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Abstract

Stefan Bernard Williams Doctor of Philosophy
The University of Sydney September 2001

Efficient Solutions to Autonomous
Mapping and Navigation Problems

This thesis deals with the Simultaneous Localisation and Mapping algorithm as it pertains
to the deployment of mobile systems in unknown environments. Simultaneous Localisation
and Mapping (SLAM) as defined in this thesis is the process of concurrently building up a
map of the environment and using this map to obtain improved estimates of the location
of the vehicle. In essence, the vehicle relies on its ability to extract useful navigation infor-
mation from the data returned by its sensors. The vehicle typically starts at an unknown
location with no a priori knowledge of landmark locations. From relative observations of
landmarks, it simultaneously computes an estimate of vehicle location and an estimate of
landmark locations. While continuing in motion, the vehicle builds a complete map of
landmarks and uses these to provide continuous estimates of the vehicle location. The po-
tential for this type of navigation system for autonomous systems operating in unknown
environments is enormous.

One significant obstacle on the road to the implementation and deployment of large scale
SLAM algorithms is the computational effort required to maintain the correlation informa-
tion between features in the map and between the features and the vehicle. Performing
the update of the covariance matrix is of O(n3) for a straightforward implementation of
the Kalman Filter. In the case of the SLAM algorithm, this complexity can be reduced
to O(n2) given the sparse nature of typical observations. Even so, this implies that the
computational effort will grow with the square of the number of features maintained in
the map. For maps containing more than a few tens of features, this computational bur-
den will quickly make the update intractable - especially if the observation rates are high.
An effective map-management technique is therefore required in order to help manage this
complexity.

The major contributions of this thesis arise from the formulation of a new approach
to the mapping of terrain features that provides improved computational efficiency in the
SLAM algorithm. Rather than incorporating every observation directly into the global
map of the environment, the Constrained Local Submap Filter (CLSF) relies on creating
an independent, local submap of the features in the immediate vicinity of the vehicle. This
local submap is then periodically fused into the global map of the environment. This
representation is shown to reduce the computational complexity of maintaining the global
map estimates as well as improving the data association process by allowing the association
decisions to be deferred until an improved local picture of the environment is available. This
approach also lends itself well to three natural extensions to the representation that are also
outlined in the thesis. These include the prospect of deploying multi-vehicle SLAM, the
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Constrained Relative Submap Filter and a novel feature initialisation technique. Results of
this work are presented both in simulation and using real data collected during deployment
of a submersible vehicle equipped with scanning sonar.
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Chapter 1

Introduction

This thesis is concerned with the Simultaneous Localisation and Mapping algorithm as it

pertains to the deployment of mobile systems in unknown environments. Simultaneous

Localisation and Mapping (SLAM) as defined in this thesis is the process of concurrently

building up a map of the environment and using this map to obtain improved estimates

of the location of the vehicle. In essence, the vehicle relies on its ability to extract useful

navigation information from the data returned by its sensors. The vehicle typically starts

at an unknown location with no a priori knowledge of landmark locations. From rela-

tive observations of landmarks, it simultaneously computes an estimate of vehicle location

and an estimate of landmark locations. While continuing in motion, the vehicle builds a

complete map of landmarks and uses these to provide continuous estimates of the vehicle

location. The potential for this type of navigation system for autonomous systems operating

in unknown environments is enormous.

The major contributions of this thesis arise from the formulation of a new approach to the

mapping of terrain features that provides improved computational efficiency in the SLAM

algorithm. By manipulating the manner in which feature information is incorporated into

the map, it can be shown that significant improvements in the performance of the algorithm

can be realised.
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1.1 Background and Motivation

There are countless areas in which autonomous mobile agents might help to remove human

operators from dangerous or hostile environments. This is especially true in the context of

field robotic applications. Unmanned vehicles promise to allow often dangerous tasks to be

performed from remote locations in a range of application domains such as mining, defence

and sub sea exploration.

Early work in field robotics concentrated on remote piloting of platforms, and there is still

a considerable amount of innovative work undertaken in this area. The design of operator

interfaces and the processing and presentation of information intended to aid the operator’s

task are all important considerations in the design of these systems. From head-up displays

to virtual immersion in the vehicle’s environment, operators are increasingly able to monitor

the operational parameters of the vehicle from a distance.

With the advent of newer technologies, including a host of relatively cheap sensors and

increases in computational speed, there has been a recent push to increase the level of

autonomy with which remote agents are allowed to operate. This is seen in numerous

application domains where systems are required to operate for long periods with little or

no input from a human operator. From the landing of space craft on distant planets [44] to

submersible vehicles operating deep under our planet’s oceans [67] there is a need for systems

capable of making decisions and taking control actions in an independent manner. A number

of groups around the world have been concentrating their efforts on the development of field

robotic applications and these are being taken up in a variety of industrial sectors. The

deployment of autonomous systems in field environments demands high levels of robustness

and system integrity. In order for these systems to be adopted into real world applications

they must be shown to present a significant advantage in terms of safety, productivity and

reliability.

One of the fundamental competencies required for a truly autonomous agent is the ability

to navigate successfully within an environment. Navigation is the science of determining

the course of a vehicle on the basis of information from a variety of sensors. Traditionally,

mariners relied on sightings of stars to aid them navigate their ships reliably in unknown
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waters. This form of navigation relies on a known map of stellar bodies and is analogous

to many map based localisation schemes that are prevalent in the autonomous robotics

community. Navigation also plays a key role in the sport of orienteering in which the

motion of a person travelling through unknown terrain is tracked using observations of

salient environmental features and input from sensors such as a compass. This scenario

is similar to that encountered by many of today’s mobile robotic systems that operate in

previously unexplored environments. In the absence of prior map information, the vehicle

must use its on-board sensing to aid in localisation. Autonomous navigation remains one

of the fundamental building blocks of these systems. This need for reliable, long term and

autonomous navigation has motivated a considerable amount of research.

1.1.1 Localisation

Accurate localisation is arguably the most fundamental competence required by autonomous

vehicle systems. It forms the basis for most navigation and control decisions. Without accu-

rate localisation, a mobile robot is essentially left to wander its environment with no notion

of where it is and where it is going. While some work, such as the subsumption architecture

[7], has suggested that goal-oriented robotic behaviours can be built incrementally with no

notion of accurate localisation, most mobile robotic systems require some estimate of their

position to perform a desired task.

There are many methods by which accurate localisation of a vehicle can be achieved.

Some use external sources of information while others rely exclusively on the vehicle’s

on-board resources. For many outdoor applications, the deployment of the GPS satellite

positioning system has provided a means of estimating the position of a vehicle with high

accuracy [47, 46, 61]. Many other applications have used similar external sensors to uniquely

determine the position of the vehicle with respect to some coordinate frame. Consider

for example acoustic positioning systems prevalent in underwater robotics [43, 52, 67, 70]

or external cameras used in some indoor applications. These systems effectively rely on

triangulating the position of the vehicle using range and/or bearing measurements to the

position of known objects in the environment, as shown in Figure 1.1.

