for some

0 < η < 1.
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The usual method for obtaining the sequence in (i) is a technique known as the

Ljusternik-Schnirelman (L-S) principle, and it is an open problem as to whether

every eigenvalue is obtainable in this way; in particular (iii) is a non-trivial result.

Proof. Parts (i)-(v) are essentially contained in [82]. Although C1 regularity of

Ω is assumed there in order to derive (i) and C1,θ, 0 < θ < 1, is assumed for

(ii)-(iv), a careful analysis of the proofs shows that only Lipschitz continuity of

∂Ω is needed, since all background results, including those in the appendices, are

valid for Lipschitz domains. (The extra regularity of ∂Ω is needed only to prove

extra boundary regularity of the eigenfunctions.) For (v), first note that by [37,

Theorem 2.7], every eigenfunction ψ ∈ L∞(Ω) (see also Section 4 there). But now,

as noted in [22, Section 2], the arguments in [81, pp. 466-7] imply that ψ is Hölder

continuous on Ω. Also, by [103], ∇ψ is Hölder continuous inside Ω. �

The Faber-Krahn inequality, in the greatest generality known at the time of

writing, is as follows.

Theorem 3.1.2. Let Ω ⊂ RN be a bounded, Lipschitz domain and B a ball with

|B| = |Ω|. If α > 0, the first eigenvalue λ1(Ω) of (3.1.1) satisfies λ1(Ω) ≥ λ1(B),

with equality if and only if Ω = B after a translation.

Note that this actually improves our sharpness result in Chapter 2, for all

1 < p <∞; hence we will use this version of the theorem in subsequent chapters.

This theorem was first proved for smooth domains in [31] and then for Lipschitz

domains in [22]; both were based on [35, 39]. In this case the functional becomes

HΩ(U, ϕ) =
1

|U |
(∫

∂iU

ϕdσ +

∫

∂eU

α dσ − (p− 1)

∫

U

|ϕ|
p

p−1 dx
)

and the function |∇ψ|p/|ψ|p satisfies HΩ(Ut, |∇ψ|p/|ψ|p) = λ1(Ω) for almost all t.

The main difficulties to overcome are the lack of regularity of the eigenfunction

(note that the assumption that ψ ∈ C2(Ω) (or better) is used extensively in Chap-

ter 2, and when p 6= 2 it is possible to find smooth domains for which ψ ∈ C1,η(Ω)

only), the lack of Bessel functions (as in Lemma 2.4.1) and, for the sharpness of

the inequality, the lack of the symmetry result on which Lemma 2.4.5 relies. Both

[31] and [22] use the same ideas presented in Chapter 2, but use various methods
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to overcome these problems. For example, [22] uses cut-offs and test function ar-

guments to greatly weaken all the regularity requirements; in particular this allows

sharpness to be proved for a broader class of domains.

3.2. An application to supersolutions

There is an interesting minor application of the contradiction argument we

used in Chapter 2 to supersolutions of the problem (2.2.1). Roughly speaking, no

positive smooth function u can satisfy −∆u > λ1u (plus the boundary condition),

where λ1 is the first eigenvalue of (2.2.1). More precisely, we have the following

result. Here we allow Γ0 = ∅ or Γ1 = ∅ in (2.2.1).

Theorem 3.2.1. Let Ω ⊂ RN be a bounded C2 domain, let λ1 be the first eigenvalue

of the mixed problem (2.2.1) and let λ1 ≤ c ∈ C(Ω), with c(x) 6= λ1 for some x ∈ Ω.

If Γ0 = ∅, then assume in addition that infx∈Ω c(x) > λ1. Then there is no function

u ∈ C2(Ω) with u > 0 on Ω ∪ Γ1 such that

(3.2.1)

−∆u(x) = cu(x) in Ω,

u ≥ 0 on Γ0,

∂u

∂ν
+ αu ≥ 0 on Γ1.

Proof. Suppose first that Γ0 6= ∅, and suppose for a contradiction that there exists

such a function u. Since u(x) > 0 in Ω, we may write c = −∆u(x)/u(x) for all

x ∈ Ω. Moreover, using the notation of Chapter 2, we have ∆u/u ∈ C(Ut) for

every t > m = minx∈Ω ψ(x), since dist(Ut,Γ0) > 0 and so u > 0 on the compact

set Ut. Hence

1

|Ut|

∫
c dx =

1

|Ut|

∫

Ut

−∆u
u

dx

=
1

|Ut|
(∫

Ut

div
(
−∇u

u

)
dx−

∫

Ut

|∇u|2
u2

dx
)

for all t ∈ (0, 1). By Lemma 2.2.1(ii), Ut is Lipschitz for almost every t ∈ (0, 1).

Arguing as in the proof of Proposition 2.2.3,
∫

Ut

div
(
−∇u

u

)
=

∫

∂Ut

−∇u
u
· νUt

dσ

=

∫

∂eUt

−∇u
u
· νΩ dσ +

∫

∂iUt

−∇u
u
· νUt

dσ,
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where we recall ∂eUt ⊂ Γ1 is possibly empty. If Γ1 6= ∅, then by assumption

−∇u
u
· νΩ = − ∂u

∂νΩ
· 1
u
≤ α

so ∫

∂eUt

−∇u
u
· νΩ dσ ≤

∫

∂eUt

α dσ.

Hence ∫

∂Ut

−∇u
u
· νUt

dσ ≤
∫

∂eUt

α dσ +

∫

∂iUt

|∇u|
u

dσ

since obviously −∇u · νUt
≤ |∇u|. Moreover, since λ1 ≤ c ∈ C(Ω) and c 6≡ λ1,

there exists t0 ∈ (0, 1) such that

λ1 ≤
1

|Ut|

∫

Ut

c dx

for almost all t ∈ (0, 1), with strict inequality for almost all t ∈ (0, t0). Putting

this all together we have

λ1 ≤
1

|Ut|
(∫

∂eUt

α dσ +

∫

∂iUt

|∇u|
u

dσ −
∫

Ut

|∇u|2
u2

dx
)

= HΩ(Ut,
|∇u|
u

)

for almost all t ∈ (0, 1), with strict inequality for almost all t ∈ (0, t0). Since

0 < u ∈ C1(Ω), certainly |∇u|/u ∈ C(Ω) is non-negative, and lies L2(Ut) for each

t since u > 0 on U t. In particular, this contradicts Theorem 2.3.5. Hence no such

function u can exist.

Now suppose Γ0 = ∅. Let Bn, n ∈ N be a nested sequence of balls compactly

contained in Ω whose radii shrink to zero and set Ωn := Ω \ Bn. Impose Dirichlet

boundary conditions on ∂Bn ⊂ ∂Ωn and denote by λ1(Ωn) the first eigenvalue

of (2.2.1) on Ωn, with Γ0 = ∂Bn and Γ1 = ∂Ω. Since Ωn ⊂ Ωn+1 for all n and

Ω = ∪n∈NΩn, λ1(Ωn) → λ1(Ω) as n → ∞ (this result is standard; it follows, for

example, from [34, Proposition 7.1]). Suppose there exists a function u as described

in the theorem. Then since c > λ1(Ω), for n large enough −∆u ≥ λ1(Ωn)u in Ωn;

moreover, u > 0 on ∂Bn. The existence of such a function u on Ωn contradicts

what we showed earlier. �

Remark 3.2.2. (i) If instead in the above argument we assume directly that

−∆u ≥ λ1u and Γ0 6= ∅, then we obtain λ1 ≤ HΩ(Ut, |∇u|/u) for almost all

t ∈ (0, 1) and hence u ≡ ψ, the first eigenfunction, everywhere in Ω; thus the only
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supersolution is the first eigenfunction itself. The reason we presented the theorem

as above is that this does not work if Γ0 = ∅. To apply Theorem 2.3.4 instead

of Theorem 2.3.5 we would need u ∈ Mα(Ω), which is not in general even true of

the eigenfunction ψ (see Remark 2.3.2). We would have to replace the condition
∂u
∂ν

+ αu ≥ 0 on Γ1 = ∂Ω with −|∇u|+ αu ≥ 0 on ∂Ω, which is very restrictive.

(ii) This is not a new result; indeed, it is slightly weaker than some existing

results on supersolutions and maximum principles. In particular, if Γ1 = ∅, then it

follows easily from [107, Theorem 2] (see also Theorem 3 there), since given some

u > 0 satisfying the assumptions of Theorem 3.2.1, for any t ∈ R the function

v := u− tψ satisfies ∆v + λ1v ≤ 0. By [107, Theorem 2], either u− tψ = mψ for

some m ∈ R, u− tψ ≡ 0, or u− tψ > 0; the latter being impossible for all t ∈ R.

Hence u is a scalar multiple of ψ. If Γ1 6= ∅ we use [85, Theorem 1.1] instead (see

also the comments on p. 1027 where the relationship between supersolutions and

the first eigenvalue is explicitly discussed).

(iii) Related to (ii), there are still two reasons why the theorem is of interest.

First, it uses a different method of proof: it would be interesting to see how the

two are related and whether any new insights could be obtained from comparing

the different approaches. Second, there are various possibilities for weakening the

requirements on u and/or Ω, especially when combined with the improved results

in [22]. As this is off our main topic of interest we do not go into detail here.

3.3. Cheeger’s inequality for the Robin Laplacian

Besides the Faber-Krahn inequality, there is another type of inequality for λ1(Ω)

we will consider. Instead of comparing λ1(Ω) with an eigenvalue of another domain,

we will give an a priori bound for λ1(Ω) depending only on the geometry of the

domain Ω and the constant α appearing in the boundary condition in (1.1.2). To

describe the geometry of the domain we define a constant, often called the Cheeger

constant of Ω, by

(3.3.1) h = h(Ω) := inf
σ(∂U)

|U | > 0,

where the infimum is taken over all sets U ⊂⊂ Ω, not necessarily connected, smooth

or open. This infimum is attained, although any minimiser will have to touch the

boundary ∂Ω; see [73, Theorem 8]. If no confusion seems likely we will write h in

preference to h(Ω).
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A nice overview of the Cheeger constant can be found in [73]. It was first

introduced in a seminal paper of Cheeger [29], where it was proved that the first

eigenvalue µ1(M) of the Laplace operator on a compact Riemannian manifold M ,

either without boundary or with Dirichlet boundary conditions, satisfies µ1(M) ≥
1
4
h(M)2. (For manifolds without boundary a slightly different definition of h is

used.) Many similar or related results have been established for such manifolds.

For example, a partial converse is established in [27]: if the Ricci curvature of M

is bounded below by −(N − 1)δ2 (δ ≥ 0), then µ1(B) ≤ 2δ(N − 1)h+ 10h2. That

is, for some (although definitely not all) M , µ1(M) is in some sense equivalent to

h(M)2. For other results see also [26].

If instead we impose Robin boundary conditions, then we can establish an in-

equality that is similar to, albeit slightly more complicated than, Cheeger’s original

inequality. For smooth domains in R2, this was already stated in [20]. For C2 do-

mains in RN , the result follows from [35, Theorem 3.1] as noted in the introduction

there. We will generalise the result to general bounded Lipschitz domains. The

result could also be obtained from [22].

Theorem 3.3.1. The first eigenvalue λ1 = λ1(α) of (1.1.2) on a fixed bounded

Lipschitz domain Ω ⊂ RN satisfies

(3.3.2) λ1(α) ≥





hα− α2 always;

1

4
h2 in addition if

1

2
h ≤ α.

Proof. First suppose that Ω is a bounded domain of class C2. If we take the

constant α ∈ Mα(Ω) as a test function, then by Theorem 2.3.4, there exists t ∈
(m, 1) such that

λ1(Ω) ≥ HΩ(Ut, α) =
1

|Ut|
(∫

St

α dσ +

∫

∂eUt

α dσ −
∫

Ut

α2 dx
)

=
σ(Ut)

|Ut|
α− α2.

Since h ≤ σ(Ut)/|Ut|, it follows that λ1(Ω) ≥ hα− α2. Now suppose that 1
2
h ≤ α.

Then 1
2
h ∈Mα(Ω) and a similar calculation to the one above gives

λ1(Ω) ≥ HΩ(Ut,
1

2
h) ≥ σ(Ut)

|Ut|
1

2
h− 1

4
h2 =

1

4
h2

for some t ∈ (m, 1).
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Finally, suppose that Ω is a bounded Lipschitz domain. By Theorem 1.3.4, we

can approximate Ω with a sequence of C∞ domains Ωn ⊂ Ω such that λ1(Ωn) →
λ1(Ω). Now h is monotonic with respect to the domain, that is, h(Ωn) ≥ h(Ω) for

all n ∈ N. Hence for any α we have

λ1(Ω) = lim
n→∞

λ1(Ωn) ≥ lim sup
n→∞

h(Ωn)α− α2 ≥ h(Ω)α− α2

since (3.3.2) holds for every Ωn. If
1
2
h(Ω) ≤ α, then for any n ∈ N, 1

2
h(Ω) ∈Mα(Ωn)

and we may apply Theorem 2.3.4 on Ωn in the same fashion as earlier to obtain

λ1(Ωn) ≥ h(Ωn)
1

2
h(Ω)− 1

4
h(Ω)2.

Now we use h(Ωn) ≥ h(Ω) and pass to the limit. �

Remark 3.3.2. Using the same idea we can recover Cheeger’s inequality for the

Dirichlet Laplacian, that is, if Ω ⊂ RN is any Wiener regular bounded domain,

then µ1(Ω) ≥ 1
4
h(Ω)2. The only change to the proof is that we use Theorem 2.3.5

in place of Theorem 2.3.4, and in this case the function 1
2
h(Ω) is always in the

class of suitable test functions {u ∈ C(Ω) : u ≥ 0}. This observation is made in

[20] for the case N = 2 (and for smooth domains, though this is not made explicit

there). We leave as an open question what results could be obtained for mixed

Dirichlet-Robin problems.

3.4. Two open problems

Here we consider some new problems which might be susceptible to the methods

presented in Chapter 2. Perhaps one of the most obvious is the Robin problem

(1.1.2) when α < 0. We saw in Sections 1.2 and 1.3 that in this case there is still

a first eigenvalue λ1 = λ1(Ω, α) < 0, with a well-behaved eigenfunction ψ which

can be chosen strictly positive in Ω (see Theorems 1.2.8 and 1.3.1). In this case

we expect the ball to have the largest first eigenvalue.

Conjecture 3.4.1. Let Ω ⊂ R
N be a bounded Lipschitz domain and let B denote

a ball having the same volume as Ω. If α < 0, then λ1(Ω, α) ≤ λ1(B, α), with

equality if and only if Ω = B after a translation.

This conjecture has also appeared in [1]. It is supported by the behaviour of

λ1(α) at α = 0, since given any domain Ω, (1.3.2) together with the isoperimetric

inequality implies λ1(B, α) > λ1(Ω, α) for α sufficiently close to 0 (but importantly
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how close possibly depending on Ω). This means that the only candidate domain

to maximise λ1 independently of α is B, but it is also possible that the maximiser

could change depending on α. (Certainly for α > 0 the minimiser of the higher

eigenvalues must depend on α; see Section 4.3.) Of course it is also possible that

a maximiser does not exist.

Remark 3.4.2. We note in passing why we seek a maximum rather than a mini-

mum for λ1 in this case. In fact it is immediate from the Rayleigh quotient (1.3.1)

(see also [80, Equation 2.1]) that we cannot minimise λ1(Ω) with respect to Ω.

Indeed, let Ωn be a sequence of smooth domains of fixed volume such that the

surface measure σ(∂Ωn) → ∞. Using any constant as a test function in the Ray-

leigh quotient for λ1(Ωn), we see λ1(Ωn) ≤ ασ(∂Ωn)/|Ωn| → −∞ as n→∞. This

argument also shows that we cannot seek to minimise λk(Ω, α) with respect to Ω

for any given k ≥ 1 when α < 0, since if we let Ω̃n be the disjoint union of k copies

of Ωn, then λk(Ω̃n) = λ1(Ωn)→ −∞ as n→∞.

Unfortunately, the method used when α > 0 does not seem to carry across, and

we cannot prove the conjecture as yet; there seems to be an asymmetry between

the two cases. We do not go into extensive detail, but we illustrate where the

method breaks down. The key problem is that the contradiction argument in

Theorem 2.3.4 no longer seems to work.

By the maximum principle, the eigenfunction ψ ∈ H1(Ω) ∩ C(Ω) ∩ C∞(Ω)

(chosen positive and normalised so ‖ψ‖∞ = 1) now has its minimum in Ω and

increases up to its maximum on ∂Ω. That is, {x ∈ Ω : ψ(x) = 1} ⊂ ∂Ω, while

minψ(x) =: m ∈ Ω. Instead of using the level sets Ut = {x ∈ Ω : ψ(x) > t} it

seems more natural to use the interior sub-level sets Vt := {x ∈ Ω : ψ(x) < t}; then
Vm = ∅, V1 = Ω and Vt ⊂⊂ Ω for t > m sufficiently small. (We could alternatively

choose ψ < 0 and then have m ∈ ∂Ω; we could also use the usual level sets Ut, but

of course these change nothing of substance.) The functional becomes

HΩ(Vt, ϕ) =
1

|Vt|
(∫

∂iVt

ϕdσ +

∫

∂eVt

α dσ −
∫

Vt

|ϕ|2 dx
)
,

where we now choose 0 ≥ ϕ ∈ C(Ω). Note that all three integrals are negative.

By an argument analogous to the one in Proposition 2.2.3,

HΩ(Vt,−
|∇ψ|
ψ

) = λ1(Ω)
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for a.e. t ∈ (m, 1). (If we use the Ut, then we will use functions 0 ≤ ϕ and obtain

Proposition 2.2.3 verbatim.) For 0 ≥ ϕ ∈ C(Ω) we then set w := ϕ + |∇ψ|/ψ =

ϕ− (−|∇ψ|/ψ) and

F (t) :=

∫ t

m

1

τ

∫

Sτ

w dσ dτ ;
d

dt
F (t) =

1

t

∫

St

w dσ.

Again, analogous to the case α > 0 (see Theorem 2.2.6), for ϕ ∈ C(Ω) non-positive

(3.4.1) HΩ(Vt, ϕ) = λ1(Ω) +
1

|Vt|
(1
t

d

dt

(
t2F (t)

)
−
∫

Vt

w2 dx
)

for almost all t ∈ (m, 1). Now the problem becomes evident: ideally, we would like

to show that for some t ≥ 0 and rearrangement ϕ of −|∇ψ∗|/ψ∗ we have

λ1(B) ≡ HB(Br(t),−
|∇ψ∗|
ψ∗

) ≥ HΩ(Vt, ϕ) ≥ λ1(Ω)

(where all the terms are interpreted in the obvious way), but the latter inequality

does not seem to come out of (3.4.1). Indeed, the only obvious contradiction

assumption is in fact HΩ(Vt, ϕ) > λ1(Ω), since then

(3.4.2)
1

t

d

dt

(
t2F (t)

)
>

∫

Vt

w2 ≥ 0,

but not even this leads to a contradiction. For, given that F (m) = 0, this gives us

F (t) > ξ > 0 in a neighbourhood of t = 1. If we take Mα to be those non-positive

C(Ω) functions ϕ such that lim supx→z ϕ(x) ≥ α = α(z) (the obvious analogue of

the positive case), then “w ≥ −ε” (interpreted appropriately as in Lemma 2.3.3)

and this is clearly not going to contradict the definition of F . If instead we take

Mα so that ϕ ≤ α on ∂Ω and “w ≤ ε”, then expanding out (3.4.2) gives

0 < 2ξ < 2F (t) ≥
∫

Vt

w2 dx− t2F ′(t)

for t close to 1, which still gives no obvious contradiction. As mentioned earlier,

we could consider ϕ ≥ 0 and/or Ut instead, but this does not seem to help.

We next look at a geometrically elegant minimisation problem that is unfortu-

nately rather difficult from an analytic perspective. Consider the Dirichlet problem

(1.1.1) on a polygonal domain Ω ⊂ R2. It is a famous conjecture attributed to

Pólya that amongst all polygons of a given number of sides n, the regular polygon

has the smallest first eigenvalue µ1 (and is the unique polygon with this property).

This is supported by the isoperimetric inequality for such domains: amongst all
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n-sided polygons (or n-gons for short) of given area, the regular n-gon has the

(strictly) shortest perimeter. The conjecture has been proven for the triangle and

the square, but remains open for n ≥ 5, since the symmetrisation argument used

when n = 3 or 4 breaks down. (See [66, Section 3.2].)

As regards the method from Chapter 2, clearly Theorem 2.3.5 is valid here

(unlike the α < 0 problem). However, now the rearrangement argument appears

to break down. It works on the ball because |∇ψ∗|/ψ∗ is constant on the level

surfaces Br(t) of ψ
∗, that is, |∇ψ∗|/ψ∗ and ψ∗ have the same level surfaces, namely

concentric spheres. Since this is no longer true of the regular n-gons (or n-gons

in general), there is no obvious way to construct the rearrangement ϕ from the

regular n-gon’s eigenfunction. Of course, it may be possible to construct an al-

ternative rearrangement. Fix n, let P denote the regular n-gon, let ψ∗ denote its

eigenfunction and let Ω denote any other n-gon. To prove the conjecture, we wish

to find a non-negative function ϕ ∈ C(Ω) such that

HP (Pt,
|∇ψ∗|
ψ∗

) ≤ HΩ(Ut, ϕ)

for almost all t ∈ (0, 1), where Pt is the level set of ψ∗ satisfying |Pt| = |Ut|. To

this end it would be important to know if σ(∂Pt) ≤ σ(∂Ut) for all, or almost all,

t ∈ (0, 1), but we do not know if this is true.

Remark 3.4.3. It seems likely that in the Robin case (with α > 0) the same result

is true; that is, that the regular n-gon minimises λ1(Ω, α) for a given value of |Ω|
and α. This appears to be a new conjecture, but it is an extremely obvious one

to make. There is the following evidence in favour of it. First, since λ1(Ω, α) →
µ1(Ω) as α → ∞, when n = 3 or 4 using the Dirichlet result we must have

λ1(P, α) ≤ λ1(Ω, α) for α large enough, although how large potentially depending

on Ω. Moreover, as with α < 0, for α > 0 sufficiently small, again possibly

depending on Ω, (1.3.2) implies λ1(P, α) < λ1(Ω, α).



Chapter 4

On the Higher Eigenvalues of the Robin Laplacian

In this chapter we will study the minimisation problem (1.1.4) for the higher

eigenvalues of the Robin problem (1.1.2), λk = λk(Ω, α), k ≥ 2 and α > 0. When

k = 2, we will prove in Sections 4.1 and 4.2 that the unique solution to (1.1.4)

for the second eigenvalue λ2(Ω) (for all α > 0) is the disjoint union of two balls

of equal volume, the domain which also minimises the second Dirichlet eigenvalue

µ2(Ω). We shall call this domain D2. In this case we will actually prove the result

for the p-Laplacian with Robin boundary conditions (see Section 3.1) since the

proof is easily adapted to the more general situation.

When k ≥ 3 (and p = 2) we show in Section 4.3 that for many values of k and

dimension N , there cannot be a solution of (1.1.4) independent of the boundary

parameter α > 0, or alternatively, of the volume of the domains M := |Ω| > 0.

In order to do so we prove that the domain Dk consisting of the disjoint union of

k equal balls B1, . . . , Bk (see Figure 4.1) is in some sense the only candidate to

minimise λk for α very small (this is made precise in Theorem 4.3.1).

B1 Bk

.. . .

Figure 4.1. The domain Dk

Note that, as with k = 1, one could also study the corresponding maximi-

sation problem when α < 0 (cf. Remark 3.4.2). As when k = 1, we can say

very little about the isoperimetric properties of this case, but unlike when k = 1,

the natural conjectures do not seem to be the mirror images of those for α > 0;

see Remark 4.1.3(iii). However, we will study the asymptotic behaviour of λk as

α → −∞ (cf. Theorem 1.3.1(ix) for when k = 1). It turns out that if Ω is C1,

then λk(α)/(−α2) → 1 as α → −∞ for every k ≥ 1. This result, which is quite

50
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interesting in its own right, will also be of use to us when we study the Wentzell

eigenvalues in Chapter 6.

The material in Sections 4.1, 4.2 and 4.3 is in a paper of the author [75]. An

earlier and less general formulation of the material in Sections 4.1 and 4.2 was

published in [77]. Section 4.4 is in [38].

4.1. The second eigenvalue

We first consider the second Robin eigenvalue. Our main theorem is as follows.

Here we stress that our domains Ω need not be connected. Fix the volumeM = |Ω|
and α > 0 arbitrary, and let 1 < p < ∞ in the problem (3.1.1). We also stress

that when p = 2, (3.1.1) reduces to (1.1.2).

Theorem 4.1.1. Let D2 ⊂ RN be given by the disjoint union of two balls of

volume M/2. For any bounded, Lipschitz domain Ω ⊂ RN , the second eigenvalue

λ2(Ω) = λ2(Ω, α, p) satisfies λ2(Ω) ≥ λ2(D2), with equality if and only if Ω = D2

in the sense of Remark 1.3.2.

Note that Proposition 3.1.1 guarantees that such a result is actually meaning-

ful for the p-Laplacian. In order to prove this theorem, we will first discuss the

corresponding Dirichlet problem, since the proof of Theorem 4.1.1 follows the same

lines (but is more complicated). We will defer the proof of the latter to Section 4.2.

So we start with the following classical result on the second Dirichlet eigenvalue

µ2(Ω). We only consider p = 2 here since this is the “classical” case and is included

for illustrative purposes, but it makes absolutely no difference to the proof.

Theorem 4.1.2. Let Ω ⊂ RN be bounded, open. The second eigenvalue µ2(Ω) of

(1.1.1) satisfies µ2(Ω) ≥ µ2(D2), with equality if and only if Ω = D2 up to rigid

transformations and sets of capacity zero.

As with the first eigenvalue µ1, this result has a somewhat venerable history. It

is sometimes attributed to Szëgo, as Pólya does (see [95, Remark 5(c)]), although

it is also claimed that it goes all the way back to Krahn (see [66, Section 1]). The

proof is elegant and non-technical. We have based this proof on the sketch in [66,

Section 4].

Proof of Theorem 4.1.2. Fix Ω ⊂ RN . Suppose that Ω is connected; the proof

when Ω is not connected is given in Remark 4.1.3(i). Denote the eigenfunction
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associated with µ2(Ω) by ϕ = ϕ(Ω, µ2). Then ϕ must change sign in Ω, since it

is orthogonal in L2(Ω) to the eigenfunction associated with µ1, which does not

change sign since Ω is connected. Hence the nodal domains Ω+, Ω− (see (A4.6))

of ϕ ∈ H1(Ω)∩C∞(Ω)∩C(Ω) (see Theorem 1.2.8) are both non-empty subsets of

Ω. Moreover, ∂Ω+ ∩Ω = ∂Ω− ∩Ω = {x ∈ Ω : ϕ(x) = 0} (see Appendix A4 and in

particular the remarks after (A4.6)). Hence ϕ satisfies

−∆ϕ = µ2ϕ in Ω+

ϕ = 0 on ∂Ω+.

Since ϕ does not change sign in Ω+, µ2(Ω) must be the first Dirichlet eigenvalue

of Ω+, that is, µ2(Ω) = µ1(Ω
+). Similarly, µ2(Ω) = µ1(Ω

−).

Now let B+ and B− be balls having the same volume as Ω+ and Ω−, respec-

tively. By the usual Faber-Krahn inequality, Theorem 2.1.3, µ1(Ω
+) ≥ µ1(B

+)

and µ1(Ω
−) ≥ µ1(B

−).

Putting this together, we have µ2(Ω) ≥ max{µ1(B
+), µ1(B

−)}. This maximum

is minimised over all possible choices of B+ and B− when B+ = B− have half the

volume of Ω. In this case, we have D2 = B+ ∪ B−, where equality is in the

sense of Remark 1.3.2. Since µ2(D2) = µ1(B1) = µ1(B2), we have shown that

µ2(Ω) ≥ µ2(D2), as claimed.

The uniqueness of the minimiser now follows easily. If Ω is not already the

disjoint union of two balls up to a set of capacity zero, then one of the two nodal

domains, say Ω+, will not be a ball. Strictness in the Faber-Krahn inequality,

Theorem 2.1.3, applied to this nodal domain gives µ2(Ω) = µ1(Ω
+) > µ1(B

+).

If µ1(B
+) ≥ µ2(D2), then we are done. If not, then it must be the case that

|B+| > 1
2
|D2|. In this case, since µ1(B) is strictly monotonically decreasing with

respect to |B|, µ1(B
−) > µ2(D2), so that µ2(Ω) ≥ µ1(B

−) > µ2(D2). Finally, if

Ω is the disjoint union of two balls which are not of equal volume, then it follows

immediately from the strict monotonicity of µ1 that µ2(Ω) > µ2(D2). �

Based on the above proof, the proof of Theorem 4.1.1 should go roughly as

follows. If we let ψ denote an eigenfunction of λ2(Ω), and Ω+, Ω− denote the

nodal domains of ψ, we would wish to describe λ2(Ω) as the first eigenvalue of a

suitable problem on Ω+ (and Ω−) with mixed Robin-Dirichlet boundary conditions

|∇ψ|p−2 ∂ψ
∂ν

+ α|ψ|p−2ψ = 0 on ∂Ω+ ∩ ∂Ω and ψ = 0 on ∂Ω+ ∩ Ω (cf. the mixed

problem (2.2.1)).
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If we then replace the Dirichlet boundary condition on ∂Ω+ ∩Ω with the usual

Robin boundary condition, this should shrink the first eigenvalue, and we may

then apply the Robin Faber-Krahn inequality, Theorem 2.1.1 or Theorem 3.1.2, to

conclude that this is no smaller than λ1(B
+), and do the same with Ω−. Once we

have this inequality, we may proceed in exactly the same fashion as in the Dirichlet

case.

This is the rough idea behind the proof of Theorem 4.1.1, but there is a sig-

nificant complication in the above line of reasoning that renders the proof more

difficult. The Robin Faber-Krahn inequality is only known for Lipschitz (or slightly

weaker than Lipschitz) domains, and there seem to be significant obstacles to gen-

eralising it (see [22, Section 6]). This causes a problem here because there is no

reason to suppose that the nodal domains of a general Lipschitz domain Ω ⊂ RN

will have Lipschitz boundary. There are two reasons why Ω+ and Ω− may not have

smooth boundary.

First, we have no control over the behaviour of ∂Ω+, ∂Ω− near where the

nodal surface {x ∈ Ω : ψ(x) = 0} meets ∂Ω. At such points x, this would give

us ∂ψ
∂ν

= 0 (however we would wish to interpret this), which implies either ∇ψ is

perpendicular to the outer unit normal, or that∇ψ = 0 at the point of intersection.

The first possibility is fine, since it implies that ∂Ω+ is Lipschitz at that point,

but the second is clearly not. Moreover, there does not seem to be a way to rule

out the latter possibility in general. (Contrast this with the behaviour of the first

eigenfunction as in Lemma 2.2.1(ii).)

Second, even though ψ will be C∞ in Ω, we do not know that the nodal surface

is a smooth manifold in the interior. Note that Sard’s lemma (see for example [68,

Theorem 3.1.3]) does not suffice, since zero may be in the null set of level surfaces

of ψ which are not smooth.

These problems can be overcome by constructing carefully chosen approximat-

ing domains (see Section 4.2). To the best of our knowledge, the type of approxi-

mation we use is new and might even have other applications. Before we give the

proof we make a few observations and remarks.

Remark 4.1.3. (i) We do not require the domains to be connected. This was

assumed in the proof of Theorem 4.1.2 and will again be assumed in the proof

of Theorem 4.1.1. However, there is an easy (and presumably standard) way to
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remove this assumption. Suppose Theorem 4.1.1 holds for all connected domains

and that Ω is not connected. Then either λ2(Ω) = λ2(Ω̃) for some connected com-

ponent Ω̃ of Ω or there exist disjoint connected components Ω′, Ω′′ of Ω such that

λ1(Ω) = λ1(Ω
′), λ2(Ω) = λ1(Ω

′′). In the former case, if we let D̃2 denote a scaled

down version of D2 with |D̃2| = |Ω̃|, then Theorem 4.1.1 implies λ2(Ω̃) > λ2(D̃2).

Since |D̃2| < |D2|, λ2(D̃2) > λ2(D2) by Lemma 1.3.7. In the latter case, let B′,

B′′ be balls having the same volume as Ω′, Ω′′, respectively. Then the Faber-

Krahn inequality implies λ2(Ω) ≥ max{λ1(Ω′), λ1(Ω
′′)} ≥ max{λ1(B′), λ1(B

′′)},
and the latter is no less than λ2(D2) via the same argument as in the proof of

Theorem 4.1.2 involving B+, B−. Finally, if λ2(Ω) = λ2(D2) then equality every-

where in the above argument implies via sharpness of the Faber-Krahn inequality

that Ω′ = B′ and Ω′′ = B′′, and using strict monotonicity in Lemma 1.3.7 that

|B′| = |B′′| = M/2. Hence Ω = D2. The same argument works for Dirichlet

boundary conditions with trivial modifications.

(ii) It is a physically interesting question to ask if one can find a minimiser

amongst all connected domains (as pointed out by Henrot [66], it’s rather hard

to play a disconnected drum with one hand). In the Dirichlet case, there is no

minimiser: one can find a sequence of connected domains Ωn with µ2(Ωn) →
µ2(D2) (for example take “dumbbells” with a handle of shrinking radius). We

construct such a sequence of Ωn below, such that λ2(Ωn)→ λ2(D2) when p = 2 (see

Example 4.1.4). Hence there is no Robin minimiser amongst connected domains.

(iii) We note as an open problem the case when α < 0. As we saw earlier (see

Remark 3.4.2), in general we seek a maximiser for λk(Ω, α), and when k = 1 we

conjecture this is the ball (Conjecture 3.4.1). For λ2, D2 cannot be the maximiser

for all values of α < 0 since λ2(D2, α) < 0 for all α, but there exist Ω and α for

which λ2(Ω, α) > 0. For example, if Ω = B1, the ball of radius 1, then by [80,

Section 2.4] B1 has 1 + ⌊|α|⌋ negative eigenvalues. So λ2(B1, α) > 0 if α > −1. In
fact it seems that B is the best candidate for the maximiser, since λ2(B, α) in the

Neumann case α = 0 and λ2 should depend continuously on α ∈ R for fixed Ω.

