INFLUENCES ON THE INCIDENCE OF CLINICAL DEEP VEIN THROMBOSIS AND PULMONARY EMBOLISM IN A PROSPECTIVELY COLLATED POPULATION OF 21,000 NEUROSURGICAL INPATIENTS

Sarah F. Smith, B. Sc.

February, 2001

This treatise is submitted in partial satisfaction of the requirements for the Degree of Master of Public Health (Honours), The University of Sydney
ABSTRACT

Records of all neurosurgical inpatients admitted to Royal North Shore Hospital since 1976 have been prospectively kept in a relational database. Demographic details, diagnoses, operations and complications have been entered continuously since 1982 by the author of this study. Complications are monitored at monthly review meetings attended by medical staff. The recurrence of deep vein thrombosis (DVT) and pulmonary embolism (PE) at these meetings, despite continual improvements in patient care, prompted this study. It aims to use the database to study changes in the incidence of DVT and PE over the previous twenty years; to find what database variables predict these complications; and whether use of mechanical and pharmacological agents has had an impact on DVT and PE rate. Univariate analysis of the incidence of DVT and PE by age, sex, length of stay (LOS), admission month, diagnosis, operation and surgeon over time was run. Any significant variables were then analysed by multivariate logistic regression. The DVT rate was low by world standards, but rose from 0.6% in 1979-83 to 1.2% in 1984-88, then rose exponentially to 3.60% in 1994-98 with a significantly increasing trend over the twenty years ($\chi^2_{MH} = 114.20$, with IDF, $P<0.001$). PE rate doubled significantly over the twenty years from 0.6% to 1.2% ($\chi^2_{MH} = 17.94$ with 1DF, $P<0.001$). Age, LOS, diagnosis, operation and surgeon were significant predictors of DVT and PE. After adjustment for LOS, time period and age, vascular surgery was found to be the strongest predictor of DVT (OR=2.82, 95% CI: 2.08-3.82, $\chi^2 = 43.91$, $P<0.01$). Vascular diagnosis was the strongest diagnosis predictor. No effect of sex or month of admission was shown. After adjustment for LOS, time period and age, spinal fusion was the strongest predictor of PE (OR=4.04, 95% CI: 1.81-9.03). Anterior communicating artery aneurysm was the diagnosis most highly associated with PE. The rise in DVT rate may be due to increased complexity of surgical and nursing management, and some screening of patients with the introduction of duplex scanning. The doubling of PE rate is unexplained. The risk of brain or spinal cord haemorrhage makes prophylactic anticoagulation a difficult choice. This study reveals groupings which can be used to determine appropriate prophylaxis. Use of mechanical and pharmaceutical agents is not recorded consistently in the database, but it is known approximately when they were introduced. No impact on the rate of DVT and PE can be demonstrated by these agents. More vigilant and widespread use of mechanical prophylaxis might be just as effective in controlling DVT and PE.
ACKNOWLEDGEMENTS

I wish to thank the following for their help to me in completing this work-

My husband Ross for unstinting support, tolerance, wisdom and proofreading;

Ms Petra Mackaskill, Dept. of Public Health and Community Medicine, University of Sydney, for help with the writing of the logistic regression equation;

Dr Charles Fisher, Dept. Vascular Surgery, RNSH, for help with references;

The Neurosurgeons at RNSH, for permission to use database information regarding their patients. In particular, Dr R. G. Rushworth was instrumental in setting up the database with me.

I have been fortunate to have such a distinguished supervisor, Prof. G. Berry, Dept. Public Health and Community Medicine, University of Sydney, for support and expert advice.

NOTE ON THE AUTHOR’S CONTRIBUTION

With the exception of the assistance mentioned above in the acknowledgements, all the data coding, entry and analysis, and decisions regarding the direction of this treatise, have been undertaken by the author at Royal North Shore Hospital over the last eighteen years.
TABLE OF CONTENTS

Abstract ...ii
Acknowledgements ...iii
Table of Contents ..iv
List of Tables and Figures ...vii