External sources of localisation information are not available in all domains and alternate
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(a) GPS positioning (b) LBL Positioning

Figure 1.1: Examples of external positioning systems. Both GPS and Long baseline
(LBL) positioning systems triangulate the position of the vehicle based on the
known positions of the satellites or acoustic transponders.

means of localisation have also received a considerable amount of attention. There has been

a significant amount of work on map-based localisation and a number of methods have been

proposed for achieving accurate localisation given maps of the environment in which the

vehicle operates. Beacon based navigation schemes rely on taking observations of beacons

whose position in the robot’s environment have been surveyed beforehand [6, 8, 31]. These

observations can be fused using an appropriate filter framework, such as the popular Kalman

filter, to provide real-time updates of vehicle position with bounded position error . Recent

work by Thrun [24, 55, 63] has shown that accurate, robust, real-time localisation can be

achieved in indoor environments using grid based and Monte-Carlo methods to estimate

the position of a vehicle given a known map of an indoor environment . These applications

have typically shown good results in small scale, indoor environments. Similar methods

have also been applied to large scale outdoor environments [5]. The literature abounds with

other examples of mobile robotic systems that use a variety of sensors, including lasers,

sonar and cameras, to perform accurate localisation.
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1.1.2 Mapping

Another important competence for a mobile system is the ability to build and maintain

maps of initially unknown environments. Maps allow the vehicle to plan its movement

within the environment in order to achieve its goals. The automatic creation of maps

allows the vehicle to model the world using its sensory resources. In some instances, the

creation of an accurate map of the environment is a goal in itself while in many other

circumstances the maps are used as a tool for performing other higher level tasks.

Given accurate positioning information, the creation of a map of the environment is a

straightforward undertaking. Given a current position estimate and an observation of the

environment the observation can be fused into the existing map to create an updated map

estimate. Many grid-based approaches have relied on this type of map-building in order to

generate an occupancy map of the environment [21, 24, 45]. A number of other mapping

techniques rely on the extraction of relevant environmental features with which to build

maps [12, 34]. Most feature maps consist of a set of landmarks and encode some relationship

between the features contained in the maps. The relationships are often geometrical in

nature but, given appropriate sensors, might also encode other properties of the landmarks

such as colour, texture or shape.

As will be shown in this work, such map building exercises require an accurate, reliable

source of localisation in order to guarantee the consistency of the map. In the absence of

such information, it will be shown that the only statistically consistent course of action is to

maintain an estimate of the correlation between the imperfect estimates of vehicle position

and the map.

1.2 Problem Summary

The Simultaneous Localisation and Mapping (SLAM) algorithm provides a means by which

a map of the environment can be built while at the same time providing an estimate of the

location of the vehicle. By maintaining statistical bounds on the estimated vehicle and

observed landmark states, it is possible to quantify the estimated error in the states and



1.3 Principal Contributions 6

to avoid over-confidence in these estimates. As will be shown, one of the fundamental

problems with the application of this algorithm is its computational complexity. While it

is now possible for the algorithm to operate on larger data sets given recent advances in

processor power, there remains a need to manage this complexity effectively.

One of the most promising avenues of research into the management of the computational

requirements of the algorithm arises from novel methods of representing the information in

the map. By manipulating the manner in which information is stored and incorporated into

the map, it is possible to reduce the computational burden of updating the map elements.

1.3 Principal Contributions

This thesis addresses the computational issues related to the Simultaneous Localisation

and Mapping problem by exploring a number of novel representations for the map. The

principal contributions of this thesis arise from the formulation of a new approach to the

mapping of terrain features that provides improved computational efficiency in the SLAM

algorithm. By manipulating the manner in which feature information is incorporated into

the map, it can be shown that significant improvements in the performance of the algorithm

can be realised. The contributions made are:

• A novel approach to the construction of the SLAM feature map is referred to as the

Constrained Local Submap Filter (CLSF). This method generates a local map of the

features in the immediate vicinity of the vehicle. This local map is then periodically

fused into the global map to recover the full global map estimate. This approach to

SLAM is shown to allow a potentially large number of observations to be fused into

the global map in a single step, thus increasing the efficiency of the filtering process.

Between the application of constraints, only a small, local map must be updated

with each observation. Ambiguity in data association is also shown to be reduced by

deferring the association of observations to features in the map allowing for a more

informed choice of associations.

• SLAM using multiple vehicles is shown to be a very natural extension to the CLSF
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representation and requires only a small modification to the filtering process. Ad-

ditionally, the multi-vehicle case requires the ability to estimate the relative frames

of reference if a vehicle originating from an initially unknown location is to be in-

corporated into the mapping effort. Methods for establishing this relationship are

presented.

• The Constrained Relative Submap Filter (CRSF) adopts a similar approach to the

CLSF algorithm but maintains the local frames of reference in a tree hierarchy. These

independent submaps can then be fused together at some later time to create a con-

sistent global map of the environment. Methods for reinitialising the vehicle in a

previous submap and for generating a consistent global map of the environment are

both presented in relation to this approach. This approach is shown to improve the

computational complexity of the algorithm and can help to address the loop closure

problem.

• A novel feature initialisation scheme is proposed to improve the performance of the

algorithm. In existing implrementations of the SLAM algorithm, features are inserted

into the map only after multiple sightings, especially in areas of high signal clutter.

The information gathered prior to the confirmation of the feature is discarded to main-

tain statistical consistency. Rather than discarding observations of tentative features

in the environment, this initialisation scheme incorporates them into the filter. When

a feature is confirmed through multiple sightings, the information is consolidated into

a single estimate of the feature through the application of appropriately formulated

constraints.

• The thesis also presents results of the application of these techniques to estimate the

motion of a vehicle during deployment in an underwater setting. This work represents

the first instance of a deployable underwater implementation of the SLAM algorithm.

The vehicle model and feature extraction techniques used for generating observations

for the filter are outlined. This is followed by results generated from data collected

during the deployment of the vehicle in a natural terrain environment. By introducing

sonar reflectors into the environment in which the vehicle operated, easily identifiable
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features are made available. These are used to verify the theoretical results developed

in this thesis in a practical environment.

1.4 Outline

Chapter 2 presents the Simultaneous Localisation and Mapping algorithms and discusses

recent advancements in the field before describing the motivation for the work in this thesis.

Chapter 3 presents a novel approach to the map building process - the Constrained

Local Submap Filter. This filter relies on building independent local submaps of the features

surrounding the vehicle. These submaps are then fused periodically into the global map,

allowing the computational burden to be deferred and improving the performance of data

association by allowing multiple features to be compared in one hit.

Chapter 4 presents a number of related developments that are motivated by the Con-

strained Local Submap Filter approach to SLAM. These include multi-vehicle SLAM, the

Constrained Relative Submap Filter and a novel feature initialisation technique.

Chapter 5 presents the application of these techniques to estimate the motion of an

Autonomous Underwater Vehicle using a scanning sonar.