In particular for α < 0 close to zero we would get λ1(Ω, α) < λ1(B, α) (how close

possibly depending on Ω). Compare with Theorem 4.3.1(i).

(iv) There is another argument for using an approximation method rather than

an approach via theory for arbitrary domains to overcome the problems discussed
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above, albeit very much a matter of taste. The “natural” setting for Robin prob-

lems is on Lipschitz domains (cf. Appendix A4 and Remark 1.2.7(ii)), since this is

the broadest class of domains where the problem may be understood classically;

otherwise the trace inequality fails, ν is not well-defined, etc. Moreover there are

several valid alternative theories on non-Lipschitz domains (for example compare

[11] with [33] and also [23]). By using the approximation argument we may obtain

the result on Lipschitz domains in a more self-contained and elementary manner,

although admittedly technical in places.

Example 4.1.4. We construct a sequence of connected domains Ωn of fixed volume

such that λ2(Ωn)→ λ2(D2) when p = 2 (see Figure 4.2). Our domains are almost

CnB1

B2

Figure 4.2. The domain Ωn

identical to the “dumbbells” used in [66]. Start with D2 = B1 ∪ B2 and join B1

to B2 with a cylinder Cn of total volume 1
n
. To keep the volume of Ωn constant,

remove part of B1 and B2 in a small neighbourhood Un near where they meet Cn

(as in Figure 4.2) in such a way that the resulting boundary is still smooth. It now

follows from [32, Corollary 3.7] that λ2(Ωn)→ λ2(D2), since the Un can be chosen

in such a way that Assumption 3.2 of [32] is satisfied. This construction should

work when p 6= 2, but we do not know of domain approximation results akin to

those in [32] for general 1 < p <∞.

4.2. Proof of Theorem 4.1.1

Let Ω ⊂ RN be a bounded, Lipschitz domain. As noted in Remark 4.1.3(i),

we may assume without loss of generality that Ω is connected. Its second eigen-

value λ2(Ω) has an eigenfunction ψ ∈ W 1,p(Ω) ∩ C(Ω) ∩ C1,η(Ω), η ∈ (0, 1) (see

Theorem 1.2.8 if p = 2 or Proposition 3.1.1 otherwise). Since Ω is connected, ψ

changes sign in Ω, so that the open subsets Ω+ and Ω− (defined in (A4.6)) are

both nonempty. Moreover, ψ+, ψ− ∈ W 1,p(Ω) ∩ C(Ω) (see Appendix A4 and in

particular (A4.4) and (A4.5)). Let B+, B− be balls having the same volume as
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Ω+, Ω− respectively. We will show that λ2(Ω) > max{λ1(B+), λ1(B
−)}, which

certainly suffices to prove Theorem 4.1.1 in light of our earlier remarks.

In fact we will first prove λ2(Ω) ≥ max{λ1(B+), λ1(B
−)} (which proves the

inequality in Theorem 4.1.1) and then refine the argument to prove sharpness. We

will do it this way because the latter argument is rather technical and this better

illustrates the method we use.

Without loss of generality we only consider Ω+. The key idea is to attach a

thin strip near ∂Ω to Ω+ to avoid any problems when {x ∈ Ω : ψ(x) = 0} meets

∂Ω. For n ≥ 1 let Sn := {x ∈ Ω : dist(x, ∂Ω) < δ}, where δ = δ(n) > 0 is chosen

such that |Sn| < 1/(2n).

Ω+

Sn

∂Ω

Figure 4.3. The sets Ω+, Sn

Since Ω+ ∪ Sn may not be smooth, we now approximate from the outside by

a smooth domain Un as follows. By [49, Theorem V.20] we can find a domain Un

such that Ω+∪Sn ⊂ Un ⊂ Ω, Γn := ∂Un ∩Ω is C∞, and |Un \ (Ω+∪Sn)| < 1/(2n).

(This is equivalent to approximating the non-smooth domain (RN \Ω)∪ (Ω+∪Sn)
from the outside by a sequence of smooth open sets Vm.) Then Un is Lipschitz,

|Un \ Ω+| < 1/n, and ∂Un = ∂Ω ∪ Γn where dist(∂Ω,Γn) > δ(n) > 0.

We will denote by W 1,p
0 (Un; Γn) the closure in W 1,p(Un) of C

∞
c (Un), the space

of all C∞(Un) functions with support compactly contained in Un ∪ ∂Ω. (See also

Definition 1.2.1. When p = 2 we may think of H1
0 (Un) as the space of weak

solutions to (1.2.1) on Un, with Γn =: Γ0 and ∂Ω =: Γ1.)

Lemma 4.2.1. For any n ≥ 1, ψ+ ∈ W 1,p
0 (Un; Γn).

Proof. In a slight abuse of notation we will not distinguish between ψ+ on Ω and

ψ+|Un
or ψ+|Ω+. Thus ψ+ ∈ W 1,p(Un) ∩ C(Un) with ψ+ = 0 on Γn. Since ∂Ω

and Γn are separated our claim follows from a trivial modification of the proof

of [21, Théorème IX.17] (see also Remarque 20 there; or alternatively cf. [59,

Section 7.5]). �
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We now set

(4.2.1) κ(Un) := inf
ϕ∈W 1,p

0 (Un;Γn)

∫
Un
|∇ϕ|p dx+

∫
∂Ω
α|ϕ|P dσ∫

Un
|ϕ|p dx .

The key estimate for λ2(Ω) is as follows.

Lemma 4.2.2. For any n ≥ 1, λ2(Ω) ≥ κ(Un).

Proof. λ2(Ω) satisfies∫

Ω

|∇ψ|p−2∇ψ · ∇ϕdx+
∫

∂Ω

α|ψ|p−2ψϕ dσ = λ2(Ω)

∫

Ω

|ψ|p−2ψϕ dx

for all ϕ ∈ W 1,p(Ω). Choosing ψ+ ∈ W 1,p(Ω) ∩ C(Ω) as a test function, we have

∇ψ · ∇ψ+ = |∇ψ+|2 and ψψ+ = |ψ+|2 pointwise in Ω. Since ‖ψ+‖p 6= 0,

(4.2.2) λ2(Ω) =

∫
Ω
|∇ψ+|p dx+

∫
∂Ω
α|ψ+|p dσ∫

Ω
|ψ+|p dx .

But the integrands in the volume integrals are nonzero only on Ω+ ⊂ Un. Hence

(4.2.3) λ2(Ω) =

∫
Un
|∇ψ+|p dx+

∫
∂Ω
α|ψ+|p dσ∫

Un
|∇ψ+|p dx .

Since ψ+ ∈ W 1,p
0 (Un; Γn) by Lemma 4.2.1, comparing (4.2.1) and (4.2.3) yields

λ2(Ω) ≥ κ(Un). �

Now impose Robin boundary conditions on Γn and consider (1.1.2) on Un. Since

W 1,p
0 (Un; Γn) ⊂W 1,p(Un) in the obvious way, by a direct comparison of variational

formulae (cf. (4.2.1) and (3.1.3)), κ(Un) ≥ λ1(Un). Now for each n, let Bn be

a ball with |Bn| = |Un|. Since ∂Un is Lipschitz, we may apply the Faber-Krahn

inequality (Theorem 3.1.2, which is [22, Theorem 1.1]) to obtain λ1(Un) ≥ λ1(Bn).

That is,

λ2(Ω) ≥ κ(Un) ≥ λ1(Un) ≥ λ1(Bn).

As n→∞, |Un| → |Ω+| and so |Bn| → |B+|. By Lemma 1.3.7, λ1(Bn)→ λ1(B
+)

and thus λ2(Ω) ≥ λ1(B
+), proving the desired inequality.

We now prove sharpness. That is, we will prove λ2(Ω) > λ1(B
+). Let ∂eΩ

+ :=

∂Ω+ ∩ ∂Ω and ∂iΩ
+ := ∂Ω+ ∩ Ω = ∂Ω+ \ ∂eΩ+ denote the exterior and interior

boundaries of Ω+, respectively, as in Section 2.2. Note however that here ∂iΩ
+ will

not in general be closed, as it will meet ∂eΩ
+ somewhere (the above approximation

argument being used largely to avoid such potentially bad points). The idea of

the sharpness proof is to show that a piece Γ of ∂iΩ
+ must be smooth, and then
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impose Robin boundary conditions on Γ, strictly lowering the first eigenvalue of a

suitable mixed problem. We then choose the Un so that Γn ⊃ Γ.

Remark 4.2.3. There are two separate reasons why we should have sharpness of

the inequality for connected domains. First, imposing Robin boundary conditions

on ∂iΩ
+ should strictly lower the first eigenvalue. Second, applying the Faber-

Krahn inequality to Ω+ should lower the eigenvalue further since if both Ω+ and

Ω− are balls of the same volume, then Ω consists of two balls just touching (which

is not Lipschitz). Since we are using a domain approximation argument, we cannot

exploit the latter principle. Hence we make use of the former observation, although

the details are somewhat technical. Consequently we do not actually use sharpness

of the Faber-Krahn inequality to obtain sharpness for connected domains.

Lemma 4.2.4. There exist x0 ∈ Ω and r > 0 such that ψ(x0) = 0, B(x0, r) ⊂⊂ Ω,

∇ψ(x) 6= 0 for all x ∈ B(x0, r), ψ ∈ C∞(B(x0, r)) and {x ∈ B(x0, r) : ψ(x) = 0}
is a surface of class C∞.

Proof. We first show we can find x0 ∈ ∂iΩ+ with∇ψ(x) 6= 0 in a neighbourhood of

x0. Choose any x ∈ Ω+ close to ∂iΩ
+ and let δ0 := inf{δ > 0 : ∂B(x, δ)∩∂iΩ+ 6= ∅}.

Then B(x, δ0) ⊂ Ω+ but there exists x0 ∈ ∂B(x, δ0) ∩ ∂iΩ+.

We now apply a version of Hopf’s lemma for the p-Laplacian due to Vázquez.

Since ψ(x0) = 0, ψ(x) > 0 in B(x, δ0) and ψ ∈ C1(B(x, δ0)), by [104, Theo-

rem 5] we have ∂ψ
∂νB

(x0) < 0, where νB is the outer unit normal to B(x, δ0). Hence

∇ψ(x0) 6= 0, and so by continuity of ∇ψ there exists a neighbourhood V0 of x0 and

m > 0 such that |∇ψ(x)| ≥ m for all x ∈ V0. Inside V0 set a(x) := |∇ψ(x)|p−2.

Then 0 < mp−2 ≤ a(x) ∈ L∞(V0). It follows that ψ ∈ C1(V0) is an eigenfunction

of the uniformly elliptic operator − div(a(x)∇u). A standard bootstrapping argu-

ment using elliptic regularity theory yields ψ ∈ C∞(V0). By the implicit function

theorem, it follows that the level surface {ψ = 0} is, locally, the graph of a C∞

function inside V0. �

Fix x0 and r as in the lemma and set Γ := ∂iΩ
+ ∩ B(x0, r/2). Then Γ is C∞

and its surface measure σ(Γ) > 0. Instead of considering W 1,p
0 (Ω+; ∂iΩ

+ \Γ) it will
be easier to work directly with

V0 := {ϕ ∈ W 1,p(Ω+) ∩ C(Ω+) : ϕ = 0 on ∂iΩ
+ \ Γ}.
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For ϕ ∈ V0 set

(4.2.4) Qp(ϕ) :=

∫
Ω+ |∇ϕ|p dx+

∫
∂eΩ+∪Γ

α|ϕ|p dσ∫
Ω+ |ϕ|p dx

to be a Rayleigh quotient-type expression, and let

(4.2.5) κ(Ω+) := inf
ϕ∈V0

Qp(ϕ).

Lemma 4.2.5. We have ψ+ ∈ V0 and λ2(Ω) = Qp(ψ
+) = Qp(ψ).

Proof. Since ψ+ = 0 on all ∂iΩ
+, it is immediate that ψ+ ∈ V0. Since ψ ≡ ψ+ on

Ω+, it is also obvious that Qp(ψ) = Qp(ψ
+). By (4.2.2),

λ2(Ω) =

∫
Ω
|∇ψ+|p dx+

∫
∂Ω
α|ψ+|p dσ∫

Ω
|ψ+|p dx

=

∫
Ω+ |∇ψ+|p dx+

∫
∂eΩ+∪Γ

α|ψ+|p dσ∫
Ω+ |ψ+|p dx = Qp(ψ

+),

where the second line follows since the volume integrands are nonzero only on Ω+,

and the surface integrand α|ψ+|p ∈ C(∂Ω+) is nonzero only on ∂eΩ
+. �

Lemma 4.2.6. λ2(Ω) > κ(Ω+).

Proof. It is immediate from Lemma 4.2.5 and (4.2.5) that λ2(Ω) ≥ κ(Ω+). Sup-

pose for a contradiction that there is equality. Then λ2(Ω) and ψ must satisfy the

minimising condition

d

dt

(∫
Ω+ |∇(ψ − tϕ)|p dx+

∫
∂eΩ+∪Γ

α|ψ − tϕ|p dσ∫
Ω+ |ψ − tϕ|p dx

)∣∣∣
t=0

= 0

for ϕ ∈ V0 and t ∈ R. We will sketch the straightforward but tedious evaluation

of this derivative. First note that

d

dt
|∇(ψ + tϕ)|p = p|∇(ψ + tϕ)|p−2∇(ψ + tϕ) · ∇ϕ,
d

dt
|ψ + tϕ|p = p|ψ + tϕ|p−2(ψ + tϕ)ϕ.

We now note that we can interchange the order of differentiation and integration

for the integrals of α|ψ + tϕ|p, |ψ + tϕ|p ∈ C(Ω+). For the gradient, we note the

bound
∣∣p|∇(ψ + tϕ)|p−2∇(ψ + tϕ) · ∇ϕ

∣∣ ≤ p|∇(ψ + tϕ)|p−1|∇ϕ|
≤ p
∣∣|∇ψ|+ |∇ϕ|

∣∣p



4.2. Proof of Theorem 4.1.1 60

if |t| ≤ 1. The latter is integrable since ∇ψ,∇ϕ ∈ Lp(Ω+). Thus d
dt
|∇(ψ+ tϕ)|p is

bounded uniformly with respect to t by an integrable function. This gives us the

derivative of each of the integrals. Using the quotient and chain rules as necessary,

setting t = 0 and solving yields

(4.2.6)

∫

Ω+

|∇ψ|p−2∇ψ · ∇ϕdx+
∫

∂eΩ+∪Γ

α|ψ|p−2ψϕ dσ

= λ2(Ω)

∫

Ω+

|ψ|p−2ψϕ dx.

(That is, λ2(Ω) and ψ are weak solutions of an appropriate eigenvalue problem

on Ω+.) Now since ∂iΩ
+ is smooth in an open neighbourhood B(x0, r) of Γ ⊂

B(x0, r/2), we can find an open set U ⊂ Ω+ Lipschitz with U ⊂⊂ B(x0, r) and

Γ ⊂ ∂U . Let ϕ ∈ C∞
c (U ∪ Γ). Since every such ϕ may be regarded as an element

of V0 by extension by 0 outside U , we obtain from (4.2.6) that
∫

U

|∇ψ|p−2∇ψ · ∇ϕdx+
∫

Γ

α|ψ|p−2ψϕ dσ = λ2(Ω)

∫

U

|ψ|p−2ψϕ dx

for all ϕ ∈ C∞
c (U ∪ Γ). We know that ψ ∈ C∞(U) by Lemma 4.2.4. Hence

−∆pψ = λ2(Ω)|ψ|p−2ψ pointwise in U . If we multiply by ϕ ∈ C∞
c (U ∪ Γ), then a

simple calculation similar to the one used to obtain (1.2.3) gives
∫

U

|∇ψ|p−2∇ψ · ∇ϕ− div(|∇ψ|p−2ϕ∇ψ) dx = λ2(Ω)

∫

U

|ψ|p−2ψϕ dx.

Applying the divergence theorem on the Lipschitz domain U (see Theorem A4.5),
∫

U

div(|∇ψ|p−2ϕ∇ψ) dx =

∫

∂U

|∇ψ|p−2ϕ∇ψ · ν dσ

=

∫

Γ

|∇ψ|p−2ϕ
∂ψ

∂ν
dσ

using the compact support of ϕ on ∂U \ Γ, where ν is the outer unit normal to

U on ∂U (coinciding with the normal to Ω+ on Γ). Plugging this into the above

representation and putting everything together it follows that
∫

Γ

α|ψ|p−2ψϕ dσ = −
∫

Γ

|∇ψ|p−2∂ψ

∂ν
ϕ dσ

for all ϕ ∈ C∞
c (U ∪ Γ). Since C∞

c (U ∪ Γ) is dense in Lq(Γ) for all 1 < q <∞,

α|ψ|p−2ψ = −|∇ψ|p−2∂ψ

∂ν
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pointwise σ-almost everywhere in Γ. Hence ψ ∈ C∞(U) satisfies the boundary

condition

|∇ψ|p−2∂ψ

∂ν
+ α|ψ|p−2ψ = 0

pointwise in Γ. But we know that ψ = 0 on Γ, and by Hopf’s Lemma [104,

Theorem 5] applied to the function ψ on the domain U , we have ∂ψ
∂ν

> 0 (and

|∇ψ| > 0) on Γ, which is a contradiction. �

We will now modify the Un as follows. Choose them as before, but such that

Γ ⊂ Γn for each n ≥ 1, which we can do since ∂iΩ
+ is C∞ in an open neighbourhood

of Γ. Then for any n ≥ 1, Un is still Lipschitz, |Un\Ω+| < 1/n, and since B(x0, r) ⊂
⊂ Ω, without loss of generality dist(Un \ Ω+,Γ) > 0 as well (see Figure 4.4).

Ω+ Γ

Ω

Figure 4.4. Ω+ and Un. The dotted line represents ∂iΩ
+ and the

dashed line Γn = ∂Un ∩ Ω.

We need the following result to be able to use the domains Un. This is in some

sense a modification of Lemma 4.2.1.

Lemma 4.2.7. Let ϕ ∈ V0 and fix n ≥ 1. The function ϕ̃n : Un → R given by

ϕ̃n = ϕ in Ω+, ϕ̃n = 0 in Un \ Ω+ lies in W 1,p(Un).

Proof. Let ϕ ∈ V0 and ϕ̃n be as in the statement of the lemma. Using the lattice

properties of V0 and W
1,p(Un) (cf. [59, Lemma 7.6]) we may assume that ϕ ≥ 0 in

Ω+. For ξ > 0 let ϕξ := (ϕ − ξ)+ ∈ V0. Then by continuity of ϕ, there exists an

open neighbourhood U = U(ϕ, ξ) of ∂iΩ
+ \ Γ such that ϕξ ≡ 0 on U ∩ Ω+. Since

the intersection of Un \ Ω+ with Ω+ is contained in ∂iΩ
+ \ Γ, we may certainly

extend ϕξ by 0 in Un \Ω+ to obtain a function ϕ̃ξ ∈ W 1,p(Un). Since ϕ̃ξ ր ϕ̃n and

∇ϕ̃ξ(x)ր g(x) :=




∇ϕ(x) if x ∈ Ω+

0 if x ∈ Un \ Ω+

pointwise monotonically in Un as ξ → 0, it follows easily that g = ∇ϕ̃n and

ϕ̃n ∈ W 1,p(Un). �



4.3. Some remarks on the higher eigenvalues 62

Now for any n ≥ 1 and ϕ ∈ V0, using the variational characterisation of λ1(Un)

given by (3.1.3),

λ1(Un) ≤
∫
Un
|∇ϕ̃n|p dx+

∫
∂Un

α|ϕ̃n|p dσ∫
Un
|ϕ̃n|p dx

= Qp(ϕ),

where ϕ̃n ∈ W 1,p(Un) is the extension of ϕ ∈ V0 as in Lemma 4.2.7. Hence

κ(Ω+) ≥ λ1(Un) by definition of κ. Let Bn a ball with the same volume as Un,

as before. Then using the Faber-Krahn inequality, λ1(Un) ≥ λ1(Bn)→ λ1(B
+) as

n→∞. Hence

λ2(Ω) > κ(Ω+) ≥ lim sup
n→∞

λ1(Un) ≥ λ1(B
+),

which in light of our earlier comments completes the proof.

4.3. Some remarks on the higher eigenvalues

We now return to the case p = 2 and the problem (1.1.2), still with α > 0.

Here we will be considering the problem (1.1.4) for k ≥ 3. Clearly it would be an

impossible task to attempt to identify a minimiser for every k ≥ 3. Even proving

in general the existence of a minimiser is extremely ambitious. To illustrate the

difficulties, we will consider briefly what is known in the Dirichlet case. Actually,

even in this easier case the general existence of a minimiser is still an open problem.

It has been proven in [28] that for every k ≥ 3 one can find a minimiser to the

weaker problem of minimising µk(Ω), |Ω| = M , where Ω is constrained to lie

in some fixed “design region” D ⊂ RN . Using this result, it has been proven

subsequently in [24] that a minimiser must exist when k = 3. Moreover, once

we know a minimiser exists and is bounded for k = 1, . . . , n, then results in [24]

will inductively give us the existence of a (not necessarily bounded) minimiser

when k = n + 1. When k = 3 the minimising domain must be connected in

dimension N = 2 or 3, but to identify it is still an open problem (although there

is a conjecture; see Remark 4.3.4). Indeed, the minimiser is not actually known

for any k ≥ 3. Even good candidates have only been identified up to about k = 5

or 6 in dimension N = 2 or 3 (see [66]). Moreover, even in the Dirichlet case it

appears that the minimiser may depend on the dimension N for some (most?) k.

In the Robin case, our main result is that a solution to (1.1.4) cannot in general

be independent of α, or alternatively, of the volumeM . (In addition it seems likely

that the dimension N will also affect any solution.) Roughly speaking, we achieve
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this by what might be thought of as an operator perturbation. More accurately,

we vary the value of α in the problem (1.1.2). In particular, as α → ∞, our

problem becomes “close” in some sense to the Dirichlet problem, meaning that for

α sufficiently large the Robin and Dirichlet minimisers should be the same (if they

exist, of course). When α is very close to 0, i.e. the Neumann problem, the domain

which we shall denote by Dk, given by the disjoint union of k balls of equal volume,

is approximately minimal in a sense to be quantified below. In what follows we

will denote by Bm a ball of volume m, so that Dk is the disjoint union of k copies

of BM/k, and λk(Dk, α) = λ1(Dk, α) = λ1(BM/k, α). We will set the proof up so it

works for a slightly broader class of domains than bounded, Lipschitz.

Theorem 4.3.1. (i) Let Dk ⊂ R
N be the disjoint union of k equal balls. Sup-

pose Ω ⊂ R
N is the disjoint union of countably many connected components

Ωi, i ∈ N, each bounded and Lipschitz and such that dist(Ωi,Ωj) ≥ δ, say,

for some fixed δ > 0 independent of i 6= j. If Ω 6= Dk in the sense of

Remark 1.3.2, then there exists αΩ > 0 possibly depending on Ω such that

λk(Ω, α) > λk(Dk, α) for all α ∈ (0, αΩ).

(ii) There exist N ≥ 2 and k ≥ 3 for which, given M > 0, there is no solution

to (1.1.4) independent of α; equivalently, there is no domain D satisfying

λk(Ω, α) ≥ λk(D,α) for all α ∈ (0,∞) and all Ω.

(iii) There exist N ≥ 2 and k ≥ 3 for which, given α > 0, there is no solution

to (1.1.4) independent of |Ω| =M > 0.

Remark 4.3.2. (i) The conclusion of Theorem 4.3.1(ii) and (iii) holds whenever

Dk does not minimise the kth Dirichlet eigenvalue µk. In particular when N = 2

this is true for all k ≥ 3 (we prove this below) and when N = 3 at least for k = 3

(for the latter see [24, Section 3]).

(ii) An examination of the proof of Theorem 4.3.1(i) shows that the conclu-

sion remains valid whenever the Faber-Krahn inequality holds and is sharp, since

the arguments involved are of a very generic nature. The only other property

we need is the principle of re-ordering the eigenvalues of connected components

(cf. Remark 1.3.2).

(iii) For the same reason, we expect Theorem 4.3.1 to remain valid for the p-

Laplacian, without significant modifications to the proof. We do not actually state
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it for this case because we do not know if the eigenvalues of the p-Laplacian form

a discrete set to which we can apply the principles listed in (ii) (see Section 3.1).

(iv) It is easy to see using homothety arguments (see Lemma 1.3.7 and the

discussion around it) that no domain with more than k connected components

(c.c.s for short) can possibly be a minimiser for λk (or µk), since there must be some

“wastage” with at least one c.c. not contributing to any of the first k eigenvalues.

However, this observation does not lead to a simplified proof of case (ii) or (iii) in

the proof of Theorem 4.3.1(i). In particular for any number 1 ≤ m ≤ ∞ we can

find an Ω with m c.c.s such that αΩ < ∞. To see this, let k = 3, N = 2, and

look at B and D3. First reduce B slightly in volume to create a smaller ball B̃

such that still λ3(B̃, α) < λ3(D3, α) for α sufficiently large. Now we may add as

many small disjoint balls to B̃ as we like to obtain Ω. (Such an example could

easily be adapted to many other values of k and/or N .) Note also that the proof

of Theorem 4.3.1 is made more complicated by the lack of useful properties that

the Robin problem satisfies (again, see Remark 1.3.2).

Proof of Theorem 4.3.1(i). There are two cases to consider, depending on how

many connected components (c.c.s) Ω has.

(a) Suppose first that Ω has at most k − 1 c.c.s. If we set ε := min {λ2(Ω̃, 0) :
Ω̃ is a c.c. of Ω}, then ε > 0 by Lemma 1.3.10. It follows from continuity in

Theorem 1.3.1(vi) that there exists α̃Ω > 0 such that

max {λ1(Ω̃, α) : Ω̃ is a c.c. of Ω} < ε

for all α ∈ (0, α̃Ω). For all such α, by the pigeonhole principle at least one element

of the set {λm(Ω̃, α) : m ≥ 2, Ω̃ is a c.c. of Ω} must be one of the first k eigenvalues

of Ω, although precisely which m and c.c. may depend on α. In particular, using

continuity in Theorem 1.3.1(vi),

λk(Ω, α) ≥ inf {λm(Ω̃, α) : m ≥ 2, Ω̃ is a c.c. of Ω}

≥ inf {λ2(Ω̃, 0) : Ω̃ is a c.c. of Ω} ≥ ε

for all α ∈ (0, α̃Ω). Since λk(Dk, α) = λ1(Dk, α) → 0 as α → 0, there exists

αΩ ≤ α̃Ω such that λk(Dk, α) < ε ≤ λk(Ω, α) for all α ∈ (0, αΩ).

(b) Now suppose Ω has at least k c.c.s. We may write Ω as the disjoint union

of Ω′ and Ω′′, where Ω′ has j < ∞ c.c.s and |Ω′′| < M/k (if Ω′′ = ∅, then we

declare λ1(Ω
′′, α) =∞ for all α > 0). Consider all possible subsets Ωi of Ω

′, where
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Ωi consists of li ≤ k− 1 c.c.s of Ω′ (thus there are fewer than 2j possible choices of

Ωi). For each i, let Dk,i denote a scaled down version of Dk such that |Dk,i| = |Ωi|.
Then by case (i) and Lemma 1.3.7, there exists αi := αΩi

such that

(4.3.1) λk(Ωi, α) > λk(Dk,i, α) ≥ λk(Dk, α)

for all α ∈ (0, αi).

Set αΩ := mini αi > 0, and fix α ∈ (0, αΩ). We will show λk(Ω, α) ≥ λk(Dk, α),

with equality only if Ω = Dk in the sense of Remark 1.3.2.

First suppose λ1(Ω
′′, α) ≤ λk(Ω, α). Then by the Faber-Krahn inequality, The-

orem 2.1.1, and Lemma 1.3.7

(4.3.2) λk(Ω, α) ≥ λ1(Ω
′′, α) ≥ λ1(BM/k) = λk(Dk, α).

Since |Ω′′| < M/k, Lemma 1.3.7 implies that the second inequality in (4.3.2) must

be strict.

So assume now that λ1(Ω
′′, α) > λk(Ω, α). There are two subcases to consider.

First, if there are only l < k c.c.s Ω1, . . . ,Ωl of Ω
′ whose first eigenvalue is smaller

than λk(Ω, α), setting Ω̂ to be the disjoint union of Ω1, . . . ,Ωl, by (4.3.1) we have

λk(Ω, α) = λk(Ω̂, α) > λk(Dk, α)

by choice of αΩ and α < αΩ. So we are left to consider the case where we can

choose k c.c.s Ωi of Ω
′ such that λ1(Ωi, α) ≤ λk(Ω, α) for all 1 ≤ i ≤ k. Then

λk(Ω, α) = max1≤i≤k λ1(Ωi, α). For each i let Bi be a ball with |Bi| = |Ωi|. By the

Faber-Krahn inequality λ1(Ωi, α) ≥ λ1(Bi) for all i and thus

(4.3.3) λk(Ω, α) ≥ max
i
λ1(Bi, α) ≥ λ1(BM/k, α) = λk(Dk, α),

where the second inequality in (4.3.3) follows easily from Lemma 1.3.7 using
∑

i |Bi| ≤ |Ω|. Finally, if there is equality in (4.3.3), then for every 1 ≤ i ≤ k,

λ1(Ωi, α) = λ1(Bi, α) = λ1(BM/k, α) and so Ωi = Bi = BM/k using sharpness of

the Faber-Krahn inequality (see Theorem 3.1.2 and Lemma 1.3.7, respectively).

In this case |Ωi| = M/k, and the only possibility is that Ω consists of k copies of

Ωi = BM/k, so Ω = Dk. �

In order to complete the proof of the theorem and our claim in Remark 4.3.2(i),

we will use the following lemma. Recall µk(Ω) denotes the kth eigenvalue of the

Dirichlet Laplacian on Ω.
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Lemma 4.3.3. Let N = 2 and fix k ≥ 3. The domain Dk does not minimise

µk(Ω) amongst all bounded Lipschitz domains in R2 of given volume.

Proof. The proof is by an easy induction argument, using results from [110].

First note that Dk does not even minimise µk amongst all disjoint unions of balls

if 3 ≤ k ≤ 17 (see [110, Section 8]). Now fix k ≥ 4. We will show that if Dk+1

minimises µk+1, then Dj must minimise µj for some 3 ≤ j ≤ k. For, arguing as in

[110, Theorem 8.1], Dk+1 may be written as the disjoint union of open sets U and

V , say, where U minimises µj and V minimises µk−j+1 (both appropriately scaled)

for some integer j between 1 and k/2. Now U and V must both be disjoint unions

of equal balls, and since the minimiser of µj can have at most j c.c.s the only

possibility is that U = Dj (rescaled) and V = Dk−j+1 (also rescaled). Since k ≥ 4,

at least one of j, k − j + 1 must be at least 3. By Remark 1.3.6(i) the Dirichlet

minimiser is independent of the volume of the domain, so our claim follows. �

Proof of Theorem 4.3.1(ii), (iii) and Remark 4.3.2(i). For (ii), given k ≥ 3

and N ≥ 2, suppose that Dk is not the minimiser of µk so that there exists

a Lipschitz domain V such that µk(V ) < µk(Dk). By Theorem 1.3.5 and Theo-

rem 1.3.1(vii) respectively, we have λk(V, α) < µk(V ) and λk(Dk, α) = λ1(Dk, α)→
µ1(Dk) = µk(Dk) as α → ∞. Using continuity, it follows that for α sufficiently

large, λk(V, α) < µk(Dk, α). Hence Dk does not minimise λk for all α ∈ (0,∞).

However, if U 6= Dk is any (Lipschitz) domain which minimises λk for some

α̃ ∈ (0,∞), then by part (i) λk(U, α) > λk(Dk, α) for α < α̃ sufficiently small.

For (iii), we note that Theorem 4.3.1(ii) and (iii) are equivalent assertions.

Indeed, by Remark 1.3.6, if we allow M to vary between 0 and ∞, by making the

homothety substitution x 7→ αx we may assume α = 1. But if we could find a

minimiser to the problem

−∆u =
λk
α2
u in αΩ,

∂u

∂ν
+ u = 0 on ∂(αΩ)

(cf. (1.3.6)) independent of M = |αΩ| > 0, then by rescaling back this would give

us for some fixed M > 0 a minimising solution independent of α > 0. (Conversely,

having a minimiser for all α > 0 would thus give us one for all M > 0.) Thus we

see (ii) and (iii) are equivalent. Finally, for the remark we note that when N = 3,
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D3 does not minimise µ3 (see [24, Section 3]) and when N = 2, by Lemma 4.3.3

Dk does not minimise µk for any k ≥ 3, completing the proof. �

Remark 4.3.4. When N ≥ 4 it is no longer true that µ3(D3) > µ3(B). This,

along with some numerical evidence, led the authors in [24] to conjecture that µ3

is minimised on B when N = 2 or 3 and on D3 when N ≥ 4. It therefore seems

plausible that when N ≥ 4, D3 minimises λ3 for all α > 0.

4.4. The asymptotic behaviour as α→ −∞

Here we will study what happens to λk(α) in the limit as the boundary param-

eter α → −∞ in (1.1.2). Our main result is expressed in the following theorem,

which is noteworthy in the sense that the limiting behaviour is the same not only

for every domain Ω (the only assumption being C1 regularity, with no restriction

on the volume), but for all the eigenvalues of every such domain.

Theorem 4.4.1. Suppose Ω ⊂ RN is a bounded domain of class C1. Then for

every k ≥ 1 we have

(4.4.1) lim
α→−∞

λk(α)

−α2
= 1.

