CLINICAL AND PHARMACOLOGICAL STUDIES
OF OROFACIAL PAIN

E.R. Vickers, M.D.Sc., B.D.S. (University of Sydney)

Department of Anaesthesia and Pain Management,
Faculty of Medicine,
University of Sydney.

1999

A thesis submitted for the degree of
Doctor of Philosophy
“The pain in my jaw is like a bad, nagging toothache or migraine pain, which can last up to two or three days. Sometimes I feel like taking my life because of the pain.” - a patient diagnosed with atypical odontalgia
ABSTRACT

For pain research, the orofacial region is unique in a number of ways. The region has complex local anatomy, including substantial sensory innervation from neural pathways, and muscles of facial expression that convey important information concerning pain intensity and associated psychological traits. Although chronic orofacial pain conditions appear prevalent, useful documentation on pain intensity ratings using well established instruments is sparse. In particular, two conditions, atypical facial pain and atypical odontalgia, are poorly understood in aetiology so that definitive treatment modalities are severely limited. The region’s local biofluid, saliva, has been used to diagnose various local and systemic disease states, and to quantitate drug concentrations. However, recent studies indicate that saliva also contains some of the same peptides, e.g. bradykinin, that are involved in pain mechanisms. It may be that pharmacological-pharmacokinetic studies of these peptides could shed more information on the significance of their presence in saliva.

This thesis consists of four major sections. Section 1 comprises of three clinical studies investigating orofacial pain. Section 2 deals with clinical laboratory studies of saliva. Section 3 is concerned with the development of chromatographic methods to assay bradykinin and its pharmacokinetics in saliva. Section 4 uses chromatography for the identification of novel salivary peptides. This thesis, then, presents clinical studies of orofacial pain and pharmacological investigations of saliva as the local biofluid.
Section 1

Study 1 analysed 120 consecutive patients with chronic orofacial pain who completed a comprehensive questionnaire that included pain intensity scales (McGill Pain Questionnaire and visual analogue scale). The most frequent condition diagnosed was atypical facial pain (n = 40), followed by temporomandibular disorder (n = 32), atypical odontalgia (n = 29) and pain arising from recognised pathology of the orofacial region (n = 19). Results showed a disproportionate female : male ratio (88 : 32) (P < 0.001) in the study group, and in the subgroup of patients diagnosed with atypical facial pain (34 : 6) (P < 0.001). Temporomandibular disorder was present in 65% subjects as the sole pain complaint (n = 32) or as a secondary condition (n = 43). The Pain Rating Index (Total) of chronic orofacial pain conditions was similar to other chronic pain conditions including back pain, cancer pain and arthritis. Patients diagnosed with multiple orofacial pain complaints reported higher Pain Rating Index (Miscellaneous and Total) scores than those patients with a single diagnosis. A significant positive relationship was found between visual analogue scores and the Number of Words Chosen rating (P = 0.002).

Study 2 examined patients with a diagnosis of atypical facial pain. The current IASP definition interprets this condition as “psychogenic pain” and specifically excludes an organic basis or component. Results of this study revealed that these patients described pain with sensory qualities, which is highly suggestive of underlying, but undetected, pathophysiology. Furthermore, a majority of patients were diagnosed with an associated temporomandibular disorder. It is proposed that patients with atypical facial pain have an
organic component contributing to pain, but psychological factors can magnify the affective component of ‘pain and suffering’ on clinical presentation.

Study 3 evaluated 50 patients diagnosed with atypical odontalgia. Patients underwent pharmacological tests including topical anaesthetic application and phentolamine infusion. Therapeutic trials of topical capsaicin were carried out to assess its efficacy for pain reduction. Results showed that 34 females and 16 males, with an age range of 21 - 82 years, were diagnosed with the condition. Dental treatment triggered the pain in 74% of patients. The pain was generally “constant” (80% of patients) and “medium” to “severe” in intensity (78%). A secondary temporomandibular disorder was present in 35 patients. EMLA topical anaesthetic cream applied to the site of intraoral pain for five minutes caused a significant reduction in pain intensity as measured by the visual analogue scale (P < 0.0001). Patient-blinded saline / phentolamine infusions demonstrated that there was a variable contribution to the pain condition from the sympathetic nervous system. A four week trial of topical capsaicin resulted in 19 / 30 patients reporting a significant pain reduction (P < 0.0001), which was maintained at long term review in the majority of patients. The response to these pharmacological procedures and the high occurrence of dental treatment in the aetiology of atypical odontalgia is highly suggestive that this condition is a neuropathic pain of the oral cavity.

Section 2

Study 4 assessed whether measurements of concentrations of salivary bradykinin might be useful markers in quantifying pain states. This was a screening study based on preliminary
chromatographic ‘fingerprint’ profiles obtained from patients with pain. The preliminary
work assaying saliva showed that chromatographic profiles of patients with different pain
conditions were markedly different compared to patients without pain; further development
may result in a ‘fingerprint’ of different pain states. Study 5 investigated bradykinin as a
possible marker in these profiles. The results assessing salivary bradykinin concentrations
showed that there was wide intersubject variation among healthy controls and several
groups of patients with pain (cancer pain, arthritis and post-operative pain). Generally,
females and surgical post-operative patients were found to have quantifiable levels of
salivary bradykinin.

Section 3

Based on the results of study 5, the pharmacokinetics of salivary bradykinin were
investigated. For this study, an alternative bradykinin assay to immunoassay was developed
using high-performance liquid chromatography. The purpose of using chromatography is
that other peptides potentially involved in pain pathways could be investigated with relative
ease using identical or similar (i.e. minor changes in mobile phase chemistry)
chromatographic conditions. A chromatographic assay for salivary bradykinin was
successfully developed that is rapid and simple in sample preparation and mobile phase
chemistry. Study 6 assessed the degradation and stability of salivary bradykinin. Metabolic
clearance of bradykinin using an ex vivo model showed that its clearance was much slower
than its known plasma pharmacokinetics. The method required stabilisation of salivary
bradykinin that was achieved at low pH; saliva at pH 2 through the addition of
orthophosphoric acid showed excellent stability for five to nine days at 20°C and for 60
days at 4°C. Study 7 determined the salivary bradykinin concentrations in healthy subjects and it showed this peptide to be present in concentrations at several orders of magnitude greater than reported plasma concentrations.