Finally, Chapter 6 presents conclusions and directions for future research in this exciting

field.



Chapter 2

Simultaneous Localisation and

Mapping

2.1 Introduction

Simultaneous Localisation and Mapping (SLAM) is the process of concurrently building a

feature based map of the environment and using this map to obtain estimates of the location

of the vehicle. In essence, the vehicle relies on its ability to extract useful navigation infor-

mation from the data returned by its sensors. The vehicle typically starts at an unknown

location with no a priori knowledge of landmark locations. From relative observations of

landmarks, it simultaneously computes an estimate of vehicle location and an estimate of

landmark locations. While continuing in motion, the vehicle builds a complete map of land-

marks and uses these to provide continuous estimates of the vehicle location. By tracking

the relative position between the vehicle and identifiable features in the environment, both

the position of the vehicle and the position of the features can be estimated simultaneously.

The potential for this type of navigation system for autonomous robotic systems operating

in unknown environments is enormous.

The SLAM algorithm has recently seen a considerable amount of interest from the mobile

robotics community as a tool to enable fully autonomous navigation [10, 18, 23, 32, 50, 53,

62]. This algorithm first appeared in a seminal paper by Smith, Self and Cheeseman [60, 59]
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that built on previous work by Ayache and Faugeras [2] and Chatila and Laumond [11].

The prospect of deploying a robotic vehicle that can build a map of its environment while

simultaneously using that map to localise itself promises to allow these vehicles to operate

autonomously for long periods of time in unknown environments. Much of this work has

focused on the use of stochastic estimation techniques to build and maintain estimates

of vehicle and map feature locations. In particular, the Extended Kalman Filter (EKF)

has been proposed as a mechanism by which the information gathered by the vehicle can

be consistently fused to yield bounded estimates of vehicle and landmark locations in a

recursive fashion [18, 33].

While the Kalman Filter approach to the SLAM problem has received considerable inter-

est, alternative philosophies also appear in the literature. A number of research teams have

tackled the problem of map building and localisation using batch estimation techniques

[38, 27, 62]. By storing the data collected by the vehicle during its run, they are able to

process sensor returns in a batch manner to build maps of the environment in which the

vehicle operated. Still other approaches to the problem of map building and localisation

have done away with the rigorous mathematical models of the vehicle and sensing proper-

ties and have relied instead on more qualitative knowledge of the nature of the environment

[7, 30, 36]. These methods have a certain appeal in that they eliminate the need for accurate

models of the vehicle motion and sensing processes, limit the computational requirements

of map building and have a certain anthropomorphic appeal. While all of these alternative

approaches to the problem have their own particular strengths, this thesis will be concerned

primarily with a recursive, on-line approach to the problem and will rely on the EKF as

the primary means of simultaneously building a map while localising the vehicle.

This chapter presents a feature based Simultaneous Localisation and Mapping (SLAM)

algorithm used for generating vehicle and landmark feature position estimates based on

observations taken relative to the position of the vehicle. Section 2.2 begins by introducing

the representation of the state of the vehicle and its environment. Section 2.3 presents the

vehicle and landmark models used to describe the vehicle process and landmark observation

models commonly employed. Section 2.4 presents a generalised framework for Simultaneous

Localisation and Mapping based on an extended Kalman filter. The algorithm consists
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of a recursive, three-stage process comprising prediction, observation and update. The

mathematical tools necessary to perform each of these steps are presented. Following the

development of the algorithm, Section 2.5 discusses a number of issues related to managing

the filter before Section 2.6 presents some of the important properties of the algorithm. A

number of issues related to computational complexity and maintaining consistency in the

estimation process have motivated the development of various novel map representations

that have appeared in the literature in recent years. These are reviewed in Section 2.7.

This body of work provides the inspiration for the work presented in this thesis and leads

to its major contributions. Section 2.8 presents a simulation of the algorithm that serves

to highlight its significant characteristics. Finally, Section 2.9 summarises the chapter and

provides concluding remarks.

2.2 System States

The SLAM algorithm represents the state of the environment and the state of the vehicle

within it as shown in Figure 2.1. The vehicle travels through the environment using its

sensors to observe features around it. The state of the system at time k can therefore be

represented by the augmented state vector, x(k), consisting of the nv states representing

the vehicle, xv(k), and the nf states describing the observed features, xi(k), i = 1, . . . , nf

x(k) =




Gxv(k)
Gx1(k)

...
Gxnf (k)




(2.1)

where the notation Gxi(k) indicates that the state is relative to the frame of reference

FG. Adopting the terminology of Newman [50], the SLAM algorithm in which all states are

estimated relative to a common, global frame of reference will be referred to as the Absolute

Map Filter (AMF). In the remainder of this chapter, the states are all taken relative to the

common, global frame and the reference frame is omitted. This notation will be important

in the development in Chapter 3.
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The system state vector can be written more concisely by lumping the map features into

the common term xm(k)

x(k) =




Gxv(k)
Gxm(k)


 . (2.2)

Example 2.1. Throughout the remainder of this Chapter, the SLAM equations for a mobile

robot navigating in an unknown environment consisting of point features will be developed

as an example. This example is intended to illustrate the key steps in the filtering process

involved in the SLAM algorithm. Consider the scenario presented in Figure 2.1. The vehicle

state at time k can be uniquely determined by its position and orientation in space. The

vehicle states are therefore defined by

xv(k) =




xv(k)

yv(k)

ψv(k)


 .

Each of the point landmark states, xi(k), can by defined by a position in space

xi(k) =


xi(k)

yi(k)




and the map vector is defined by

xm(k) =




x1(k)
...

xnf (k)


 . (2.3)

2.3 The Vehicle and Landmark Models

The process model for a system describes how the system states change as a function of

time and is usually written as a first order non-linear vector differential equation or state

model of the form

ẋ(t) = f(x(t),u(t), t) + v(t) (2.4)
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ψv

FG

Gx3
Gx1

Gxv

Vehicle Path

Gx2

zR

zθ

Figure 2.1: The system states involved in the SLAM algorithm. The vehicle travels through
the environment taking observations to features using its on-board sensors.
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where x(t) ∈ Rn is a vector of the states of interest at time t, u(t) ∈ Rr is a known control

input, f(·, ·, ·) is a model of the rate of change of system state as a function of time and v(t)

is a random vector describing both dynamic driving noise and uncertainties in the state

model itself.

In general, process models are continuous and must be discretised for implementation

on a digital computer. This thesis will consider discrete process and observation models

directly but it should be remembered that these models are derived from their continuous

time counterparts. The discrete equivalent of equation 2.4 can be written as

x(tk) = f(x(tk−1),u(tk), tk) + v(tk) (2.5)

where the function f(·, ·, ·) now maps the state x(tk−1) at time tk−1 and the control input

u(tk) at time tk to the state x(tk) at time tk. In almost all cases considered here, the time

interval ∆t(k) � tk − tk−1 between successive samples of the state remains constant. In this

case, it is common practice to drop the time argument from Equation 2.5 and simply index

the variables by the sample number

x(k) = f(x(k − 1),u(k)) + v(k) (2.6)

2.3.1 Vehicle Model

A vehicle model attempts to capture the fundamental relationship between the vehicle’s

past state, xv(k − 1), and its current state, xv(k), given a control input, u(k)

xv(k) = fv(xv(k − 1),u(k)) + vv(k) (2.7)

where xv(k) ∈ Rnv are the vehicle states at time step k and vv(k) is a random vector

describing both dynamic driving noise and uncertainties in the vehicle state model itself.