(Compare with Theorem 1.3.1(ix).) It was shown in [80] that for Ω piecewise-

C1 the first eigenvalue λ1 has the asymptotic behaviour lim infα→−∞ λ1(α)/(−α2) ≥
1, with equality if ∂Ω is differentially equivalent to a sphere. Moreover, if Ω is a

ball, then there are ⌊|α|⌋ + 1 negative eigenvalues, and they satisfy
√
−λk(α) ∼

−α +O(1) as α→ −∞. It was subsequently shown in [86] that in fact

(4.4.2) lim
α→−∞

λ1(α)

−α2
= 1

if Ω is of class C1. Related results have been obtained in [60, 61]. In fact since

λk ≥ λ1 this immediately implies that

lim sup
α→−∞

λk(α)

−α2
≤ 1.

We will prove λk(αn)/(−αn2)→ 1 for an arbitrary sequence αn → −∞.

The C1 assumption in (4.4.2) is optimal: the authors in [80] constructed ex-

amples of domains with “corners” for which the limit in (4.4.2) is a constant larger

than one. Such results were generalised and further studied in [83].
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We will also prove the following related result on the behaviour of the eigen-

functions of (1.1.2) as α→ −∞. We will use the result of Theorem 4.4.1 to obtain

this; however, an analysis of the proof shows that we could replace the C1 assump-

tion with Lipschitz, provided we know that λk(α) → −∞ as α → −∞. In this

section we will always take 〈 . , . 〉 to mean the usual inner product on L2(Ω) and ψk

to denote an eigenfunction associated with the kth eigenvalue λk(α) = λk(Ω, α) of

(1.1.2), where as usual the λk are ordered by increasing size and repeated according

to their multiplicities.

Proposition 4.4.2. Suppose Ω ⊂ RN is bounded and C1. Fix 2 ≤ p < ∞ and

normalise the eigenfunctions so that ‖ψk‖Lp(Ω) = 1. Then for each k ≥ 1 we have

(i) ψk → 0 in Lploc(Ω) as α→ −∞;

(ii) ‖ψk‖Lq(Ω) → 0 as α→ −∞ for 1 ≤ q < p;

(iii) ‖ψk‖Lr(Ω) →∞ as α→ −∞ for r > p.

We defer the proof of Proposition 4.4.2 until later and first discuss the theory

related to (1.1.2) that will be needed to prove Theorem 4.4.1. As usual we under-

stand eigenvalues λ and associated eigenfunctions ψ of (1.1.2) in the weak sense,

as satisfying Qα(ψ, v) = λ〈ψ, v〉 for all v ∈ H1(Ω), where Qα is the form associated

with (1.1.2) given by (1.2.2) (see (1.2.5)). We use the characterisation of the kth

eigenvalue as

(4.4.3) λk(α) = inf
06=v∈Mk

Qα(v, v)

‖v‖2L2(Ω)

,

where Mk is the subspace of H1(Ω) obtained by removing the L2-span of the

first k − 1 eigenfunctions ψ1, . . . , ψk−1. (This is the minimax formula (1.3.4) from

Chapter 1, but here we will work directly with the maximal subspace which we

will call Mk.)

If the eigenfunctions are scaled so that ‖ψk‖L2(Ω) = 1 for every k ≥ 1 (which

we will always do for the proof of Theorem 4.4.1), then by standard theory we can

choose them so they form a complete orthonormal basis for L2(Ω). However for

our proof we only really need the orthogonality in L2(Ω) of the eigenfunctions ψi,

which follows immediately from the identity Qα(ψi, ψj) = λi〈ψi, ψj〉 = λj〈ψi, ψj〉
if λi 6= λj, and from Gram-Schmidt orthogonalisation applied to a basis of the

eigenfunctions of λi if it is a repeated eigenvalue. If we set vk := v−∑k−1
i=1 〈v, ψi〉ψi,

then vk ∈ Mk and so provided vk 6= 0 (that is, provided v is not in the L2-span
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of ψ1, . . . , ψk−1), we may use vk as a test function in (4.4.3) to estimate λk from

above.

We will use the representation (4.4.3), together with an appropriate choice

of v and an induction argument, to prove Theorem 4.4.1. Our choice of test

function, along with the result of the next lemma, is due to an argument in [60] (see

Theorem 2.3 there). We will assume throughout that Ω ⊂ R
N is bounded and C1,

although some of the results are valid (with the same proof) for Lipschitz domains.

In particular, the next lemma, which proves (1.3.3) from Theorem 1.3.1(ix), is valid

for bounded, Lipschitz domains.

Lemma 4.4.3. Let d ∈ RN , ‖d‖ = 1 be any unit vector. Set ud(x) := ce−αx·d ∈
C∞(RN) ∩ H1(Ω), where c = c(d, α) is a constant chosen so that ‖ud‖L2(Ω) = 1.

Then Qα(ud, ud) ≤ −α2 for all α < 0.

Proof. For x ∈ RN writing x = (x1, . . . , xN ), we may without loss of generality

rotate our coordinate system if necessary so that d = (0, . . . , 0, 1). In this case

ud = ce−αxN and ∇ud = (0, . . . , 0,−cαe−αxN ). Hence

Qα(ud, ud) =

∫

Ω

|∇ud|2 dx+
∫

∂Ω

αu2d dσ

= c2α2

∫

Ω

e−2αxN dx+ c2α

∫

∂Ω

e−2αxN dσ.

We will now use the divergence theorem on the vector field V := (0, . . . , 0, e−2αxN ) ∈
C∞(RN ,RN) and the C1 (or Lipschitz) domain Ω (see Theorem A4.5). That is,

denoting the outer unit normal to Ω by νΩ(x) = (ν1(x), . . . , νN(x)), x ∈ ∂Ω,
∫

∂Ω

e−2αxN dσ ≥
∫

∂Ω

e−2αxNνN dσ =

∫

∂Ω

V · νΩ dσ

=

∫

Ω

div V dx = −2α
∫

Ω

e−2αxN dx.

Multiplying through by α < 0 and plugging into the expression for Qα(ud, ud),

Qα(ud, ud) ≤ −α2c2
∫

Ω

e−2αxN dx = −α2,

where the last equality follows since c = (
∫
Ω
e−2αxN dx)−

1
2 . �

Remark 4.4.4. An easy calculation shows that the function u(x) := e−αxN is a

positive eigenfunction, with eigenvalue −α2, of the Robin problem (1.1.2) on the
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half-space T = {x ∈ RN : xN < 0}. So in a sense Lemma 4.4.3 is comparing the

bounded domain case with the half-space case.

For d ∈ RN a fixed unit vector, set uk+1 := ud−
∑k

i=1〈ud, ψi〉ψi ∈Mk+1. We will

use uk+1 as a trial function in the variational characterisation in order to establish

(4.4.1). To that end, we characterise λk+1 inductively in terms of the previous n

eigenvalues and functions.

Lemma 4.4.5. Suppose ud 6∈ span{ψ1, . . . , ψk}. Then

(4.4.4) λk+1(α) ≤
−α2 −∑k

i=1 λi(α)〈ud, ψi〉2
1−∑k

i=1〈ud, ψi〉2
.

Proof. Since ud is not a linear combination of the first k eigenfunctions, we can use

uk+1 = ud −
∑k

i=1〈ud, ψi〉ψi 6≡ 0 as a test function in (4.4.3). A simple calculation

using the orthogonality of the eigenfunctions together with the scaling ‖ψi‖2L2(Ω) =

1 shows that

0 < 〈uk+1, uk+1〉 = 1−
k∑

i=1

〈ud, ψi〉2.

We now estimate Qα(uk+1, uk+1). Using the definition of uk+1 and the bilinearity

of the form Qα, we see that Qα(uk+1, uk+1) is given by

Qα(ud, ud)− 2

k∑

i=1

〈ud, ψi〉Qα(ud, ψi) +

k∑

i=1

k∑

j=1

〈ud, ψi〉2Qα(ψi, ψj).

Since Qα(ud, ψi) = λi〈ud, ψi〉, and since Qα(ψi, ψj) = λi if i = j and 0 otherwise,

we obtain

Qα(uk+1, uk+1) = Qα(ud, ud)−
k∑

i=1

λi〈ud, ψi〉2.

Using the estimate of Qα(ud, ud) from Lemma 4.4.3 and combining everything,

λk+1(α) ≤
Qα(uk+1, uk+1)

‖uk+1‖2L2(Ω)

≤ −α
2 −∑k

i=1 λi(α)〈ud, ψi〉2
1−∑k

i=1〈ud, ψi〉2
,

establishing (4.4.4). �

Roughly speaking, to prove Theorem 4.4.1 using the characterisation of λk+1

in Lemma 4.4.5 we have to prove that we can find d such 〈ud, ψi〉 stays small as

α → −∞ for all 1 ≤ i ≤ k. To that end we will study the functions ud more

carefully. We start by observing that, for any given α < 0, the level sets of ud are

restrictions to Ω of half-planes of the form {x ∈ RN : x · d > κ}, where κ ∈ R. The
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main place where we will use the assumption that Ω has C1 boundary is in parts

(iii) and (iv) of the next lemma.

Lemma 4.4.6. Let d ∈ RN , ‖d‖ = 1. For κ ∈ R set

(4.4.5)

Ud(κ) := {x ∈ Ω : x · d > κ},
κd := sup{κ ∈ R : Ud(κ) 6= ∅},
Kd := {x ∈ Ω : x · d = κd}.

Then

(i) the Ud(κ) are open, nested (i.e. Ud(κ) ⊂ Ud(κ
′) if κ > κ′), nonempty if and

only if κ < κd, and 0 6= |Ud(κ)| → 0 as κ→ κd from below;

(ii) ∅ 6= Kd ⊂ ∂Ω;

(iii) if z ∈ Kd, then d = νΩ(z), the outer unit normal to Ω at z;

(iv) if d 6= e ∈ RN , ‖e‖ = 1 is another unit vector with Ue(κ) and κe defined

as in (4.4.5), then there exists ε > 0 such that Ud(κ) ∩ Ue(κ̃) = ∅ for all

κ ∈ (κd − ε, κd) and all κ̃ ∈ (κe − ε, κe).

Proof. (i) is obvious. For (ii), to show Kd 6= ∅ we note that Kd = ∩κ<κdUd(κ),
that is, Kd is the intersection of nested, compact and nonempty sets. That Kd ⊂
∂Ω is immediate from the definitions and the fact that the Ud are open. For

(iii), we assume as in the proof of Lemma 4.4.3 that d = (0, . . . , 0, 1), so that

Ud(κ) = {x ∈ Ω : xN > κ} (where we have written (x1, . . . , xN) for x ∈ RN). Then

z = (z1, . . . , zN) ∈ Kd means zN = κd, that is, zN = max{xN : x ∈ Ω}. Since Ω is

C1, this means the tangent plane to Ω at any point z ∈ Kd must be horizontal; thus

νΩ(z) points in the direction xN , that is, νΩ(z) = (0, . . . , 0, 1). For (iv), suppose

for a contradiction that there exist κj ր κd and κ̃j ր κe such that, for each j ≥ 1,

there exists xj ∈ Ud(κj) ∩ Ue(κ̃j). Since Ω is compact, a subsequence of the xj

converges to some z ∈ Ω. Since xj ∈ Ud(κj) and ∩j≥1Ud(κj) = Kd, we see z ∈ Kd.

By a similar argument, z ∈ Ke. This contradicts (iii) since d 6= e. �

We now show that for d fixed, all the mass of ud becomes concentrated in an

arbitrarily small region of Ω as α→ −∞.

Lemma 4.4.7. Let d ∈ RN and ud(x) = ce−αx·d be as in Lemma 4.4.3 and let

Ud(κ) and κd be as in Lemma 4.4.6. For every ε > 0 and κ′ < κd there exists
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αε := α(ε, κ′) < 0 such that

(4.4.6) ‖ud‖2L2(Ω\Ud(κ′))
< ε

for all α < αε.

Proof. Since ud(x) ≤ ce−ακ
′
for all x ∈ Ω \ Ud(κ′), we have

‖ud‖2L2(Ω\Ud(κ′))
≤ ce−2ακ′ |Ω|.

Choose κ′′ ∈ (κ′, κd). Then Ud(κ
′′) ⊂ Ud(κ

′) with |Ud(κ′′)| 6= 0 and

1 = ‖ud‖2L2(Ω) ≥ ‖ud‖2L2(Ud(κ′′))
≥ ce−2ακ′′ |Ud(κ′′)|.

For ε > 0 fixed, choose αε < 0 such that

(4.4.7) e−2αεκ′|Ω| < εe−2αεκ′′|Ud(κ′′)|,

which we can do since κ′ < κ′′. Then (4.4.7) will hold uniformly in α < αε and so

‖ud‖2L2(Ω\Ud(κ′))
< ce−2ακ′ |Ω| < εce−2ακ′′|Ud(κ′′)| < ε

for all α < αε. �

Lemma 4.4.7 implies that for fixed d, ud ⇀ 0 weakly in L2(Ω) as α→ −∞. In

fact the ψi also tend to 0 weakly as α → −∞ (see Proposition 4.4.2). But this is

not enough to show directly that 〈ud, ψi〉 is uniformly small, since both ud and ψi

vary with α. Instead, we will use the following rather technical result concerning

the ud. Since this does not actually use any specific properties of the ψi, we set

it up so it works for arbitrary L2-functions ϕi (which we will of course in practice

take to be the eigenfunctions ψi).

Lemma 4.4.8. Fix k ≥ 1 and δ > 0. Suppose we have a sequence αn → −∞
and for each n ≥ 1 a family of k functions ϕi(n) ∈ L2(Ω), 1 ≤ i ≤ k, such that

‖ϕi(n)‖L2(Ω) = 1 for all 1 ≤ i ≤ k and n ≥ 1. Then there exists a unit vector

d ∈ RN and a subsequence αnl
→ −∞ of the αn such that

(4.4.8)
k∑

i=1

〈ud(nl), ϕi(nl)〉2 ≤ δ

for all l ∈ N, where ud(nl) = ud(x, αnl
) is as in Lemma 4.4.3.
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Proof. Fix k ≥ 1, δ > 0 and a sequence αn → −∞. Choose m ≥ 1 and ε > 0, to

be specified precisely later on. Now choose any m distinct dj ∈ RN , 1 ≤ j ≤ m,

and for each j let uj = uj(x, αn) be as in the statement of the lemma. Now for

each j choose a nonempty open set Uj := Udj (κj) as in Lemma 4.4.6. By making

an appropriate choice of κj we may assume the Uj are pairwise disjoint. Using

Lemma 4.4.7, we find an αε < 0 such that

‖uj‖2L2(Ω\Uj)
< ε

for all α < αε and all 1 ≤ j ≤ m. By discarding at most finitely many n, we may

assume that αn < αε for all n ≥ 1. Now for each n ≥ 1, we have

∫

Ω

k∑

i=1

|ϕi(n)|2 dx =

k∑

i=1

‖ϕi(n)‖2L2(Ω) = k.

Since the Uj are pairwise disjoint, it follows that for each n ≥ 1, there exists at

least one j = jn such that

∫

Ujn

k∑

i=1

|ϕi(n)|2 dx ≤
k

m
.

For this jn, using Hölder’s inequality, for each 1 ≤ i ≤ k we have

|〈ujn, ϕi(n)〉| ≤
∫

Ujn

|ujϕi| dx+
∫

Ω\Ujn

|ujϕi| dx

≤ ‖uj‖L2(Ω)

( k
m

) 1
2
+ ε

1
2‖uj‖L2(Ω)‖ϕi‖L2(Ω)

=
( k
m

) 1
2
+ ε

1
2 ,

where we have used the bound
∫
Ujk

|ϕi|2 dx ≤ k/m, together with the normalisation

‖uj‖L2(Ω) = ‖ϕi‖L2(Ω) = 1. We now specify m ≥ 1 and ε > 0 to be such that

k
(( k

m

) 1
2
+ ε

1
2

)2
≤ δ,

noting that this depends only on k and δ.

Squaring the above estimate for |〈ujn, ϕi(n)〉| and summing over i, this implies

that for all but finitely many n ≥ 1, (4.4.8) holds for at least one of the m fixed uj.

By a simple counting argument, there must exist at least one j∗ between 1 and m

such that (4.4.8) holds for this fixed j∗ and infinitely many αn. This gives us our

ud and (αnl
). �
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Proof of Theorem 4.4.1. The proof is by induction on k. The step when k = 1

is given by [86, Theorem 1.1]. Now fix k ≥ 1 and suppose we know that for

all 1 ≤ i ≤ k, −λi(αn)/α2
n → 1 as n → ∞ for every sequence αn → −∞. By an

argument from elementary analysis, it suffices to prove that for every such sequence

αn → −∞, there exists a subsequence αnl
→ −∞ such that −λk+1(αnl

)/α2
nl
→ 1

as l →∞.

So fix a particular sequence αn → −∞ and also fix 0 < δ < 1. Let ud satisfy

the conclusion of Lemma 4.4.8 for a subsequence which we will still denote by αn,

this δ > 0 and the family of k functions ψi(αn) =: ϕi(n), 1 ≤ i ≤ k. Then by

Lemma 4.4.8 we know that

(4.4.9)

k∑

i=1

〈ud(αn), ψi(αn)〉2 ≤ δ

for all n ≥ 1 and the fixed direction d. In particular, (4.4.9) implies ud 6∈
span{ψ1(αn), . . . , ψk(αn)} for any n ≥ 1, since δ < 1. Applying Lemma 4.4.5

to ud for each n ≥ 1, we obtain

λk+1(αn) ≤
−α2

n −
∑k

i=1 λi(αn)〈ud, ψi〉2
1−∑k

i=1〈ud, ψi〉2

for every n ≥ 1. Rearranging gives

(4.4.10)
λ1(αn)

−α2
n

≥ λk+1(αn)

−α2
n

≥
1−∑k

i=1
λi(αn)
−α2

n
〈ud, ψi〉2

1−∑k
i=1〈ud, ψi〉2

.

Using the bound (4.4.9), which holds independently of n ≥ 1, together with the

induction assumption −λi(α2
n)/α

2
n → 1 as n→∞ for all i ≤ k it follows that the

last term in (4.4.10) converges to 1 as n → ∞. This establishes the desired limit

for −λk+1(αn)/α
2
n, which completes the proof of Theorem 4.4.1. �

We will now give the proof of Proposition 4.4.2. So fix k ≥ 1 and p ≥ 2.

We first obtain the following interior estimate for ψk, from which the proof of the

proposition will follow easily.

Lemma 4.4.9. Under the assumptions of Proposition 4.4.2, if ϕ ∈ C∞
c (Ω), then

λk ≥ −(p− 1)−1

∫
Ω
|ψk|p |∇ϕ|2 dx∫
Ω
|ψk|p ϕ2 dx

for all α < 0 and all k ≥ 1.
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Proof. Given ϕ ∈ C∞
c (Ω), we will use φ := ϕ2|ψk|p−2ψk as a test function in the

weak form (1.2.5), that is, Qα(ψk, v) = λ〈ψk, v〉 for all v ∈ H1(Ω). We first note

that if p ≥ 2, then since ψk ∈ C(Ω) (see Theorem 1.2.8) we have φ ∈ H1(Ω) with

∇φ = 2ϕ|ψk|p−2ψk∇ϕ+ (p− 1)ϕ2|ψk|p−2∇ψk. Moreover 〈φ, ψk〉 =
∫
Ω
ϕ2|ψk|p dx 6=

0, since ψk cannot vanish identically on an open set. For, if it did, by unique

continuation of solutions to elliptic equations, it would be identically zero on Ω;

see [12]. Hence, by completing the square,

∫

Ω

∇ψk · ∇φ dx =

∫

Ω

2ϕ|ψk|p−2ψk∇ϕ · ∇ψk + (p− 1)ϕ2|ψk|p−2|∇ψk|2 dx

=

∫

Ω

∣∣(p− 1)
1
2 |ψk|

p
2
−1ϕ∇ψk + (p− 1)−

1
2 |ψk|

p
2
−1ψk∇ϕ

∣∣2 dx

−
∫

Ω

(p− 1)−1|ψk|p|∇ϕ|2 dx.

Substituting this into the weak form for λk, and using that ϕ = φ ≡ 0 on ∂Ω,

λk

∫

Ω

ϕ2|ψk|p dx =

∫

Ω

∇ψk · ∇φ dx+ α

∫

∂Ω

ψkφ dx ≥ −
∫

Ω

(p− 1)−1|ψn|p|∇ϕ|2 dx.

Rearranging gives the conclusion of the lemma. �

To prove the proposition, part (i) uses the result of Theorem 4.4.1, that λk →
−∞ as α→ −∞; parts (ii) and (iii) will follow directly from (i).

Proof of Proposition 4.4.2. (i) Fix p ≥ 2, k ≥ 1 and Ω0 ⊂⊂ Ω and assume

‖ψk‖Lp(Ω) = 1. Let ϕ ∈ C∞
c (Ω) be such that 0 ≤ ϕ ≤ 1 in Ω and ϕ ≡ 1 in

Ω0. Setting K := (p − 1)−1‖∇ϕ‖2L∞(Ω) > 0, which depends only on p and Ω0, by

Lemma 4.4.9, we have

λk ≥
−K∫

Ω0
|ψk|p dx

for all α < 0. Since λk → −∞ as α → −∞ by Theorem 4.4.1, this forces∫
Ω0
|ψk|p dx→ 0 as α→ −∞.

(ii) Fix 1 ≤ q < p and ε > 0. Choose Ωε ⊂⊂ Ω such that |Ω \ Ωε|
p−q
p < ε/2,

which we may do since p > q. Also choose αε < 0 such that

‖ψk‖qLp(Ωε)
<
ε

2
|Ωε|

q−p
p
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for all α < αε, which we may do by (i). Noting that p/q and p/(p − q) are dual

exponents, Hölder’s inequality implies

‖ψk‖qLq(Ω) =

∫

Ωε

|ψk|q dx+
∫

Ω\Ωε

|ψk|q dx

≤
(∫

Ωε

|ψk|p dx
) q

p |Ωε|
p−q
p +

(∫

Ω\Ωε

|ψk|p dx
) q

p |Ω \ Ωε|
p−q
p

= ‖ψk‖qLp(Ωε)
|Ωε|

p−q
p + ‖ψk‖qLp(Ω\Ωε)

|Ω \ Ωε|
p−q
p < ε

for all α < αε, by choice of Ωε and αε, and since ‖ψk‖qLp(Ω\Ωε)
≤ 1.

(iii) Fix r > p. If we normalise ψk so that ‖ψk‖Lr(Ω) = 1, then (ii) implies

‖ψk‖Lp(Ω) → 0, so that

(4.4.11)
‖ψk‖Lr(Ω)

‖ψk‖Lp(Ω)

−→ ∞

as α → −∞. Now re-normalise so that ‖ψk‖Lp(Ω) = 1. Since this does not affect

(4.4.11), in this case ‖ψk‖Lr(Ω) →∞. �



Chapter 5

The Laplacian with Generalised Wentzell Boundary

Conditions

For the remainder of this thesis we will consider the Laplacian subject to gen-

eralised Wentzell boundary conditions

∆u+ β
∂u

∂ν
+ γu = 0 on ∂Ω

as in (1.1.3). In this chapter we will prove some basic properties of the generalised

Wentzell boundary value problem (or just Wentzell problem for short) similar to

those in Section 1.2, including how the boundary condition is actually realised.

While these are for the most part not new, we will extend existing results in a

couple of directions, principally to the case of negative coefficients, or weights,

in the boundary condition. In particular we distinguish between the “good” case

β > 0 in Section 5.2, where the associated operator generates a positive, compact,

irreducible analytic semigroup of angle π/2 on an appropriate Lp-space, and the

“bad” case β < 0 in Section 5.3, where the operator still has compact resolvent,

but there are now two sequences of eigenvalues heading to ±∞. We have placed a

number of technical results needed for Section 5.3 in Appendix C. We cannot find

proofs of these in the literature so we have included them.

In Chapter 6 we consider the structure and properties of the eigenvalues, analo-

gous to what we did for the Robin problem in Section 1.3. Particular emphasis will

be given to how they depend on the boundary coefficients β and γ. This is accom-

plished via the elementary but useful observation that every Wentzell eigenvalue

is that of an appropriate Robin problem. Section 6.2 is devoted to the princi-

pal eigenvalues (a generalisation of the “first” eigenvalue), while Section 6.3 looks

at the other eigenvalues, and Section 6.4 establishes various properties similar to

those established for the Robin problem in Section 1.3. In Chapter 7 we prove

isoperimetric inequalities for these eigenvalues, ostensibly our main goal here.

77
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Some of the material in the next three chapters has been published in [76];

roughly speaking, Sections 5.2, 5.3, 6.2, 7.1 and 7.3, although some material has

been altered (especially in Chapter 5: cf. [76, Section 2]). Parts of Sections 6.3

and 7.2 are included in [75].

5.1. Some background to the Wentzell problem

The Wentzell boundary value problem, in its modern incarnation, has only

been studied substantially in the last few years. A good discussion of the history

and interpretation of the Wentzell boundary condition can be found in [63]. This

boundary condition is often equipped to the heat equation, which becomes

(5.1.1)

∂u

∂t
= ∆u in Ω

∂u

∂t
(x, t) = β

∂u

∂ν
(x, t) + γu(x, t) on ∂Ω,

t ∈ [0, T ), 0 < T ≤ ∞ (where ∆u is the Laplacian of u with respect to the x

(space) variables). The main attraction of (5.1.1) is that the operator term on the

boundary introduces a dynamic element to the boundary condition.

With this in mind it should not be surprising that most of the study of the

operator in its modern incarnation is in terms the semigroup it generates. Indeed,

as a result we will phrase some of our results in terms of generation properties (in

contrast to the Robin problem in Section 1.2). The generation problem has only

been intensively studied since about the turn of this century starting with [53].

A nice summary of the mathematical work done since then can be found in [90].

Classical existence and uniqueness results for the elliptic problem go back further;

in particular to Luo and Trudinger in the late 1980s (see especially [87]).

We remark that the actual name for the boundary condition in (5.1.1) is not

entirely settled; it is often called Wentzell-Robin rather than generalised Wentzell

(“non-generalised” Wentzell in this case referring to ∆u = 0 on ∂Ω). Even the

nameWentzell is sometimes spelt Venttsel or Ventcel’, or some variant. The bound-

ary condition was originally introduced in a paper of Wentzell (the English version

is [106]), who under certain conditions wanted to find the most general boundary

conditions for which the associated operator generates a Markovian semigroup.

The form of the boundary condition usually considered these days – this includes

the current context – is somewhat less general than in [87, 106].
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There are various ways to define an operator associated with the Wentzell

problem (1.1.3). Perhaps the most obvious question is how to give meaning to

the Laplacian appearing on the boundary. While at first glance it might seem

natural to use the Laplace-Beltrami operator, this does not seem to be a common

approach. Instead, we will consider several different operators realising (1.1.3).

These respectively act on the function space H1(Ω), on C(Ω), and on a suitable Lp

product space. We will be working mostly on H1 or L2. On H1(Ω) the operator

is given by

(5.1.2)

D(∆W
H1) = {u ∈ H1(Ω) : ∆u ∈ H1(Ω),

∂u

∂ν
exists in L2(∂Ω),

(∆u)|∂Ω + β
∂u

∂ν
+ γu|∂Ω = 0}

∆W
H1u = ∆u.

(For ∂u
∂ν
, see (A4.3).) On C(Ω) we can realise the operator as

(5.1.3)

D(∆W
C ) = {u ∈ C(Ω) ∩H1(Ω) : ∆u ∈ C(Ω), ∂u

∂ν
exists in

C(∂Ω), (∆u)|∂Ω + β
∂u

∂ν
+ γu|∂Ω = 0}

∆W
C u = ∆u

(see [7] or [108], or for a different approach [44] or [54]). In [54], the authors

work in an Lp space, more precisely in Lp(Ω, dµ), dµ = dx|Ω ⊕ dσ|∂Ω
β

(for β > 0).

A slightly different approach, along the lines of [7], which we will make some use

of, is to define

(5.1.4)

D(∆W
p ) = {(u, u|∂Ω) : u ∈ W 1,p(Ω), ∆u ∈ Lp(Ω),

∂u

∂ν
exists in Lp(∂Ω,

dσ

β
)}

∆W
p (u, u|∂Ω) = (∆u,−β∂u

∂ν
− γu|∂Ω),

on the same measure space Lp(Ω, dµ). See also [90].

We emphasise that in all the above-mentioned papers, it is assumed β > 0

(either as a constant or a function), and most assume in addition that γ > 0.

We will be dealing with the cases β < 0 and/or γ < 0 as well. The case β < 0

in particular completely changes the behaviour of the operator(s); for example,

it completely destroys the generation properties (see in particular Remark 5.3.8).
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Indeed, such boundary conditions are also called reactive type (as in [105], which

also assumes γ ≡ 0); see also [63, Section 3]. We will explore this in a little more

detail in Section 5.3.

Remark 5.1.1. When p = 2, the operator given by (5.1.2) is, up to topological

isomorphism, the restriction of (5.1.4) to H1(Ω). To see this, we set

(5.1.5) V := {(u, u|∂Ω) : u ∈ H1(Ω)} →֒ L2(Ω, dµ).

Then V is topologically isomorphic to H1(Ω) in the obvious way. Moreover, the

restriction of the operator given by (5.1.4) to V is clearly

D(∆W
2 |V ) = {(u, u|∂Ω) ∈ V : ∆u ∈ V, ∂u

∂ν
exists in L2(∂Ω,

dσ

β
)}

∆W
2 |V (u, u|∂Ω) = (∆u,−β∂u

∂ν
− γu|∂Ω),

which under the identification V ∼= H1(Ω) gives (∆u)|∂Ω + β ∂u
∂ν

+ γu|∂Ω = 0,

so that ∆W
2 |V is similar to ∆W

H1 under this identification. Note that for β < 0,

this argument still works, although we cannot consider the natural measure space

Lp(Ω, dµ) and instead work with the measure dx|Ω⊕dσ|∂Ω, since obviously if β < 0

then dx|Ω ⊕ dσ|∂Ω
β

is not a positive measure. (It may be possible to use indefinite

measures, but we do not explore that idea here.)

If we disregard the one-dimensional case Ω = (0, 1) ⊂ R (see for example

[45, 51, 52, 53]), which we are not interested in here, then the realisation (5.1.2)

was probably first studied in [55]. There, under the assumption that Ω ⊂ RN

is bounded and C1, and β, γ ∈ C(∂Ω) are nonnegative with β strictly positive,

it was shown ∆W
H1 generates an analytic semigroup on H1(Ω). In [7], ∆W

H1 was

shown via form methods to generate a compact analytic semigroup on H1(Ω) if Ω

is Lipschitz, β ≡ 1 and 0 ≤ γ ∈ C(Ω).
As we have already noted, the principal works on C(Ω) are [44] (and the

related paper [46]), [7, 54, 108]. Without going into details, if ∂Ω is sufficiently

smooth, then ∆W
C , or rather a slightly different realisation thereof, has been shown

to generate a compact and positive analytic semigroup of angle π
2
[44]. If, however,

Ω is only Lipschitz, then analyticity of the generated semigroup currently seems

to be open problem. We will use some of the ideas in [44] to deal with the case

β < 0, although we will always work with the operators given by (5.1.4) (with

p = 2) and (5.1.2).
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In many of the aforementioned works the Laplacian is replaced by a uniformly

elliptic second order differential operator in divergence form. Since we are mostly

interested in isoperimetric-type questions – and to keep the exposition simple – we

will limit our attention to the Laplacian, and content ourselves with the remark

that most of the results in this chapter should be routine to generalise.

5.2. Generation results when β > 0

In the usual case where β > 0 the Wentzell Laplacian has some very nice

properties, which we summarise in the following theorem. The proof is using form

methods as in [7, 90], although we allow β 6≡ 1 and place fewer restrictions on

γ (and, as we noted above, more on the operator – the Laplacian only – though

this could be easily weakened). This theorem is probably not new, although this

is possibly the first time all the results have been collected in one place and at this

level of generality. Moreover this appears to be the first time the form method has

been used when β 6≡ 1. Recall that L2(Ω, dµ) := L2(Ω, dx)⊕ L2(∂Ω, dσ
β
).

Theorem 5.2.1. Suppose Ω ⊂ RN is a bounded Lipschitz domain, 0 < β0 ≤ β ∈
L∞(∂Ω) with β0 is constant and γ ∈ L∞(∂Ω). The operator ∆W

2 given by (5.1.4)

(with p = 2) is self-adjoint and generates a positive, compact analytic semigroup

of angle π
2
on L2(Ω, dµ). If Ω is connected then in addition this semigroup is

irreducible.

Corollary 5.2.2. Under the conditions of Theorem 5.2.1, ∆W
H1 generates a com-

pact analytic semigroup of angle π
2
on H1(Ω). Moreover, σ(∆W

H1) = σ(∆W
2 ).

Remark 5.2.3. The operator ∆W
2 is self-adjoint only on the weighted space

L2(Ω, dµ), not the unweighted space L2(Ω) × L2(∂Ω) (which we will use in Sec-

tion 5.3). Similarly, ∆W
H1 as realised by (5.1.2) is clearly not self-adjoint unless

β ≡ 1.

Proof of Theorem 5.2.1. Fix β > 0 and set V := {(u, u|∂Ω) : u ∈ H1(Ω)},
which we identify with H1(Ω) in the obvious way, and is a Hilbert space equipped

with the norm ‖(u, u|∂Ω)‖V = ‖u‖H1(Ω) (or indeed any equivalent norm on H1(Ω)

such as the one induced from Maz’ja’s inequality). Also set H := L2(Ω, dx) ⊕
L2(∂Ω, dσ

β
), a Hilbert space endowed with the product norm. Note that the measure
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we are imposing on ∂Ω gives rise to a norm which is equivalent to the usual one

on L2(∂Ω, dσ). Then V →֒ H with V dense in H (see [7, Proof of Theorem 2.3]).

Define a form on V by Qγ : H ×H → R,

Qγ((u, u|∂Ω), (v, v|∂Ω)) =
∫

Ω

∇u · ∇v dx+
∫

∂Ω

γu|∂Ωv|∂Ω
dσ

β

(cf. Section 1.2). Then it is elementary to prove Qγ is bilinear, bounded (using the

Cauchy-Schwarz inequality, the trace inequality and that β ≥ β0 > 0), symmetric

and non-negative.