Section 4

Chromatographic assays were optimised to identify a variety of novel salivary peptides. In conjunction with mass spectrometry, novel salivary peptides defensin HNP-1 and HNP-2 have been identified. These peptides have proven antimicrobial, antifungal and antiviral (including anti-HIV) activities. There were high concentrations of these salivary defensin peptides (2-350 µg/mL) in ten healthy subjects; this may have potentially important therapeutic applications such as the prevention and / or treatment of oral candidiasis and other infections.
Publications

Abstracts

Letters to the Editor

ACKNOWLEDGMENTS

I would first like to acknowledge Professor L. Mather and Professor M. Cousins, my supervisors, for their long term guidance and advice throughout the studies. I thank also my colleagues from the Department of Anaesthesia and Pain Management, including those actively engaged in clinical duties in the Pain Management and Research Centre, in particular, Drs Allan Molloy, Suellen Walker, Michael Nicholas, Philip Siddall and Ms Lois Tonkin. The continued support from the secretarial and nursing staff from the respective areas is appreciated.

I am also indebted to several members of the Department’s research laboratories, particularly Dr Li Huang, Dr Debra White, Miss Bronwyn Fryirs and Mrs Sonia Gu for their invaluable advice on chromatography and laboratory procedures. In the area of mass spectrometry, I also thank Miss Catrin Goebel and Dr Lindsey Mackay from the Australian Government Analytical Laboratories for their expert collaboration.

The necessary funds that enabled this study to be carried out included a research scholarship (Balthasar scholarship), and I sincerely thank family members of this foundation for much needed financial assistance.

I wish to thank my friends and colleagues throughout the Department who constantly volunteered to partake in the studies, and with only minimal persuasion. Finally, I am grateful to the patients participating in the study, who keenly supported the clinical trials and
screening studies, and for whom I hope the results of these studies may provide future benefit.

This thesis is dedicated to my parents, (the late) E. Russell Vickers (Snr) and Barbara M. Vickers, who instilled in my youth the essential quality of perseverance.
Statement by the Author Pertaining to Original Work

The Human Research and Ethics Committee of the Royal North Shore Hospital gave approval for the studies, where appropriate, in this thesis. All patients and subjects assessed in the studies in this thesis were personally consulted and treated by the author. The method development utilising high-performance liquid chromatography and all analyses using saliva as the investigating matrix was the original work of the author and, in addition, the development of the sample preparation prior to mass spectrometry. The concept of using high-performance liquid chromatography-mass spectrometry for salivary peptide analysis was the original idea of the author. The operation of the mass spectrometer and tentative identification of defensin HNP-1 and HNP-2 peptides and other salivary constituents were carried out in collaboration with Miss Catrin Goebel and Dr Lindsey Mackay and is acknowledged in the appropriate sections of this thesis.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>III</td>
</tr>
<tr>
<td>Publications</td>
<td>VIII</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>XI</td>
</tr>
<tr>
<td>Dedication</td>
<td>XII</td>
</tr>
<tr>
<td>Statement by Author</td>
<td>XIII</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>XIV</td>
</tr>
<tr>
<td>List of Tables</td>
<td>XIX</td>
</tr>
<tr>
<td>List of Figures</td>
<td>XX</td>
</tr>
<tr>
<td>Appendices</td>
<td>XXII</td>
</tr>
<tr>
<td>Glossary of Terms</td>
<td>XXIII</td>
</tr>
</tbody>
</table>

Introduction and aims of this thesis

Definition of pain	1
Historical aspects of pain	2
Scope of the problem	4
Prevalence of pain	4
Ethno-cultural reinforcers of pain	6
Psychological aspects of pain	7
Neurophysiological and biochemical factors in the mechanism of pain	9
Toward a standard for pain measurement	9

Aims of this thesis | 11 |

SECTION 1 - CLINICAL STUDIES

CHAPTER 1

Study 1: Pain intensity and pain description of chronic orofacial pain conditions

1.1	Introduction	14
1.2	Aims	17
1.3	Patients and methods	17
1.4	Results	19
1.5	Discussion	21
1.5.1	Gender differences	21
1.5.2	Severity of chronic orofacial pain	28
1.5.3	Clinical aspects and parameters of using VAS / MPQ and inter-instrument relationships	36
1.5.4	Complexity of diagnosis: the prevalence of two or more concurrent chronic orofacial pain conditions	38
1.6	Conclusion	42
CHAPTER 2
Study 2: Atypical facial pain: a contentious definition, and guidelines for diagnosis and treatment

2.1 Introduction 44
2.2 Aims 48
2.3 Patients and methods 48
2.4 Results 49
2.5 Discussion 55
2.5.1 AFP case studies - diagnostic and treatment guidelines 58
2.6 Conclusion 62

CHAPTER 3
Study 3: An evaluation of pharmacological procedures for the diagnosis and treatment of atypical odontalgia

3.1 Introduction 66
3.2 Aims 70
3.3 Patients and methods 71
3.3.1 Pain questionnaire and multidisciplinary pain centre assessment 71
3.3.2 Topical application of EMLA 71
3.3.3 Sympathetic blockade 72
3.3.4 Treatment efficacy of topical capsaicin 72
3.4 Results 73
3.5 Discussion 78
3.5.1 General findings 78
3.5.2 Aetiological factors 80
3.5.3 Efficacy of capsaicin 84
3.5.4 TMD considerations 86
3.5.5 Sympathetic nervous system contributions 87
3.6 Conclusion 89

SECTION 2 - CLINICAL LABORATORY STUDIES

CHAPTER 4
Study 4: Saliva as a potential matrix for objective pain measurement

4.1 Introduction 94
4.1.1 Historical perspectives of saliva 94
4.1.2 Saliva as a matrix and diagnostic fluid 95
4.1.3 Advantages in the analysis of saliva 97
4.2 Aim 97
4.3 Patients and methods 98
4.4 Results 99
CHAPTER 5
Bradykinin literature review and study 5

5.1 Introduction 103
5.2 Biochemistry of bradykinin 104
5.3 Biological actions and receptor sites of bradykinin 106
5.3.1 Cardiovascular effects 106
5.3.2 Algogenic actions 107
5.3.3 Receptor sites 109
5.3.4 Kallikrein content in exocrine glands 110
5.3.5 Biofluid concentrations of bradykinin 111
5.4 Aims 112
5.5 Patients and methods 113
5.6 Results 113
5.7 Discussion 115