An accurate vehicle model is an essential component of most navigation schemes. Vehicle

models can be of varying degrees of complexity. Depending on the reliability with which the

motion of the vehicle can be modeled and the sensors available for predicting the change of
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state of the vehicle, highly accurate estimates of vehicle motion can be generated. Ideally,

of course, a vehicle model would capture the motion of the vehicle without any uncertainty

and for each state transition, the vehicle state would be precisely known. This is a practical

impossibility, however, as the models used do not, in general, perfectly capture the vehicle

motion and sensors and actuators are subject to noise that will slowly corrupt the accuracy

of the state estimate.

Example 2.2. Returning to the vehicle example considered earlier, a vehicle model for this

system describes the motion of the vehicle from one timestep to the next. Assuming that the

control inputs at time k are given by the measured wheel velocity, V (k), and steering angle,

γ(k), the model for a vehicle of length L is formulated using the common bicycle model,

shown in Figure 2.2 [18, 19, 28]




xv(k)

yv(k)

ψv(k)


 =




xv(k − 1) + ∆t(k)V (k)cos(ψv(k − 1) + γ(k))

yv(k − 1) + ∆t(k)V (k)sin(ψv(k − 1) + γ(k))

ψv(k − 1) + ∆t(k)V (k) tan(γ(k))
L


 +




vx(k)

vy(k)

vψ(k)


 .

2.3.2 Landmark Model

In the context of SLAM, a landmark is a feature of the environment that can be consis-

tently and reliably observed using the vehicle’s sensors. Landmarks must be described in

parametric form to allow them to be incorporated into a state model. Point landmarks,

corners, line and polyline feature models have all been reported in the literature [9, 32].

For the SLAM algorithm, the feature states are usually assumed to be stationary. While

not an essential condition of the SLAM algorithm, tracking moving map features in the

environment is not considered of much value for the purposes of navigation. The dynamic

portion of the process model therefore consists only of a vehicle model. This leads to the

simple landmark model

xm(k) = xm(k − 1) (2.8)

where xm(k)∈ Rnf are the landmark states at time step k.

Example 2.3. Given that the position of the landmarks are assumbed to be stationary, the
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v

(xv,yv)

γ

X

Y

L

Centre of Rotation

  vΨ

Figure 2.2: The simplified bicycle vehicle model. The measured values are the rear wheel
velocity, V (k), and steer angle, γv(k). This kinematic model assumes that all points on the
vehicle rotate about the Instantaneous Centre of Rotation with the same angular speed.
The inputs are used to compute the vehicle position at the following timestep.
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landmark model for this system is given by

xi(k) = xi(k − 1) (2.9)

2.3.3 Sensor Models

The state observation process can also be modelled in state-space notation by a non-linear

vector function in the form

z(t) = h(x(t),u(t), t) + w(t) (2.10)

where z(t) ∈ Rm is the observation made at time t, h(·, ·, ·) is a model of the observation of

system states as a function of time and w(t) is a random vector describing both measurement

corruption noise and uncertainties in the measurement model itself. These models describe

the true observation at time t given the true state of the system x(t).

The observation process lends itself well to the discrete observation model

z(k) = h(x(k)) + w(k) (2.11)

as the state observations are often captured using a digital computer system.

Example 2.4. The vehicle shown in Figure 2.1 is equipped with a range/bearing sensor

that takes observations of the features in the environment. Laser range finders and sonar

sensors are two examples of range/bearing sensors that might be used on such a vehicle.

Given the current vehicle position xv(k) and the position of an observed feature xi(k), the

observation of range, zR(k) and bearing, zθ(k), can be modelled as

z(k) =


zR(k)

zθ(k)




=




√
(xv(k) − xi(k))2 + (yv(k) − yi(k))2

arctan( (yv(k)−yi(k))
(xv(k)−xi(k))) − ψv(k)


 +


wr(k)

wθ(k)






2.4 The Estimation Process 18

2.4 The Estimation Process

Given the process and observation models described in the previous sections, the localisation

and map building process consists of generating the best estimate for the system states given

the information available to the system. This can be accomplished using a recursive, three-

stage procedure comprising prediction, observation and update steps known as the Extended

Kalman Filter (EKF) [18]. The Kalman filter is a recursive, least squares estimator and

produces at time i a minimum mean-squared error estimate x̂(i|j) of the state x(i) given a

sequence of observations up to time j, Zj = {z(1)...z(j)}

x̂(i|j) = E[x(i)|Zj ] (2.12)

The development of the Extended Kalman Filter equations detailed here can be found in

numerous texts on the subject [20, 25, 41, 42].

Adopting the notation of Gelb [25], the posterior estimate of the state at time k condi-

tioned on the information up to time k will be written as x̂+(k)

x̂+(k) = x̂(k|k). (2.13)

The prior estimate of the state at time k given the information up to time k−1, also referred

to as the one-step-ahead prediction, will be written x̂−(k)

x̂−(k) = x̂(k|k − 1). (2.14)

The filter fuses a prior state estimate x̂−(k) with an observation z(k) of the state x(k) at

time k to produce the updated estimate x̂+(k) (see Figure 2.3). The Kalman Filter makes

the simplifying assumption that the process noise, v(k), and observation noise, w(k), are

temporally uncorrelated and zero mean

E[v(k)] = E[w(k)] = 0,∀k
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ν

-

+

u(k), U(k)

z(k), R(k)

Observation Model

z(k)=h(x(k)) + w(k)

Matched

Not
Matched

Process Model

x(k) = f(x(k-1), u(k)) + v(k)

New Feature

Feature Initialisation

x(k) = g(x(k-1), z(k))

Data association

z(k) observation
of feature i ?

Kalman Update

x+(k) = x-(k) + W(k) ν(k)
P+(k) = P-(k) - W(k)S(k)W(k)T

Map management

z(k) a new feature ?

(k)ˆ
i

z

+ (k-1),x̂ (k-1) P

- (k),x̂ (k) P

+ (k),x̂ (k) P

(k), S(k)

Figure 2.3: The essential steps of the filtering process. The state estimate
x̂+(k − 1) and control input u(k) are used to generate a prior state estimate x̂−(k).
When observations are received by the filter they are fused to produce the posterior
estimate x̂+(k).
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with covariances Q(k)and R(k)respectively

E[v(k)vT (k)] = Q(k)

E[w(k)wT (k)] = R(k).