Set Qγ(u, u|∂Ω) := Qγ((u, u|∂Ω), (u, u|∂Ω)). Then for ω ∈ R,

Qγ(u, u|∂Ω) + ω‖(u, u|∂Ω)‖2H =

∫

Ω

|∇u|2 dx

+

∫

∂Ω

γ|u|∂Ω|2
dσ

β
+ ω

∫

Ω

|u|2 dx+ ω

∫

∂Ω

|u|∂Ω|2
dσ

β
,

and in particular,

Qγ(u, u|∂Ω) + ω‖(u, u|∂Ω)‖2H ≥ min{ω, 1}‖(u, u|∂Ω)‖2V
if we choose ω such that γ+ω, ω > 0. Hence the form Qγ is said to be (H-)elliptic

(cf. Lemma 1.2.3). We next wish to show that −∆W
2 is the operator associated

with Qγ . The argument is essentially the same as in [7, Section 2], although

here we do not have β ≡ 1. Let −Aγ be the operator associated with Qγ. For

(u, u|∂Ω) ∈ D(Aγ), let −Aγ(u, u|∂Ω) = (f, b) ∈ H . Then by definition

Qγ((u, u|∂Ω), (v, v|∂Ω)) =
∫

Ω

∇u · ∇v dx+
∫

∂Ω

γu|∂Ωv|∂Ω
dσ

β

=

∫

Ω

fv dx+

∫

∂Ω

bv|∂Ω
dσ

β
= 〈(f, b), (v, v|∂Ω)〉H

for all (v, v|∂Ω)) ∈ V , that is, all v ∈ H1(Ω). If we let v ∈ H1
0 (Ω), then∫

Ω

∇u · ∇v dx =

∫

Ω

fv dx.

Since this is for all v ∈ H1
0 (Ω), we have −∆u = f ∈ L2(Ω) (see (A4.2)). Hence

∫

Ω

∇u · ∇v dx+
∫

Ω

v∆u dx =

∫

∂Ω

(b− γu|∂Ω)v|∂Ω
dσ

β

for all v ∈ H1(Ω). By definition, this means ∂u
∂ν

exists in L2(∂Ω) and equals (b −
γu|∂Ω)/β (see (A4.3)). Rearranging, this gives b = β ∂u

∂ν
+γu, that is, −Aγ(u, u|∂Ω) =

(−∆u, β ∂u
∂ν

+ γu). Thus u ∈ D(∆W
2 ) and Aγu = ∆W

2 u. Conversely, for u ∈ D(∆W
2 )
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we have u ∈ V and by a similar calculation to the one above Qγ(u, v) = 〈∆W
2 u, v〉H

for all v ∈ V .
Hence Aγ = ∆W

2 . Since Aγ is associated with an elliptic symmetric form, it is

self-adjoint and generates an analytic semigroup Tγ of angle π
2
on H (see, e.g., [9,

Section 3.7, 3.14 or 7.1] or [41, Section XVII.6] and again cf. Section 1.2).

Next we show the semigroup Tγ is positive, which follows fairly easily from the

properties of the form domain V . By the first Beurling-Deny criterion it suffices

to show that if (u, u|∂Ω) ∈ V = D(Qγ) then (u, u|∂Ω)+ ∈ V and

Qγ((u, u|∂Ω)+, (u, u|∂Ω)−) ≤ 0

(see, e.g., [7, Section 1]). In fact this is obvious from the lattice properties of

V ∼= H1(Ω). More precisely, if (u, u|∂Ω) ∈ V , then u ∈ H1(Ω), so that u+ ∈ H1(Ω)

and so (u, u|∂Ω)+ ∈ V . Moreover, for u ∈ H1(Ω) it is standard that∇(u+)·∇(u−) =
0 (see [59, Lemma 7.6] or Appendix A4) and so (u|∂Ω)+(u|∂Ω)− = 0 also. In

particular Qγ((u, u|∂Ω)+, (u, u|∂Ω)−) = 0.

For irreducibility, suppose Ω is connected. We identify H with the measure

space L2(Ω∪∂Ω, dµ), µ(A) := |A∩Ω|+ 1
β
σ(A∩∂Ω). To prove irreducibility, by [92,

Theorem 2.9] it suffices to show that for every measurable set A ⊂ Ω∪∂Ω, 1AV ⊂ V

implies µ(A) = 0 or µ(Ω \A) = 0. (Here by 1AV ⊂ V we mean if u ∈ V , then the

product 1A(x)u(x) is also in V . Note that if Ω has two connected components, say

Ω1 and Ω2, then 1Ωi
V ⊂ V for i = 1, 2 so irreducibility is impossible.)

Set A1 := A∩Ω, A2 := A∩∂Ω. Then 1AV ⊂ V means that for any u ∈ H1(Ω),

there exists v ∈ H1(Ω) such that 1A1u = v and 1A2u|∂Ω = v|∂Ω. It is easy to see

that in this case |A1| = 0 or |Ω \ A1| = 0. For, since Ω is bounded and Lipschitz,

1Ω ∈ H1(Ω); hence choosing u = 1Ω we obtain v = 1A1 ∈ H1(Ω). The only

possibilities are that 1A1 = 1Ω or 1A1 = 0 almost everywhere.

Now let u = 1Ω ∈ H1(Ω) ∼= V . If |A1| = 0, then 1Au = (0, 1A2) ∈ V .

Identifying V with H1(Ω) this means 1A2 = 0|∂Ω = 0 σ-a.e., that is, σ(A2) = 0. If

|Ω \ A1| = 0, then 1Au = (1Ω, 1A2) ∈ V . Hence 1Ω|∂Ω = 1A2 , so σ(∂Ω \ A2) = 0,

and we have proved irreducibility.

To prove compactness, we prove directly that Aγ has compact resolvent. Let

ω ∈ R be such that γ̃ := γ + ω > 0. Then, analogous to Section 1.2 (see in

particular Lemma 1.2.5 and Theorem 1.2.6), the form domain V ∼= H1(Ω) →֒
H1(Ω)⊕H 1

2 (∂Ω) →֒ H is compactly embedded into H since H1(Ω) →֒ L2(Ω) and
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H
1
2 (∂Ω) →֒ L2(∂Ω) are both compact by Rellich’s theorem. This implies Aγ̃ has

compact resolvent when γ̃ > 0.

Now define a bounded operator Cω on H by Cω(u, f) := (0, ωf). Since Aγ̃

has compact resolvent, Aγ = Aγ̃ − Cω also has compact resolvent by a standard

perturbation argument (e.g. [72, Theorem IV.3.17] will certainly do). Hence we

have established all the properties of Aγ = ∆W
2 listed in Theorem 5.2.1. �

Proof of Corollary 5.2.2. As shown in Remark 5.1.1, ∆W
H1 is, up to topological

isomorphism, the part of ∆W
2 in its form domain V ∼= H1(Ω). Analyticity is

now a standard result (see, e.g., [9, Sections 3.3, 3.5 and 7.1] and also cf. [7,

Remark 2.9]). For compactness, we show that the domain D(∆W
2 ) is compactly

embedded in V ∼= H1(Ω). We first observe that D(∆W
2 ) ⊂ H

3
2 (Ω). To see this, note

that every u ∈ D(∆W
2 ) is a solution of the variational problem ∆u = f ∈ L2(Ω)

and ∂u
∂ν

= g ∈ L2(∂Ω) for some f and g (namely ∆u and ∂u
∂ν
, respectively). By

[70], u ∈ H 3
2 (Ω).

Now as a Banach space endowed with the graph norm, D(∆W
2 ) →֒ H ; similarly,

H
3
2 (Ω) →֒ H in the obvious way. By the closed graph theorem, D(∆W

2 ) →֒ H
3
2 (Ω)

(see [9, Lemma 3.10.1]). Thus, up to topological isomorphism, we have the inclu-

sions

(5.2.1) D(∆W
2 ) →֒ H

3
2 (Ω) →֒ H1(Ω) →֒ H,

where the second and third injections are compact. Since for any λ ∈ ρ(∆W
2 )

we have R(λ,∆W
2 )H1(Ω) ⊂ H

3
2 (Ω) ⊂ H1(Ω), by [9, Proposition 3.10.3] we have

σ(∆W
2 |H1(Ω)) = σ(∆W

2 ) and R(λ,∆W
2 |H1(Ω)) = R(λ,∆W

2 )|H1(Ω). Moreover for any

λ ∈ ρ(∆W
2 ), R(λ,∆W

2 )|H1(Ω) is compact as a map on H1(Ω) as it certainly maps

H1(Ω) into D(∆W
2 ). Since ∆W

H1 is the restriction of ∆W
2 to H1(Ω) (up to topological

isomorphism), this completes the proof. �

Note in the above proof that there are several ways we could prove compactness

of the resolvent of ∆W
H1 , which is arguably the property which will be of most

interest to us in the sequel. For example, since −∆W
2 is self-adjoint it is known

that there is a unique square root operator, call it A
1
2
γ , such that (A

1
2
γ )2 = ∆W

2 , and

we can characterise the form domain V = D(A
1
2
γ ). Then using properties of Sobolev

towers (see [6, Theorem V.1.3.8]), we know that the injection ofD(∆W
2 ) ←֓ D(∆W

H1)

into D(A
1
2
γ ) is compact and dense. Alternatively, we could look at the semigroup
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induced on the dual space V ′ via the embedding H →֒ V ′ and then exploit the

reflexivity of V = V ′.

Remark 5.2.4. (i) It is possible to define a realisation of the operator ∆W
p on

arbitrary domains Ω ⊂ RN , using the form method of Theorem 5.2.1, at least

provided σ(K) <∞ for every K ⊂ ∂Ω compact. Roughly speaking, the idea is to

replace the space V ∼= H1(Ω) with a smaller space on which there are well-defined

traces. Precisely, we look at the norm

‖u‖V :=
(
‖∇u‖2L2(Ω,dx) + ‖u|∂Ω‖2L2(∂Ω,dσ/β)

) 1
2
.

We denote by Ṽ the completion of V0 := H1(Ω) ∩ C∞(Ω) ∩ C(Ω) with respect to

this norm. Maz’ja’s inequality asserts that for all u ∈ V0 and hence all u ∈ Ṽ ,

there exists a constant c = c(N, |Ω|) > 0 such that

‖u‖
L

2N
N−1 (Ω)

≤ c‖u‖V .

Note however that this identification is not necessarily unique: see [11]. In this

case we can replace Ṽ by a closed subspace as in [33, Remark 3.2(d)]. Thus we

obtain Ṽ →֒ H and we can proceed. This has been done very recently in [8,

Section 4.5] where the authors amongst other things obtain an analytic semigroup

on Ṽ , or more accurately the closed subspace they call H1
b,σ(Ω). (My thanks to

Dr. ter Elst for drawing this to my attention.)

(ii) A seemingly open problem is to construct a theory of the p-Laplacian with

Wentzell boundary conditions, which should be

(5.2.2)

−∆pu = f in Ω,

∆pu+ β|∇u|p−2∂u

∂ν
+γ|u|p−2u = 0 on ∂Ω,

where ∆pu = div(|∇u|p−2∇u) is the p-Laplacian of u (see Section 3.1 and cf. Sec-

tion 4.1). No work appears to have been done on this problem to date, but we do

not attempt a further exploration here.

5.3. The resolvent and spectrum when β < 0

We will now consider the case when β < 0. As we noted in Section 5.1, here we

do not expect the Wentzell Laplacian to have any nice generation properties. In

fact, it has been proved recently in [105], essentially using form methods, that in

the case γ ≡ 0 the problem (1.1.3) has discrete spectrum, with its eigenvalues of
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the form Λk, where Λ0 = 0, Λ2k−1 →∞ and Λ2k → −∞ as k →∞ (see Theorem 3

there). The proof uses a different form to the one used in Section 5.2, given by

Q(u, v) =
∫
Ω
∇u · ∇v dx, on a carefully chosen subspace of H1(Ω) on which Q is

an inner product. A similar result is obtained in [14] for the eigenvalues of the

problem −∆u + V u = λu in Ω, ∂u
∂ν
− β−1λu = 0 on ∂Ω (given in our notation),

where V (x) is a suitable potential and β < 0. This is based on the study of a

related, ill-posed, heat equation and uses another form method.

We will be aiming to achieve a similar result in the more general case when

γ ∈ L∞(∂Ω), but we will use perturbation methods and results based on [44, 46]

which, at least at an heuristic level, allow us to see what gives rise to the two

sequences of eigenvalues. We start by considering the operator given by (5.1.4),

where we will always take p = 2. We will also consider ∆W
2 as an operator on

the product space L2(Ω) × L2(∂Ω) ∼= L2(Ω) ⊕ L2(∂Ω). Note that the measure

on this space is equivalent to the one on the space L2(Ω, dµ) used above. In

particular all the results we are interested in, such as compactness, analyticity (or

lack thereof) etc. are unaffected. Throughout this section we will always assume

that our domains Ω are bounded, even if this is not explicitly stated. Moreover,

since they will always be at least Lipschitz, they can be assumed to be connected

without loss of generality (see Remark 1.3.2). In addition our main results require

Ω to be fairly smooth (see Remark 5.3.3).

Theorem 5.3.1. Let Ω ⊂ RN be a bounded domain of class C1,1. The operator ∆W
2

given by (5.1.4) with p = 2 has compact resolvent for all β < 0 and γ ∈ L∞(∂Ω).

Corollary 5.3.2. Under the assumptions of Theorem 5.3.1, ∆W
H1 given by (5.1.2)

has compact resolvent and σ(∆W
H1) = σ(∆W

2 ).

Proof of Corollary 5.3.2. The argument is the same as in the proof of Corol-

lary 5.2.2. Namely, noting thatD(∆W
2 ) is unchanged from when β > 0, we still have

D(∆W
2 ) ⊂ H

3
2 (Ω) and hence obtain (5.2.1) withH replaced by L2(Ω)×L2(∂Ω). Us-

ing [9, Proposition 3.10.3] in the same way as earlier, and noting that Remark 5.1.1

still applies, the result follows easily. �

Remark 5.3.3. (i) The regularity assumption in Theorem 5.3.1 and Corollary 5.3.2

is quite strong. Unfortunately, this assumption is central to the method we use.

The key place where it is used is to show that the Dirichlet Laplacian on L2(Ω),
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∆D, has domain D(∆D) ⊂ H2(Ω) (see Lemma C1.1 for the details). Actually,

all we need is the (slightly) weaker requirement that D(∆D) ⊂ Hs(Ω) for some

s > 3/2. Unfortunately for general Lipschitz and C1 domains, the best estimate we

can expect is H
3
2 (Ω); see [69]. However, there are some other types of domains for

which this result is valid. Our proofs can be easily modified to handle convex C1

domains and polygonal domains in R
2, for example (see [64, Theorem 3.2.1.2] and

[64, Theorem 4.3.1.4], respectively, for the key H2-estimate, although we omit the

details). Polygonal domains are of particular interest for isoperimetric problems;

cf. Section 3.4.

(ii) Although we assume here that β < 0 is constant, it is possible that our

method could be generalised to allow β ∈ C(∂Ω) strictly negative, say, using mul-

tiplicative perturbation arguments for generators of analytic semigroups; cf. [44,

Remark 1.2].

For the proof of Theorem 5.3.1 we cannot simply conclude using an argument

similar to that in Corollary 5.3.2 that ∆W
2 has compact resolvent. AlthoughD(∆W

2 )

injects compactly into L2(Ω) × L2(∂Ω), we also need to know that (λI − ∆W
2 ) is

invertible for some λ ∈ C. To do this we would have to show that the operator

∆W
2 is a closed operator from L2(Ω)×L2(∂Ω) to itself. In light of our results, this

is clearly true, but there does not seem to be an easy way to prove this directly.

Instead, we will roughly speaking, use the method of [44], although with some

variations and a moderate addition. In particular [44] only deals with the case

β > 0 and uses a realisation of ∆W on C(Ω). We will have to build up some rather

heavy machinery to do this, so a direct proof that ∆W
2 is closed would lead to a

much simpler, more elementary proof of Theorem 5.3.1. However, the method we

use below allows us to gain some insight into the behaviour of the operator and

the structure of its spectrum (see Remark 5.3.8). Many of the background results

we will need for this are collected in Appendix C. We first represent the operator

∆W
2 in the following way. Define an operator as follows (cf. [44, eq. (1.4)]).

(5.3.1)

D(A) = {(u, f) ∈ L2(Ω)× L2(∂Ω) : u ∈ D(∆max),

f ∈ D(N), u− Pf ∈ D(∆D)}

A
(
u

f

)
=

(
∆D 0

B −βN + C

)(
I −P
0 I

)(
u

f

)
,
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where ∆max : L
2(Ω)→ L2(Ω) is the maximal Laplacian on L2(Ω)

D(∆max) = {u ∈ H1(Ω) : ∆u ∈ L2(Ω)}
∆maxu = ∆u,

∆D : L2(Ω)→ L2(Ω) is the Dirichlet Laplacian on L2(Ω) given by

D(∆D) = H1
0 (Ω) ∩ D(∆max)

∆Du = ∆u

(associated with (1.2.1) when Γ1 = ∅; see [9, Example 7.2.1]), P is the operator

taking a function f ∈ L2(∂Ω) to the harmonic function u ∈ L2(Ω) satisfying

u|∂Ω = f in an appropriate sense (see Theorem C2.1), N : L2(∂Ω) → L2(∂Ω) is

the Dirichlet-to-Neumann operator given by

(5.3.2)
D(N) = {f ∈ L2(∂Ω) :

∂

∂ν
(Pf) ∈ L2(∂Ω)}

Nf =
∂

∂ν
(Pf),

(see also Theorem C3.1 as well as (A4.3)), B : L2(Ω)→ L2(∂Ω) is the operator

(5.3.3)
D(B) = {u ∈ H1(Ω) :

∂u

∂ν
∈ L2(∂Ω)}

Bu = −β ∂u
∂ν

and finally C : L2(∂Ω) → L2(∂Ω) is the bounded operator Cf = −γf . Also, by

slight abuse of notation, I is the identity on either L2(Ω) or L2(∂Ω) as appropriate.

Lemma 5.3.4. ∆W
2 = A in the sense of operators.

Proof. First suppose u ∈ D(∆W
2 ). Then u ∈ H1(Ω) and ∆u ∈ L2(Ω), so u ∈

D(∆max). Set f := tr u, a priori in H
1
2 (∂Ω). But since ∂u

∂ν
∈ L2(∂Ω), in fact

f ∈ D(N). To see this, let v ∈ D(∆D) be the solution of ∆v = ∆u in Ω, v = 0

on ∂Ω. By Lemma C1.1, ∂v
∂ν
∈ L2(∂Ω). Then w := u − v solves ∆w = 0 in Ω,

trw = tru = f on ∂Ω (i.e. w = Pf) and ∂w
∂ν

= ∂u
∂ν
− ∂v

∂ν
∈ L2(∂Ω).

Thus we have u ∈ D(∆max), f ∈ D(N), and tr(u − Pf) = 0, i.e. u − Pf ∈
D(∆D), implying (u, f) ∈ D(A). Hence D(∆W

2 ) ⊂ D(A).
For the other containment, suppose (u, f) ∈ D(A). Then u ∈ D(∆max), so

that u ∈ H1(Ω) and ∆u ∈ L2(∂Ω). Since u − Pf ∈ D(∆D), tr(u − Pf) = 0

giving tru = f . Moreover, u − Pf ∈ D(∆D) implies ∂
∂ν
(u − Pf) ∈ L2(∂Ω) (see
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Lemma C1.1). Since f ∈ D(N), we also have ∂
∂ν
(Pf) ∈ L2(∂Ω) by definition and

so ∂u
∂ν

exists and is in L2(∂Ω). Hence u ∈ D(∆W
2 ), and so D(A) ⊂ D(∆W

2 ).

Moreover, for a corresponding pair (u, f) ∈ D(A), u ∈ D(∆W
2 ),

A
(
u

f

)
=

(
∆D 0

B −βN + C

)(
I −P
0 I

)(
u

f

)

=

(
∆(u− Pf)

Bu− BPf − βN + Cf

)
=

(
∆u

Bu+ C tru

)
= ∆W

2 u,

noting that ∆(Pf) = 0, BP = −βN and f = tru. �

This motivates defining an operator on L2(Ω)× L2(∂Ω) by

T :=

(
I −P
0 I

)
.

Lemma 5.3.5. The operator T is a bounded invertible linear operator on L2(Ω)×
L2(∂Ω). Its inverse is given by

T−1 =

(
I P

0 I

)
,

and this is also bounded and linear on L2(Ω)× L2(∂Ω).

Proof. For concreteness’ sake, we will equip L2(Ω)×L2(∂Ω) with the sum norm,

although any equivalent norm would work. That T and T−1 are well-defined,

bounded and linear follows immediately from Theorem C2.1. Moreover, it is trivial

to check that TT−1 = T−1T is the identity on L2(Ω)× L2(∂Ω). �

Set

W :=

(
∆D 0

B −βN + C

)
,

so that A = WT . Then it is immediate that A is similar to the operator

TWTT−1 = TW given by

TW =

(
I −P
0 I

)(
∆D 0

B −βN + C

)

(cf. [44, pp. 551-2]). Note that D(TW ) = D(∆D) × D(N), as is clear from the

characterisation of D(A).
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We also introduce a perturbation operator

Sε :=

(
εI 0

0 I

)

on L2(Ω) × L2(∂Ω), where ε > 0. Clearly Sε is bounded and invertible with

bounded inverse Sε
−1 = Sε−1.

So we will finally consider the operator on L2(Ω)× L2(∂Ω) given by

D(SεTWSε
−1) = D(∆D)×D(N)

SεTWSε
−1 =

(
∆D − PB εP (βN − C)
ε−1B −βN + C

)

=

(
∆D 0

0 −βN

)
+

(
−PB εP (βN − C)
ε−1B C

)

=: A0 + Bε
(cf. [44, p. 552]), which is similar to A and hence ∆W

2 for every ε > 0. The at-

traction of this representation is that the operator A0 is very well behaved (in the

words of Engel [44] it represents a “decoupling” of the interior and the boundary

dynamics) and the perturbing operator Bε, for sufficiently small ε, is sufficiently

well bounded with respect to A0 that its properties are preserved under the per-

turbation.

More precisely, we know both −N and ∆D generate compact analytic semi-

groups of angle π
2
on L2(∂Ω) and L2(Ω), respectively. (For N , use Theorem C3.1.

For ∆D, this is a standard result – for example, use [9, Proposition 7.1.1] with

H = L2(Ω), V = H1
0 (Ω) and scalar product 〈u, v〉 =

∫
Ω
∇u · ∇v dx.) In par-

ticular, both operators are sectorial in the following sense (cf. [9, p. 166], [47,

Theorem 2.10] and [44, Definition A.2]).

Definition 5.3.6. Let A be a closed linear operator on a Banach space X with

dense domain D(A). Then A is sectorial (of angle θ) if there exist θ ∈ (0, π
2
] and

r ≥ 0 such that the modified sector

Σ θ, r := {z ∈ C : | arg z| < π

2
+ θ} ∩ {z ∈ C : |z| > r}

is contained in ρ(A) and for every ε ∈ (0, θ) there exists Mε > 0 such that

‖R(λ,A)‖ ≤ Mε

|λ|
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for all λ ∈ Σ θ, r \ {0}.

Then the operator A generates a (bounded) analytic semigroup of angle θ if and

only if it is sectorial of angle θ (see, e.g., [47, Theorem 4.6]; see also Appendix A5).

In particular, the following lemma is immediate.

Lemma 5.3.7. Let Ω be of class C1,1. If β > 0, the operator A0 generates a

compact analytic semigroup of angle π
2
on L2(Ω)× L2(∂Ω). If β < 0, then A0 has

compact resolvent.

We can now our prove main theorem. Note that when β > 0 we are in the

same situation as in [44, Lemma A.4]; this would give us another way to obtain

(most of) Theorem 5.2.1. Of course, here we are only interested in β < 0. For

convenience we will be taking the sum norm on L2(Ω)× L2(∂Ω).

Proof of Theorem 5.3.1. To prove that ∆W
2 has compact resolvent, by simi-

larity it suffices to prove that SεTWS−1
ε has compact resolvent for some ε > 0.

In order to do this, we first show that Bε is A0-bounded with bound δε → 0 as

ε → 0. To do this, first observe that since P and C are bounded, B is relatively

∆D-bounded with bound 0 and P (βN − C) is obviously relatively bounded with

respect to −βN , there exist constants a, b, Cε > 0 such that

‖PBu‖L2(Ω) ≤ ε‖∆Du‖L2(Ω) + Cε‖u‖L2(Ω),

‖ε−1Bu‖L2(∂Ω) ≤ ε‖∆Du‖L2(Ω) + Cε‖u‖L2(Ω),

‖P (βN − C)f‖L2(Ω) ≤ a‖βNf‖L2(∂Ω) + b‖f‖L2(∂Ω),

‖Cf‖L2(∂Ω) ≤ ε‖βNf‖L2(∂Ω) + Cε‖f‖L2(∂Ω).

Hence
∥∥∥Bε

(
u

f

)∥∥∥ = ‖ − PBu+ εP (βN − C)f‖L2(Ω) + ‖ε−1Bu+ Cf‖L2(∂Ω)

≤ ‖PBu‖L2(Ω) + ε‖P (βN − C)f‖L2(Ω)

+ ε−1‖Bu‖L2(∂Ω) + ‖Cf‖L2(∂Ω)

≤ 2ε‖∆Du‖L2(Ω) + (1 + a)ε‖βNf‖L2(∂Ω)

+ 2Cε‖u‖L2(Ω) + (εb+ Cε)‖f‖L2(∂Ω)

≤ δε

∥∥∥A0

(
u

f

)∥∥∥+Kε

∥∥∥
(
u

f

)∥∥∥,
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where δε := max{2ε, (1 + a)ε}, Kε := max{2Cε, εb + Cε} (cf. [44, Lemma A.4].

Note that if β > 0, then following [44] we easily get that A0 + Bε generates a

compact analytic semigroup of angle π
2
for ε > 0 small enough).

If β < 0, to show that A0 + Bε has compact resolvent for some ε > 0, by [72,

Theorem IV.3.17] it suffices to show there exists λ ∈ ρ(A0) such that

(5.3.4) δε‖A0R(λ,A0)‖+Kε‖R(λ,A0)‖ < 1.

Now since ∆D and −|β|N are sectorial of angle π
2
, there exist C > 0 and r > 0

such that

(5.3.5) ‖R(λ,∆D)‖+ ‖R(λ,−|β|N)‖ ≤ C

|λ|
for all λ ∈ {z ∈ C : | arg z| ≤ 3π

4
} ∩ {z ∈ C : |z| > r}, say. In particular (5.3.5)

holds for ∆D on | arg z| = 3π
4
and −|β|N on | arg z| = π

4
, and so for −βN = +|β|N

on | arg z| = 3π
4
. Hence, still using the sum norm,

‖A0R(λ,A0)‖ = ‖∆DR(λ,∆D)‖+ ‖(−βN)R(λ,−βN)‖
≤ 2‖I‖+ |λ|(‖R(λ,∆D)‖+ ‖R(λ,−βN)‖)
≤ 2 + 2C

for λ ∈ C sufficiently large with | argλ| = 3π
4
. Since also

‖R(λ,A0)‖ = ‖R(λ,∆D)‖+ ‖R(λ,−βN)‖ ≤ 2C

|λ| ,

for such λ we have

δε‖A0R(λ,A0)‖+Kε‖R(λ,A0)‖ ≤ δε(2 + 2C) +Kε
2C

|λ| .

If we choose ε > 0 such that δε <
1
2
( 1
2+2C

), then choosing |λ| > max{4KεC, r} we
see (5.3.5) is satisfied. Hence for this ε, A0 + Bε has compact resolvent, and thus

so too does the similar operator ∆W
2 . �

Remark 5.3.8. Observe that the eigenvalues of A0, σ(A0), may be written as the

disjoint union of σ(∆D), which gives us a sequence heading to −∞, and σ(βN),

which gives us a sequence heading in the opposite direction, to +∞, and this only

arises if we flip the sign of β. (That is, if β > 0, then both sequences head in the

same direction and σ(A0) is essentially contained in a half-line, as in [44].) This

“double sequence” structure is the same as that found in [105], and provides what

might be considered an heuristic explanation for the phenomenon.
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We would of course like to make this heuristic explanation rigorous. More pre-

cisely, we would like to show that σ(∆W
2 ) (which we now know to be denumerable)

has the same form as σ(A0). Equivalently, it suffices to do this for the similar

operator A0 + Bε (for any ε > 0). This becomes a question about the stability of

the spectrum of A0 under the relatively bounded perturbation Bε, which is unfor-

tunately rather difficult to answer by these abstract means. As a first step we have

the following observation, which seeks to gain the most possible out of the method

of proof of Theorem 5.3.1 (in particular, we may use basically any ray through the

origin in place of arg z = 3π/4, which was chosen only to illustrate the principle).

Proposition 5.3.9. Let R be any ray through the origin of the complex plane

except for R. There exists ε0 = ε0(R) > 0 such that for all ε ∈ (0, ε0), there exists

K = K(R, ε) such that λ ∈ ρ(A0 + Bε) if λ ∈ R and |λ| ≥ K.

Proof. This follows from an easy modification of the proof of Theorem 5.3.1.

Given R, let C = C(R) > 0 satisfy the analyticity estimate (5.3.5) with the

argument of R in place of 3π
4
. Now let ε0 > 0 be such that δε0 <

1
2
( 1
2+2C

) for this

C. Then obviously this same estimate holds for all ε ∈ (0, ε0). For any such ε, if

we choose as before λ ∈ R satisfying |λ| > max{4KεC, r} (for our new values of

Kε and C), then for this ε and λ, λ ∈ ρ(A0) and the estimate (5.3.4) is satisfied,

implying λ ∈ ρ(A0 + Bε). �

(Clearly, we have not sought the optimal value for ε0 or K in the above proof.)

However, this tells us nothing about where the spectrum actually is. Ideally, we

would like to use [72, Theorem IV.3.18], which says that if we can draw a rectifiable,

simple closed curve Γ in the complex plane around a given large eigenvalue of A0,

such that the important estimate (5.3.5) holds for all λ ∈ Γ, then A0 + Bε must

have an eigenvalue enclosed by Γ. The difficulty is, somewhat ironically, that

because such a curve has to cross the real line (which is the area of interest)

the resolvent estimate (5.3.5) breaks down. It may be possible to overcome this

by exploiting the spectral gap between 0 ∈ ρ(−βN) and µ1 ∈ D(∆D) where a

resolvent estimate should hold. However, we will obtain the result using a very

different approach, namely the fixed point method of identifying eigenvalues we

will introduce in Chapter 6, combined with the properties of the Robin eigenvalues

we proved in Section 4.4 (see Remark 6.2.6 and Section 6.3).
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For the sake of comparison, we next briefly consider what happens when we

apply the method directly to the operator on H1(Ω) rather than considering it

as the restriction of ∆W
2 . In this case we use more closely the method of [46]

(an abstraction of [44]) for when β > 0, and combine this with the perturbation

method we used in the proof of Theorem 5.3.1 to deal with the case β < 0. The

price, however, is that we now need to assume ∂Ω is very smooth in order to use

the method. We make this all precise with the following result, although we do

not go into extensive detail.

Proposition 5.3.10. Let Ω be of class C2,1. The operator ∆W
H1 given by (5.1.2)

has compact resolvent for all β < 0 and γ ∈ L∞(∂Ω).

Proof. We first wish to show that if β > 0 then [46, Theorem 3.1] is valid. In

this case X = H1(Ω), ∂X = H
1
2 (∂Ω) by the trace theorem [64, Theorem 1.5.1.3]

and L : ∂X → X is the trace operator, Am = ∆max, and B and C are as defined

above. It is easy to see (cf. (5.1.2) and [46, Eq. (2.1)]) that in this case A = ∆W
H1 .

Moreover, L0 = (L|kerAM
)−1 = P : H

1
2 (∂Ω)→ ker∆max ⊂ H1(Ω).

Then condition (i) of [46, Theorem 3.1] is satisfied by Proposition C2.5. For

condition (ii), we require that the restriction of ∆max to ker tr = H1
0 (Ω), that is,

that ∆max|H1
0 (Ω) has compact resolvent and is sectorial of angle π

2
, but this is well-

known (for example, use [9, Example 7.2.1] to obtain this for ∆D on L2(Ω) and then

use that ∆max|H1
0 (Ω) is the part of ∆

D in the form domain H1
0 (Ω)). For (iii), we have

to prove that the operator B defined by (5.3.3) is relatively ∆max|H1
0 (Ω)-bounded

with bound zero. Since Ω is of class C2,1, we have D(∆D|H1
0 (Ω)) ⊂ H3(Ω) using [59,

Theorem 9.19], since in this case ∆u ∈ H1(Ω) for u ∈ D(∆D|H1
0 (Ω)). In particular

we obtain the estimate ‖u‖H3(Ω) ≤ K(‖∆u‖H1(Ω) + ‖u‖H1(Ω)) where K > 0 is

independent of u ∈ H3(Ω). Also, B is now a bounded operator from H2(Ω) to

H
1
2 (∂Ω) = ∂X , so that D(∆max|H1

0 (Ω)) = D(∆D|H1
0 (Ω)) ⊂ D(B). Since in fact

H3(Ω) embeds compactly in H2(Ω) by Rellich’s theorem it follows from Ehrling’s

Lemma (see [98, Theorem 6.99]) that for all ε > 0 there exists C = C(ε) > 0 such

that
∥∥∥∂u
∂ν

∥∥∥
H

1
2 (∂Ω)

≤ ε‖∆u‖H1(Ω) + C‖u‖H1(Ω)

for all u ∈ D(∆max|H1
0 (Ω)) ⊂ H3(Ω), giving the desired result. (Compare this with

Lemma C1.1.)
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Finally, in this case, the negative of the Dirichlet-to-Neumann map N generates

a compact analytic semigroup of angle π
2
by Theorem C3.2. Hence (iv) is satisfied

by −βN if β > 0. In particular, by [46, Theorem 3.1] if β > 0 then the operator

∆W
H1 generates a compact analytic semigroup of angle π

2
on H1(Ω). If however

β < 0, then we may replace [46, Lemma A.4] with the same argument as in the

proof of Theorem 5.3.1 to conclude that ∆W
H1 still has compact resolvent. �

Remark 5.3.11. In [76, Proposition 2.6], we used the same method as in the

proof of Proposition 5.3.10, and essentially for the same purpose, but following

[44] we were working in the space C(Ω) rather than H1(Ω). In fact the result from

[76] tells us that for Ω of class C2,η, a realisation of ∆W on C(Ω) (different from

the one in (5.1.3); instead using the setup of [44]) has compact resolvent for all

β < 0 and γ ∈ C(∂Ω).