SECTION 3 - LABORATORY METHODOLOGY
STUDIES

CHAPTER 6
Methods for the determination of bradykinin concentrations

6.1 Introduction 118
6.2 Immunoassay versus chromatography 118
6.3 UV detection of bradykinin in saliva 120
6.4 HPLC - fluorescence detection 122
6.4.1 o-Phthalaldehyde (OPA) 122
6.4.2 Benzoin 126
6.4.3 N-methylisatoic anhydride 131
6.5 Summary of the review of published methods 136

CHAPTER 7
Development of an improved chromatographic method for salivary bradykinin

7.1 Introduction 137
7.2 Materials and equipment 138
7.3 HPLC - separation of peptides 138
7.4 UV absorbance spectra 141
7.4.1 UV absorbance spectra of peptides 141
7.4.2 Determination of UV wavelength 141
7.4.3 Effect of pH on UV absorbance 141
7.5 Bradykinin validation curve 150
Novel applications of the developed HPLC methodology

Specific Application 1: HPLC-MS analysis of salivary constituents

11.1 Introduction 206
11.2 Methods 206
11.3 Results 207
11.4 Discussion 207

Specific Application 2: Defensin peptides HNP-1 and HNP-2

11.5 Introduction 216
11.6 Background 216
11.7 Methods, confirmation of assignment of defensins and results 219
11.8 Discussion 220

CHAPTER 12
Summary of findings and future directions

12.1 Section 1 - Clinical studies 226
12.2 Section 2 - Clinical laboratory studies 228
12.3 Section 3 - Laboratory methodology studies 229
12.4 Section 4 - Novel applications 230
12.5 Concluding comments 231

BIBLIOGRAPHY 234

APPENDICES 253
LIST OF TABLES

Table 1.1 Primary diagnosis of chronic orofacial pain conditions 23
Table 1.2 Diagnosis of pathological conditions 24
Table 1.3 Relative pain intensity of various pain conditions 33
Table 1.4 Mean pain intensity scores 34
Table 1.5 Temporal qualities of pain conditions 35
Table 1.6 Frequency of MPQ pain descriptors 41
Table 2.1 Frequency of TMD signs and symptoms in AFP-TMD patients 65
Table 3.1 Frequency of MPQ descriptors used by patients 82
Table 3.2 Aetiology of atypical odontalgia 83
Table 3.3 Frequency of TMD signs and symptoms in AO-TMD patients 93
Table 4.1 Subject data and pain variables for study 4 101
Table 5.1 Summary of salivary bradykinin concentrations in healthy controls and patient groups 114
Table 7.1 Effects of pH on UV absorbance of bradykinin 149
Table 7.2 Units of peak area for bradykinin concentration range 1-20 ng at pH 2 151
Table 7.3 Saliva mass / volume ratio in healthy controls 155
Table 9.1 Degradation of bradykinin spiked into saliva at 50 ng per injection 176
Table 9.2 Degradation of bradykinin spiked into saliva at 500 ng per injection 179
Table 9.3 Rate of degradation for each subject 180
Table 9.4 Bradykinin concentration in spiked saliva, at 20°C or 4°C for 9 days and 60 days respectively 184
Table 10.1 Daily variations of salivary bradykinin concentrations in healthy subjects 200
Table 10.2 Salivary bradykinin concentrations in healthy subjects following oral sucrose rinse 202
Table 10.3 Comparison of mean bradykinin concentrations in biofluids 204
Table 11.1 HPLC-MS of saliva 210
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Correlation between VAS and NWC</td>
<td>25</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Scatterplots of PRI(T) scores</td>
<td>26</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>Scatterplots of PRI(M) scores</td>
<td>27</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>VAS of the AFP and the AFP-TMD groups</td>
<td>50</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Aetiology of pain as reported by subjects</td>
<td>51</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Subjects’ expectation of “pain being cured” from treatment</td>
<td>51</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Percentage pain reduction from diagnostic procedures</td>
<td>76</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Percentage pain reduction from topical capsaicin treatment</td>
<td>77</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Chromatograms of controls and patients with pain states</td>
<td>102</td>
</tr>
<tr>
<td>Figure 6.1</td>
<td>Percentage recovery of bradykinin standard using filters</td>
<td>121</td>
</tr>
<tr>
<td>Figure 6.2</td>
<td>UV and fluorescence detection of bradykinin standard</td>
<td>124</td>
</tr>
<tr>
<td>Figure 6.3</td>
<td>Analysis of OPA-bradykinin reaction described by Omori et al., (1986b)</td>
<td>125</td>
</tr>
<tr>
<td>Figure 6.4</td>
<td>Analysis of benzoin-bradykinin reaction described by Kai et al., (1987)</td>
<td>127</td>
</tr>
<tr>
<td>Figure 6.5</td>
<td>Analysis of excitation and emission spectra of benzoin</td>
<td>129</td>
</tr>
<tr>
<td>Figure 6.6</td>
<td>Mantyl-bradykinin derivatisation reaction</td>
<td>132</td>
</tr>
<tr>
<td>Figure 6.7</td>
<td>UV detection of mantyl-bradykinin derivatisation</td>
<td>133</td>
</tr>
<tr>
<td>Figure 6.8</td>
<td>Fluorescence detection of mantyl-bradykinin reaction</td>
<td>134</td>
</tr>
<tr>
<td>Figure 7.1</td>
<td>HPLC separation of four peptides</td>
<td>140</td>
</tr>
<tr>
<td>Figure 7.2</td>
<td>Comparison of UV spectra of four peptides</td>
<td>143</td>
</tr>
<tr>
<td>Figure 7.3</td>
<td>UV spectral differences of peptides</td>
<td>145</td>
</tr>
<tr>
<td>Figure 7.4</td>
<td>UV absorbance spectra of bradykinin and mobile phase</td>
<td>146</td>
</tr>
<tr>
<td>Figure 7.5</td>
<td>Effect of pH on UV absorbance of bradykinin</td>
<td>147</td>
</tr>
<tr>
<td>Figure 7.6</td>
<td>pH effects on chromatograms</td>
<td>148</td>
</tr>
<tr>
<td>Figure 7.7</td>
<td>Validation curve for bradykinin 1-20 ng at pH 2</td>
<td>152</td>
</tr>
<tr>
<td>Figure 8.1</td>
<td>UV stopped flow scan of eluted peak identified as bradykinin by co-chromatography</td>
<td>159</td>
</tr>
<tr>
<td>Figure 8.2</td>
<td>Confirmation of bradykinin in saliva by co-chromatography</td>
<td>160</td>
</tr>
<tr>
<td>Figure 8.3</td>
<td>Chromatogram of bradykinin standard</td>
<td>163</td>
</tr>
<tr>
<td>Figure 8.4</td>
<td>Chromatogram of saliva</td>
<td>164</td>
</tr>
<tr>
<td>Figure 8.5</td>
<td>Comparison of chromatograms of bradykinin standard and effluent</td>
<td>165</td>
</tr>
<tr>
<td>Figure 8.6</td>
<td>Direct infusion of bradykinin standard into MS</td>
<td>168</td>
</tr>
<tr>
<td>Figure 8.7</td>
<td>HPLC-MS of bradykinin standard</td>
<td>169</td>
</tr>
<tr>
<td>Figure 8.8</td>
<td>Identification and confirmation of salivary bradykinin by HPLC-MS</td>
<td>170</td>
</tr>
<tr>
<td>Figure 9.1</td>
<td>Degradation of bradykinin standard at pH 7 (MilliQ)</td>
<td>173</td>
</tr>
<tr>
<td>Figure 9.2</td>
<td>Degradation of 50 ng bradykinin in saliva</td>
<td>174</td>
</tr>
<tr>
<td>Figure 9.3</td>
<td>Degradation of bradykinin in whole untreated saliva (pH 7) at 50 ng bradykinin per injection</td>
<td>175</td>
</tr>
<tr>
<td>Figure 9.4</td>
<td>Degradation of 500 ng bradykinin in saliva</td>
<td>177</td>
</tr>
<tr>
<td>Figure 9.5</td>
<td>Degradation of bradykinin in whole untreated saliva (pH 7) at 500</td>
<td></td>
</tr>
</tbody>
</table>
ng bradykinin per injection
| Figure 9.6 | Approximation of the rate of degradation by a first-order rate of bradykinin | 181 |
| Figure 9.7 | Stability of bradykinin with addition of 0.1 M H₃PO₄ | 186 |
| Figure 9.8 | Chromatograms of saliva (pH 2) spiked with bradykinin (50 and 500 ng per HPLC injection) | 187 |
| Figure 9.9 | Stability of bradykinin with addition of 0.1 M H₃PO₄ | 188 |
| Figure 10.1 | Daily variations of salivary bradykinin concentrations | 199 |
| Figure 10.2 | pH of saliva in subjects over 40 minute sampling time | 201 |
| Figure 10.3 | Salivary bradykinin concentration for each subject throughout sampling period | 203 |
| Figure 11.1 | Structure of defensin peptides | 218 |
| Figure 11.2 | Chromatograms of defensin HNP-1 and HNP-2 standards, HPLC method using C8 column | 222 |
| Figure 11.3 | Chromatogram of saliva, HPLC method using C8 column | 223 |
| Figure 11.4 | Chromatograms of defensin HNP-1 and HNP-2 standards, HPLC method using WCX column | 224 |
| Figure 11.5 | Chromatogram of collected effluent, HPLC method using WCX column | 225 |
APPENDICES