1 INTRODUCTION
1.1 Neurosurgical Clinical Review in the Northern Sydney Health Area ... 1
 1.1.1 History of Database Setup ... 1
 1.1.2 Database Structure .. 2
 1.1.3 Inclusion and Exclusion Criteria ... 3
 1.1.4 Morbidity and Mortality Review ... 4
 1.1.5 The Persistence of Deep Vein Thrombosis and Pulmonary Embolism 5
1.2 The Outcome Variables – Causes and Management of DVT and PE – Literature Review .. 6
 1.2.1 Epidemiology ... 6
 1.2.2 Natural History of DVT and PE ... 8
 1.2.3 Pathophysiology ... 9
 1.2.4 Risk Factors for Thromboembolism .. 11
 1.2.5 Diagnosis of DVT .. 12
 1.2.6 Diagnosis of PE ... 13
 1.2.7 Prophylaxis against DVT and PE ... 13
 1.2.8 Treatment of DVT and PE ... 17
 1.2.9 Costs .. 18
 1.3 Aims ... 19

2 METHODS
2.1 Data Validation ... 20
2.2 Inclusion and Exclusion Criteria ... 20
 2.2.1 Database Criteria for DVT ... 20
 2.2.2 Database Criteria for PE ... 21
2.3 Preliminary Exploration of DVT and PE Distribution 21
 2.3.1 Incidence of DVT, PE and Death over time 21
2.3.2 Statistical Confirmation of Trends...20
2.4 Exploration of Potential Predictors of DVT and PE.................................22
 2.4.1 Incidence of DVT and PE by Age...22
 2.4.2 Incidence of DVT and PE by Sex...22
 2.4.3 Incidence of DVT and PE by Month...23
 2.4.4 Incidence of DVT and PE by Length of Hospital Stay.............................23
 2.4.5 Incidence of DVT and PE by Diagnosis...23
 2.4.6 Incidence of DVT and PE by Surgical Group...24
 2.4.7 Incidence of DVT and PE by Admitting Surgeon..25
 2.4.8 Summary..25
2.5 Further Exploration of Predictors of DVT and PE using Multivariate Logistic Regression...26
 2.5.1 Creation of Dataset for Logistic Regression..26
 2.5.2 Logistic Regression Analysis...26

3 RESULTS
 3.1 Preliminary Exploration of DVT, PE and Death Distribution....................29
 3.1.1 Incidence of DVT, PE and Death over time: Discharges 1976 – 99...........30
 3.1.2 Statistical Confirmation of Trends...32
 3.2 Exploration of Potential Predictors of DVT and PE..................................33
 3.2.2 Incidence of DVT and PE by Age...34
 3.2.3 Incidence of DVT and PE by Sex...38
 3.2.4 Incidence of DVT and PE by Month...39
 3.2.5 Incidence of DVT and PE According to Length of Hospital Stay...............41
 3.2.6 Incidence of DVT and PE according to Diagnosis.......................................45
 3.2.7 Incidence of DVT and PE by Surgical Group...49
 3.2.8 Incidence of DVT and PE by Surgeon...52
 3.3 Summary of Results...57
 3.4 Further Exploration of Predictors of DVT and PE using Multivariate Logistic Regression...59
 3.4.1 DVT as Outcome with Surgeon, Diagnostic and Operation.....................60
 3.4.2 DVT as Outcome Variable with Individual Diagnoses.............................61
 3.4.3 DVT as Outcome Variable with Individual Operations.............................64
 3.4.4 PE as Outcome with Diagnosis and Operation Groups............................68
 3.4.5 PE as Outcome variable with Individual Diagnoses....................................70
 3.4.6 PE as Outcome variable with Individual Operations...................................72
4 DISCUSSION

4.1 Limitations

4.2 Overall Results

4.2.1 A Low Rate of DVT and PE

4.2.1.1 DVT, PE and Mortality

4.2.1.2 Comments on Predictors

4.2.2 A Six-fold Rise in the Rate of DVT over the Last Twenty Years

4.2.3 A Doubling of the Rate of PE

4.3 Other Factors which can Influence the Rate of DVT and PE which the present Analysis Does not Reveal

4.4 Issues in the Management of DVT and PE

4.4.1 Changes in Management over Time

4.4.2 Risk Management

4.4.3 Other Management Issues

4.5 Summary and Recommendations

REFERENCES

BIBLIOGRAPHY
LIST OF TABLES AND FIGURES

Fig. 1.2.2 The anatomy of the leg veins...Page 8
Fig. 1.2.3.1 Factors involved in the arrest of haemorrhage.......................10
Fig. 1.2.3.2 Processes involved in formation of DVT.................................11
Table 3.1 Descriptive statistics for DVT, PE and death: 1976 – 1999........... 29