Chapter 6

The Eigenvalues of the Wentzell Laplacian

Here we wish to study the eigenvalues of the Wentzell problem (1.1.3) in more

detail. After looking at some general spectral properties, we will consider the form

and structure of the principal eigenvalues and the other eigenvalues separately. We

will conclude with a few elementary variational and monotonicity properties akin

to those considered in Section 1.3.

6.1. General remarks

We start by showing that the spectrum of the Wentzell problem is essentially

independent of the many realisations of the operator we considered in Chapter 5.

More precisely, the next lemma, when combined with the results of Chapter 5,

shows that, regardless of the sign of β, γ 6= 0, if Ω is a bounded, Lipschitz domain,

then σ(∆W
2 ) = σp(∆

W
2 ) = σp(∆

W
H1) (where σp(A) is the point spectrum of A).

Moreover, if Ω is sufficiently smooth (Lipschitz if β > 0 or C1,1 will certainly do if

β < 0), then in addition σp(∆
W
H1) = σ(∆W

H1). Note when considering ∆W
2 given by

(5.1.4) that it does not matter whether we use the measure dx⊕ dσ
β

(which we can

do if β > 0) or dx⊕ dσ (which we must do if β < 0) on L2(Ω)⊕L2(∂Ω), since this

will not affect the spectrum of ∆W
2 . From now on we will restrict our attention to

the case where β, γ 6= 0 are constants rather than possibly L∞-functions, although

this will not always be necessary.

Lemma 6.1.1. Let Ω ⊂ RN be a bounded, Lipschitz domain and assume β, γ 6= 0

are constant. Then σp(∆
W
2 ) = σp(∆

W
H1).

Proof. The inclusion σp(∆
W
H1) ⊂ σp(∆

W
2 ), taking into account the isomorphism de-

scribed in Remark 5.1.1, is obvious. For the other inclusion, suppose Λ ∈ σp(∆W
2 ),

and let u be an associated eigenfunction. This means that −∆W
2 (u, u|∂Ω) =

Λ(u, u|∂Ω), that is, −∆u = Λu ∈ H1(Ω) and β ∂u
∂ν

+ γu = Λu on ∂Ω, that is,

(∆u)|∂Ω + β ∂u
∂ν

+ u|∂Ω = 0. Hence Λ ∈ σp(∆W
H1). �

96
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So from now on, we will speak only of the eigenvalues “of the Wentzell Lapla-

cian”, i.e. the problem (1.1.3), since it does not matter which operator we use. In-

deed, the regularity theory we consider below implies that we also have σp(∆
W
H1) =

σp(∆
W
C ), where ∆W

C is given by (5.1.3).

We will largely be interested in eigenvalues of the following type.

Definition 6.1.2 (Principal eigenvalue). For any of the operators under consid-

eration, we shall call an eigenvalue Λ principal if its eigenspace is one-dimensional

and its eigenfunction can be chosen strictly positive in Ω; in particular, a principal

eigenvalue will be isolated.

Note that for a a self-adjoint operator which is bounded from below, such

as the Dirichlet or Robin Laplacian, the first eigenvalue, which is equal to the

spectral bound, is the unique principal eigenvalue (at least if Ω is connected. See

Appendix A5). For the Wentzell Laplacian, we will see that there may be anywhere

from zero to two principal eigenvalues, depending on β and γ. Thus the notion of a

principal eigenvalue generalises the idea of a first eigenvalue. On this point, we note

that our definition is stronger than what is often used, due to the requirement on

the eigenspace. However, Lemma 6.1.3 shows that this is not actually a restriction

at all, at least in our case, since if Ω is connected then any positive eigenfunction

of (1.1.3) lies in a one-dimensional eigenspace. Note that if β > 0, then the

Wentzell Laplacian is self-adjoint (at least on the right space; see Remark 5.2.3)

and hence, as in the Dirichlet and Robin cases, we automatically get exactly one

such principal eigenvalue (see also Remark 6.2.2). We will use a different approach

to obtain and study the principal (and other) eigenvalues. The attraction, both of

our approach and of the definition, is that they work equally well in the non-self-

adjoint case β < 0. Our method is based on the following elementary identification

of every Wentzell eigenvalue (resp. function) as the eigenvalue (resp. function) of

an appropriately chosen Robin problem.

Lemma 6.1.3. Let Ω ⊂ RN be a bounded, Lipschitz domain. Suppose u is an

eigenfunction of (1.1.3), with eigenvalue Λu. Then u is an eigenfunction, with

eigenvalue Λu, of the Robin problem (1.1.2) with boundary parameter α := γ−Λu

β
∈

R. If in addition Ω is connected and u is positive in Ω, then Λu is the first eigen-

value of (1.1.2) for this value of α, and the eigenspace of Λu is one-dimensional.
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Proof. First suppose u is an eigenfunction of (1.1.3), with eigenvalue Λu. Since

−∆u = Λuu (weakly) in Ω and ∆u ∈ H1(Ω), by taking traces we see u satisfies

the boundary condition

(6.1.1)
∂u

∂ν
+
γ − Λu
β

u = 0 on ∂Ω.

Setting α := γ−Λu

β
∈ R, it follows immediately that u is an eigenfunction with

eigenvalue Λu of (1.1.2) for this α.

Now suppose u is positive. By Theorem 1.3.1, since Ω is connected there is

exactly one positive eigenfunction v (unique up to scalar multiples) of (1.1.2), and

λ1 = λ1(Ω, α) is its associated eigenvalue. The only possibility is that u = kv for

some constant k > 0 and Λu = λ1(Ω, α). Similarly, if u1 and u2 are two positive

eigenfunctions of (1.1.3) for Λu, then by considering Λu as the first eigenvalue of

(1.1.2), we must have u1 = mu2 for some m > 0. �

Corollary 6.1.4 (Regularity of eigenfunctions). Every eigenfunction u of (1.1.3)

lies in H1(Ω) ∩ C(Ω) ∩ C∞(Ω). If Ω is of class C2 and β, γ > 0, then in addition

u ∈ W 2,p(Ω) ∩ C1(Ω) for every 1 < p <∞.

Proof. This follows immediately from Lemma 6.1.3 and Theorem 1.2.8. �

Remark 6.1.5. (i) We can go further than Lemma 6.1.3 in making explicit the

link between the eigenvalues of the Robin problem (1.1.2) and those of the Wentzell

problem (1.1.3). More precisely, we may identify every Wentzell eigenvalue via a

type of fixed point argument involving the Robin problem. If, given Ω, β, γ and

k ≥ 1, we can find α ∈ R such that α = β−1(γ − λk(α)), then it is clear from

(6.1.1) that for this value of α, λk = λk(Ω, α) will be an eigenvalue Λ(Ω, β, γ) of

(1.1.3); moreover, every eigenvalue of (1.1.3) can be written in this way. This

means that the Wentzell eigenvalues are in exact correspondence with the points

of intersection of the family of curves gk(α) := β−1(γ − λk(α)), k ≥ 1, with the

fixed point line f(α) = α. In particular, by Lemma 6.1.3, all principal eigenvalues

Λ(β, γ) will be given by λ1(α), where g1(α) = β−1(γ − λ1(α)) = α. The next two

sections are dedicated to exploring this in more detail.

(ii) It appears this fixed point idea has not really been used in the study of

the Wentzell problem before. However, something similar was used to study an

analogous problem in ordinary differential equations in a series of papers by Bind-

ing, Browne and Watson (see for example [16, 17, 18]). The authors call their
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problems Sturm-Liouville problems with eigenparameter-dependent boundary con-

ditions, and use various techniques to transform the boundary conditions into sim-

pler forms. (My thanks to Prof. Goldstein for drawing this to my attention.)

6.2. The principal eigenvalues

This section is devoted to studying the principal eigenvalues of (1.1.3). In

particular, we wish to classify the number and sign of them that a given domain

Ω possesses, depending on the sign of the parameters β and γ. In this section,

since we are dealing with principal eigenvalues we will assume for simplicity and

without particular loss of generality that Ω is connected (see Remark 1.3.2). Our

main result for the section is the following theorem. Recall that, by definition,

every principal eigenvalue for us is isolated (that is, is the only eigenvalue in an

open C-neighbourhood and has one-dimensional eigenspace).

Theorem 6.2.1. Let Ω ⊂ RN be a bounded, connected domain satisfying the

minimal regularity assumptions of Section 5.2 or 5.3 as appropriate.

(i) If β, γ > 0 there exists a unique principal eigenvalue Λ1 = Λ1(Ω, β, γ) of

the problem (1.1.3), which satisfies 0 < Λ1 < Λ for every other eigenvalue

Λ of (1.1.3).

(ii) If β > 0, γ < 0, there exists a unique principal eigenvalue Λ1 of (1.1.3)

which now satisfies Λ1 < 0 and Λ1 < Λ for every other eigenvalue Λ of

(1.1.3).

(iii) If β, γ < 0, there exist two principal eigenvalues Λ−
1 and Λ+

1 satisfying

Λ−
1 < 0 < Λ+

1 . Moreover, there is no other eigenvalue Λ ∈ [Λ−
1 ,Λ

+
1 ].

(iv) If β < 0, γ > 0, then

(a) for every β ∈ (−σ(∂Ω)
|Ω|

, 0), there exists a unique γ∗ = γ∗(Ω, β) > 0

such that there are two positive principal eigenvalues 0 < Λ−
1 < Λ+

1

for 0 < γ < γ∗, one (0 < Λ−
1 = Λ+

1 ) for γ = γ∗, and no principal

eigenvalues for γ > γ∗. As β → −σ(∂Ω)
|Ω|

, γ∗ → 0;

(b) if β = −σ(∂Ω)
|Ω|

, there is no principal eigenvalue for any γ > 0;

(c) for every β ∈ (−∞,−σ(∂Ω)
|Ω|

), there exists a unique γ∗∗ = γ∗∗(Ω, β) > 0

such that there are two negative principal eigenvalues Λ−
1 < Λ+

1 < 0

for 0 < γ < γ∗∗, one for γ = γ∗∗ and no principal eigenvalues for

γ > γ∗∗. As β → −σ(∂Ω)
|Ω|

, γ∗∗ → 0.
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If for a given pair β, γ there are two principal eigenvalues Λ−
1 < Λ+

1 , then

there does not exist another eigenvalue Λ ∈ [Λ−
1 ,Λ

+
1 ].

To find the principal eigenvalue(s) of (1.1.3) we will use the fixed point argu-

ment described in Remark 6.1.5(i), involving the function g1(α) = β−1(γ − λ1(α))
This will make heavy use of the properties of λ1(α) listed in Theorem 1.3.1. We

consider four different cases corresponding to those in Theorem 6.2.1. Case (iv)

will be considered separately.

Remark 6.2.2. For (i) and (ii), there is a generic method available to show the

existence of the principal eigenvalue (see Remark 6.2.6(i)), which would also allow

the same conclusion to be obtained under far more general assumptions on β and

γ; say, β0 ≤ β ∈ L∞(∂Ω), where β0 is a positive constant, and γ ∈ L∞(∂Ω).

Our fixed point method, apart from working in all cases, also allows us to relate

the Wentzell eigenvalues to the Robin ones in a way that will be useful for the

isoperimetric inequalities in Chapter 7.

Proposition 6.2.3. The following statements are true.

(i) If β, γ > 0, then the function g1 defined above has exactly one fixed point

α. In this case α > 0.

(ii) If β > 0, γ < 0, then g1 has exactly one fixed point α. In this case α < 0.

(iii) If β, γ < 0, then g1 has exactly one positive fixed point and exactly one

negative fixed point.

Proof. (i) The function g1(α) = β−1(γ−λ1(α)) is on [0,∞), with g1(0) = β−1γ >

0. Since β > 0 and λ1
′(α) > 0 everywhere (Theorem 1.3.1(vi)), it is strictly

monotonically decreasing, so g1(β
−1γ) < β−1γ. By the intermediate value theorem,

g1(α) = α for some α ∈ (0, β−1γ). (See Figure 6.1.) The fixed point α is unique

because g1(α) is decreasing everywhere.

(ii) The argument is essentially the same as in case (i). Since g1(α) is contin-

uous and monotonically decreasing on (−∞, 0], with g1(0) = β−1γ < 0, we have

g1(β
−1γ) > β−1γ. By the intermediate value theorem there is a fixed point in

(β−1γ, 0). As in case (i), uniqueness follows immediately since g1(α) is decreasing.

(iii) We start with the positive fixed point. Since g1(0) = β−1γ > 0 and

limα→∞ g1(α) = β−1(γ − µ1(Ω)) ∈ (β−1γ,∞), by the intermediate value theorem

g1(α) = α for some α ∈ (0,∞). Since β < 0, g1 is monotonically increasing, as
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α
β−1(γ − λD1 )

g1(α) = β−1(γ − λ1(α))

λD1 λ1(α)

f(α) = α

b

Figure 6.1. The fixed point when β > 0, γ > 0. Heuristically, the

case β > 0, γ < 0 is similar.

well as strictly concave (that is, g1
′(α) is strictly decreasing everywhere). So there

can only be one fixed point in [0,∞). (See Figure 6.2.)

α

g1(α)
λD1

λ1(α)

f(α) = α
b

b

Figure 6.2. There are two fixed points when β < 0, γ < 0. The

case β < 0, γ > 0 is similar, although more complicated.

For the negative fixed point, the same concavity argument tells us there can

be at most one in (−∞, 0]. We have g1(0) > 0. By (1.3.3), g1(α) ≤ β−1(γ + α2)

for α < 0, so certainly g1(α) < α for α large enough. �

Remark 6.2.4. We note that the smoothness assumptions we have been making

in cases (iii) and (iv) are necessary only to ensure that at least one realisation

of the Wentzell Laplacian has compact resolvent. The formal calculations always

work, even if Ω is only Lipschitz. For the rest of this section we will not explicitly

make further reference to the smoothness assumptions we are making.
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Before we consider case (iv), we make the following observation about the

nature of the principal eigenvalues we are finding. Note that part (ii) below applies

whenever β < 0, that is, to cases (iii) and (iv) of Theorem 6.2.1.

Proposition 6.2.5. (i) In cases (i) and (ii) of Proposition 6.2.3, the unique

principal eigenvalue is the first, or smallest, eigenvalue of (1.1.3).

(ii) Suppose β < 0 and there are two fixed points α− < α+. Denote the two as-

sociated principal eigenvalues of (1.1.3) by Λ−
1 := λ1(α

−) < Λ+
1 := λ1(α

+).

Then there does not exist an eigenvalue of (1.1.3) in (Λ−
1 ,Λ

+
1 ).

Proof. (i) In both these cases we have β > 0. Denote the unique principal eigen-

value by λ1(α
∗), where α∗ = β−1(γ − λ1(α∗)) is the unique fixed point. Suppose

for a contradiction that there exists an eigenvalue Λ ∈ (−∞, λ1(α∗)). Then Λ

would be an eigenvalue, say the nth, of a Robin problem (1.1.2) with boundary

parameter α̃ := β−1(γ − Λ) ∈ R. That is, we can write Λ = λn(α̃). Then we

have α∗ = β−1(γ − λ1(α
∗)) < β−1(γ − λn(α̃)) = α̃ using the contradiction as-

sumption. Now since β > 0 we know by Theorem 1.3.1 that β−1(γ − λ1(α)) is

decreasing everywhere and so β−1(γ − λ1(α)) < α for all α > α∗. In particular,

β−1(γ − λ1(α̃)) < α̃. But since β > 0, β−1(γ − λn(α)) ≤ β−1(γ − λ1(α)) for all

n ≥ 1 and all α ∈ R. In particular, α̃ = β−1(γ − λn(α̃)) ≤ β−1(γ − λ1(α̃)) < α̃, a

contradiction.

(ii) Similarly, suppose there exists an eigenvalue Λ ∈ (Λ−
1 ,Λ

+
1 ), and write Λ as

the nth eigenvalue of (1.1.2) so that Λ = λn(α̃). Now g1(α) = β−1(γ − λ1(α)) > α

for all α ∈ (α−, α+), since g1(α) is strictly concave with g1(α) = α at α = α−, α+.

By definition of the fixed points, we have α̃ ∈ (α−, α+), so that β−1(γ−λ1(α̃)) > α̃.

But for all α ∈ R, β−1(γ − λn(α)) ≥ β−1(γ − λ1(α)), since β < 0. In particular,

α̃ = β−1(γ − λn(α̃)) > α̃, a contradiction. �

Remark 6.2.6. (i) There is a generic argument available to show that when β > 0

there is unique principal eigenvalue which is also the first (cf. Remark 6.2.2). By a

well known theorem of Courant and Hilbert [30, Section VI.6] the first eigenvalue

of any self-adjoint second order differential equation with arbitrary homogeneous

boundary conditions is principal. Since our operator is self-adjoint exactly when

β > 0 (since it is associated with an elliptic form – combine the proof of Theo-

rem 5.2.1 with, for example, the theory in [9, Section 7.1]), when we combine this

with the uniqueness of the principal eigenvalue, the result follows. Equivalently,
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if an operator generates a compact, positive and irreducible semigroup, then by

the Krein-Rutman theorem, that is, infinite-dimensional Perron-Frobenius theory,

its spectral bound is a real number and this is the unique eigenvalue which has

a strictly positive eigenfunction which is unique up to scalar multiples. (See [42,

Chapter 7] or Appendix A5. Cf. also Section 6.4, where there is some variational

theory.)

(ii) When there are two principal eigenvalues, we will show in Section 6.3 that,

just as the larger is at the base of a sequence tending to ∞, the smaller one is

always at the head of a sequence of negative eigenvalues tending to −∞, at least if

Ω has sufficiently smooth boundary (cf. Remark 5.3.8 and the discussion following

it). This seems to be a rather difficult result to obtain, as noted in [105]. Our

fixed point method gives an independent proof to the ones used in [14, 105] (which

studied slightly different or less general problems). However, since we will use the

asymptotic estimates obtained in Section 4.4 our method of proof cannot really be

considered simpler than the ones used in [14, 105].

We now consider case (iv). In this case, since β < 0, the function g(α) has the

same slope as in case (iii), only shifted down (cf. Figures 6.2 and 6.3). Heuristically,

this gives rise to two essentially different types of behaviour. If |β| is large, so that

g1 is flat near α = 0, then we can expect negative fixed points (as in Figure 6.3).

If |β| is small, then g1 is steep near α = 0 and we can expect positive fixed points.

Note that we expect no more than two fixed points, and these should have the

same sign. For some values of β < 0, we expect fewer than two.

We wish to formalise these ideas. We start with the following simple but useful

observation, which was implicitly used in the proof of Proposition 6.2.5(ii).

Lemma 6.2.7. Let β < 0 and γ 6= 0. If g1(α) has two fixed points α− < α+,

then {α ∈ R : g1(α) > α} = (α−, α+). Moreover, if there exists α̃ ∈ R for which

g1(α̃) > α̃, then there exist exactly two fixed points α− < α̃ < α+.

Proof. By Theorem 1.3.1, g1(α) is strictly increasing and strictly concave every-

where, so the first statement follows immediately. The second statement follows

from exactly the same argument as in the proof of Proposition 6.2.3(iii), only with

α̃ in place of α = 0. �
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We now wish to establish the existence of values of β, γ for which there is

exactly one fixed point. These can be considered “borderline cases”. They occur

when the curve g1(α) is tangent to the fixed point line at the point of intersection

(see Figure 6.3).

Lemma 6.2.8. For all β ∈ (−σ(∂Ω)
|Ω|

, 0) there exists γ∗ = γ∗(Ω, β) > 0 such that

there exists exactly one positive solution α∗ to the fixed point problem α = β−1(γ∗−
λ1(α)). Moreover, for all β ∈ (−∞,−σ(∂Ω)

|Ω|
), there exists γ∗∗(Ω, β) > 0 for which

there exists exactly one negative fixed point α∗∗.

Proof. Given β, we wish to find γ such that there exists a point of intersection

at which the curve g1(α) is tangent to the fixed point line f(α) = α. Since g1 is

strictly concave, this point of intersection, if it exists, must be unique. Thus we

are looking for γ and α for which, given β, α = β−1(γ − λ1(α)) and g1
′(α) = 1.

The latter is equivalent to λ1
′(α) = −β.

For the positive fixed point, by Theorem 1.3.1, λ1
′(α) is a strictly monotonically

decreasing surjection from (0,∞) to (0, σ(∂Ω)
|Ω|

). Hence given any β ∈ (−σ(∂Ω)
|Ω|

, 0),

there indeed exists α∗ ∈ (0,∞) for which λ1
′(α∗) = −β.

Choosing γ∗ := βα∗ + λ1(α
∗) gives us the desired value of γ. If β > −σ(∂Ω)

|Ω|
,

then by (1.3.2), g1
′(0) > 1 and g1 must lie below the fixed point line. In particular,

g1(0) = β−1γ∗ < 0, implying γ∗ > 0.

For the negative fixed point, using the estimate (1.3.3), λ1
′(α) maps (−∞, 0)

onto (σ(∂Ω)
|Ω|

,∞), and so given β ∈ (−∞, σ(∂Ω)
|Ω|

), there again exist α∗∗ ∈ (−∞, 0)
and γ∗∗ = βα∗∗ + λ1(α

∗∗) > 0 satisfying the requirements of the lemma. �

α

β−1(γ1 − λ1(α))
β−1(γ∗∗ − λ1(α))
β−1(γ2 − λ1(α))

b

b

b

β−1(γ1 − λD1 )

Figure 6.3. The family of curves obtained by fixing β and varying

γ. In this case, since |β| is small, we are searching for γ∗∗ not γ∗.
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In fact, since λ1
′(α) is monotonic and hence a bijection, α∗ and α∗∗, and hence

γ∗ and γ∗∗, must be unique. This is formalised in the following classification, which

also establishes the existence of two principal eigenvalues for some β and γ.

Lemma 6.2.9. Fix β < 0 and suppose γ∗ is any value of γ > 0 for which there is

exactly one fixed point. Then there are two positive fixed points for the pair β, γ

if γ ∈ (0, γ∗) and no fixed points if γ ∈ (γ∗,∞). Similarly, if there is exactly one

negative fixed point for some γ∗∗ > 0, then there are two negative fixed points if

γ ∈ (0, γ∗∗) and no fixed points if γ ∈ (γ∗∗,∞).

Proof. We prove the statement for γ∗; the proof for γ∗∗ is essentially the same, and

is omitted. First suppose γ ∈ (0, γ∗). Then β−1(γ − λ1(α)) > β−1(γ∗ − λ1(α)) for
all α > 0 and in particular β−1(γ − λ1(α∗)) > α∗, where α∗ is the fixed point from

Lemma 6.2.8. By Lemma 6.2.7 there must therefore be exactly two fixed points

α− < α+ for the pair β, γ. Clearly α+ > α∗ > 0, while since β−1γ = g1(0) < 0

and g1(α
∗) > α∗ we must have α− ∈ (0, α∗). Hence both fixed points are positive.

Suppose now that γ > γ∗. Since γ∗ satisfies β−1(γ∗−λ1(α)) ≤ α for all α ∈ R,

γ satisfies β−1(γ−λ1(α)) < α for all α ∈ R, so there cannot be any fixed point. �

We also consider the special case when β = −σ(∂Ω)
|Ω|

. The case β = −σ(∂Ω)
|Ω|

and

γ = 0 is called the “critical case” in [105], where the analysis is much harder. This

also corresponds to the “resonance case” in [14].

Lemma 6.2.10. When β = −σ(∂Ω)
|Ω|

, there are no fixed points for any γ < 0.

Proof. For this value of β, by Theorem 1.3.1, g1
′(0) = 1, while g1(0) = β−1γ < 0.

Since g1
′(α) is strictly decreasing on R, it follows that g1(α) ≤ g1(0) + α < α for

all α ∈ R, and hence there are no fixed points. �

Remark 6.2.11. (i) As β ց −σ(∂Ω)
|Ω|

, λ1
′(α∗) = −β ր σ(∂Ω)

|Ω|
, implying α∗ → 0 and

so γ∗ = λ1(α
∗) + βα∗ → 0. Similarly, as β ր −σ(∂Ω)

|Ω|
, λ1

′(α∗∗) ց σ(∂Ω)
|Ω|

, implying

α∗∗ → 0 and γ∗∗ → 0. (See also Figure 7.1.)

(ii) We could of course fix γ and search for β∗(Ω, γ). However, it seems more

natural to do it our way since β is in a sense more important for determining the

structure of the eigenvalues: changing γ merely shifts the spectrum but changing

β might change its structure (cf. Remark 6.2.6(ii) or Lemma 6.2.10).

If we combine Propositions 6.2.3 and 6.2.5, Lemmata 6.2.8, 6.2.9 and 6.2.10 and

Remark 6.2.11(i) with our earlier remarks, we see we have proved Theorem 6.2.1.
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Remark 6.2.12. We finish by explicitly mentioning what happens if Ω is not

connected, since this will be important in the sequel. In this case Ω will consist of

finitely many connected components, each bounded and with the appropriate de-

gree of regularity (Lipschitz or C1,1). As usual, it is clear that the eigenvalues (and

functions) of Ω can be found by collecting and rearranging the eigenvalues (func-

tions) of all the individual connected components. Moreover, since the fixed point

argument is unaffected (Remark 6.1.5(i) does not assume that Ω is connected), in

cases (i)-(iii), the only difference will be the number of principal eigenvalues (as

with all other boundary conditions), but case (iv) is more complicated. We defer

considering this in more detail until the next section.

6.3. The other eigenvalues

Here we wish to use the ideas introduced at the start of the chapter to describe

and classify the other eigenvalues of the Wentzell problem (1.1.3) depending on

the different signs of β and γ. Naturally, we will use Theorem 1.3.5 in place of

Theorem 1.3.1. Since the former contains less information than the latter, we can

say correspondingly less about Λk relative to Λ1.

We first wish to establish a complement to the statement on principal eigenval-

ues in Lemma 6.1.3, that is, that the kth eigenvalue of the Wentzell Laplacian is

just the kth eigenvalue (for the same k) of the Robin problem (1.1.2) for suitable

α. Unlike in the case of a principal eigenvalue, depending on the sign of β it is not

exactly clear what we mean by “the kth eigenvalue of (1.1.3)” and so we need a

more involved classification. If β < 0 we obtain two sequences of eigenvalues, one

heading in each direction away from the origin. We keep the case numbers from

Theorem 6.2.1. For this we do not assume that Ω is connected.

Theorem 6.3.1. Let Ω ⊂ RN be a bounded, Lipschitz domain, and fix β, γ ∈
R \ {0}.
(i), (ii) If β > 0, then there exists a sequence of eigenvalues Λ1 ≤ Λ2 ≤ Λ3 ≤ . . .,

where Λk = Λk(Ω, β, γ). For every k ≥ 1 there exists αk = α(Ω, β, γ, k) ∈ R

such that Λk = λk(αk). Moreover αk → −∞ and Λk →∞ as k →∞.

(iii) Suppose β < 0 and γ < 0. Then there exist sequences 0 < Λ+
1 ≤ Λ+

2 ≤
Λ+

3 ≤ . . . → ∞, and 0 > Λ−
1 ≥ Λ−

2 ≥ . . . → −∞, where Λ±
k = Λ±

k (Ω, β, γ)

satisfies Λ±
k = λj(αk) for some j ≤ k and some αk ∈ R.
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(iv) Suppose β < 0 and γ > 0. Then there exists a denumerable set of eigen-

values Λm = Λm(Ω, β, γ), where m ∈ Z, and such that Λm → ±∞ as

m→ ±∞.

Remark 6.3.2. (i) In cases (iii) and (iv), unlike in (i) and (ii) we cannot in

general say that Λ±
k = λk(αk) for some αk ∈ R because we do not know that

λk is a concave function of α (see Theorem 1.3.5 and the comments following it).

This means that we cannot rule out multiple solutions (i.e. more than two) to the

fixed point equation β−1(γ − λk(α)) = α, leading to multiple Wentzell eigenvalues

associated with λk.

(ii) Case (iv) becomes even more complicated if Ω is not connected; in particular

gk(α) will tend not to be differentiable at α = 0 (see Remark 1.3.2). As an

example, suppose Ω is the disjoint union of Ω1 and Ω2, with −σ(∂Ω1)/|Ω1| < β <

−σ(∂Ω2)/|Ω2|. Then there will be no fixed points associated with g1. It could then

be arranged so that there are four eigenvalues associated with g2, say, of which two

are principal (and of different signs) and two are not.

(iii) We remark however that if Ω is connected it is easy to see from the proof

of Theorem 6.3.1 that, whenever we have principal eigenvalues Λ−
1 ≤ Λ+

1 , we can

find sequences of eigenvalues Λ+
1 < Λ+

2 ≤ . . .→∞ and Λ−
1 > Λ−

2 ≥ . . .→ −∞.

(iv) We observe again (cf. Remark 6.1.5(ii)) that the ideas here are of a similar

flavour to the ordinary differential equations studied in [16, 17] and related papers.

Proof. The proof is routine, and uses an easy induction argument. First note that,

as in the case of the principal eigenvalues, by Remark 6.1.5(i), for any β, γ ∈ R\{0}
the set of fixed points {α ∈ R : β−1(γ − λk(α)) = α for some k ≥ 1} is in exact

correspondence with the set of Wentzell eigenvalues for this β, γ. Let gk : R→ R,

gk(α) = β−1(γ − λk(α)).
We also note that if for some value of β, γ ∈ R \ {0} we have Λ1(Ω) = Λ2(Ω),

then it follows there exists α ∈ R such that Λ1(Ω) = λ1(Ω, α) = λ2(Ω, α) = Λ2(Ω).

In case (iii) we replace Λ{1,2} with Λ±
{1,2}; in case (iv) we are assuming Ω is connected

so this cannot happen to the principal eigenvalues.

(i), (ii) For every k ≥ 1 the curve gk(α) is continuous and monotonically de-

creasing (see Theorem 1.3.5). Hence for all k ≥ 1 there exists a unique αk ∈ R

such that gk(αk) = αk; this of course will be a Wentzell eigenvalue.
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Moreover, since λk(α) ≤ λk+1(α) for all α ∈ R and β > 0, gk+1(α) ≥ gk(α) for

all k and α and so we must have αk ≥ αk+1 for all k. Since β−1(γ − λk(αk)) = αk

by construction, and β > 0, this implies λk(αk) ≤ λk+1(αk+1) for all k ≥ 1. Hence

by induction Λk exists and equals λk(αk).

Finally, since our operator is self-adjoint we know from abstract operator theory

that Λk →∞ as k →∞. However we will prove this directly. Note that αk → −∞
implies Λk → ∞ since Λk = λk(αk) = γ − βαk. Suppose that αk 9 −∞. By

monotonicity there exists α̃ ∈ R such that αn ց α̃. Since β−1(γ−λk(αk)) = αk ≥
α̃, by monotonicity β−1(γ−λk(α̃)) ≥ α̃. In particular λk(α̃) ≤ γ−βα̃ for all k ≥ 1,

contradicting λk(α̃)→∞ as k →∞ by Theorem 1.2.6.

(iii) The argument is similar. We know there exists α+
1 > 0 such that Λ+

1 =

λ1(α
+
1 ). Moreover for all k ≥ 1, gk(0) = β−1(γ − λk(0)) > 0, while gk is contin-

uous and monotonically increasing with limα→∞ gk(α) ≤ β−1(γ − µk) (see The-

orem 1.3.5). In particular for every k ≥ 1 there is at least one fixed point

α+
k ∈ (0,∞) corresponding to a Wentzell eigenvalue, which means λk(α

+
k ) cor-

responds to Λj = Λj(αk) for some j ≥ k. To show that Λ+
k → ∞, for each k let

α+
k be the smallest fixed point of gk(α). Then gk+1(α) ≥ gk(α) for all k and α

implies α+
k+1 ≥ α+

k . Since α+
k → ∞ implies the Wentzell eigenvalue Λj(α

+
k ) (not

necessarily the kth) tends to ∞, assume for a contradiction that α+
k → α̃. Then

once again this implies the sequence λk(α̃) ≤ γ − βα̃ is bounded from above as

k →∞, a contradiction.

Now we consider the negative eigenvalues. Again gk(α) is continuous and mono-

tonically increasing, with gk(0) > 0. By Theorem 4.4.1, there exists α̃k < 0 such

that gk(α̃k) < α̃k. Thus we get at least one Wentzell eigenvalue for each curve gk.

Every other property follows in a manner entirely analogous to that of the positive

case.

(iv) We note that there exists k0 ≥ 1 sufficiently large such that gk0(0) =

β−1(γ − λk0(0)) > 0. Hence as in (iii) we will obtain at least two fixed points for

gk0. By an argument essentially the same as in (iii), we will also obtain at least

two for each gk with k ≥ k0. The proof that Λk → ±∞ is essentially the same as

in (iii) as well. �

Finally, for completeness’ sake, in case (iv) we note that if λk(α) is not concave,

then it is not really possible to define analogues of γ∗ and γ∗∗ for k > 1 (see



6.4. Variational and monotonicity properties 109

Lemmata 6.2.8 and 6.2.9 and Remark 6.2.11). If in fact it turns out λk(α) is

concave and C1 (which except in special cases requires Ω to be connected), then

γ∗k and γ∗∗k should be defined as follows. For β ∈ (−λk ′(0), 0), define

(6.3.1) γ∗k := sup{γ > 0 : β−1(γ − λk(α)) = α for some α ∈ R}.

Similarly, for β ∈ (−∞,−λn′(0)), define

(6.3.2) γ∗∗k := sup{γ > 0 : β−1(γ − λk(α)) = α for some α ∈ R}.