Appendix 1 Study 1, Pain data for each subject 253
Appendix 2 Study 1, VAS and MPQ data for each subject 256
Appendix 3 Study 3, Socio-economic data of atypical odontalgia group 259
Appendix 4 Study 3, Psychological variables of atypical odontalgia group 261
Appendix 5 Study 3, Diagnosis and pain variables in atypical odontalgia group 263
Appendix 6 Study 3, Patient response to pharmacological procedures 265
Appendix 7 Study 5, Post-operative (0-2 hours) group data 267
Appendix 8 Study 5, Post-operative (1-10 days) group data 269
Appendix 9 Study 5, Cancer group data 271
Appendix 10 Study 5, Arthritis group data 273
GLOSSARY OF TERMS

ACTH adrenocorticotrophic hormone
AFP atypical facial pain
AFP-TMD atypical facial pain with secondary temporomandibular disorder
ANOVA analysis of variance
AO atypical odontalgia
AO-TMD atypical odontalgia with secondary temporomandibular disorder
BK bradykinin
CGRP calcitonin gene-related peptide
CRPS complex regional pain syndrome
CSF cerebrospinal fluid
EEG electroencephalogram
EMLA eutectic mixture of local anaesthetics
GIT gastrointestinal tract
GRS Graphic Rating Scale
HF Hageman factor
HMW high molecular weight
HPLC high-performance liquid chromatography
HPLC-MS high-performance liquid chromatography-mass spectrometry
IASP International Association for the Study of Pain
LMW low molecular weight
MMPI Minnesota Multiphasic Personality Inventory
MPQ McGill Pain Questionnaire
MS mass spectrometer
NWC Number of Words Chosen
OPA o-Phthalaldehyde
PG prostaglandin
PRI(A) Pain Rating Index (Affective)
PRI(E) Pain Rating Index (Evaluative)
PRI(M) Pain Rating Index (Miscellaneous)
PRI(S) Pain Rating Index (Sensory)
PRI(T) Pain Rating Index (Total)
S.D. standard deviation
SMP sympathetically maintained pain
TMD temporomandibular disorder
VAS visual analogue scale
CLINICAL AND PHARMACOLOGICAL STUDIES

OF OROFACIAL PAIN

E.R. Vickers, M.D.Sc., B.D.S. (University of Sydney)

Department of Anaesthesia and Pain Management,

Faculty of Medicine,

University of Sydney.

1999

A thesis submitted for the degree of

Doctor of Philosophy
“The pain in my jaw is like a bad, nagging toothache or migraine pain, which can last up to two or three days. Sometimes I feel like taking my life because of the pain.” - a patient diagnosed with atypical odontalgia
ABSTRACT

For pain research, the orofacial region is unique in a number of ways. The region has complex local anatomy, including substantial sensory innervation from neural pathways, and muscles of facial expression that convey important information concerning pain intensity and associated psychological traits. Although chronic orofacial pain conditions appear prevalent, useful documentation on pain intensity ratings using well established instruments is sparse. In particular, two conditions, atypical facial pain and atypical odontalgia, are poorly understood in aetiology so that definitive treatment modalities are severely limited. The region’s local biofluid, saliva, has been used to diagnose various local and systemic disease states, and to quantitate drug concentrations. However, recent studies indicate that saliva also contains some of the same peptides, e.g. bradykinin, that are involved in pain mechanisms. It may be that pharmacological-pharmacokinetic studies of these peptides could shed more information on the significance of their presence in saliva.