In some instances, it is also necessary to model inaccuracies in the control input parameters,

u(k). These are also modelled as temporally uncorrelated and zero mean

E[u(k)] = 0,∀k

with covariances U(k)

E[u(k)uT (k)] = U(k).

For the Simultaneous Localisation and Mapping algorithm, the EKF is used to estimate

the pose of the vehicle x̂+
v (k) along with the positions of the nf observed features x̂+

i (k), i =

1...nf . The augmented state vector, Equation 2.1, gives rise to the augmented state estimate

consisting of the current vehicle state estimates as well as those associated with the observed

features

x̂+(k) =




x̂+
v (k)

x̂+
1 (k)
...

x̂+
nf

(k)




(2.15)

The covariance matrix for this state estimate is defined through

P+(k) = E[(x(k) − x̂+(k))(x(k) − x̂+(k))T |Zk]. (2.16)

This defines the mean squared error and error correlations in each of the state estimates.
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For the case of the AMF, the covariance matrix takes on the following form

P+(k) =




P+
vv(k) P+

v1(k) . . . P+
vn(k)

P+T
v1 (k) P+

11(k) . . . P+
1n(k)

...
...

. . .
...

P+T
vn (k) P+T

1n (k) . . . P+
nn(k)




(2.17)

where

P+
vv(k) = E[(xv(k) − x̂+

v (k))(xv(k) − x̂+
v (k))T |Zk] (2.18)

represents the vehicle covariance,

P+
ii (k) = E[(xi(k) − x̂+

i (k))(xi(k) − x̂+
i (k))T |Zk], i ∈ {1 . . . n} (2.19)

represent the landmark covariance,

P+
vi(k) = E[(xv(k) − x̂+

v (k))(xi(k) − x̂+
i (k))T |Zk] (2.20)

represents the cross-covariance between the vehicle and landmark estimate and

P+
ij(k) = E[(xi(k) − x̂+

i (k))(xj(k) − x̂+
j (k))T |Zk] (2.21)

represents the cross-covariance between landmarks. The covariance matrix can be written

more concisely using P+
mm(k) to represent the map covariance and P+

vm(k) to represent the

cross-covariance between the vehicle and the map.

P+(k) =


P+

vv(k) P+
vm(k)

P+T
vm (k) P+

mm(k)


 (2.22)

2.4.1 Prediction

The prediction stage of the filter uses the model of the motion of the vehicle defined in

Equation 2.7 to generate an estimate of the vehicle position, x̂−
v (k), at instant k given the
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information available to instant k − 1 as

x̂−
v (k) = f(x̂+

v (k − 1),u(k)). (2.23)

The landmark model of Equation 2.8 yields a landmark prediction model as

x̂−
m(k) = x̂+

m(k − 1). (2.24)

Together, these two models result in the propagation of the augmented state matrix during

the prediction cycle of the filter.


x̂−

v (k)

x̂−
m(k)


 =


f(x̂+

v (k − 1),u(k))

x̂+
m(k − 1)


 (2.25)

The covariance matrix must also be propagated through the vehicle model as part of the

prediction. The Extended Kalman Filter linearises the propagation of uncertainty about the

current state estimate x̂+(k − 1) using the the Jacobian ∇xf(k) of f evaluated at x̂+(k − 1)

as

P−(k) = ∇xf(k)P+(k − 1)∇xfT (k) + Q(k). (2.26)

Uncertainty in the control inputs, u(k) used to drive the prediction can be also be accounted

for using the control uncertainty, U(k), and the Jacobian ∇uf(k) of f evaluated around the

current control inputs

P−(k) = ∇vf(k)P+(k − 1)∇vfT (k) + ∇uf(k)U(k)∇ufT (k) + Q(k).

For the SLAM algorithm, this step in the filter can be simplified because of the assumption

that the feature states are stationary. This allows the complexity of computing the predicted

covariance to be reduced by requiring that only the variances associated with the vehicle

and the cross covariance terms between the vehicle and the map are updated during the
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prediction step


P−

vv(k) P−
vm(k)

P−T
vm (k) P−

mm(k)


 =


∇vf(k)P+

vv(k − 1)∇vfT (k) + Qvv(k) ∇vf(k)P+
vm(k − 1)

P+T
vm (k − 1)∇vfT (k) P+

mm(k − 1)




(2.27)

where the noise term, Qvv(k), here represents the lumped process and control noise terms

for conciseness.

Example 2.5. Considering again the example developed earlier, the prior estimates for the

vehicle states at time k given the information available to time k − 1 can be evaluated as




x̂−
v (k)

ŷ−v (k)

ψ̂−
v (k)


 =




x̂+
v (k − 1) + ∆t(k)V (k) cos(ψ̂+

v (k − 1))

ŷ+
v (k − 1) + ∆t(k)V (k) sin(ψ̂+

v (k − 1))

ψ̂+
v (k − 1) + ∆t(k)V (k) tan(γ(k))

L


 .

The propagation of the covariance matrix is accomplished by linearising about the current

estimates

P−
vv(k) = ∇vf(k)P+

vv(k − 1)∇vfT (k) + ∇uf(k)U(k)∇ufT (k) + Q(k)

where

∇vf(k) =




1 0 −∆t(k)Vv sin(ψ̂+
v (k − 1) + γv)

1 0 ∆t(k)Vv cos(ψ̂+
v (k − 1) + γ̂v)

0 0 1




and

∇uf(k) =




∆t(k) cos(ψ̂+
v (k − 1)) 0

∆t(k) sin(ψ̂+
v (k − 1)) 0

∆t(k) tan(ψ̂+
v (k − 1)) ∆t(k) V (k)

L cos(ψ̂+
v (k−1))2




with

U(k) =


σ2

V 0

0 σ2
γ



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and

Q(k) =




σ2
x 0 0

0 σ2
y 0

0 0 σ2
ψ




2.4.2 Observation

The fusion of the observation into the state estimate is accomplished by first calculating a

predicted observation, ẑ−(k), using the observation model, h as

ẑ−(k) = h(x̂−(k)) (2.28)

When observations are received from the vehicle’s on-board sensors they must be associated

with particular features in the environment. The difference between the actual observation,

z(k), received from the system’s sensors and the predicted observation, ẑ−(k), is termed

the innovation ν(k),

ν(k) = z(k) − ẑ−(k) (2.29)

The innovation covariance, S(k), is computed from the current state covariance estimate,

P−(k), the Jacobian of the observation model, ∇xh(k), and the covariance of the observa-

tion model R(k).

S(k) = ∇xh(k)P−(k)∇xhT (k) + R(k) (2.30)

As will be shown, the innovations and their associated covariances can be used to validate

measurements before they are incorporated into the filtered estimates. The calculation

of the innovation covariance can be simplified by noting that each observation is only a

function of the feature being observed. The Jacobian of the observation function, ∇xh(k),

is therefore a sparse matrix of the form

∇xh(k) =
[
∇vh(k) 0 . . . 0 ∇ih(k) 0 . . .