(Recall that λ1
′(0) = σ(∂Ω)/|Ω|.) Under these assumptions gk has at least one

fixed point, and hence there is at least one Wentzell eigenvalue corresponding to

λk, if β ∈ (−λk ′(0), 0) and γ ∈ (0, γ∗k], or if β ∈ (−∞,−λk′(0)) and γ ∈ (0, γ∗∗k ];

while there are no fixed points if β ∈ (−λk ′(0), 0) and γ ∈ (γ∗k,∞), β = −λk ′(0) or
if β ∈ (−∞,−λk ′(0)) and γ ∈ (γ∗∗k ,∞).

6.4. Variational and monotonicity properties

Here we look at further results concerning the Wentzell eigenvalues (mostly the

principal ones), with particular reference to variational, continuity and monotonic-

ity properties. Let Ω ⊂ R
N be a fixed bounded, Lipschitz domain throughout, not

necessarily connected; when dealing with β < 0 assume in addition that Ω is of

class C1,1 if compactness of the resolvent is desired.

We start with some elementary variational theory. We fix β, γ ∈ R \ {0}. The
first result is essentially a weak version of the fixed point argument.

Lemma 6.4.1. Suppose Λ is an eigenvalue of (1.1.3) with corresponding eigen-

function ψ. Then Λ 6= 0 if and only if

(6.4.1) Λ =

∫
Ω
|∇ψ|2 +

∫
∂Ω
γψ2 dσ

β∫
Ω
ψ2 dx+

∫
∂Ω
ψ2 dσ

β

,

while Λ = 0 if and only if γ/β is an eigenvalue ξ < 0 of the Steklov problem

(6.4.2)

∆u = 0 in Ω,

∂u

∂ν
+ ξu = 0 on ∂Ω.

The variational theory for the Steklov problem is similar to – and to an extent

can be deduced from – that of the Robin problem in Section 1.3, with λ = 0 and

ξ = α < 0.
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Proof. We have Λ = Λ(Ω, β, γ) = λk(Ω,
γ−Λ
β

) for some k ≥ 1, with ψ being an

eigenfunction of λk. This means that

(6.4.3) Λ = λk =

∫
Ω
|∇ψ|2 dx+

∫
∂Ω

γ−Λ
β
ψ2 dσ

∫
Ω
ψ2 dx

.

It is easy to see by rearranging that this is equivalent to (6.4.1) if and only if

Λ 6= 0. If Λ = 0, then from (6.4.3) we see that γ/β and ψ are variational solutions

to the problem (6.4.2). (Equivalently, we could work in the classical framework

and substitute Λ = 0 into (1.1.3) interpreted classically.) Similarly, if γ/β solves

(6.4.2) with corresponding eigenfunction ψ, then we see immediately that it solves

the corresponding Wentzell problem with eigenvalue given by ∆u = 0u = 0 (in

either the classical or the variational sense). �

If β > 0 then we can still obtain a corresponding variational characterisation

for Λ1 as follows.

Proposition 6.4.2. Given Ω, β > 0 and γ 6= 0, suppose Λ1 is the first eigenvalue

of (1.1.3). Then

(6.4.4) Λ1 = inf
u∈H1(Ω)

QW (u) := inf
u∈H1(Ω)

∫
Ω
|∇u|2 dx+

∫
∂Ω
γu2 dσ

β∫
Ω
u2 dx+

∫
∂Ω
u2 dσ

β

,

with the infimum being attained by any eigenfunction.

Proof. It is immediate from Lemma 6.4.1 that Λ1 is no smaller than this infimum.

To prove there is equality, suppose for a contradiction that there exists u ∈ H1(Ω)

with Λ1 > QW (u) =: λ ∈ R. Rearranging the expression λ = QW (u) and using

the assumption that λ < Λ1 gives

λ =

∫
Ω
|∇u|2 +

∫
∂Ω

γ−λ
β
u2 dσ

∫
Ω
u2 dx

≥
∫
Ω
|∇u|2 +

∫
∂Ω

γ−Λ1

β
u2 dσ

∫
Ω
u2 dx

≥ λ1
(
Ω,
γ − Λ1

β

)
= Λ1,

a contradiction. It is clear from Lemma 6.4.1 that the infimum is attained by any

eigenfunction. �

Remark 6.4.3. (i) Observe that the Rayleigh-type quotient in (6.4.4) is of the

form
Qγ(u, u|∂Ω)

‖(u, u|∂Ω)‖2L2(Ω,dµ)

,
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where Qγ is the form from Theorem 5.2.1, and L2(Ω, dµ) ∋ (u, u|∂Ω) is the weighted
space L2(Ω, dx)⊕ L2(∂Ω, dσ

β
) from Section 5.2.

(ii) We cannot give a similar characterisation of the principal eigenvalue(s) when

β < 0, since then the form is not semi-bounded. See also [14], which discusses a

problem of a very similar flavour.

As in the Robin case, the eigenvalues are in general “smooth” functions of the

parameters β and γ. This is fairly easy to see by elementary means, but as with the

Robin problem we will use the general and powerful theory in [72, Chapter VII].

Actually, this would allow us to cover without too much trouble the degenerate

cases β = 0 or γ = 0 as well.

Lemma 6.4.4. Denote by ∆W
2 (β, γ) the operator given by (5.1.4) with p = 2 for

given β, γ 6= 0 and fix β0, γ0 6= 0. Then

(i) the family of operators ∆W
2 (β0, γ) is holomorphic of type (A) in the sense

of [72] with respect to the parameter γ, for all γ ∈ R;

(ii) ∆W
2 (β, γ0) is locally holomorphic of type (A) with respect to β ∈ R.

Recall that when considering (5.1.4) we use the measure dx⊕ dσ if β < 0 (see

Remark 5.1.1), but this makes no difference for our purposes here.

Proof. We will use [72, Theorem VII.2.6]. First note that D := D(∆W
2 (β, γ)) is

independent of β, γ. Given β0, γ0 ∈ R \ {0}, we write

Tu := ∆W
2 (β0, γ0)u = (∆u,−β0

∂u

∂ν
− γ0u)

for u ∈ D = D(T ) = D(∆W
2 (β, γ)). Then T is closed by Theorem 5.2.1 if β > 0 or

by Theorem 5.3.1 if β < 0.

(i) We define a new operator by T (1)(u, f) = (0,−f), D(T (1)) = L2(Ω) ⊕
L2(∂Ω) ⊃ D. (Here we are following the notation of [72].) Since T (1) is bounded,

it is certainly T -bounded with bound 0. By [72, Theorem VII.2.6] (see also Re-

mark VII.2.7 there),

T (γ) := T + γT (1)

defined as a family of operators on D, already closed by Theorems 5.2.1 and 5.3.1,

is holomorphic of type (A) for all γ ∈ R.

(ii) Similarly, define T (2)u = (0,−∂u
∂ν
) for u ∈ D. Clearly T (2) is T -bounded,

with T -bound no larger than β0. Hence for |β| < β−1
0 , the already closed family of
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operators

T (β) = T + βT (2)

on D is holomorphic of type (A) for β ∈ B(β0, β
−1
0 ). This gives us local holomor-

phicity for β ∈ R \ {0}. �

Proposition 6.4.5. The following statements are true.

(i) Given β > 0, every Wentzell eigenvalue Λ = Λ(γ) of (1.1.3) depends con-

tinuously on γ ∈ R.

(ii) Given γ 6= 0, every eigenvalue Λ = Λ(β) of (1.1.3) depends continuously

on β > 0.

(iii) If Ω is connected and Λ is a principal eigenvalue, the functions in (i) and

(ii) are analytic.

Proof. As we have already seen, considering the eigenvalues of (1.1.3) is equivalent

to considering the eigenvalues of ∆W
2 (or ∆W

H1 ,. . . ). With this in mind parts (i)

and (ii) follow from [72, Theorem VII.1.8]. For, since β > 0, ∆W
2 is a self-adjoint

operator on a Hilbert space (see Remark 6.2.6(i)); hence by [72, Section VII.3.1]

every eigenvalue Λ is an analytic function of γ (resp. β), with the possible exception

of “splitting points”, which will not affect continuity.

For part (iii), using the same theory as in (i) and (ii) we only have to rule

out the “splitting” behaviour. Since Ω is connected, we know that every principal

eigenvalue has one-dimensional eigenspace for all β, γ 6= 0 (this actually follows

from our definition; see also Lemma 6.1.3); hence splitting is impossible (cf. The-

orem 1.3.1(vi)). �

Remark 6.4.6. It is a property of holomorphic families of type (A) that all mem-

bers of the family have compact resolvent, or else none do [72, Theorem VII.2.4].

This opens up the following potential method for obtaining compactness of the

resolvent for ∆W
2 when β < 0 and Ω is only Lipschitz, not C1,1. The idea is, first,

to obtain compactness of the resolvent of ∆W
2 (β0, γ) for β0 < 0 very small. This

would use the method of Section 5.3, but only requires that ∂u
∂ν

is relatively bounded

with respect to the Dirichlet Laplacian (not necessarily with bound zero), which

can be shown for Lipschitz domains; β0 then replaces the perturbation parameter

ε. Using the holomorphicity argument of Lemma 6.4.4, we then obtain that the

closure of ∆W
2 has compact resolvent for all β in a neighbourhood of β0. We can
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then extend this “local” property to cover all β < 0 as we did in Lemma 6.4.4. So

we conclude that the closure of ∆W
2 (β, γ) has compact resolvent for all β < 0 if Ω

is Lipschitz. Of course, the problem in the first place was that we do not know a

priori ∆W
2 is closed in general, even though it is extremely likely (see Section 5.3).

Recall that tΩ = {tx ∈ RN : x ∈ Ω} (see (1.3.5)). It is easy to use the

variational characterisation (6.4.4) to show that Λ1(tΩ, β, γ) decreases (strictly)

monotonically as t increases for fixed β, γ > 0 (compare with Lemma 1.3.7 and

[22, Lemma 4.1]).

Proposition 6.4.7. Suppose Ω ⊂ RN is bounded, Lipschitz and β > 0 and γ > 0

are fixed. Then the function t 7→ Λ1(tΩ, β, γ) is strictly decreasing on (0,∞).

Proof. By rescaling if necessary it suffices to prove that Λ1(Ω) := Λ1(Ω, β, γ) <

Λ1(tΩ, β, γ) =: Λ1(tΩ) if t ∈ (0, 1). So fix t ∈ (0, 1) and let ψt be an eigenfunction

associated with Λ1(tΩ). For x ∈ Ω, set ϕ(x) := ψt(tx). Then ϕ ∈ H1(Ω) with

∇ϕ(x) = t∇ψt(tx), and

Λ1(Ω) ≤ QW (ϕ) =

∫
Ω
|∇ϕ|2 dx+

∫
∂Ω
γϕ2 dσ

β∫
Ω
ϕ2 dx1 +

∫
∂Ω
ϕ2 dσ

β

=
t2
∫
tΩ
|∇ψt|2 dx+ t

∫
∂(tΩ)

γψ2
t
dσ
β∫

tΩ
ψ2
t dx+ t

∫
∂(tΩ)

ψ2
t
dσ
β

≤
t
(
t
∫
tΩ
|∇ψt|2 dx+

∫
∂(tΩ)

γψ2
t
dσ
β

)

t
(∫

tΩ
ψ2
t dx+

∫
∂(tΩ)

ψ2
t
dσ
β

) < Λ1(tΩ)

since t < 1 and ψt is not constant in Ω. �



Chapter 7

Inequalities for the Wentzell Laplacian

Having established the spectral theory for the Wentzell Laplacian in Chapters 5

and 6, which for the most part turns out to be either very similar to, or dependent

on, that of the Robin problem, we now wish to establish similar isoperimetric

estimates for its eigenvalues. This is generally easy to do using the same type of

elementary techniques used in Sections 6.2 and 6.3.

7.1. On the principal eigenvalues

We first seek to establish the main Faber-Krahn-type inequality for the prin-

cipal eigenvalues of (1.1.3). The optimising domain will again be the ball. What

makes this somewhat more interesting is the multitude of principal eigenvalues

to consider, depending on the sign of β and γ in (1.1.3). Unfortunately, part of

what we prove depends on Conjecture 3.4.1. Our main theorem is the following.

The cases and notation are the same as in Section 6.2. Note that we allow Ω to

be disconnected, except in case (iv) (see Remark 6.3.2). For (iii) and (iv), we can

replace the C1,1 assumption with the alternate assumptions listed in Remark 5.3.3.

Theorem 7.1.1. Let Ω ⊂ RN be a bounded, Lipschitz domain and B be a ball

having the same measure as Ω. Then

(i) if β, γ > 0, then Λ1(B) ≤ Λ1(Ω).

If in addition Ω is of class C1,1, then

(iii) if β, γ < 0, then Λ+
1 (B) ≤ Λ+

1 (Ω);

(iv) if β < 0, γ > 0, Ω is connected and Ω and B have two positive principal

eigenvalues, then Λ−
1 (Ω) ≤ Λ−

1 (B) ≤ Λ+
1 (B) ≤ Λ+

1 (Ω).

In all the above inequalities, B is the unique domain (up to translation) for which

there is equality.

Remark 7.1.2. Suppose in addition to the assumptions of Theorem 7.1.1 that

Conjecture 3.4.1 holds. Using the case numbers from Theorem 6.2.1, we have

114
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(ii) if β > 0, γ < 0, then Λ1(Ω) ≤ Λ1(B);

(iii) if β, γ < 0, then Λ−
1 (B) ≤ Λ−

1 (Ω);

(iv) if β < 0, γ > 0, Ω is connected and Ω and B have two negative eigenvalues,

then these satisfy

Λ−
1 (B) ≤ Λ−

1 (Ω) ≤ Λ+
1 (Ω) ≤ Λ+

1 (B).

In all the above inequalities B is, up to translation, the unique domain for which

there is equality.

Implicit in the above statements about case (iv) is the following statement

about the borderline cases where there is only one principal eigenvalue. In the

notation of Section 6.2, we wish to know how γ∗ and γ∗∗ depend on Ω. We assume

that Ω is connected here, since γ∗ and γ∗∗ are in general only well-defined in this

case. Before we state the result, we observe that by the isoperimetric inequality

(see [13, 25]), −σ(∂Ω)
|Ω|
≤ −σ(∂B)

|B|
< 0, with equality if and only if Ω is a ball.

Proposition 7.1.3. Under the assumptions of Theorem 7.1.1, if in addition Ω is

of class C1,1 and connected, then for any given β ∈ (−σ(∂B)
|B|

, 0), we have γ∗(B, β) ≤
γ∗(Ω, β), with equality if and only if Ω is a ball.

Remark 7.1.4. In Proposition 7.1.3, if in addition Conjecture 3.4.1 holds, if β ∈
(−∞,−σ(∂Ω)

|Ω|
), then γ∗∗(Ω, β) ≤ γ∗∗(B, β), again with equality if and only if Ω is

a ball.

β

γ

−σ(∂B)
|B|

−σ(∂Ω)
|Ω|

γ∗(B, β)

γ∗(Ω, β)

γ∗∗(B, β)
γ∗∗(Ω, β)

Figure 7.1. The dependence of γ∗, γ∗∗ on β and the domain.
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Remark 7.1.5. (i) In other words, Proposition 7.1.3 and Remark 7.1.4 say that B

is the essentially unique minimiser (with respect to set inclusion) of the set of values

of β, γ for which (1.1.3) has two positive principal eigenvalues, and maximiser of

the set for which (1.1.3) has two negative principal eigenvalues.

(ii) Our earlier comment (Remark 6.2.4) that the assumption on the smoothness

of Ω is only to guarantee the compactness of the associated operator still applies

in this section (see also Remark 5.3.3).

Before we give the proof of these results, we fix our notation. We will return

to writing λ1(Ω, α) rather than just λ1(α) for the first Robin eigenvalue of Ω with

boundary parameter α. If there is just one principal Wentzell eigenvalue, we will

denote it by Λ1(Ω), and we will let αΩ := β−1(γ − Λ1(Ω)), so that Λ1(Ω) ≡
λ1(Ω, αΩ). Importantly, we can make this identification even if Ω is not connected;

see Lemma 6.1.3 and Remark 6.2.12. We will thus use the two interchangeably

without further comment. Similarly, if there are two principal eigenvalues, we will

call them Λ−
1 (Ω) < Λ+

1 (Ω). We will set α−
Ω := β−1(γ − Λ−

1 (Ω)) so that Λ−
1 (Ω) ≡

λ1(Ω, α
−
Ω), and do the same for α+

Ω , and the same again for B.

In this notation, the Faber-Krahn inequality for the Robin Laplacian, Theo-

rem 2.1.1, tells us that

(7.1.1) λ1(B, α) ≤ λ1(Ω, α)

for all α > 0, with equality in (7.1.1) only if Ω = B in the sense of Remark 1.3.2

by [22, Theorem 1.1] (see Theorem 3.1.2). Similarly, for the negative eigenvalues,

Conjecture 3.4.1 tells us that λ1(Ω, α) ≤ λ1(B, α) for all α < 0, with equality if

and only if Ω = B.

Finally, bearing in mind Remark 7.1.5(ii), we will not make any explicit state-

ments about the regularity of Ω we are assuming in the proofs, having already

stated these above.

Proof of Theorem 7.1.1 and Remark 7.1.2. (i) Using the Robin Faber-Krahn

inequality in the form (7.1.1) when α = αΩ, we get λ1(Ω, αΩ) ≥ λ1(B, αΩ) (where

we recall λ1(B, αΩ) is the first Robin eigenvalue of B with boundary parameter

αΩ). Suppose for a contradiction that Λ1(Ω) < Λ1(B). Since β > 0,

αΩ = β−1(γ − Λ1(Ω)) > β−1(γ − Λ1(B)) = αB.
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By monotonicity of λ1(B, α) with respect to α, λ1(B, αΩ) > λ1(B, αB), and so

Λ1(B) < λ1(B, αΩ) ≤ λ1(Ω, αΩ) = Λ1(Ω) < Λ1(B),

a contradiction.

(ii) The proof is similar to (i), only now we use Conjecture 3.4.1 to obtain

λ1(Ω, αΩ) ≤ λ1(B, αΩ) < 0.

Supposing that λ1(B, αB) < λ1(Ω, αΩ), it follows since β > 0 that αΩ < αB, and

so λ1(B, αΩ) ≤ λ1(B, αB), again giving us a contradiction.

(iii) In this case there are two inequalities, one for each principal eigenvalue

λ1(Ω, α
−
Ω) < 0 < λ1(Ω, α

+
Ω). For the positive eigenvalue, using (7.1.1) when α =

α+
B, and since β > 0,

β−1(γ − λ1(Ω, α+
B)) ≥ β−1(γ − λ1(B, α+

B)) = α+
B.

By Lemma 6.2.7 applied to Ω, α+
B ∈ [α−

Ω, α
+
Ω ] and in particular α+

B ≤ α+
Ω . (Note

that Lemma 6.2.7 remains valid with the same proof if Ω is not connected, since

g1 is still strictly increasing and strictly concave; see Remark 1.3.2.) By definition,

this means

β−1(γ − λ1(B, α+
B)) ≤ β−1(γ − λ1(Ω, α+

Ω)).

Hence Λ+
1 (B) ≤ Λ+

1 (Ω). For the negative eigenvalue, using Conjecture 3.4.1,

α−
Ω = β−1(γ − λ1(Ω, α−

Ω)) ≤ β−1(γ − λ1(B, α−
Ω)).

Applying Lemma 6.2.7 as above we see that α−
Ω ∈ [α−

B, α
+
B] and in particular

α−
B ≤ α−

Ω . Hence as above Λ−
1 (B) ≤ Λ−

1 (Ω).

(iv) Given β < 0, γ > 0, assume that both Ω and B actually have two eigen-

values. Noting that the sign of γ played no role in (iii) except to determine the

sign of the appropriate α’s and Λ’s, we may repeat almost verbatim the argument

in (iii) to reach the conclusion of (iv).

Finally, we prove that the ball is the unique minimiser, or maximiser as ap-

propriate, of all the inequalities listed in Theorem 7.1.1 and Remark 7.1.2. The

proof is the same in all cases, and an immediate consequence of the sharpness of

the Robin Faber-Krahn inequality.

Suppose, in any of the cases, that Λ1(Ω) = Λ1(B). Set

α := β−1(γ − Λ1(Ω)) = β−1(γ − Λ1(B)).
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Then both problems, i.e. those on Ω and B, have the same Robin boundary pa-

rameter α. Hence we may directly apply [22, Theorem 1.1] if Λ1(Ω) > 0 and hence

α > 0, or Conjecture 3.4.1 otherwise, to conclude Ω = B after a translation. �

Proof of Proposition 7.1.3 and Remark 7.1.4. First, fix β ∈ (−σ(∂B)
|B|

, 0). We

wish to prove that γ∗(Ω, β) ≥ γ∗(B, β). Let α∗
B be the unique fixed point associated

with γ∗(B, β) on B. Then by (7.1.1) applied when α = α∗
B > 0, 0 < λ1(B, α

∗
B) ≤

λ1(Ω, α
∗
B), that is,

0 < α∗
B = β−1(γ∗(B, β)− λ1(B, α∗

B)) ≤ β−1(γ∗(B, β)− λ1(Ω, α∗
B)).

Hence by Lemma 6.2.7, there must be at least one fixed point for γ∗(B, β) on Ω,

and so γ∗(B, β) ≤ γ∗(Ω, β) by Lemma 6.2.9. For β ∈ (−∞,−σ(∂Ω)
|Ω|

) the argument

that γ∗∗(B, β) ≤ γ∗∗(Ω, β) is essentially the same, only using Conjecture 3.4.1 in

place of (7.1.1). Finally, if Ω is not a ball, then the inequality (7.1.1) is sharp for all

α > 0 and we obtain the strict inequality β−1(γ∗(B, β)−λ1(Ω, α∗(B)) > α∗(B) and

so Lemmata 6.2.7 and 6.2.9 yield γ∗(Ω, β) < γ∗(B, β) (and similarly for γ∗∗). �

7.2. On the other eigenvalues

Let us start with the observation that the arguments used in Section 7.1 to

prove Theorem 7.1.1 are in a sense very generic: they rely only on the abstract

properties of the Robin eigenvalue λ1(Ω, α) as a function of α, together with the

Robin Faber-Krahn inequality. As such, we can easily generalise such arguments

to the higher Wentzell eigenvalues Λk(Ω). In what follows we will only consider

the case β, γ > 0, since this is the most important case and since considerably

less can be said about the others as they all rely to a varying degree on the Robin

eigenvalues λk(Ω, α) when α < 0.

So fix β, γ > 0 arbitrary. Our primary goal is to prove the following theorem,

which basically says that the minimisation problems for the Robin Laplacian when

α > 0 and Wentzell Laplacian when β, γ > 0 are essentially the same. Recall that

Dk is the disjoint union of k equal balls, k ≥ 2.

Theorem 7.2.1. Let β, γ > 0 and k ≥ 2 be fixed, let D ⊂ RN be a bounded

Lipschitz domain, and let Dk ⊂ RN be as in Section 4.3.

(i) Suppose that for every bounded Lipschitz Ω ⊂ RN we have

(7.2.1) λk(D,α) ≤ λk(Ω, α)
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for all α ∈ (0, γ/β). Then

(7.2.2) Λk(D, β, γ) ≤ Λk(Ω, β, γ)

for all such Ω. Conversely, if (7.2.2) holds, then (7.2.1) holds for some

α ∈ (0, γ/β).

(ii) If (7.2.1) is sharp for all α ∈ (0, γ/β), then so is (7.2.2) for this β, γ. If

(7.2.2) is sharp, then (7.2.1) holds and is sharp for some α ∈ (0, γ/β).

(iii) Suppose Ω ⊂ R
N is bounded, Lipschitz. There exists αΩ > 0 possibly

depending Ω such that Λk(Ω, β, γ) > Λk(Dk, β, γ) for all β, γ with γ/β <

αΩ.

(iv) If for some k and N the conclusion of Theorem 4.3.1(ii) holds, then there

does not exist a bounded, Lipschitz domain D ⊂ RN such that Λk(Ω, β, γ) ≥
Λk(D, β, γ) for all such Ω and all β, γ > 0.

(v) For any bounded, Lipschitz Ω ⊂ RN and any β, γ > 0, we have Λ2(Ω, β, γ) ≥
Λ2(D2, β, γ), with equality if and only if Ω = D2.

In order to prove this theorem, we start with the observation that the fixed

point α satisfying 0 < Λ1(Ω, β, γ) = γ − αβ is positive: α > 0. This follows from

Proposition 6.2.3(i) combined with Proposition 6.2.5(i). In particular, this gives

the bound Λ1(Ω, β, γ) < γ always, independent of the volume of Ω. This yields the

following result, which is true in particular for Dk.

Lemma 7.2.2. Suppose Ω has at least k connected components (c.c.s). Then

Λk(Ω, β, γ) < γ.

Proof. We have Λk(Ω) ≤ min{λ1(Ω̃)} < γ, where the minimum is taken over all

c.c.s Ω̃ of Ω. �

Since β, γ are fixed we will now write Λk(Ω, β, γ) = Λk(Ω) if there is no danger

of confusion. The following lemma contains the core of the argument in the proof

of Theorem 7.2.1.

Lemma 7.2.3. Let β, γ > 0 be given and U, V ⊂ RN bounded, Lipschitz.

(i) If Λk(U) < γ, then for α := (γ − Λk(U))/β,

(7.2.3) λk(U, α) ≥ λk(V, α)
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implies

(7.2.4) Λk(U) ≥ Λk(V ).

If the equality in (7.2.3) is strict, then it is also strict in (7.2.4).

(ii) Suppose Λk(V ) < γ and let α := (γ − Λk(V ))/β. If (7.2.4) holds (resp. is

strict), then (7.2.3) holds (resp. is strict) for this α.

Proof. (i) Suppose that (7.2.3) holds but (7.2.4) fails. Using Theorem 6.3.1(i) and

(7.2.3) respectively,

Λk(U) = λk(U,
γ − Λk(U)

β
)

≥ λk(V,
γ − Λk(U)

β
) ≥ λk(V,

γ − Λk(V )

β
) = Λk(V ),

where the second inequality follows from Theorem 1.3.5 since γ − Λk(U) ≥ γ −
Λk(V ) by the contradiction assumption. Hence Λk(U) ≥ Λk(V ), contradicting the

assumption that (7.2.4) fails. Now suppose (7.2.3) is strict and the contradiction

assumption becomes Λk(U) ≤ Λk(V ). Since the first inequality in the above line

of reasoning is now strict, we still obtain a contradiction as nothing else changes.

Hence we cannot have equality in (7.2.4).

(ii) Now suppose that (7.2.4) holds and that (7.2.3) fails. Interchanging the

roles of U and V , we may argue essentially exactly as in (i) to obtain the desired

conclusion (and do similarly for strictness). �

Proof of Theorem 7.2.1. (i) Suppose D satisfies (7.2.1). Choose a minimising

sequence (Ωm)m∈N for Λk. By Lemma 7.2.2, we may assume Λk(Ωm) < γ for all

m, so that (γ − Λk(Ωm))/β ∈ (0, γ/β) and thus (7.2.1) holds for these values of

α. Fixing m ∈ N, we may apply Lemma 7.2.3(i) with Ωm in place of U and D

in place of V to conclude Λk(Ωm) ≥ Λk(D). Since (Ωm)m∈N was a minimising

sequence, D must minimise Λk(Ω). For the converse, suppose D satisfies (7.2.2).

Since Λk(D) < γ by Lemma 7.2.2, it follows directly from Lemma 7.2.3(ii) that D

satisfies (7.2.1) for α = (γ − Λk(D))/β.

(ii) Sharpness in both directions now follows immediately from strictness of the

inequalities in Lemma 7.2.3.

(iii) Fix Ω 6= Dk. By Theorem 4.3.1(i), there exists αΩ > 0 such that λk(Ω, α) >

λk(Dk, α) for all α ∈ (0, αΩ). If β, γ are fixed with γ/β < αΩ, then we have



7.3. A variant of Cheeger’s inequality 121

λk(Ω, α) > λk(Dk, α) for α = (γ − Λk(Ω))/β in particular. Since also Λk(Dk) < γ

by Lemma 7.2.2, without loss of generality we may assume Λk(Ω) < γ (other-

wise Λk(Ω) ≥ γ > Λk(D) and we are done). But in this case it follows from

Lemma 7.2.3(i) (with Ω = U) that Λk(Ω) > Λk(Dk) anyway.

(iv) Let k and N be such that the conclusion of Theorem 4.3.1(ii) holds. By

(iii) it suffices to show there exist β, γ > 0 and a domain Ω with Λk(Ω, β, γ) <

Λk(Dk, β, γ). Choose Ω and α∗ > 0 such that λk(Ω, α
∗) < λk(Dk, α

∗).

Now we may write Λk(Dk, β, γ) = Λ1(Dk, β, γ) = γ − αβ, where α satisfies

(γ − λ1(Dk, α))β = α. Since λ1(Dk, α) is continuous and monotonic with respect

to α, an elementary argument shows that by fixing β and varying γ, we may obtain

every α > 0 as a solution to (γ − λ1(Dk, α))β = α for some β, γ > 0. Now choose

β, γ such that Λk(Dk, β, γ) = γ−α∗β. For this β, γ, we may apply Lemma 7.2.3(i)

with U = Dk and V = Ω to conclude Λk(Dk, β, γ) > Λk(Ω, β, γ).

(v) This follows immediately from (i) and (ii) combined with Theorem 4.1.1. �

7.3. A variant of Cheeger’s inequality

Recall from Section 3.3 the Cheeger-type inequality Theorem 3.3.1, which in

essence said that the first Robin eigenvalue λ1(Ω, α) could be bounded from below

by a suitable combination of α and the Cheeger constant of Ω (see (3.3.1)).

We wish to establish an analogous inequality in the case of Wentzell boundary

conditions. For this we will restrict our attention to the case β, γ > 0 in the

boundary condition in (1.1.3). In what follows, as in Section 3.3 we will abbreviate

h(Ω) as h if there is no danger of confusion.

Theorem 7.3.1. The first eigenvalue Λ1(Ω) of (1.1.3) on a fixed bounded Lipschitz

domain Ω ⊂ RN satisfies

(7.3.1) Λ1(Ω) ≥





1

4
h2 if h ≤

√
β2 + 4γ − β;

p(h) if h ≥
√
β2 + 4γ − β,

where p(h) := γ + β
2
(
√

(β + h)2 − 4γ − (β + h)).

Remark 7.3.2. (i) The bound described in (7.3.1) is not as messy as it may

appear. For h ≤
√
β2 + 4γ − β, as long as p(h) is well-defined (that is, h ≥

2
√
γ − β), we have 1

4
h2 ≥ p(h), with equality only at h =

√
β2 + 4γ − β. In

fact the bound in (7.3.1) is a C1 (but not C2) monotonically increasing function
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of h (see Lemma 7.3.10 below). Moreover, as h → ∞, p(h) → γ from below

(Lemma 7.3.9), which is the best we can expect since we always have Λ1(Ω) < γ

(see Lemma 7.2.2).

(ii) One potential use for Theorem 7.3.1 is the following. Fixing β, γ, if we

have a sequence of Lipschitz domains Ωn of fixed volume, but with h(Ωn)→∞, by

Theorem 7.3.1 we have Λ1(Ωn) → γ. For such a sequence the bound (7.3.1) gives

a better estimate of Λ1(Ωn) than the Faber-Krahn inequality, Theorem 7.1.1, since

if |B| = |Ωn|, then Λ1(B) < γ is fixed, and so eventually Λ1(Ωn) ≥ p(h(Ωn)) >

Λ1(B). For completeness’ sake, we will construct such a sequence in Example 7.3.3.

Example 7.3.3. We construct a sequence Ωn for which |Ωn| = 1 for all n, but

h(Ωn) → ∞. Let Ωn be a sequence of rectangles in R2 of length n and width 1
n
.

Then by [73, Remark 13] the minimising domain for h(Ωn), call it Dn, certainly

contains the union of all largest balls (those of radius 1
2n
) in Ωn. Thus ∂Dn and ∂Ωn

must coincide on the longer sides of the rectangle for all but a piece of length 1
2n

on

each end, so that σ(Dn) ≥ 2(n− 2 1
2n
). Since |Dn| ≤ 1, we get h(Ωn) ≥ 2(n− 1

n
).

In particular h(Ωn)→∞ as n→∞.

The proof of Theorem 7.3.1 is based on Theorem 3.3.1 together with the usual

identification of the first Wentzell eigenvalue as the first eigenvalue of a suitable

Robin problem. We divide the proof into a number of steps. Since from now on

we will only be considering a fixed domain Ω, we shall abbreviate Λ1(Ω), λ1(Ω, α)

and h(Ω) as Λ1, λ1(α) and h, respectively.

Lemma 7.3.4. Suppose h ≥ max{0, 2√γ − β}. Then Λ1 ∈ (0, q(h)] ∪ [p(h),∞),

where q(h) := γ + β
2
(−
√

(β + h)2 − 4γ − (β + h)).

Proof. Set α = (γ − Λ1)/β and make the usual identification Λ1 = λ1(α). By

Theorem 3.3.1, λ1(α) satisfies (3.3.2). So we may substitute this value of α into

the inequality λ1(α) ≥ hα − α2 and replace λ1 by Λ1 to obtain the quadratic

relation

(7.3.2) Λ2
1 + (βh− 2γ + β2)Λ1 + γ2 − βγh ≥ 0,

which is valid for all h > 0. The associated equation has real roots if h ≥ 2
√
γ−β,

and these are given by q(h), p(h). Bearing in mind Λ1 > 0, the solution to the

inequality (7.3.2) is thus Λ1 ∈ (0, q(h)] ∪ [p(h),∞). �
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Lemma 7.3.5. If Λ1 ≤ γ − 1
2
βh, then h ≤

√
β2 + 4γ − β.

Proof. If α = (γ − Λ1)/β, then the condition 1
2
h ≤ α in (3.3.2) may be rewritten

as Λ1 ≤ γ − 1
2
βh.

In particular, combining this with Theorem 3.3.1 we get 1
4
h2 ≤ γ − 1

2
βh. This

is equivalent to the quadratic inequality h2 + 2βh − 4γ ≤ 0, which has solution

h ∈ [−
√
β2 + 4γ − β,

√
β2 + 4γ − β]. Since h must be positive, this shows that if

λ1 ≤ γ − 1
2
βh, then h ∈ (0,

√
β2 + 4γ − β]. �

Lemma 7.3.6. We have

(7.3.3) Λ1 ≥ min{γ − 1

2
βh,

1

4
h2},

valid for any h > 0.