This thesis consists of four major sections. Section 1 comprises of three clinical studies investigating orofacial pain. Section 2 deals with clinical laboratory studies of saliva. Section 3 is concerned with the development of chromatographic methods to assay bradykinin and its pharmacokinetics in saliva. Section 4 uses chromatography for the identification of novel salivary peptides. This thesis, then, presents clinical studies of orofacial pain and pharmacological investigations of saliva as the local biofluid.
Section 1

Study 1 analysed 120 consecutive patients with chronic orofacial pain who completed a comprehensive questionnaire that included pain intensity scales (McGill Pain Questionnaire and visual analogue scale). The most frequent condition diagnosed was atypical facial pain (n = 40), followed by temporomandibular disorder (n = 32), atypical odontalgia (n = 29) and pain arising from recognised pathology of the orofacial region (n = 19). Results showed a disproportionate female : male ratio (88 : 32) (P < 0.001) in the study group, and in the subgroup of patients diagnosed with atypical facial pain (34 : 6) (P < 0.001). Temporomandibular disorder was present in 65% subjects as the sole pain complaint (n = 32) or as a secondary condition (n = 43). The Pain Rating Index (Total) of chronic orofacial pain conditions was similar to other chronic pain conditions including back pain, cancer pain and arthritis. Patients diagnosed with multiple orofacial pain complaints reported higher Pain Rating Index (Miscellaneous and Total) scores than those patients with a single diagnosis. A significant positive relationship was found between visual analogue scores and the Number of Words Chosen rating (P = 0.002).

Study 2 examined patients with a diagnosis of atypical facial pain. The current IASP definition interprets this condition as “psychogenic pain” and specifically excludes an organic basis or component. Results of this study revealed that these patients described pain with sensory qualities, which is highly suggestive of underlying, but undetected, pathophysiology. Furthermore, a majority of patients were diagnosed with an associated temporomandibular disorder. It is proposed that patients with atypical facial pain have an
organic component contributing to pain, but psychological factors can magnify the affective component of ‘pain and suffering’ on clinical presentation.

Study 3 evaluated 50 patients diagnosed with atypical odontalgia. Patients underwent pharmacological tests including topical anaesthetic application and phentolamine infusion. Therapeutic trials of topical capsaicin were carried out to assess its efficacy for pain reduction. Results showed that 34 females and 16 males, with an age range of 21 - 82 years, were diagnosed with the condition. Dental treatment triggered the pain in 74% of patients. The pain was generally “constant” (80% of patients) and “medium” to “severe” in intensity (78%). A secondary temporomandibular disorder was present in 35 patients. EMLA topical anaesthetic cream applied to the site of intraoral pain for five minutes caused a significant reduction in pain intensity as measured by the visual analogue scale (P < 0.0001). Patient-blinded saline / phentolamine infusions demonstrated that there was a variable contribution to the pain condition from the sympathetic nervous system. A four week trial of topical capsaicin resulted in 19 / 30 patients reporting a significant pain reduction (P < 0.0001), which was maintained at long term review in the majority of patients. The response to these pharmacological procedures and the high occurrence of dental treatment in the aetiology of atypical odontalgia is highly suggestive that this condition is a neuropathic pain of the oral cavity.

Section 2

Study 4 assessed whether measurements of concentrations of salivary bradykinin might be useful markers in quantifying pain states. This was a screening study based on preliminary
chromatographic ‘fingerprint’ profiles obtained from patients with pain. The preliminary work assaying saliva showed that chromatographic profiles of patients with different pain conditions were markedly different compared to patients without pain; further development may result in a ‘fingerprint’ of different pain states. Study 5 investigated bradykinin as a possible marker in these profiles. The results assessing salivary bradykinin concentrations showed that there was wide intersubject variation among healthy controls and several groups of patients with pain (cancer pain, arthritis and post-operative pain). Generally, females and surgical post-operative patients were found to have quantifiable levels of salivary bradykinin.

Section 3

Based on the results of study 5, the pharmacokinetics of salivary bradykinin were investigated. For this study, an alternative bradykinin assay to immunoassay was developed using high-performance liquid chromatography. The purpose of using chromatography is that other peptides potentially involved in pain pathways could be investigated with relative ease using identical or similar (i.e. minor changes in mobile phase chemistry) chromatographic conditions. A chromatographic assay for salivary bradykinin was successfully developed that is rapid and simple in sample preparation and mobile phase chemistry. Study 6 assessed the degradation and stability of salivary bradykinin. Metabolic clearance of bradykinin using an ex vivo model showed that its clearance was much slower than its known plasma pharmacokinetics. The method required stabilisation of salivary bradykinin that was achieved at low pH; saliva at pH 2 through the addition of orthophosphoric acid showed excellent stability for five to nine days at 20°C and for 60
days at 4°C. Study 7 determined the salivary bradykinin concentrations in healthy subjects and it showed this peptide to be present in concentrations at several orders of magnitude greater than reported plasma concentrations.

Section 4

Chromatographic assays were optimised to identify a variety of novel salivary peptides. In conjunction with mass spectrometry, novel salivary peptides defensin HNP-1 and HNP-2 have been identified. These peptides have proven antimicrobial, antifungal and antiviral (including anti-HIV) activities. There were high concentrations of these salivary defensin peptides (2-350 µg/mL) in ten healthy subjects; this may have potentially important therapeutic applications such as the prevention and / or treatment of oral candidiasis and other infections.
PAPERS ARISING FROM THIS THESIS

Publications

Abstracts

Letters to the Editor

ACKNOWLEDGMENTS

I would first like to acknowledge Professor L. Mather and Professor M. Cousins, my supervisors, for their long term guidance and advice throughout the studies. I thank also my colleagues from the Department of Anaesthesia and Pain Management, including those actively engaged in clinical duties in the Pain Management and Research Centre, in particular, Drs Allan Molloy, Suellen Walker, Michael Nicholas, Philip Siddall and Ms Lois Tonkin. The continued support from the secretarial and nursing staff from the respective areas is appreciated.

I am also indebted to several members of the Department’s research laboratories, particularly Dr Li Huang, Dr Debra White, Miss Bronwyn Fryirs and Mrs Sonia Gu for their invaluable advice on chromatography and laboratory procedures. In the area of mass spectrometry, I also thank Miss Catrin Goebel and Dr Lindsey Mackay from the Australian Government Analytical Laboratories for their expert collaboration.