]
. (2.31)
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Evaluating the product in Equation 2.30 using the sparse Jacobian results in

S(k) = ∇vh(k)P−
vv(k)∇vhT (k) + ∇ih(k)P−

vi(k)∇vhT (k) +

∇vh(k)P−T
vi (k)∇ihT (k) + ∇ih(k)P−

ii (k)∇ihT (k) + R(k) (2.32)

Example 2.6. In the application, the vehicle observes the relative range and bearing between

itself and features in the environment. Given the current vehicle position estimate x̂−
v (k)

and the estimated position of an observed feature x̂−
i (k), the predicted observation of range,

ẑ−R(k) and bearing, ẑ−θ (k), between the vehicle and the feature can be computed using the

observation model described in Example 2.4

ẑ−(k) =


ẑ−R(k)

ẑ−θ (k)




=




√
(x̂−

v (k) − x̂−
i (k))2 + (ŷ−v (k) − ŷ−i (k))2

arctan( (ŷ−
v (k)−ŷ−

i (k))

(x̂−
v (k)−x̂−

i (k))
) − ψ̂−

v (k)




To find the innovation covariance, the Jacobians of the observation equation, h, with

respect to the vehicle states, ∇vh(k), and with respect to the feature states, ∇ih(k) must be

computed. Evaluating the Jacobian at the prediction x̂−(k) results in

∇vh(k) =




x̂−
v (k)−x̂−

i (k)
d

ŷ−
v (k)−ŷ−

i (k)
d 0

− ŷ−
v (k)−ŷ−

i (k)

d2

x̂−
v (k)−x̂−

i (k)

d2 −1




∇ih(k) =


−

x̂−
v (k)−x̂−

i (k)
d − ŷ−

v (k)−ŷ−
i (k)

d

ŷ−
v (k)−ŷ−

i (k)

d2 − x̂−
v (k)−x̂−

i (k)

d2




with

d =
√

(x̂−
v (k) − x̂−

i (k))2 + (ŷ−v (k) − ŷ−i (k))2

Section 2.5.2 will describe how the innovation and its covariance can be used for the purposes

of data association.
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2.4.3 Update

Once the observation has been associated with a particular feature in the map, the state

estimate can be updated using the optimal gain matrix W(k). This gain matrix provides

a weighted sum of the prediction and observation and is computed using the innovation

covariance, S(k) and the predicted state covariance, P−(k). The weighting factor is propor-

tional to P−(k) and inversely proportional to the innovation covariance [60]. This is used

to compute the state update x̂+(k) as well as the updated state covariance P+(k).

x̂+(k) = x̂−(k) + W(k)ν(k) (2.33)

P+(k) = P−(k) − W(k)S(k)WT (k) (2.34)

where

W(k) = P−(k)∇xhT (k)S−1(k) (2.35)

2.4.4 Feature Initialisation

When a new feature is observed its estimate must be properly initialised and added to the

state vector. Given a current state estimate, x̂−(k), comprised of the vehicle state, x̂−
v (k),

and the map states, x̂−
m(k), a relative observation between the vehicle and the new feature,

z(k), and a feature initialisation model, gi(·, ·), that maps the current vehicle state estimate

and observation to a new feature estimate, the initial estimate of the feature state is

x̂+
i (k) = gi(x̂−

v (k), z(k)). (2.36)

These new state estimates are then appended to the state vector as new map feature ele-

ments.

The covariances of the new feature estimates must also be properly initialised since the

initial estimate depends on the current vehicle estimate and is therefore correlated with

the rest of the vehicle and other map state estimates. Ignoring the correlation between

the new state estimates and the remainder of the map can lead to inconsistency in the

filtering process [14]. The AMF covariance matrix is first augmented with the observation
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covariance and the cross-covariance terms between the existing state elements and the new

state estimates are computed. Assume the initial covariance matrix, P−(k), is

P−(k) =


P−

vv(k) P−
vm(k)

P−T
vm (k) P−

mm(k)


 (2.37)

The covariance matrix is then augmented with the observation covariance, R(k)

P∗−(k) =




P−
vv(k) P−

vm(k) 0

P−T
vm (k) P−

mm(k) 0

0 0 R(k)


 (2.38)

The final covariance is computed by projecting the augmented covariance matrix through

the Jacobian ∇xg(k) of the initialisation function, gi, with respect to the augmented states,

P+(k) = ∇xg(k)P∗−(k)∇xgT (k) (2.39)

with

∇xg(k) =




Iv 0 0

0 Im 0

∇vg(k) 0 ∇zg(k)


 . (2.40)

This O(n3) operation can be simplified by exploiting the sparse nature of the Jacobian,

∇xg(k)

P+(k) =




P−
vv(k) P−

vm(k) (P−T
vv (k)∇vgT (k))

P−T
vm (k) P−

mm(k) (P−T
vm (k)∇vgT (k))

∇vg(k)P−
vv(k) ∇vg(k)P−

vm(k) ∇vg(k)P−
vv(k)∇vgT (k) + ∇zg(k)R(k)∇zgT (k)




(2.41)

Proper initialisation of the feature estimates is necessary to maintain their consistency

and to generate the correct cross-covariances between the feature and vehicle estimates.

Example 2.7. In order to complete the example application developed in the previous Sec-

tions, the initialisation equations for adding a new feature into the map are shown here.
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Given a current vehicle estimate x̂−
v (k) and an observation z(k) of a feature i that does not

yet exist in the map, the initial estimate, x̂+
i (k), of the location of the feature is computed

using the non-linear initialisation function gi


x̂+

i (k)

ŷ+
i (k)


 =


x̂−

v (k) + zR(k) cos(ψ̂−
v (k) + zθ(k))

ŷ−v (k) + zR(k) sin(ψ̂−
v (k) + zθ(k))




Given this initialisation equation, the required Jacobians with respect to the vehicle states,

∇vg(k), and the observation, ∇zg(k) can be evaluated at the current estimate as

∇vg(k) =


1 0 −zR(k) sin(ψ̂−

v (k) + zθ(k))

0 1 zR(k) cos(ψ̂−
v (k) + zθ(k))




∇zg(k) =


cos(ψ̂−

v (k) + zθ(k)) −zR(k) sin(ψ̂−
v (k) + zθ(k))

sin(ψ̂−
v (k) + zθ(k)) zR(k) cos(ψ̂−

v (k) + zθ(k))


 .

2.5 Filter Management

To successfully manage the estimation process, and to supply it with reliable and robust

feature observations, a number of additional considerations must be taken into account.

These include the methods used for extracting and identifying features and for data asso-

ciation when new observations are received. This section examines some of these issues in

more detail.

2.5.1 Feature Extraction

The development of autonomous feature based navigation relies on the ability of a sensor

system to extract appropriate and reliable features with which to build maps. The feature

extraction process is highly application dependent and depends on the anticipated environ-

ment in which the vehicle will operate, and the sensors used to observe this environment.