Fig. 3.1.1 Distribution of DVT, PE & death over time:
 entire database 1976 – 99..30
Table 3.1.1 Approximate death rates by diagnostic group 1979-98..............31
Table 3.1.2 Distribution of DVT, PE and death in five-year periods:
 1979-98...32
Table 3.2.1 Distribution of some potential predictors in five-year periods:
 1979-98...33
Fig. 3.2.2 Distribution of DVT and PE by age:
 entire database 1976 – 99..34
Table 3.2.2.1 Distribution of DVT by age in five-year periods:
 1979-98...35
Table 3.2.2.2 Distribution of DVT by age – totals:
 all years 1979-98..36
Table 3.2.2.4 Distribution of PE by age – totals:
 all years 1979-98..35
Table 3.2.2.3 Distribution of PE by age in five-year periods: 1979-98...........37
Table 3.2.3 Distribution of DVT and PE by sex: 1979-98......................... 38
Table 3.2.3.1 DVT and PE by sex in five-year periods............................38
Fig. 3.2.4.1 Distribution of DVT and PE by discharge month -
 entire database 1976-99...39
Fig. 3.2.4.2 Distribution of DVT and PE by admission month:
 entire database 1976-99...39
Table 3.2.4 Incidence of DVT and PE by admission month:
 1979-98...40
Fig. 3.2.5 Distribution of DVT and PE by length of stay:
 1976-1999..41
Table 3.2.5.1 Distribution of DVT by length of stay in five-year periods 1979-98...42
Table 3.2.5.2 Distribution of DVT by length of stay: totals for all years 1979-98....43
Table 3.2.5.3 Distribution of PE by length of stay in five-year periods: 1979-98....44
Table 3.2.5.4 Distribution of PE by length of stay in five-year periods:
totals all years 1979-98..45

Table 3.2.6.1 Distribution of diagnostic groups in all discharges
in five-year periods: 1979-98...45

Table 3.2.6.2 Distribution of DVT by diagnostic group in five-year periods:
1979-98..47

Table 3.2.6.3 Distribution of PE by diagnostic group in five-year periods:
1979-98..48

Table 3.2.7.1 Distribution of surgical groups in five-year periods:
discharges 1979-98...49

Table 3.2.7.2 Distribution of DVT by surgical group in five-year periods:
1979-98..50

Table 3.2.7.3 Distribution of PE by surgical group in five-year periods:
1979-98..51

Fig. 3.2.8.1 Distribution of DVT by year for individual surgeons..............52
Fig. 3.2.8.2 Distribution of PE by year for individual surgeons...................52

Table 3.2.8.1 Distribution of diagnostic group by surgeon: 1979-98.............53
Table 3.2.8.2 Distribution of DVT by surgeon in five-year periods: 1979-98....55
Table 3.2.8.3 Distribution of PE by surgeon in five-year periods 1979-98....57

Table 3.3.1 χ^2 values for the potential predictors of DVT and PE: 1979-98...57

Table 3.4.1.1 DVT as outcome- logistic regression analysis results:
base model..59

Table 3.4.1.2 DVT as outcome – logistic regression results:
addition of further dummy variables..60

Table 3.4.2 Individual diagnoses in descending order of DVT incidence....61
Table 3.4.2.1 DVT as outcome – logistic regression results:
substitution of individual high-DVT diagnoses in the model..........63

Table 3.4.3 Individual operations in descending order of DVT incidence....64
Table 3.4.3.1 DVT as outcome – logistic regression results:
substitution of individual high-DVT operations in the model.........67

Table 3.4.4.1 PE as outcome – logistic regression analysis results:
base model..68

Table 3.4.4.2 PE as outcome – logistic regression results:
addition of further variables...69

Table 3.4.5 Individual diagnoses in descending order of PE incidence....70
Table 3.4.5.1 PE as outcome- logistic regression results:
substitution of individual high-PE diagnoses in the model............72
Table 3.4.6 Individual operations in descending order of PE incidence........72
Table 3.4.6.1 PE as outcome – logistic regression results:
 substitution of individual high-PE operations in the model........75
Table 3.4.7.1 Effects of all factors on the occurrence of DVT, adjusted for
 length of stay, period and age..76
Table 3.4.7.2 Effects of all factors on the occurrence of PE, adjusted for length of
 stay, period and age..77