The necessary funds that enabled this study to be carried out included a research scholarship (Balthasar scholarship), and I sincerely thank family members of this foundation for much needed financial assistance.

I wish to thank my friends and colleagues throughout the Department who constantly volunteered to partake in the studies, and with only minimal persuasion. Finally, I am grateful to the patients participating in the study, who keenly supported the clinical trials and
screening studies, and for whom I hope the results of these studies may provide future benefit.

This thesis is dedicated to my parents, (the late) E. Russell Vickers (Snr) and Barbara M. Vickers, who instilled in my youth the essential quality of perseverance.
Statement by the Author Pertaining to Original Work

The Human Research and Ethics Committee of the Royal North Shore Hospital gave approval for the studies, where appropriate, in this thesis. All patients and subjects assessed in the studies in this thesis were personally consulted and treated by the author. The method development utilising high-performance liquid chromatography and all analyses using saliva as the investigating matrix was the original work of the author and, in addition, the development of the sample preparation prior to mass spectrometry. The concept of using high-performance liquid chromatography-mass spectrometry for salivary peptide analysis was the original idea of the author. The operation of the mass spectrometer and tentative identification of defensin HNP-1 and HNP-2 peptides and other salivary constituents were carried out in collaboration with Miss Catrin Goebel and Dr Lindsey Mackay and is acknowledged in the appropriate sections of this thesis.
TABLE OF CONTENTS

Title I
Abstract III
Publications VIII
Acknowledgments XI
Dedication XII
Statement by Author XIII
Table of Contents XIV
List of Tables XIX
List of Figures XX
Appendices XXII
Glossary of Terms XXIII

Introduction and aims of this thesis
Definition of pain 1
Historical aspects of pain 2
Scope of the problem 4
Prevalence of pain 4
Ethno-cultural reinforcers of pain 6
Psychological aspects of pain 7
Neurophysiological and biochemical factors in the mechanism of pain 9
Toward a standard for pain measurement 9
Aims of this thesis 11

SECTION 1 - CLINICAL STUDIES

CHAPTER 1
Study 1: Pain intensity and pain description of chronic orofacial pain conditions
1.1 Introduction 14
1.2 Aims 17
1.3 Patients and methods 17
1.4 Results 19
1.5 Discussion 21
1.5.1 Gender differences 21
1.5.2 Severity of chronic orofacial pain 28
1.5.3 Clinical aspects and parameters of using VAS / MPQ and inter-instrument relationships 36
1.5.4 Complexity of diagnosis: the prevalence of two or more concurrent chronic orofacial pain conditions 38
1.6 Conclusion 42
CHAPTER 2
Study 2: Atypical facial pain: a contentious definition, and guidelines for diagnosis and treatment

2.1 Introduction 44
2.2 Aims 48
2.3 Patients and methods 48
2.4 Results 49
2.5 Discussion 55
2.5.1 AFP case studies - diagnostic and treatment guidelines 58
2.6 Conclusion 62

CHAPTER 3
Study 3: An evaluation of pharmacological procedures for the diagnosis and treatment of atypical odontalgia

3.1 Introduction 66
3.2 Aims 70
3.3 Patients and methods 71
3.3.1 Pain questionnaire and multidisciplinary pain centre assessment 71
3.3.2 Topical application of EMLA 71
3.3.3 Sympathetic blockade 72
3.3.4 Treatment efficacy of topical capsaicin 72
3.4 Results 73
3.5 Discussion 78
3.5.1 General findings 78
3.5.2 Aetiological factors 80
3.5.3 Efficacy of capsaicin 84
3.5.4 TMD considerations 86
3.5.5 Sympathetic nervous system contributions 87
3.6 Conclusion 89

SECTION 2 - CLINICAL LABORATORY STUDIES

CHAPTER 4
Study 4: Saliva as a potential matrix for objective pain measurement

4.1 Introduction 94
4.1.1 Historical perspectives of saliva 94
4.1.2 Saliva as a matrix and diagnostic fluid 95
4.1.3 Advantages in the analysis of saliva 97
4.2 Aim 97
4.3 Patients and methods 98
4.4 Results 99
CHAPTER 5
Bradykinin literature review and study 5

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>103</td>
</tr>
<tr>
<td>5.2</td>
<td>Biochemistry of bradykinin</td>
<td>104</td>
</tr>
<tr>
<td>5.3</td>
<td>Biological actions and receptor sites of bradykinin</td>
<td>106</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Cardiovascular effects</td>
<td>106</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Algogenic actions</td>
<td>107</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Receptor sites</td>
<td>109</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Kallikrein content in exocrine glands</td>
<td>110</td>
</tr>
<tr>
<td>5.3.5</td>
<td>Biofluid concentrations of bradykinin</td>
<td>111</td>
</tr>
<tr>
<td>5.4</td>
<td>Aims</td>
<td>112</td>
</tr>
<tr>
<td>5.5</td>
<td>Patients and methods</td>
<td>113</td>
</tr>
<tr>
<td>5.6</td>
<td>Results</td>
<td>113</td>
</tr>
<tr>
<td>5.7</td>
<td>Discussion</td>
<td>115</td>
</tr>
</tbody>
</table>

SECTION 3 - LABORATORY METHODOLOGY STUDIES

CHAPTER 6
Methods for the determination of bradykinin concentrations

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>118</td>
</tr>
<tr>
<td>6.2</td>
<td>Immunoassay versus chromatography</td>
<td>118</td>
</tr>
<tr>
<td>6.3</td>
<td>UV detection of bradykinin in saliva</td>
<td>120</td>
</tr>
<tr>
<td>6.4</td>
<td>HPLC - fluorescence detection</td>
<td>122</td>
</tr>
<tr>
<td>6.4.1</td>
<td>o-Phthalaldehyde (OPA)</td>
<td>122</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Benzoin</td>
<td>126</td>
</tr>
<tr>
<td>6.4.3</td>
<td>N-methylisatoic anhydride</td>
<td>131</td>
</tr>
<tr>
<td>6.5</td>
<td>Summary of the review of published methods</td>
<td>136</td>
</tr>
</tbody>
</table>

CHAPTER 7
Development of an improved chromatographic method for salivary bradykinin