Some environments, such as those found in typical offices, lend themselves to the extraction

of corner and line features using such sensors as lasers and vision systems. In unstructured
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environments, simple corner or line features are not commonly observed. Additionally out-

door sensors very often can not provide the same accuracy or detail as can be obtained

from indoor navigation sensors. Should the vehicle be required to operate in more unstruc-

tured environments, these features may prove to be insufficient for modelling the vehicle’s

surroundings. Alternative methods for terrain modelling have recently appeared in the lit-

erature [39] and it will be interesting to see how some of this work develops over the coming

years.

This thesis will concern itself primarily with SLAM using point features. Point features

are simply defined as a point in the environment that yields consistent, reliable and view-

point invariant sensor returns. What constitutes a good point feature will once again be

application dependent, and in particular will be affected by the quality of available sensors.

However, the techniques presented are not limited to the estimation of point features. They

can readily be extended to include the estimation of any alternative feature types that can

be parametrised for use in the Kalman filter framework.

2.5.2 Data Association

Data association is the process of matching observations that are received by the filter to the

features to which they correspond. Given that the state estimation process relies on generat-

ing statistical estimates of the locations of features in the environment, statistical methods

are used for establishing these associations. The most common method for associating ob-

servations to features in the map relies on nearest neighbour techniques [18, 22, 35, 50].

A Nearest Neighbour association is taken in this case to be the closest association in a

statistical sense. A common statistical discriminator is based on the normalised innovation

squared between two estimates. Given an observation z(k) comprising a range and bear-

ing to the observed landmark, the innovation, ν(k), and innovation covariance, S(k), can

be calculated as shown in equations 2.29 and 2.30 respectively. The normalised innova-

tion squared between the observation and the estimated feature location is then compared

against a validation gate, dmin, for the association being considered.

dfi = νT (k)S−1(k)ν(k) < dmin (2.42)
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The normalised innovation squared forms a χ2 distribution that can be used to accept or

reject a particular association with a given confidence level by the appropriate selection of

dmin.

Data association is essential to the operation of the Simultaneous Localisation and Map-

ping algorithm. The estimated location of landmark positions rely on the accuracy of the

vehicle location estimate. An incorrect association of an observation to the map can cause

the filter to diverge from a consistent estimate, effectively rendering all future predicted

observations incorrect.

Unfortunately, it is quite difficult to detect and recover from an incorrect association by

relying exclusively on nearest neighbour techniques as associations depend on calculating

a predicted observation based on the current estimate of vehicle location. If the vehicle

location estimate is in error, then an observation to a known landmark will be estimated to

have occurred from a different map position. In this case, there is a risk that the filter may

incorrectly associate the observation with another landmark in the map or initialise a new

feature at this position.

Recent work in this area has examined the possibility of using multiple hypothesis ap-

proaches [57] or joint compatibility criteria [48] to improve the performance of data associa-

tion when compared with simple nearest neighbour approaches. Chapter 3 presents a novel

approach to the SLAM algorithm that can help to address this issue. As will be shown,

using multiple features for generating associations can serve to increase the probability

of correct associations by decreasing the number of plausible vehicle positions that might

have produced the observations in question. Increasing the number of features available for

matching is shown to increase the probability of yielding a correct match between feature

sets.

2.5.3 Map Management

Once features have been identified, they must be matched against known landmarks in the

environment. The first step is to perform data association between the observed feature

and the features currently in the map. This step is one of the most crucial in the mapping
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process. Erroneous data association can destroy the integrity of the map. When data is

received from a sensor there is a possibility that it may in fact be a spurious measurement.

Some spurious measurements can be eliminated by the development of appropriate feature

extraction routines: by studying and modeling the physical phenomena that are being

measured by the sensor it is possible to reduce the number of spurious measurements picked

up by a feature extractor. Regardless of the care that is taken in designing the feature

extractor, some spurious measurements may still be passed to the localisation and mapping

algorithm and it is important to have a mechanism for rejecting these. A two-step matching

algorithm is used in order to reduce the number of landmarks that are added to the map

(see Figure 2.4).

When a new range and bearing observation is received from the feature extraction pro-

cess, the estimated position of the feature is computed using the current estimate of vehicle

position. This position is then compared with the estimated positions of the features in the

map using the data association strategies given in Equation 2.42 [18]. If the observation can

be associated to a single feature the EKF is used to generate a new state estimate. An ob-

servation that can be associated with multiple landmarks is rejected since false associations

can destroy the integrity of the estimation process.

If the observation does not match to any landmarks in the current map, it is compared

against a list of tentative landmarks. Each tentative landmark maintains a counter indi-

cating the number of associations that have been made with the feature as well as the last

observed position of the feature. If a match is made, the counter is incremented and the

observed position is updated. When the counter passes a threshold value, the feature is

considered to be sufficiently stable and is added to the map. If the potential feature cannot

be associated with any of the tentative features, a new tentative feature is added to the

list. Tentative features that are not reobserved are removed from the list after a fixed time

interval has elapsed.
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Reject multiple feature
matches to avoid

corrupting the map

Pass Range Bearing
observation to filter
along with matched

feature index

Add a new tentative
feature to the list

No

Add a new feature to
the map and remove
the current tentative
feature from the list.

New Range/
Bearing to

feature received

Match to tentative
feature list?

Match to feature
 in the map?

Match multiple
features in map?

Is Count > threshold?

Update position and
increment match count

Yes
Yes

Yes

Yes

No

No

Figure 2.4: The feature matching algorithm
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2.6 Properties of the SLAM Algorithm

The SLAM algorithm has a number of important properties that regulate the growth of

uncertainty in both the map and vehicle estimates. These properties include the convergence

of the map state estimates, the need to maintain consistency in the estimation process and

the computational complexity involved in maintaining the AMF state covariance matrix.

This section examines some of these issues in more detail and provides references for related

work that appears in the literature.

2.6.1 Convergence

In his thesis [50], Newman was first to prove three important convergence properties of the

SLAM filter. These results built on work by Csorba [14] and appear in [18]. The three key

results can be summarised as follows.

1. The determinant of any submatrix of the map covariance matrix decreases monoton-

ically with every observation made.

2. In the limit, as the number of observations increases, the landmark estimates become

fully correlated.

3. The lower limit of map accuracy is a function of initial vehicle uncertainty when the

first landmark is observed.

These properties of the SLAM algorithm have important implications for its application

to real world systems. The proofs effectively demonstrate that the uncertainty in the map

estimates will tend to decrease to some lower bound and that the relationships between

features or landmarks will become perfectly known. Given particular vehicle and sensor

models and some notion of the estimated feature density in the environment, it is possible

to predict the filter’s steady state performance. This allows the expected long term per-

formance of the algorithm to be specified as a function of the accuracy of the sensors and

vehicle models being used.
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2.6.2 Maintaining Consistency in SLAM

In order to maintain the consistency of the estimate generated by the SLAM algorithm, it

is necessary to update the AMF covariance matrix with each observation using Equation

2.34. Csorba has demonstrated that this is essential to avoid inconsistency in the estimation

process [14]. Since observations of the terrain features are taken relative to the vehicle, any

error in the vehicle estimate will be strongly correlated with errors in the map estimates.