Proof. If Λ1 ≤ γ − 1
2
βh, then by the proof of Lemma 7.3.5, 1

4
h2 ≤ α and so by

Theorem 3.3.1 Λ1 ≡ λ1(α) ≥ 1
4
h2. Equation (7.3.3) now follows. �

Lemma 7.3.7. If h ≤
√
β2 + 4γ − β, then Λ1 ≥ 1

4
h2.

Proof. If h ∈ (0,
√
β2 + 4γ − β], then working backwards through the proof of

Lemma 7.3.5, h satisfies the inequality h2 + 2βh− 4γ ≤ 0, or, rearranged, 1
4
h2 ≤

γ − 1
2
βh. The assertion of the Lemma now follows from (7.3.3). �

Lemma 7.3.8. If h > 0 also satisfies h ≥ 2
√
γ − β, then Λ1 ≥ p(h).

Proof. We use (7.3.3) to show that the case Λ1 ≤ q(h) in Lemma 7.3.4 is impos-

sible. So suppose in addition to the assumptions of the Lemma that Λ1 ≤ q(h).

If Λ1 ≥ γ − 1
2
βh, then

γ − 1

2
βh ≤ q(h) = γ − 1

2
βh− 1

2
β (β +

√
(β + h)2 − 4γ),

an immediate contradiction. Similarly, if Λ1 ≥ 1
4
h2, then 1

4
h2 ≤ q(h). Using the

definition of q, and rearranging, we get

h2 + 2βh+ 2β2 − 4γ ≤ −2β
√
(β + h)2 − 4γ (≤ 0),

but h2+2βh+2β2−4γ = (β+h)2−4γ+β2 > 0 since we are assuming β > 0 and

h ≥ 2
√
γ−β. Hence we see the assumption Λ1 ≤ q(h) contradicts Lemma 7.3.6. �

Since 2
√
γ − β <

√
β2 + 4γ − β, Lemma 7.3.7 and Lemma 7.3.8 prove Theo-

rem 7.3.1. It remains to prove the claims made in Remark 7.3.2(i).
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Lemma 7.3.9. The function p : [2
√
γ − β,∞) → R is a smooth, monotonically

increasing function of h with p(h) < γ and p(h)→∞ as h→∞.

Proof. Observe that p(h) has the form p(h) = γ − β
2
f(β + h), where f(x) :=

x −
√
x2 − k (k constant) is monotonically decreasing. Hence smoothness and

monotonicity of p(h) are immediate. The other claims follow since 0 < f(x) → 0

as x→∞. �

Lemma 7.3.10. We have 1
4
h2 ≥ p(h), with equality only at h =

√
β2 + 4γ − β,

and at that point p′(h) = 1
2
h and p′′(h) < 1

2
.

Proof. When h =
√
β2 + 4γ − β, we have p(h) = 1

4
h2 = γ − 1

2
βh = γ + 1

2
β2 −

1
2
β
√
β2 + 4γ.

Now set F : [2
√
γ − β,∞) → R, F (h) := 1

4
h2 − p(h). Then F is C∞ on

(2
√
γ − β,∞), and a somewhat tedious calculation shows that

F ′(h) =
1

2
h+

1

2
β
(
1− β + h√

(β + h)2 − 4γ

)

is zero if and only if h =
√
β2 + 4γ − β. Moreover, it can be shown (by an even

more tedious calculation, which we will not do here) that

F ′′(
√
β2 + 4γ − β) = 1

2
+

2γ

β2
,

which is positive for all β, γ > 0. �



Appendix A

Notation and Background Results

Here we collect some important properties and results such as on operator

theory or vector calculus of particular importance to us. This is of course not

intended to be anything like a comprehensive treatment, and while we have tried

to find precise references for the results we cite we will not be including any proofs.

A1. General remarks on notation

As far as possible, we have tried to keep our notation standard. Here we list a

few slightly non-standard conventions we have used.

We use the notation U ⊂⊂ V , particularly when U and V are open, to indicate

that U is compactly contained in V ⊂ RN ; that is, U is compact and contained in

int V . If we write U ⊂ V , there may be equality; we may write U ⊆ V if we wish

to emphasise this possibility. Given open sets U, V ⊂ RN with U ⊂ V , we define

the interior and exterior boudaries of U relative to V by

(A1.1) ∂iU := ∂U ∩ V and ∂eU := ∂U ∩ ∂V,

respectively, so that ∂U = ∂iU ∪ ∂eU , and ∂iU ∩ ∂eU = ∅.
We only work with two types of measure: N -dimensional volume (or Lebesgue

measure) and (N − 1)-dimensional surface (or Hausdorff) measure. If U ⊂ RN is

a set, then |U | denotes its N -dimensional Lebesgue measure and σ(U) its (N −1)-

dimensional Hausdorff measure, scaled so that it coincides with (N−1)-dimensional

Lebesgue measure on all sets where both are well-defined. (For a definition of

Hausdorff measure, see [56, Section 2.10].)

By Lp(X, dµ) we understand the usual Lp-spaces, 1 ≤ p ≤ ∞. In practice

we usually have X ⊆ RN and µ either Lebesgue or Hausdorff measure. We use

Lploc(X) to denote the set of all f : X → R such that for all x ∈ X there exists

an open neighbourhood Ux of x such that f ∈ Lp(Ux). Similarly, for U ⊆ RN we

understand C(U) and Ck(U) as, respectively, the space of continuous and k-times

continuously differentiable functions f : U → R (or RN ). For f ∈ C(U), we define

125
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the support of f , supp f , to be the closure in U of the set {x ∈ U : f(x) 6= 0}. We

also say f ∈ Ck
c (U), k ∈ N ∪ {∞} if f ∈ Ck(U) and supp f ⊂⊂ U . The Hölder

space C0,η(U), η ∈ (0, 1], is the space of all f ∈ C(U) such that

sup
x,y∈U

|f(x)− f(y)|
‖x− y‖η <∞.

In particular, if η = 1, then f ∈ C0,1(U) is said to be Lipschitz continuous. The

Lipschitz constant of f is the infimum of all constants K such that

(A1.2) |f(x)− f(y)| ≤ K‖x− y‖

for all x, y ∈ U . Also Ck,η(U), k ∈ N, is the space of all Ck(U) functions f such

that all kth order derivatives of f lie in C0,η(U). We note here the following very

famous property of Lipschitz functions.

Theorem A1.1 (Rademacher’s Theorem). Let f : U → R be Lipschitz, where

U ⊂ RN . Then f is (Fréchet) differentiable almost everywhere with respect to

N-dimensional Lebsegue measure and ‖∇f‖L∞(U) ≤ K, where K is any constant

satisfying (A1.2).

Proof. Noting that every Lipschitz continuous function is absolutely continuous

(see [99, Chapter 7]) on every line segment in U , the claim follows from [99,

Theorem 7.18]. Alternatively, see [89, Chapter 3]. �

Following [30] (see p. 48 there), if X is a subset of RN or a manifold, then we

say a function f : X → R is piecewise continuous if X may be subdivided into

finitely many subdomains Xi such that f |Xi
: Xi → R is continuous and for all

z ∈ ∂Xi and Xi ∋ xn → z, f(xn) → f(z) as n → ∞. We will take piecewise-Ck

to mean continuous functions whose derivatives of order up to k− 1 exist and are

piecewise continuous.

Finally, given a function f : X → Y we use the notation graph f to stand for

the set of all points (x, f(x)) ∈ X × Y , that is, the graph of f .

A2. Classes of domains

Let Ω ⊂ RN be an open set, not necessarily bounded. If Ω is the set on which

our problem is defined, then we will tend to call it a domain. We generally assume

Ω is bounded (see Definition A2.5), although not necessarily connected. Our main

definition of the regularity class of a domain follows Nečas [91] and Adams [2].
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Definition A2.1. We will say a domain Ω ⊂ RN is of class Ck, resp. Ck,η, where

0 ≤ k ≤ ∞ and 0 < η ≤ 1, if for every point z ∈ ∂Ω there exists an open

neighbourhood Uz ⊂ RN containing z and a local coordinate system (x1, . . . , xN )

such that z = 0 in this coordinate system and inside Uz, ∂Ω is the graph of

some Ck, resp. Ck,η, function f of N − 1 variables x1, . . . xN−1. We also require

Ω∩Uz = {x = (x1, . . . , xN) ∈ Uz : xN < f(x1, . . . , xN−1)} (that is, Ω is locally “on

one side” of ∂Ω). If Ω is of class C0,1, we will say Ω is Lipschitz.

Remark A2.2. (i) We write Ck in preference to Ck,0.

(ii) There is a common alternative definition of Ck, Ck,η. A domain can be

called of class Ck (or Ck,η) if for every z ∈ ∂Ω there exist an open neighbourhood Uz

of z and Ck (or Ck,η) transformations Φ : Uz → RN , Φ−1 : Φ(Uz)→ Uz such that Φ

maps ∂Ω onto the plane xN = 0 in Φ(Uz) ⊂ RN (where we write x = (x1, . . . , xN ) ∈
RN). This definition is sometimes thought of as the “manifold” approach. For Ck,η

domains, k ≥ 1, η ∈ [0, 1] it can be shown using the implicit function theorem that

the two definitions are equivalent (see [64, Section 1.2]). However, for C0,η domains

they are not (see [57, Appendix II] or again [64, Section 1.2]). In particular, this

definition of Lipschitz is weaker than the one we will use, given in Definition A2.1.

For a detailed (and rather entertaining) discussion of various different definitions

of classes of domains and domain properties see [57].

Definition A2.3. We will say a domain Ω ⊂ RN is piecewise-Ck (for 1 ≤ k ≤ ∞)

if Ω is Lipschitz and ∂Ω is locally the graph (in the sense of Definition A2.1) of a

piecewise-Ck function.

Example A2.4. All polyhedral domains in RN are piecewise-C∞.

Definition A2.5. We say a domain Ω ⊂ RN is bounded if there exists r > 0 such

that Ω ⊂ B(0, r).

A3. Weak derivatives and Sobolev spaces.

Here we introduce our notation concerning weak derivatives and our character-

isations of various Sobolev spaces. For a proper treatment of this subject, we refer

to [2, 88]. Alternatively, almost every standard reference on partial differential

equations has a chapter on Sobolev spaces; see for example [48, Chapter 5], [59,

Chapter 7], [64, Chapter 1], [84, Chapter 1] or [98, Section 6.4].
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Let Ω ⊆ RN be open, not necessarily bounded. We say a locally integrable

function u : Ω → R has a weak (or generalised) αth partial derivative g of order

|α| :=∑i αi, where α = (α1, . . . αk) ∈ NN , and write g = ∂|α|u
∂xα

:= ∂|α|u
∂x

α1
1 ...∂x

αN
N

, if

(A3.1)

∫

Ω

u
∂|α|ϕ

∂xα
dx = (−1)|α|

∫

Ω

ϕg dx

for all test functions ϕ ∈ C∞
c (Ω). If such a function u has all first order weak

partial derivatives, we denote its gradient vector by ∇u := ( ∂u
∂x1
, . . . , ∂u

∂xN
). We

sometimes use Dαu to denote the αth weak partial derivative of u. Weak partial

derivatives are unique up to sets of zero N -Lebesgue measure.

Fix k ∈ N and 1 ≤ p <∞. For Ω ⊆ RN we set W 1,1
loc (Ω) to be

(A3.2) {u ∈ L1
loc(Ω) :

∂u

∂xi
exists and is in L1

loc(Ω), i = 1, . . . , N}.

Note that C1(Ω) ⊂W 1,1
loc (Ω). We also set W k,p(Ω) to be the Sobolev space

(A3.3)
{u ∈ Lp(Ω) : all weak partial derivatives of u

up to order k exist and are in Lp(Ω) }.
This is a Banach space with respect to the norm

(A3.4) ‖u‖W k,p(Ω) :=
( ∑

0≤|α|≤k

∫

Ω

∣∣∣ ∂|α|u

∂xα1
1 . . . ∂xαk

k

∣∣∣
p

dx
) 1

p

,

where the sum is over all multi-indices α with |α| = ∑
αi ≤ k. By notational

convention the 0th order derivative is u itself. Hence the first summand in (A3.4)

is
∫
Ω
|u|p dx, and W 0,p(Ω) ≡ Lp(Ω). We could alternatively take one of the several

equivalent norms, for example
∑

0≤|α|≤k ‖ ∂|α|u
∂x

α1
1 ...∂x

αk
k

‖p. This makes no difference

for our purposes. When p = 2, Hk(Ω) := W k,2(Ω) is a Hilbert space with inner

product given by

(A3.5) 〈u, v〉 =
∫

Ω

uv dx+
∑

|α|≤k

∫

Ω

∂|α|u

∂xα1
1 . . . ∂xαk

k

∂|α|v

∂xα1
1 . . . ∂xαk

k

dx.

As a special and important case, when k = 1 the space H1(Ω) has inner product

given by

〈u, v〉 =
∫

Ω

uv dx+

∫

Ω

∇u · ∇v dx.

If instead of considering real-valued functions u : Ω → R we look at vector-

valued u : Ω→ RM , we still denote the corresponding Sobolev space byW k,p(Ω) as
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shorthand forW k,p(Ω,RM). (For example, “∇u ∈ H1(Ω)” means every component
∂u
∂xi
∈ H1(Ω), 1 ≤ i ≤ N .)

Remark A3.1. (i) The space C∞(Ω)∩W k,p(Ω) is always dense in W k,p(Ω) (with

respect to the norm (A3.4); see [98, Section 6.4.3]). If Ω is Lipschitz, then in

addition C∞(Ω) is dense inW k,p(Ω). However, for Ω arbitrary this latter statement

is not true in general. (See, e.g., [59, Section 7.6].) Note that Ck(Ω) ⊂ W k,p(Ω)

for all k and p, that is, classically differentiable functions are (locally) weakly

differentiable and their classical and weak derivatives coincide.

(ii) In light of (i) we could also characterise W k,p(Ω) as the closure with respect

to the norm given by (A3.4) of the space C∞(Ω) (and/or C∞(Ω) if Ω is Lipschitz).

Some authors take this as their definition and it is a useful characterisation for us.

(iii) There are other characterisations of W k,p(Ω) which are equivalent to ours

for Lipschitz domains. We will introduce another definition of W k,p(Ω) below that

allows us to define this space for general k ∈ R
+.

We denote by W k,p
0 (Ω) (or Hk

0 (Ω) if p = 2) the closure of the space of test

functions of compact support C∞
c (Ω) with respect to the W k,p-norm on Ω. Then

W k,p
0 (Ω) is a closed subspace of W k,p(Ω). If Ω = RN then W k,p

0 (RN) = W k,p(RN )

but otherwise we have strict inclusion. Here we are only interested in the case

k = 1. Then for a broad class of domains including those with Lipschitz bound-

ary, W 1,p
0 (Ω) is the space of W 1,p(Ω) functions which have zero trace on ∂Ω (see

Theorem A4.1). Alternatively, ϕ ∈ W 1,p
0 (Ω)∩C(Ω) implies ϕ = 0 on ∂Ω; see [15].

We also consider Sobolev spaces W s,p(Ω) for some s /∈ N. Here we are mostly

interested in p = 2. So for negative integers, we define the space H−k(Ω), k ∈ N,

as being the set of all linear functionals on Hk
0 (Ω). (See [98, Section 6.4.9].)

For s ∈ R+ not an integer, 1 < p < ∞ and Ω ⊆ RN , following Grisvard [64,

Section 1.3], writing s = k + ε where k ∈ N and ε ∈ (0, 1) we denote by W s,p(Ω)

the space of all functions u ∈ W k,p(Ω) such that

(A3.6)

∫

Ω×Ω

|Dαu(x)−Dαu(y)|p
|x− y|N+εp

dx dy <∞,

for every multi-index α with |α| = k. This is a Banach space with the norm

‖u‖W s,p(Ω) :=
(
‖u‖p

W k,p(Ω)
+
∑

|α|=k

∫

Ω×Ω

|Dαu(x)−Dαu(y)|p
|x− y|N+εp

dx dy
) 1

p

.
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We can also denote by W s,p
0 (Ω) the closure of C∞

c (Ω) with respect to the W s,p-

norm.

When p = 2 there is another common definition of Hs(Ω) via the rate of decay

of a function’s Fourier transform. Precisely, letting û denote the Fourier transform

of u we define Hs(RN ) as the space of all distributions u for which

(A3.7) ‖u‖2Hs(RN ) :=

∫

RN

(1 + |x|2)s|û(x)|2 dx <∞

We then let Hs(Ω) be the restriction of Hs(RN) to Ω. This approach is used in

[69], and there is a reasonably detailed discussion of this and related spaces in

Sections 2 and 3 there. A standard reference here is [84, Chapter 1]. Note that

W s,2(RN) as defined by (A3.6) and Hs(RN) as defined by (A3.7) are equal spaces

with equivalent norms, and the same is true for W s,2(Ω) and Hs(Ω) when Ω is

Lipschitz (see [64, Section 1.3] or [89, Chapter 3]). Hence when p = 2 it does not

matter which of the two definitions we take.

We also consider the boundary spaces W s,p(∂Ω). For Ω bounded, Lipschitz

and 1 < p < ∞, we can define the space Lp(∂Ω) (≡ W 0,p(∂Ω)) in the usual way

as the set of all p-integrable functions f : ∂Ω → R equipped with the obvious

norm. For bounded domains of class Ck,1 we can define the spaces W s,p(∂Ω) for

any |s| ≤ k + 1. Let Uz be any neighbourhood and f any function satisfying the

requirements of Definition A2.1. Let F (x) = (x1, . . . , xN−1, f(x1, . . . , xN−1)). A

distribution u on ∂Ω is in W s,p(∂Ω) if u ◦ F ∈ W s,p(Uz ∩ F−1(∂Ω ∩ Uz)) for every
such Uz and f . If s ∈ (0, 1), one possible norm is

‖u‖W s,p(∂Ω) :=
(∫

∂Ω

|u|p dx+
∫

∂Ω×∂Ω

|u(x)− u(y)|p
|x− y|N−1+sp

dσ(x) dσ(y)
) 1

p

.

(See [64, Section 1.3.3].)

A4. Some properties of domains and Sobolev spaces.

Here we collect many useful properties of Lipschitz domains and Sobolev spaces.

Results we state here we generally use without proof throughout the body of

the thesis. Suppose Ω ⊂ RN is a bounded, Lipschitz domain. It follows from

Rademacher’s theorem that Ω has a well-defined outward-pointing unit normal

vector ν = νΩ(z) at σ-almost every z ∈ ∂Ω. This normal is compatible with all

the usual properties such as the divergence (Gauss-Green) theorem, the definition

of boundary spaces and outward normal derivatives (as in the Robin boundary
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condition), which we will list in this subsection. In this sense Lipschitz domains

are the “natural” domains on which to consider problems such as (1.1.2) and (1.1.3)

since too many properties fail if we look for a substantially weaker class of domains.

We will start with some useful and important general properties of Sobolev

spaces on Lipschitz domains. The first is the idea of traces, which is necessary for

the version of the divergence theorem we will use. For any u ∈ W 1,p(Ω), we can

define the trace of u, which we will denote by either u|∂Ω or else tr u (the latter if

we want to emphasise it is a trace) as the unique function in Lp(∂Ω) satisfying the

following theorem (see, e.g., [48, pp. 257-61] or [64, Chapter 1]). We do not use

γu for the trace of u to avoid potential confusion with the parameter appearing in

the Wentzell boundary condition.

Theorem A4.1 (Trace theorem). Suppose 1 < p < ∞ and Ω ⊂ RN is bounded,

Lipschitz. There is a unique bounded linear operator tr : W 1,p(Ω) → Lp(∂Ω) such

that tru = u|∂Ω if u ∈ W 1,p ∩ C(Ω). Moreover, tr is compact as a map from

W 1,p(Ω) to Lp(∂Ω).

In fact we can say a little more: tr is a bounded surjection with right inverse

(that is, tr ◦(tr)−1 is the identity) fromW 1,p(Ω) toW 1− 1
p
,p(∂Ω) with kernel exactly

W 1,p
0 (Ω) (that is, W 1,p

0 (Ω) consists exactly of those W 1,p(Ω) functions with zero

trace). In particular we may write

W 1− 1
p
,p(∂Ω) ≃ W 1,p(Ω)/W 1,p

0 (Ω).

Actually, the trace theorem is valid for a greater range of Sobolev spaces, even for

Lipschitz domains.

Theorem A4.2 (Trace theorem II). Suppose Ω ⊂ RN is bounded, Lipschitz. The

trace operator in Theorem A4.1 extends to a bounded linear operator from Hs(Ω)

to Hs− 1
2 (∂Ω) for every 1

2
< s < 3

2
.

Proof. This is well known; see for example [89, Theorem 3.38]. �

It is clear from the definition that W k,p(Ω) embeds continuously in W j,p(Ω) if

k ≥ j ≥ 0. It is an important result that these embeddings are compact. The

same is true of the boundary spaces, although we will only prove this under more

limited conditions.
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Theorem A4.3 (Rellich’s theorem). Suppose Ω ⊂ RN is a bounded, Lipschitz

domain.

(i) If s ≥ 0 and 1 < p < ∞, then the embedding W s+ε,p(Ω) →֒ W s,p(Ω) is

compact for all ε > 0.

(ii) If 0 ≤ s < s+ ε ≤ 1, then Hs+ε(∂Ω) →֒ Hs(∂Ω) is compact.

Proof. For (i), we refer to [64, Theorem 1.4.3.2]. For (ii), we note that s and

s+ε are in the correct range so that the boundary spaces are well-defined. We use

the trace theorem to obtain a continuous mapping of Hs+ε(∂Ω) into Hs+ 1
2
+ε(Ω).

By (i) and the trace theorem the map Hs+ 1
2
+ε(Ω) →֒ Hs+ 1

2 (Ω) → Hs(∂Ω) is

compact (since the composition of a compact and a continuous map is compact).

Putting the three maps together, we obtain a compact mapping from Hs+ε(∂Ω) to

Hs(∂Ω). �

Another important domain property is the ability to extend functions inW k,p(Ω)

to functions inW k,p(RN). In the other direction, the restrictions ofW k,p(RN) func-

tions to Ω trivially lie in W k,p(Ω).

Theorem A4.4 (Extension theorem). Take Ω ⊂ RN Lipschitz and 1 < p <∞.

(i) If ∂Ω is bounded, then for any k ∈ N there exists a bounded operator E :

W k,p(Ω)→W k,p(RN) such that Eu|Ω = u for all u ∈ W k,p(Ω).

(ii) The same conclusion holds for any s > 0 in place of k if Ω is bounded.

In both cases E can be chosen independently of k.

See for example [98, Theorem 6.88] and [69, Theorem 2.3] for (i), and [64,

Theorem 1.4.3.1] for (ii). In the special case where our functions have zero trace,

we can continuously embed W k,p
0 (Ω) →֒ W k,p(RN) by setting ϕ ∈ W k,p(Ω) to be

zero outside Ω. This is for general Ω ⊂ RN .

If f = (f1, . . . , fN) : Ω→ RN is in W 1,1
loc (Ω) ≡ W 1,1

loc (Ω,R
N), Ω ⊆ RN arbitrary,

then we can define div f :=
∑N

i=1
∂fi
∂xi

. Note in part (i) of the following theorem

that f on ∂Ω is understood in the sense of traces.

Theorem A4.5 (Divergence theorem for Lipschitz domains). (i) Let Ω ⊂ RN

be bounded and Lipschitz and suppose f : Ω→ RN is in W 1,1(Ω). Then

(A4.1)

∫

Ω

div f dx =

∫

∂Ω

f · ν dσ,

where ν = νΩ is the outer unit normal to Ω.
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(ii) The conclusion of (i) remains true if Ω is Lipschitz but not necessarily

bounded, and f ∈ C1
c (R

N ,RN).

Proof. For (i), take v ≡ 1 in [91, Théorème 3.1.1]. Since v = 1 ∈ W 1,q(Ω) for all

1 ≤ q ≤ ∞, we may take u = fi ∈ W 1,1(Ω). Now sum over i = 1, . . . , N . For (ii),

see [49, Section 5.8]. �

We now extend the definition of some classical concepts to the case of weakly

differentiable functions. If u ∈ W 2,p(Ω) for some 1 ≤ p <∞ (or if u ∈ C2(Ω)) then

we write ∆u :=
∑N

i=1
∂2u
∂x2i

. In particular, ∆u = div(∇u) if it exists. If u ∈ H1(Ω)

then we may define ∆u ∈ L2(Ω) in the sense of distributions as the function

f ∈ L2(Ω), if it exists, satisfying

(A4.2) −
∫

Ω

∇u · ∇v dx =

∫

Ω

fv dx

for all v ∈ H1
0 (Ω). Not every u ∈ H1(Ω) will have ∆u existing in this sense, but

if u is sufficiently smooth then a simple calculation shows that this ∆u coincides

with the classical definition.

If Ω is Lipschitz with outer unit normal given by ν = ν(x), then motivated by

Green’s first identity (see [59, Section 2.4]) we may also define the outer normal

derivative ∂u
∂ν

of u ∈ {w ∈ H1(Ω) : ∆w ∈ L2(Ω)} in the weak sense as the function

b ∈ L2(∂Ω) satisfying

(A4.3)

∫

Ω

∇u · ∇v dx+
∫

Ω

v∆u dx =

∫

∂Ω

bv dσ

for all v ∈ H1(Ω), if such a function exists. Again, if everything is sufficiently

smooth then this coincides with the usual definition of ∂u
∂ν

= ∇u · ν.
We next have a useful property of W 1,p functions that can be regarded as a

type of lattice property. For u ∈ W 1,p(Ω), 1 < p <∞, set

(A4.4) u+(x) := max{u(x), 0}, u−(x) := max{−u(x), 0}

Then we have u = u+ − u− and |u| = u+ + u−. It is an important and useful fact

that in this case u+, u− ∈ W 1,p(Ω), with

(A4.5) ∇u+ =




∇u if u > 0

0 if u ≤ 0,
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with an analogous formula for ∇u−; see [59, Lemma 7.6]. In fact this is true for

any locally integrable continuous function with locally integrable weak derivatives.

Moreover if u ∈ W 1,p(Ω) ∩ C(Ω) then u+, u− ∈ W 1,p(Ω) ∩ C(Ω) also.
If u ∈ W 1,p(Ω) ∩ C(Ω) (for us usually an eigenfunction on Ω associated with

some operator), then its nodal domains are

(A4.6)
Ω+ := {x ∈ Ω : u(x) > 0}
Ω− := {x ∈ Ω : u(x) < 0}

Note that since u is continuous, these are both open subsets of Ω. The nodal

surface of u is the set {x ∈ Ω : u(x) = 0}. Under some conditions on u, for

example if u is (sub-, super-) harmonic, then the nodal surface will coincide with

the sets ∂Ω+ ∩ Ω and ∂Ω− ∩ Ω, and the nodal surface is a genuine surface, since

u(x) = 0 on a set of positive measure then implies u ≡ 0 in Ω. However, for an

arbitrary W 1,p(Ω) ∩ C(Ω) function (even a C∞(Ω) function) it is possible that its

nodal “surface” could be much larger and have nonzero N -dimensional measure.

For everything above we could replace 0 with an arbitrary “level” c ∈ R and all

the results would continue to hold. In this case {x ∈ Ω : u(x) > t} is usually called

the (upper) level set of u (of level t) and {x ∈ Ω : u(x) = t} the (interior) level

surface.

Our last theorem in this section is an important result linking the level surfaces

of a function with an appropriate volume integral. More broadly, this can be viewed

as a key theorem linking geometry and analysis.

Theorem A4.6 (Coarea formula). Let Ω ⊂ RN . Suppose u : Ω → R is Lipschitz

continuous and φ ∈ L1(RN). Then

∫

Ω

φ |∇u| dx =

∫ ∞

0

∫

{|u(x)|=t}

φ dσ dt.

In particular, σ({u(x) = t}) <∞ for almost all t ∈ (0,∞).

Proof. See [88, Section 1.2.4] or [49, Section 3.4.2]. �

Remark A4.7. In the above theorem we could alternatively assume that φ is

measurable and non-negative.
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A5. Operator theory and semigroups.

Here we collect some basic results from operator theory and functional analysis,

along with the notation we will use. Many books cover this material; see for

example [9, Appendix B] or [98, Chapter 7], or the dedicated and seminal book

[72]. We refer to them for the proofs of the statements we make below.

For X a Banach space over R or C and A an operator (linear mapping) from X

to itself, we denote by D(A) = {x ∈ X : Ax exists in X} the domain of A. If A is

closed, that is, {(x,Ax) : x ∈ D(A)} ⊂ X ×X is closed with respect to the norm

induced on X ×X , then D(A) is a Banach space with respect to the graph norm

‖x‖A := ‖x‖X + ‖Ax‖X . Moreover A is bounded, that is, ‖A‖ := sup{‖Ax‖X :

x ∈ D(A) and ‖x‖X ≤ 1} <∞, if and only if A is continuous.

For the following spectral properties, we assume X is a Banach space over C;

if X is over R then we consider the complexification of X and A. We denote by

ρ(A) the resolvent set of A given by

{λ ∈ C : (λI − A) : D(A)→ X is bijective and bounded}

If ρ(A) 6= ∅, then A is closed. For λ ∈ ρ(A), the resolvent operator R(λ,A) :=

(λI −A)−1 : X → D(A) is well-defined, linear and bounded. If for some λ ∈ ρ(A)
the map R(λ,A) is compact as a map from X to itself, then this is true for all

λ ∈ ρ(A) and we say A has compact resolvent. We denote by σ(A) = C \ ρ(A)
the spectrum of A and by σp(A) ⊆ σ(A) the point spectrum, that is, the set of

eigenvalues of A. If A has compact resolvent, then σ(A) = σp(A) is a denumerable

set. In this case we say A has discrete spectrum.

We next state versions of the well-known Riesz representation theorem and

Lax-Milgram lemma. Proofs can be found in [40].

Theorem A5.1 (Riesz representation theorem). Let H be a Hilbert space and H ′

its dual space. There exists an isometric isomorphism from H to H ′, such that for

every u ∈ H there exists a unique fu ∈ H ′ with 〈u, v〉 = (fu, v) for all v ∈ H ′, and

‖u‖H = ‖fu‖H′. Here 〈 . , . 〉 denotes the duality pairing between H and H ′, and

( . , . ) the inner product on H.

Theorem A5.2 (Lax-Milgram lemma). Let H be a Hilbert space and H ′ its dual

space. Suppose A : H → H ′ is a bounded linear operator, and there exists b > 0

such that 〈Au, u〉 ≥ b‖u‖2H for all u ∈ H. Then A is invertible.
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We now have some basic results on (one-parameter, linear) semigroups. We

refer to [9, 42, 47] (see also [72, Chapter 9]) for full explanations and proofs.

Definition A5.3. Given a Banach space X a (one-parameter) C0-semigroup T on

X is a family of operators T (t), t ∈ R+ = [0,∞), where for each t, T (t) : X → X

satisfies

(i) T (.)x : R+ → X is continuous for each x ∈ X ;

(ii) T (t)T (s) = T (t+ s) for all t, s ≥ 0;

(iii) T (0) = I, the identity on X .

If A : D(A) → X is a closed linear operator, D(A) ⊂ X , we say A generates the

semigroup T if

D(A) = {x ∈ X : lim
t→0

1

t
(T (t)x− x) exists in X},

Ax = lim
t→0

1

t
(T (t)x− x).

Whenever we say semigroup, we always mean C0-semigroup even if this is not

explicitly stated. If A is the generator of T , then T (t)x ∈ D(A) and AT (t)x =

T (t)Ax for all t ≥ 0. Moreover for every x ∈ X , u(t) = T (t)x ∈ C1(R+, X) is the

unique solution to the abstract Cauchy problem

∂u

∂t
= Au(t) if t ≥ 0,

u(0) = x.

In particular, if A is a second-order elliptic operator defined on some domain

Ω ⊂ RN , then T , if it exists, is the solution to the corresponding heat equation.

Definition A5.4. Let T : R+×X → X be a (C0-)semigroup and A its generator.

We say T is:

(i) analytic (of angle θ ∈ (0, π/2]) if it has an analytic extension to the complex

sector Σθ := {z ∈ C \ {0} : | arg z| < θ + π/2} which is bounded on

Σθ′ ∩ {z ∈ C : |z| ≤ 1} for all θ′ ∈ (0, θ) (cf. Definition 5.3.6). Note that

many authors use the term “holomorphic” rather than “analytic”;

(ii) positive if X = Lp(Ω, dµ), where (Ω,Σ, µ) is a finite measure space, and

for each f ∈ X with f ≥ 0 σ-a.e., we have T (t)f ≥ 0 σ-a.e., for some

(equivalently, all) t ∈ R+;
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(iii) irreducible if X = Lp(Ω, dµ) and for each ω ∈ Σ and t ∈ R+, T (t)Lp(ω) ⊂
Lp(ω). Here Lp(ω) := {f ∈ Lp(Ω, dµ) : f = 0 µ-a.e. on Ω \ ω}.

Also, T (t) is compact as an operator from X to X for some t ∈ (0,∞) if and

only if it is compact for all t ∈ (0,∞). Moreover, T is compact if and only if its

generator A has compact resolvent and T is immediately norm continuous, that is,

continuous as an operator from (0,∞) into the space of bounded linear operators

on X . If T is analytic, then it is automatically immediately norm continuous.

There are many equivalent characterisations as well as necessary and sufficient

conditions for T to have all or any of these properties; the books [9] and [47] are

in no small part devoted to studying these. The following result is of particular

interest to us. If A generates a positive, irreducible semigroup on some Lp space

and has compact resolvent, then its spectral bound s(A) := sup{Reλ : λ ∈ σ(A)}
is finite (by de Pagter’s theorem). Moreover, s(A) ∈ σ(A) and there exists 0 <

u ∈ D(A) such that Au = s(A)u (Krein-Rutman). Finally, the eigenspace of u is

one-dimensional and in fact u can be chosen strictly positive almost everywhere in

Ω. In words, the generator of such a semigroup has a principal eigenvalue at the

edge of its spectrum, and the corresponding eigenfunction is unique up to scalar

multiples.