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>137</td>
</tr>
<tr>
<td>7.2</td>
<td>Materials and equipment</td>
<td>138</td>
</tr>
<tr>
<td>7.3</td>
<td>HPLC - separation of peptides</td>
<td>138</td>
</tr>
<tr>
<td>7.4</td>
<td>UV absorbance spectra</td>
<td>141</td>
</tr>
<tr>
<td>7.4.1</td>
<td>UV absorbance spectra of peptides</td>
<td>141</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Determination of UV wavelength</td>
<td>141</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Effect of pH on UV absorbance</td>
<td>141</td>
</tr>
<tr>
<td>7.5</td>
<td>Bradykinin validation curve</td>
<td>150</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>7.6</td>
<td>Saliva mass / volume ratio</td>
<td>153</td>
</tr>
<tr>
<td>7.7</td>
<td>Saliva collection and sample preparation</td>
<td>153</td>
</tr>
<tr>
<td>7.7.1</td>
<td>Method 1</td>
<td>153</td>
</tr>
<tr>
<td>7.7.2</td>
<td>Method 2</td>
<td>154</td>
</tr>
<tr>
<td>7.8</td>
<td>Summary of HPLC method</td>
<td>156</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>157</td>
</tr>
<tr>
<td>8.2</td>
<td>Stopped flow UV scanning</td>
<td>158</td>
</tr>
<tr>
<td>8.3</td>
<td>Retention time / co-chromatography</td>
<td>158</td>
</tr>
<tr>
<td>8.4</td>
<td>Multiple chromatographic methods</td>
<td>161</td>
</tr>
<tr>
<td>8.5</td>
<td>HPLC-MS</td>
<td>166</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>171</td>
</tr>
<tr>
<td>9.2</td>
<td>Subjects and methods</td>
<td>171</td>
</tr>
<tr>
<td>9.3</td>
<td>Results</td>
<td>172</td>
</tr>
<tr>
<td>9.4</td>
<td>Introduction</td>
<td>182</td>
</tr>
<tr>
<td>9.5</td>
<td>Subjects and methods</td>
<td>182</td>
</tr>
<tr>
<td>9.6</td>
<td>Results</td>
<td>182</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>189</td>
</tr>
<tr>
<td>10.2</td>
<td>Daily variations</td>
<td>189</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Subjects and methods</td>
<td>189</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Results</td>
<td>190</td>
</tr>
<tr>
<td>10.3</td>
<td>pH effects</td>
<td>190</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Subjects and methods</td>
<td>190</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Results</td>
<td>190</td>
</tr>
<tr>
<td>10.4</td>
<td>Discussion</td>
<td>191</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Salivary bradykinin concentrations in healthy controls</td>
<td>191</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Ex vivo kinetics of salivary bradykinin</td>
<td>192</td>
</tr>
<tr>
<td>10.4.3</td>
<td>Possible functions and mechanisms of salivary bradykinin</td>
<td>194</td>
</tr>
<tr>
<td>10.5</td>
<td>Conclusion</td>
<td>197</td>
</tr>
</tbody>
</table>

SECTION 4 - NOVEL APPLICATIONS AND FUTURE DIRECTIONS

CHAPTER 11
Novel applications of the developed HPLC methodology

Specific Application 1 : HPLC-MS analysis of salivary constituents

11.1 Introduction 206
11.2 Methods 206
11.3 Results 207
11.4 Discussion 207

Specific Application 2 : Defensin peptides HNP-1 and HNP-2

11.5 Introduction 216
11.6 Background 216
11.7 Methods, confirmation of assignment of defensins and results 219
11.8 Discussion 220

CHAPTER 12
Summary of findings and future directions

12.1 Section 1 - Clinical studies 226
12.2 Section 2 - Clinical laboratory studies 228
12.3 Section 3 - Laboratory methodology studies 229
12.4 Section 4 - Novel applications 230
12.5 Concluding comments 231

BIBLIOGRAPHY 234

APPENDICES 253
LIST OF TABLES

Table 1.1 Primary diagnosis of chronic orofacial pain conditions 23
Table 1.2 Diagnosis of pathological conditions 24
Table 1.3 Relative pain intensity of various pain conditions 33
Table 1.4 Mean pain intensity scores 34
Table 1.5 Temporal qualities of pain conditions 35
Table 1.6 Frequency of MPQ pain descriptors 41
Table 2.1 Frequency of TMD signs and symptoms in AFP-TMD patients 65
Table 3.1 Frequency of MPQ descriptors used by patients 82
Table 3.2 Aetiology of atypical odontalgia 83
Table 3.3 Frequency of TMD signs and symptoms in AO-TMD patients 93
Table 4.1 Subject data and pain variables for study 4 101
Table 5.1 Summary of salivary bradykinin concentrations in healthy controls and patient groups 114
Table 7.1 Effects of pH on UV absorbance of bradykinin 149
Table 7.2 Units of peak area for bradykinin concentration range 1-20 ng at pH 2 151
Table 7.3 Saliva mass / volume ratio in healthy controls 155
Table 9.1 Degradation of bradykinin spiked into saliva at 50 ng per injection 176
Table 9.2 Degradation of bradykinin spiked into saliva at 500 ng per injection 179
Table 9.3 Rate of degradation for each subject 180
Table 9.4 Bradykinin concentration in spiked saliva, at 20°C or 4°C for 9 days and 60 days respectively 184
Table 10.1 Daily variations of salivary bradykinin concentrations in healthy subjects 200
Table 10.2 Salivary bradykinin concentrations in healthy subjects following oral sucrose rinse 202
Table 10.3 Comparison of mean bradykinin concentrations in biofluids 204
Table 11.1 HPLC-MS of saliva 210
LIST OF FIGURES

Figure 1.1 Correlation between VAS and NWC 25
Figure 1.2 Scatterplots of PRI(T) scores 26
Figure 1.3 Scatterplots of PRI(M) scores 27
Figure 2.1 VAS of the AFP and the AFP-TMD groups 50
Figure 2.2 Aetiology of pain as reported by subjects 51
Figure 2.3 Subjects’ expectation of “pain being cured” from treatment 51
Figure 3.1 Percentage pain reduction from diagnostic procedures 76
Figure 3.2 Percentage pain reduction from topical capsaicin treatment 77
Figure 4.1 Chromatograms of controls and patients with pain states 102
Figure 6.1 Percentage recovery of bradykinin standard using filters 121
Figure 6.2 UV and fluorescence detection of bradykinin standard 124
Figure 6.3 Analysis of OPA-bradykinin reaction described by Omori et al., (1986b) 125
Figure 6.4 Analysis of benzoin-bradykinin reaction described by Kai et al., (1987) 127
Figure 6.5 Analysis of excitation and emission spectra of benzoin 129
Figure 6.6 Mantyl-bradykinin derivatisation reaction 132
Figure 6.7 UV detection of mantyl-bradykinin derivitisation 133
Figure 6.8 Fluorescence detection of mantyl-bradykinin reaction 134
Figure 7.1 HPLC separation of four peptides 140
Figure 7.2 Comparison of UV spectra of four peptides 143
Figure 7.3 UV spectral differences of peptides 145
Figure 7.4 UV absorbance spectra of bradykinin and mobile phase 146
Figure 7.5 Effect of pH on UV absorbance of bradykinin 147
Figure 7.6 pH effects on chromatograms 148
Figure 7.7 Validation curve for bradykinin 1-20 ng at pH 2 152
Figure 8.1 UV stopped flow scan of eluted peak identified as bradykinin by co-chromatography 159
Figure 8.2 Confirmation of bradykinin in saliva by co-chromatography 160
Figure 8.3 Chromatogram of bradykinin standard 163
Figure 8.4 Chromatogram of saliva 164
Figure 8.5 Comparison of chromatograms of bradykinin standard and effluent 165
Figure 8.6 Direct infusion of bradykinin standard into MS 168
Figure 8.7 HPLC-MS of bradykinin standard 169
Figure 8.8 Identification and confirmation of salivary bradykinin by HPLC-MS 170
Figure 9.1 Degradation of bradykinin standard at pH 7 (MilliQ) 173
Figure 9.2 Degradation of 50 ng bradykinin in saliva 174
Figure 9.3 Degradation of bradykinin in whole untreated saliva (pH 7) at 50 ng bradykinin per injection 175
Figure 9.4 Degradation of 500 ng bradykinin in saliva 177
Figure 9.5 Degradation of bradykinin in whole untreated saliva (pH 7) at 500
ng bradykinin per injection
<table>
<thead>
<tr>
<th>Figure 9.6</th>
<th>Approximation of the rate of degradation by a first-order rate of bradykinin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 9.7</td>
<td>Stability of bradykinin with addition of 0.1 M H_3PO_4</td>
</tr>
<tr>
<td>Figure 9.8</td>
<td>Chromatograms of saliva (pH 2) spiked with bradykinin (50 and 500 ng per HPLC injection)</td>
</tr>
<tr>
<td>Figure 9.9</td>
<td>Stability of bradykinin with addition of 0.1 M H_3PO_4</td>
</tr>
<tr>
<td>Figure 10.1</td>
<td>Daily variations of salivary bradykinin concentrations</td>
</tr>
<tr>
<td>Figure 10.2</td>
<td>pH of saliva in subjects over 40 minute sampling time</td>
</tr>
<tr>
<td>Figure 10.3</td>
<td>Salivary bradykinin concentration for each subject throughout sampling period</td>
</tr>
<tr>
<td>Figure 11.1</td>
<td>Structure of defensin peptides</td>
</tr>
<tr>
<td>Figure 11.2</td>
<td>Chromatograms of defensin HNP-1 and HNP-2 standards, HPLC method using C8 column</td>
</tr>
<tr>
<td>Figure 11.3</td>
<td>Chromatogram of saliva, HPLC method using C8 column</td>
</tr>
<tr>
<td>Figure 11.4</td>
<td>Chromatograms of defensin HNP-1 and HNP-2 standards, HPLC method using WCX column</td>
</tr>
<tr>
<td>Figure 11.5</td>
<td>Chromatogram of collected effluent, HPLC method using WCX column</td>
</tr>
</tbody>
</table>
APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Study/Group/Data</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 1</td>
<td>Study 1, Pain data for each subject</td>
<td>253</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>Study 1, VAS and MPQ data for each subject</td>
<td>256</td>
</tr>
<tr>
<td>Appendix 3</td>
<td>Study 3, Socio-economic data of atypical odontalgia group</td>
<td>259</td>
</tr>
<tr>
<td>Appendix 4</td>
<td>Study 3, Psychological variables of atypical odontalgia group</td>
<td>261</td>
</tr>
<tr>
<td>Appendix 5</td>
<td>Study 3, Diagnosis and pain variables in atypical odontalgia group</td>
<td>263</td>
</tr>
<tr>
<td>Appendix 6</td>
<td>Study 3, Patient response to pharmacological procedures</td>
<td>265</td>
</tr>
<tr>
<td>Appendix 7</td>
<td>Study 5, Post-operative (0-2 hours) group data</td>
<td>267</td>
</tr>
<tr>
<td>Appendix 8</td>
<td>Study 5, Post-operative (1-10 days) group data</td>
<td>269</td>
</tr>
<tr>
<td>Appendix 9</td>
<td>Study 5, Cancer group data</td>
<td>271</td>
</tr>
<tr>
<td>Appendix 10</td>
<td>Study 5, Arthritis group data</td>
<td>273</td>
</tr>
</tbody>
</table>
GLOSSARY OF TERMS

ACTH adrenocorticotrophic hormone
AFP atypical facial pain
AFP-TMD atypical facial pain with secondary temporomandibular disorder
ANOVA analysis of variance
AO atypical odontalgia
AO-TMD atypical odontalgia with secondary temporomandibular disorder
BK bradykinin
CGRP calcitonin gene-related peptide
CRPS complex regional pain syndrome
CSF cerebrospinal fluid
EEG electroencephalogram
EMLA eutectic mixture of local anaesthetics
GIT gastrointestinal tract
GRS Graphic Rating Scale
HF Hageman factor
HMW high molecular weight
HPLC high-performance liquid chromatography
HPLC-MS high-performance liquid chromatography-mass spectrometry
IASP International Association for the Study of Pain
LMW low molecular weight
MMPI Minnesota Multiphasic Personality Inventory
MPQ McGill Pain Questionnaire
MS mass spectrometer
NWC Number of Words Chosen
OPA o-Phthalaldehyde
PG prostaglandin
PRI(A) Pain Rating Index (Affective)
PRI(E) Pain Rating Index (Evaluative)
PRI(M) Pain Rating Index (Miscellaneous)
PRI(S) Pain Rating Index (Sensory)
PRI(T) Pain Rating Index (Total)
S.D. standard deviation
SMP sympathetically maintained pain
TMD temporomandibular disorder
VAS visual analogue scale