Appendix B

Background Results on the Functional HΩ

Here for the convenience of the reader we reproduce the proofs of some of the

lemmata from [35] that were used in Section 2.2. The notation we use throughout

is the same as in that section.

Proof of Lemma 2.2.1. (i) The coarea formula (see Theorem A4.6) states that

‖∇ψ‖L1(Ω) =

∫ ∞

0

σ(St) dt,

and in particular the function σ(St) is t-integrable. (Note that σ(St) = 0 if t /∈
(m, 1).)

(ii) As was already noted in Section 2.2, the St are C
∞ for almost all t by Sard’s

lemma [68, Theorem 3.1.3] since ψ ∈ C∞(Ω). If Γ1 = ∅, then since Ut ⊂⊂ Ω there

is nothing left to prove. So suppose Γ1 6= ∅. Since Ω is C2 we need to show that

∂Ut is the graph of a Lipschitz function where St and ∂Ω meet, that is, near St∩Γ1

(recalling that the level sets are compactly contained away from Γ0).

So fix x0 ∈ St ∩ Γ1 and t ∈ (m, 1). Without loss of generality assume x0 = 0

and choose a coordinate system (x1, . . . , xN) =: (x′, xN ) such that νΩ(x0) points in

the direction xN . For δ > 0 set

(B.1) Qδ := {x ∈ R
N : |xi| < δ for 1 ≤ i ≤ N}

to be the cube of radius 2δ centred at x0 = 0 and

(B.2) Rδ := {x ∈ Qδ : xN = 0}

to be its intersection with the hyperplane {xN = 0}. Since Ω is C2, by definition

there exists δ > 0 and ϕ : Rδ → R of class C2 such that

Ω ∩Qδ = {(x′, xN) ∈ Rδ × (−δ, δ) : xN < u(x′)}.

Now by Theorem A4.4 ψ can be extended to a function ψ̃ ∈ W 2,p(RN) having

compact support, for any p ≥ 1 (see also [59, Theorem 7.25]). By standard

embedding theorems if p > N then ψ̃ ∈ C1(RN). Since ψ > 0 and α > 0 on

138
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Γ1, by the boundary condition ∇ψ̃(x0) · νΩ(x0) = −αψ(x0) < 0 and in particular

∇ψ̃(x0) 6= 0. Hence by the implicit function theorem, near x0 S̃t := {x ∈ R
N :

ψ̃(x) = t} is a C1 surface, and, setting Ũt := {x ∈ RN : ψ̃(x) > t}, we have

S̃t = ∂Ũt.

Note that the outer unit normal to Ũt at x0 points in the direction of −∇ψ(x0);
since ∇ψ̃(x0) · νΩ(x0) < 0, ∇ψ̃(x0) has a nonzero component in the direction of

ν(x0). Hence by the implicit function theorem we may also represent ∂Ũ as the

graph of a function over the same coordinate axes. That is, there exists ζ > 0 and

φ ∈ C1(Rζ) such that

Ũt ∩Qζ = {(x′, xN) ∈ Rζ × (−ζ, ζ) : xN < φ(x′)}.

Now set ε := min{δ, ζ} and g := min{ϕ, φ}. Then

Ũt ∩ Ω ∩Qε = {(x′, xN) ∈ Rε × (−ε, ε) : xN < g(x′)}.

Since g is Lipschitz continuous as the minimum of two C1 functions, Ut = Ũt ∩ Ω

is Lipschitz near x0.

(iii) Suppose Γ1 6= ∅. Denote by W ⊂ Ω the set of points on which ψ attains

its minimum, that is, W = {x ∈ Ω : ψ(x) = m}. As noted in Section 2.2, the

maximum principle implies W ⊂ ∂Ω; moreover by Hopf’s lemma ∂u
∂ν

< 0 on W .

Since Ω has sufficiently smooth boundary, ∇ψ is continuous up to the boundary

and ν is smooth as well. Hence there exists ξ > 0 such that

−∂ψ
∂ν

(z) = −ν(z) · ∇ψ(z) ≥ ξ > 0

for all z ∈ W . Using uniform continuity on compact sets, there exists δ0 > 0 such

that

(B.3) − ν(z) · ∇ψ̃(x) ≥ ξ

2
> 0

for all z ∈ W and x ∈ B(z, δ0), where ψ̃ is the extension of ψ used in (ii). By a

similar argument there exists δ1 > 0 such that ν(x) · ν(z) ≥ 1
2
for all z ∈ W and

x ∈ B(z, δ1) ∩ ∂Ω.
Choose 0 < δ ≤ min{δ0, δ1}, so that for each z ∈ W there is an open cube

Qz,δ centred at z, such that Qz,δ has the form (B.1) if our coordinate system is

chosen so that ν(z) points in the direction xN . Then Rz,δ is as in (ii), and there

exists u ∈ C2(Rz,δ) such that (B.2) holds. Since {Qz,δ : z ∈ W} is an open cover
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of the compact set W , we may extract a finite subcover {Qzi,δ}, where zi ∈ W ,

1 ≤ i ≤ n, say.

Now since ψ attains a strict minimum on W , by continuity of ψ there exists

t1 ∈ (m, 1) such that

St ⊂ V := ∪ni=1Qzi,δ

for all t ∈ (m, t1). Fix t ∈ (m, t1) and for the meantime also fix a particular cube

Qδ := Qzj ,δ. Choose our coordinate system so that ν(z) points in the xN direction

as described above. Then (B.3) says that

− ∂ψ̃

∂xN
(x) ≥ ξ

2
> 0

for all x ∈ Qδ. If St ∩ Qδ 6= ∅, then by the implicit function theorem this implies

there exists D ⊂ Rδ = Rzj ,δ and a C1 function v : D → R such that St ∩Qδ is the

graph of v. Then

σ(St ∩Qδ) =

∫

D

√
1 + |∇v(x′)|2 dx′.

Since St is a level surface of ψ̃, its normal is given by

(−∇v(x′), 1) =
( ∂ψ̃
∂xN

(x′, v(x′))
)−1

∇ψ̃(x′, v(x′)).

Using (B.3),

σ(St ∩Qδ) =

∫

Rδ

∣∣∣ ∂ψ̃
∂xN

(x′, v(x′))
∣∣∣
−1

|∇ψ̃(x′, v(x′)) dx′ ≤ 2

ξ
‖∇ψ̃‖L∞(RN )σ(Rδ).

Since δ > 0 was chosen so that ∂Ω∩Qδ is the graph of a C2 function u, we certainly

have σ(Rδ) ≤ σ(∂Ω ∩Qδ) ≤ σ(∂Ω). In particular this means that

σ(St ∩Qδ) ≤
2

ξ
‖∇ψ̃‖L∞(RN )σ(∂Ω).

Summing over all n cubes and using that σ(St) ≤
∑n

i=1 σ(St ∩ Qzi,δ) yields the

result. �

Proof of Lemma 2.2.5. Fix ε ∈ (0, 1) and ϕ ∈ C(Ω) ∩ L1(Uε). By the coarea

formula (Theorem A4.6),

∫ 1

ε

1

τ

∫

Sτ

ϕdσdτ =

∫

Uε

ϕ
|∇ψ|
ψ

dx <∞,
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with an analogous statement being true if we replace ϕ with |∇ψ|/ψ. Since both

are non-negative, we can define f(τ) ∈ L1((0, 1)) by

f(τ) :=
1

τ

∫

Sτ

w dσ =
1

τ

∫

Sτ

ϕdσ − 1

τ

∫

Sτ

|∇ψ|
ψ

dσ.

It follows that

F (t) =

∫ 1

t

f(τ) dτ

is absolutely continuous and hence differentiable almost everywhere on [ε, 1), with

d

dt
F (t) = −f(t) = −1

t

∫

St

w dσ

for almost every t ∈ (ε, 1) (see [99, Theorem 7.18]). Since ε ∈ (0, 1) was arbitrary

this completes the proof. �

Proof of Lemma 2.3.3. This uses a simple compactness argument. Given ϕ ∈
Mα, fix ε > 0. Using that |∇ϕ|/ϕ ∈ C(Ω), where Ω is compact, there exists δ0

such that

(B.4)
∣∣∣ |∇ψ(x)|
ψ(x)

− |∇ψ(y)|
ψ(y)

∣∣∣ < ε

2

for all x, y ∈ Ω such that |x − y| < δ0. Now, since lim supx→z ϕ(x) ≤ α(z)

for x ∈ Ω and z ∈ ∂Ω by assumption, there exists rz = r(z) > 0 such that

supx∈B(z,rz)∩Ω ϕ(x) < α(z) + ε/2. That is,

(B.5) ϕ(x)− α(z) < ε

2

for all x ∈ B(z, rz)∩Ω. Since the B(z, rz) cover the compact set ∂Ω we may extract

a finite subcover B(zi, rzi), 1 ≤ i ≤ n, say. We then choose δ ≤ min{rz1, . . . , rzn, δ0}
to be such that x ∈ ∪ni=1B(zi, rzi) if dist(x, ∂Ω) < δ.

Now fix x ∈ Ω such that dist(x, ∂Ω) < δ. We may suppose that x ∈ B(zj , rzj ).

Since α(zj) ≤ |∇ψ(zj)|/ψ(zj) (see Remark 2.3.2), (B.4) and (B.5) imply

w(x) = ϕ(x)− |∇ψ(x)|
ψ(x)

= ϕ(x)− α(zj) + α(zj)−
|∇ψ(x)|
ψ(x)

<
ε

2
+
|∇ψ(zj)|
ψ(zj)

− |∇ψ(x)|
ψ(x)

< ε.

Since x was arbitrary this completes the proof. �
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Proof of Lemma 2.4.1. Since ψ∗ is decreasing in the radial direction and by

elementary properties of Bessel functions (see [109, p. 45]) we have

|∇ψ∗| = −v′(r) = c
√
λ1(B) r1−

N
2 JN

2
(
√
λ1(B) r)

for all r ∈ [0, R). Combining this with (2.4.1),

g(r) =
√
λ1(B)

JN
2
(
√
λ1(B) r)

JN
2
−1(
√
λ1(B) r)

for all r ∈ (0, R). Let jn, n ∈ N, be the positive zeros of JN
2
−1. Then by [109,

p. 498], if r 6= jn for any n ∈ N, then

JN
2
(r)

JN
2
−1(r)

= −
∞∑

n=0

( 1

r − jn
+

1

r + jn

)
.

In particular, since each term is a decreasing function of r on the interval (jn, jn+1)

(for any n ∈ N), the whole series must be decreasing and hence g is strictly

increasing. �



Appendix C

On Harmonic Functions and Associated Operators

This appendix is devoted wholly to proving a number of technical results con-

cerning harmonic functions and the like that were used in Section 5.3. While we

do not think these results are new, we cannot find a precise reference to them

so we include proofs. Wherever possible, we set up our results so they are valid

for general C1 or Lipschitz domains, so that our arguments in Section 5.3 will be

valid for the broadest possible class of domains (see Remark 5.3.3). We will always

assume, without further comment, that Ω is bounded.

C1. The normal derivative

Here we consider the function B : L2(Ω)→ L2(∂Ω) given by (5.3.3), that is,

D(B) = {u ∈ H1(Ω) :
∂u

∂ν
∈ L2(∂Ω)}

Bu = −β ∂u
∂ν

where ∂u
∂ν

is defined as in (A4.3). We wish to prove that B is relatively ∆D-bounded

with bound 0. This is the key place where the assumption that Ω is of class C1,1

will be needed, since without it, the perturbation idea that was essential to the

proof of Theorem 5.3.1 will no longer work. This argument still works if Ω is C1

and convex or polygonal in R2; see Remark 5.3.3.

Lemma C1.1. For Ω of class C1,1, the operator B is relatively ∆D-bounded with

bound 0.

Remark C1.2. Lemma C1.1 implies in particular that D(∆D) ⊂ D(B), that is,

every u ∈ D(∆D) has a weak outer normal derivative ∂u
∂ν
∈ L2(∂Ω).

Proof. Firstly, we note that if Ω is of class C1,1, then by [64, Theorem 2.2.2.3

and Corollary 2.2.2.4], D(∆D) ⊂ H2(Ω) and moreover the embedding D(∆D) →֒
H2(Ω) is continuous, that is, ‖u‖H2(Ω) ≤ K(‖∆u‖L2(Ω)+ ‖u‖L2(Ω)) for some K > 0

independent of u ∈ D(∆D). By Rellich’s theorem, H2(Ω) embeds compactly in

143
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Hk(Ω) for k ∈ (3
2
, 2). It follows that for every ε > 0 there exists C = C(ε) > 0

such that

(C1.1) ‖u‖Hk(Ω) ≤ ε‖∆u‖L2(Ω) + C‖u‖L2(Ω)

for all u ∈ Hk(Ω). (This result is sometimes called Ehrling’s Lemma; see [98,

Theorem 6.99].)

Now we note that B is bounded as an operator from Hk(Ω) to L2(∂Ω) for all

k ∈ (3
2
, 2). For, if u ∈ Hk(Ω), then by [64, Theorem 1.5.1.2] (a higher order version

of the trace theorem) ∂u
∂ν

exists in Hk− 3
2 (∂Ω) →֒ L2(∂Ω) with norm dominated by

‖u‖Hk(Ω).

That is, there exists K̃ > 0 independent of u such that ‖Bu‖L2(∂Ω) ≤ K̃‖u‖Hk(Ω).

Since in particular D(∆D) ⊂ D(B), the latter containing Hk(Ω) for every k >
3
2
, the conclusion of the lemma follows immediately from combining this with

(C1.1). �

C2. On the homogeneous Dirichlet problem

Here we consider the map P : L2(∂Ω) → L2(Ω) used in Section 5.3, which is

related to the homogeneous Dirichlet problem

−∆u = 0 in Ω,

u = f on ∂Ω,

for f ∈ L2(Ω). We will assume throughout that Ω is of class C1 only. We will

also assume for the meantime that 2 ≤ p < ∞, as this makes no difference from

the case p = 2. We start by defining the non-tangential maximal function Nα of

u ∈ Lp(Ω) ∩ C(Ω) by

(C2.1)
Γα(z) := {x ∈ Ω : dist(x, z) ≤ (1 + α) dist(x, ∂Ω)}

Nα(u)(z) := sup {|u(x)| : x ∈ Γα(z)},

where α > 0 is fixed, arbitrary.

Let f ∈ Lp(∂Ω) for some 2 ≤ p < ∞. Then by [71, Corollary 3.2] there

is a unique harmonic function u ∈ Lp(Ω) ∩ C2(Ω) such that u converges non-

tangentially σ-a.e. to f and for any α > 0, there exists a constant C = C(p, α)

such that

(C2.2) ‖Nα(u)‖Lp(∂Ω) ≤ C(p, α)‖f‖Lp(Ω).
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(In fact this result holds for Lipschitz Ω. By standard results we also have u ∈
C∞(Ω) even in this case, but we will not need this.) The map P : Lp(∂Ω)→ Lp(Ω)

is then defined by Pf = u.

Theorem C2.1. For p = 2 and Ω of class C1 the map P : L2(∂Ω) → L2(Ω) is

well-defined, linear and bounded.

That P is well-defined and linear follows immediately from [71]. As for bound-

edness, it is well-known that if f ∈ L2(∂Ω), then u ∈ H
1
2 (Ω) (see, e.g., [71,

Section 6.3]); however, this does not immediately imply P is bounded, since it is

not clear if P is closed as an operator from L2(∂Ω) to H
1
2 (Ω). Moreover, while

we very strongly expect this is true we cannot find any reference for this, at least

for our class of domains (though see [101, p. 236] and the references therein). To

complete the proof of Theorem C2.1, we will prove here that P : L2(∂Ω)→ L2(Ω)

is bounded.

To do so we will first establish an estimate near the boundary using (C2.2), and

then an interior estimate. Cover ∂Ω by a collection of k local coordinate systems:

choose zi ∈ ∂Ω and cubes Qi = (−bi, bi)N containing zi, i = 1, . . . , k, such that for

each i, in the local coordinate system x1, . . . , xN , inside Qi ∂Ω is the graph of a

C1 function ϕi = ϕi(x1, . . . , xN−1), and such that ∂Ω ⊂ ⋃k
i=1Qi. Then for each i,

‖∇ϕi‖L∞(Qi) is bounded.

For z ∈ ∂Ω ∩Qi, let

Vz := {x = (x1, . . . , xN) ∈ Ω : z = (x1, . . . , xN−1, ϕi(x1, . . . xN−1))}

be the vertical line passing through x contained in Ω ∩Qi.

Lemma C2.2. In the framework described above, there exists α = α(i) such that

for all z ∈ graphϕi, the set Vz ⊂ Γα(z).

Proof. Suppose that Ω is of class C1, fix i and suppose for a contradiction that

for all α > 0 there exists z(α) ∈ graphϕi such that Vz 6⊂ Γα(z).

Choose α > ‖∇ϕi‖L∞(Qi). Then there exists z ∈ graphϕi and x ∈ Vz with

(1 + α) dist(x, ∂Ω) < dist(x, z).

Let w ∈ ∂Ω be such that dist(x, w) < 1
1+α

dist(x, z). We will write w′ =

(w1, . . . , wN−1, 0) and z
′ = (z1, . . . , zN−1, 0) (so that z = (z′, ϕi(z

′)) and similarly
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x′

xN

graphϕi

Vz

z

Γα

Figure C.1. Vz and Γα

for w). Let m be the absolute value of the gradient of the line joining w and z.

Then m ≤ ‖∇ϕi‖L∞(Qi).

We will show that we must have m > α, which contradicts m ≤ ‖∇ϕi‖L∞(Qi) <

α. To this end, suppose without loss of generality that dist(x, z) = 1. Then

dist(x, w) ≤ 1
1+α

. As in Figure C2, let y = (z1, . . . , zN−1, ϕi(wN)). If we let

b = dist(w, y) and a = dist(y, z), then we have m = a/b.

b

b

b

b

z

x

w

graphϕi

a
b y

≤ 1
1+α

Figure C.2.

We will minimise the ratio m = a/b. First note that for m to be minimal,

we must have wN > xN (so that the angle wxz is acute). Next note that b2 ≤
1

(1+α)2
− (1− a)2. Then

(C2.3) m =
a

b
≥ a√

1
(1+α)2

− (1− a)2
,

where 0 < a ≤ 1 and 1 − a < 1
1+α

, that is, a > 1 − 1
1+α

> 0. We claim that the

right hand side of (C2.3) is minimised over the appropriate range of a, α when

m =
√
(1 + α)2 − 1 =

√
α2 + 2α > α.
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Indeed, an elementary calculation shows that

a√
1

(1+α)2
− (1− a)2

≥
√

(1 + α)2 − 1

if and only if

(C2.4)
(α + 1)2

(α + 1)2 − 1
a2 − 2a+

(α + 1)2 − 1

(α+ 1)2
≥ 0.

Now another elementary calculation shows this quadratic expression has a repeated

root at a = 1− 1
(α+1)2

, showing that the expression is positive semi-definite and so

(C2.4) indeed holds for our range of a, α, proving our claim.

In particular, we conclude that

α ≤ m ≤ ‖∇ϕi‖L∞(Qi) < α,

a contradiction. �

The next result can be stated for 2 ≤ p <∞.

Lemma C2.3. There exist Ω0 ⊂⊂ Ω, α > 0 and K0 = K0(p, α) > 0 such that, on

Ω \ Ω0,

(C2.5) ‖u‖Lp(Ω\Ω0)
≤ K0‖Nα(u)‖Lp(∂Ω)

for all u ∈ Lp(Ω \ Ω0).

Note that for some u ∈ Lp(Ω \ Ω0), the right hand side of (C2.5) may be ∞.

Proof. Choose a local covering of ∂Ω with cubesQi = (−bi, bi)N as in Lemma C2.2,

set

Ω0 := Ω \
( k⋃

i=1

Qi

)

and choose α > 0 satisfying the conclusion of Lemma C2.2 for every i. Now for

u ∈ Lp(Ω \ Ω0), write

∫

Ω∩Qi

|u|p dx =

∫

RN−1∩Qi

∫ ϕi(x
′)

−bi

|u|p dxN dx′

≤
∫

RN−1∩Qi

|Nα(u)(x
′, ϕi(x

′))|p2bi dx′,
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where we have replaced u on Vz by the constant function |Nα(u)(z)| ≥ |u(x)| for
x ∈ Vz, and also ϕi(x

′) by bi. Hence
∫

Ω∩Qi

|u|p dx ≤
∫

RN−1∩Qi

2bi|Nα(u)(x
′, ϕi(x

′))|p
√

1 + |∇ϕi|2(x′) dx′

= 2bi‖Nα(u)‖pLp(∂Ω∩Qi)
≤ 2bi‖Nα(u)‖pLp(∂Ω).

Summing over all k cubes,

‖u‖p
Lp(Ω\Ω0)

=

∫

Ω\Ω0

|u|p dx ≤
k∑

i=1

∫

Ω∩Qi

|u|p dx

≤ kmax
i

2bi‖Nα(u)‖pLp(∂Ω).

�

Combining Lemma C2.3 with (C2.2), we see that there exist Ω0 ⊂⊂ Ω, α > 0

and C0 > 0 such that

(C2.6) ‖Pf‖Lp(Ω\Ω0)
≤ C0‖f‖Lp(∂Ω)

for all f ∈ Lp(∂Ω). We will now prove an interior estimate directly using the

Poisson integral formula. While this should be valid for general 2 ≤ p < ∞, our

proof only works in the case p = 2. It is immediate that Theorem C2.1 follows

from (C2.6) and Lemma C2.4.

Lemma C2.4. Under the assumptions of Theorem C2.1, suppose that Ω0 ⊂⊂ Ω.

Then there exists a constant C > 0 depending only on Ω and Ω0 such that

(C2.7) ‖Pf‖L2(Ω0) ≤ C‖f‖L2(∂Ω)

for all f ∈ L2(∂Ω).

Proof. Without loss of generality, we may assume that 0 ≤ f 6≡ 0 (that is, f is

non-negative and not 0 σ-almost everywhere). If f = 0, then Pf = 0 and there

is nothing to prove. If f ∈ L2(∂Ω) is not non-negative everywhere, then write

f = f+ − f−, where f+, f− ≥ 0. Since P is linear, writing u = Pf = Pf+ − Pf−

and, assuming (C2.7) holds for non-negative functions, we have

‖u‖L2(Ω0) ≤ ‖Pf+‖L2(Ω0) + ‖Pf−‖L2(Ω0)

≤ C‖f+‖L2(∂Ω) + C‖f−‖L2(∂Ω) ≤ 2C‖f‖L2(∂Ω).
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So now suppose 0 ≤ f ∈ L1(∂Ω) ⊃ L2(∂Ω) and f > 0 on a set of σ-positive measure

and write u = Pf ∈ C∞(Ω) (for the fact that we can do this for f ∈ L1(∂Ω) we

refer to [71]). By the maximum principle, we must have u(x) > 0 for all x ∈ Ω,

since otherwise the harmonic function u would attain an interior minimum. Given

Ω0 ⊂⊂ Ω, by the Harnack inequality there exists a constant k > 0 depending only

on Ω and Ω0 such that

v(x) ≤ kv(y)

for every positive harmonic function v on Ω and all x, y ∈ Ω0 (see [59, Theorem 2.5]

or [71, p. 13]). For our harmonic function u = Pf , for each x ∈ Ω, we may write

u(x) :=

∫

∂Ω

f dωx,

where ωx is the harmonic measure on ∂Ω at x (see [71]). Note that f ∈ L1(∂Ω, dωx)

for all x ∈ Ω (this is immediate from the definition). This means that if we fix

x0 ∈ Ω0, then we have

1

k

∫

∂Ω

f dωx ≤
∫

∂Ω

f dωx0 ≤ k

∫

∂Ω

f dωx

for all f ∈ L1(∂Ω) and all x ∈ Ω0. Now since ωx and ωx0 are mutually absolutely

continuous (see [71, Theorem 3.1]), by the Radon-Nikodym theorem there exists

h ∈ L1(∂Ω, dωx0) depending on x ∈ Ω such that dωx = hdωx0. Hence
∫

∂Ω

f
(h
k

)
dωx0 ≤

∫

∂Ω

f dωx0

for all 0 ≤ f ∈ L1(∂Ω, dωx0). This means the function h may be identified with a

linear functional on L1(∂Ω, dωx0) with norm no more than 1. Identifying the dual

of L1(∂Ω, dωx0) with L∞(∂Ω, dωx0), this implies

‖h‖L∞(∂Ω,dωx0 ) ≤ k.

Since ωx0 and σ are mutually absolutely continuous (again, see [71, Theorem 3.1]),

they have the same sets of measure 0 and hence give rise to the same L∞-norms.

That is,

‖h‖L∞(∂Ω,dσ) = ‖h‖L∞(∂Ω,dωx0 ) ≤ k,

where the same k > 0 works for all x ∈ Ω0. Writing dωx0 = gdσ, we actually have

g ∈ L2(∂Ω, dσ) by [71, Theorem 3.1(b)]. Now fix f ∈ L2(∂Ω) = L2(∂Ω, dσ). Then
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for all x ∈ Ω0, by the Cauchy-Schwarz inequality we have

u(x) =

∫

∂Ω

f dωx =

∫

∂Ω

fh(x)g dσ

≤ ‖h‖L∞(∂Ω,dσ)‖f‖L2(∂Ω,dσ)‖g‖L2(∂Ω,dσ)

≤ k‖g‖L2(∂Ω,dσ)‖f‖L2(∂Ω,dσ),

where k is the constant from the Harnack inequality depending only on Ω and Ω0.

Note also that g depends only on x0 and hence on Ω0. Squaring and integrating

over Ω0,

‖u‖2L2(Ω0)
≤ k2|Ω0|‖g‖L2(∂Ω,dσ)‖f‖L2(∂Ω,dσ).

Setting C := k|Ω0|
1
2‖g‖L2(∂Ω,dσ), which depends only on Ω and Ω0, gives the desired

estimate. �

We also wish to consider the restriction of P to H
1
2 (∂Ω). It is known that for

s ∈ [0, 1], P maps Hs(∂Ω) into Hs+ 1
2 (Ω) if Ω is Lipschitz (see [69, p. 165]). In

particular, for Lipschitz Ω, the restriction of P to H
1
2 (∂Ω), which for simplicity we

will still denote by P , is a linear operator P : H
1
2 (∂Ω)→ H1(Ω). Note that we now

have that tr(Pf) = f for f ∈ H 1
2 (∂Ω) (see, e.g., [69, Theorem 5.1] if N ≥ 3, or else

use that the trace operator has a right continuous inverse [64, Theorem 1.5.1.3]).

We will now give a proof that P is in fact bounded from H
1
2 (∂Ω) to H1(Ω). All

Proposition C2.5 really says is that the set of harmonic functions in H1(Ω) is closed

in the H1-norm, which is well known.

Proposition C2.5. The operator P : H
1
2 (∂Ω) → H1(Ω) is bounded. Here Ω is

Lipschitz.

Proof. By the closed graph theorem, it suffices to prove P is closed. So suppose

fn → f in H
1
2 (∂Ω) and Pfn → u in H1(Ω). Since D(P ) = H

1
2 (∂Ω) we only need

to show Pf = u.

Now since ∆Pfn = 0 for all n, for any v ∈ C∞
c (Ω) we have

0 =

∫

Ω

v∆Pfn dx = −
∫

Ω

∇Pfn · ∇v dx −→ −
∫

Ω

∇u · ∇v dx

as n→ ∞ since Pfn → u in H1(Ω). Hence
∫
Ω
∇u · ∇v dx = 0 for all v ∈ C∞

c (Ω),

so that ∆u = 0 in the sense of distributions.

Also, by the trace theorem (Theorem A4.2), tr(Pfn) → tru in H
1
2 (∂Ω), that

is, f = tru. Since u solves ∆u = 0 in Ω and tr u = f , we conclude u = Pf . �
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C3. The Dirichlet-to-Neumann operator

Here we prove some properties of the Dirichlet-to-Neumann operator N :

L2(∂Ω)→ L2(∂Ω) given by (5.3.2), that is,

D(N) = {f ∈ L2(∂Ω) :
∂

∂ν
(Pf) ∈ L2(∂Ω)}

Nf =
∂

∂ν
(Pf),

where for the rest of the section we will assume Ω is Lipschitz. We will use form

methods to study the properties of N . For another approach using boundary layer

techniques see Sections 7.11 and 12.c of [102].

Theorem C3.1. The operator −N generates a compact analytic semigroup of

angle π
2
on L2(∂Ω) for Ω Lipschitz.

Proof. Define a form on H
1
2 (∂Ω) by

Q(f, g) :=

∫

Ω

∇(Pf) · ∇(Pg) dx.

Then Q is bi- (sesqui-) linear, symmetric, non-negative and by Proposition C2.5 is

bounded.

Moreover, Q is L2(∂Ω)-elliptic in the sense that for all λ > 0 there exists

C = C(λ) such that

(C3.1) Q(f, f) + λ‖f‖2L2(∂Ω) ≥ C‖f‖2
H

1
2 (∂Ω)

for all f ∈ H
1
2 (∂Ω). To see this, fix λ > 0. Then by Maz’ja’s inequality [88,

Section 4.11], and using that tr(Pf) = f , we have

Q(f, f) + λ‖f‖2L2(∂Ω) = ‖∇(Pf)‖2L2(Ω) + λ‖ tr(Pf)‖2L2(∂Ω)

≥ min{λ, 1}C1(Ω)‖Pf‖2
L

2N
N−2 (Ω)

≥ min{λ, 1}C2(Ω)‖Pf‖2L2(Ω).

In particular,

Q(f, f) + λ‖f‖L2(∂Ω) ≥ C3(λ,Ω)(‖∇(Pf)‖2L2(Ω) + ‖Pf‖2L2(Ω))

≥ C4(λ,Ω)‖f‖2
H

1
2 (∂Ω)

by the trace inequality. This establishes (C3.1).
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Next we establish that N is the operator associated with Q. That operator,

call it Ñ , is given by

(C3.2)

D(Ñ) = {f ∈ D(Q) = H
1
2 (∂Ω) : there exists h ∈ L2(∂Ω)

such that Q(f, g) = 〈h, g〉L2(∂Ω) for all g ∈ H
1
2 (∂Ω)}

Ñf = g.

So suppose that f ∈ D(N). We certainly then have f ∈ H 1
2 (∂Ω) = D(Q) (for ex-

ample ∂
∂ν
(Pf) ∈ L2(∂Ω) implies Pf ∈ H 3

2 (Ω) by [70]; see also [69, Theorem 5.15]).

Then for any g ∈ H 1
2 (∂Ω),

∫

Ω

∇(Pf) · ∇(Pg) =
∫

Ω

(Pg)∆(Pf) dx+

∫

Ω

∇(Pf) · ∇(Pg) dx

=

∫

∂Ω

g
∂

∂ν
(Pf) dx,

that is, Q(f, g) = 〈 ∂
∂ν
(Pf), g〉L2(∂Ω).

This shows that if f ∈ D(N), then f satisfies the domain condition (C3.2) and

Q(f, g) = 〈Nf, g〉L2(∂Ω) for all g ∈ H
1
2 (∂Ω); thus N ⊂ Ñ in the sense of operators.

For the converse, let f ∈ D(Ñ), write Ñf = h and for v ∈ H1(Ω) arbitrary

write v = u + Pg, where u ∈ H1
0 (Ω) and g ∈ H

1
2 (Ω). Then Pf ∈ H1(Ω) by

Proposition C2.5, ∆(Pf) = 0 in the sense of distributions, and
∫
Ω
∇(Pf) ·∇u dx =

0 since tru = 0, and so
∫

Ω

v∆(Pf) +

∫

Ω

∇(Pf) · ∇v dx = 0 +

∫

Ω

∇(Pf) · ∇u dx

+

∫

Ω

∇(Pf) · ∇(Pg) dx =

∫

∂Ω

h tr v dx

for all v ∈ H1(Ω), where for the last step we used the definition of Ñ . By definition

h = ∂
∂ν
(Pf) (see (A4.3)), that is, f ∈ D(N) and Ñf = h = Nf . Hence N = Ñ is

associated with Q.

Now it follows that N has compact resolvent since the form domain H
1
2 (∂Ω)

embeds compactly into L2(∂Ω) by Rellich’s theorem. It also follows by standard

theory (see for example Section 7.1 or Section 3.14 of [9]) that −N generates an

analytic semigroup of angle π
2
. �

We can also consider the restriction of N to the form domain H
1
2 (∂Ω). In this

case we immediately know that −N still generates an analytic semigroup of angle
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π
2
. If Ω is sufficiently smooth we have N : Hk+1(∂Ω) → Hk(∂Ω) for any k ∈ R+

(see [102, Section 7.11]).

Theorem C3.2. Let Ω be Lipschitz. The part of −N in H
1
2 (∂Ω), given by the

negative of

(C3.3)
D(N) = {f ∈ H 1

2 (∂Ω) :
∂

∂ν
(Pf) ∈ H 1

2 (∂Ω)}

Nf =
∂

∂ν
(Pf),

generates a compact analytic semigroup of angle π
2
on H

1
2 (∂Ω).

Proof. That −N generates an analytic semigroup of angle π
2
on its form do-

main H
1
2 (∂Ω) is a standard result (cf. the proof of Corollary 5.2.2). For compact-

ness, since −N is associated with a symmetric form it is self-adjoint and hence

there exists a square root operator A = (−N)
1
2 (that is, A2 = −N) such that

D(A) is the form domain H
1
2 (∂Ω) (see [72, Theorems V.3.35 and VI.2.23]). By

properties of Sobolev towers, D(A2) = D(N) embeds compactly (and densely)

in D(A) = H
1
2 (∂Ω) (see [6, Theorem V.1.3.8]). In particular the domain of the

part of −N in H
1
2 (∂Ω) certainly embeds compactly in H

1
2 (∂Ω). Since in addi-

tion R(λ,−N |
H

1
2 (∂Ω)

) is well-defined and closed for λ ∈ ρ(−N) (see [9, Proposi-

tion 3.10.3]), it must be compact. �
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