Figure 2.5 shows the effect of an error in the initial estimate of the vehicle position on the

accuracy of the rest of the map. Since all observations are made relative to the estimated

position of the vehicle, this initial error will be propagated to the estimates of the positions

of all the features. In his thesis [14], Csorba showed that there will be a common uncer-

tainty in the map estimates associated with the initial uncertainty when the first feature

is observed. Without external information regarding the positions of the landmarks or the

vehicle, it is essential that the correlation between the states be maintained in order to

maintain consistent error bounds on the estimated states. This need to maintain all of the

covariances between the vehicle estimate and all the elements in the map is the source of

the computational complexity inherent in the SLAM algorithm.

2.6.3 Computational Complexity

One significant obstacle on the road to the implementation and deployment of large scale

SLAM algorithms is the computational effort required to maintain the correlation informa-

tion between features in the map and between the features and the vehicle. Performing

the update of the covariance matrix is of O(n3) for a straightforward implementation of

the Kalman Filter. In the case of the SLAM algorithm, this complexity can be reduced

to O(n2) given the sparse nature of typical observations. Even so, this implies that the

computational effort will grow with the square of the number of features maintained in

the map. For maps containing more than a few tens of features, this computational bur-

den will quickly make the update intractable - especially if the observation rates are high.

An effective map-management technique is therefore required in order to help manage this

complexity.
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Figure 2.5: The effect of vehicle-map correlation. The darker elements
represent the estimated positions of the vehicle and landmarks while the
lighter elements show the true positions. Clearly, the error in the vehicle
estimate has been reflected in an error in the landmark estimates.
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2.7 Managing Complexity

A number of potential methods by which the growth of the computational burden imposed

by the covariance update can be regulated have been described in the literature. This section

examines a number of these methods, touching on their major strengths and weaknesses.

Many of these approaches have been motivated by the search for an efficient method for

maintaining consistent estimates of the map states without performing a complete update

of the covariance matrix with each observation. The traditional SLAM algorithm requires

such an update and it is well known that this step makes the filter difficult to implement

in real-time for large maps.

A number of approaches to the SLAM problem that improve the computational complex-

ity of the update step are reviewed and the salient features of each method are presented.

These can be divided into three broad categories. Some work has concentrated on the

reduction in complexity that can be achieved by concentrating on fewer features or even

eliminating features. Results suggest that the computational burden can be reduced without

significant loss of information. Other work has examined the possibility of applying sub-

optimal update steps to once again reduce the complexity of updating the state covariance

matrix. Finally, a number of researchers have proposed alternative map representations

that change the manner in which information is added to the maps.

2.7.1 Limiting the Number of Features

One method for improving the algorithm’s performance is to limit the number of features

that are included in the map. Active sensing, in which a sensor is controlled to look at

only a limited part of the environment, is one way of limiting the number of features to be

considered for inclusion in the map. To use active sensing effectively features that are likely

to remain visible during the vehicle’s motion must be identified. An effective metric for the

value of new landmarks may therefore come from the geometric distribution of landmarks

as a function of the current vehicle trajectory. In Davison’s thesis [16] it is shown that

active sensing can be performed to concentrate on a few, reliable features using a vision

sensor mounted on an active pan tilt head. Accurate SLAM is shown to be possible despite
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the fact that not all of the considerable information contained in the visual images is used.

Alternatively, features can be deleted from the map after the vehicle has left an area

to once again limit the growth of the size of the map [17]. A suitable cost metric can

be used to evaluate the loss of information resulting from the removal of a feature. As

might be expected, this loss of information will lead to a sub-optimal estimate. However,

the amount of information loss may be acceptable and will be offset by the computational

savings achievable. Suitable metrics for the selection of features to be removed from the

state matrix may therefore come from the amount of information contained in the estimate

of a feature [17]. The geometric distribution of landmarks may also play a role in the

selection process. Once the vehicle reenters an area it has previously explored, it may not

see the limited features that it has remembered and the uncertainty in vehicle position will

not be reduced despite the fact that the vehicle is operating in an area it has previously

explored.

2.7.2 Sub-optimal Updates

As an alternative to limiting the number of features in a map, the use of sub-optimal or near-

optimal covariance updating schemes has also been considered. Conservative covariance

update techniques can be shown to improve the computational performance of a SLAM

algorithm at the expense of some loss of information.

Covariance Intersect

Uhlmann et al have proposed a conservative algorithm for combining state estimates and

computing an updated covariance matrix without a priori knowledge of the correlations

between states. This approach substantially decreases the computational complexity of the

SLAM problem using the covariance intersect (CI) method [65]. The CI method does not

require knowledge of the cross-correlations between states and only the diagonal elements of

the state covariance matrix need to be maintained. Each observation is conservatively fused

into the estimated state matrix through the use of the covariance intersect algorithm. Given
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two mean and covariance estimates, {x̂−
a (k),P−

AA(k)} and {x̂−
b (k),P−

BB(k)}, the covariance

intersect update, {x̂+
c (k),P+

CC(k)}, is computed as

P+
CC(k) = (ωP−1

AA(k) + (1 − ω)P−1
BB(k))−1 (2.43)

x̂+
c (k) = P+

CC(k)(ωP−1
AA(k)x̂−

a (k) + (1 − ω)P−1
BB(k)x̂−

b (k)) (2.44)

where 0 ≤ ω ≤ 1 and ω can be computed to minimise any chosen measure (e.g. determinant,

trace, maximum eigenvalue, etc.) of the updated covariance matrix. The proof that this

algorithm is conservative is shown in [65, 66]. For the case of the SLAM problem, the prior

estimate of the feature location is chosen as estimate {x̂−
a (k),P−

AA(k)} and the observation

as estimate {x̂−
b (k),P−

BB(k)}.

This approach provides a computationally efficient mechanism for performing SLAM but

discards a considerable amount of information contained in the covariance between the

feature state estimates. This information usually allows improvements in the vehicle and

map estimates to be be propagated throughout the map when a well-known feature is

observed and is the key to the convergence properties of the algorithm. As shown in [65],

feature estimates taken far from the vehicle’s initial position have large covariances which

are not much improved when the vehicle returns to its initial position. This large covariance

can make data association difficult and may not allow the map estimates to converge.

Partitioned Update

Guivant et al [26] have recently proposed a simplification to the update step of the SLAM

filter that can significantly reduce its computational complexity. Their main insight comes

from the fact that the update of a large proportion of the features in the map is insignificant.

This fact leads them to update only a select subset of the map features during a particular

observation, reducing the computational burden to O(n), where n is the number of states in

the map. This results in a significant improvement in computational effort for large maps.



2.7 Managing Complexity 39

The state matrix can be partitioned, without loss of generality, such that

x̂−(k) =


x̂−

A(k)

x̂−
B(k)


 ∈


RnA

RnB


 , n = nA + nB (2.45)

The state covariance matrix after an optimal update can now be written as


P+

AA(k) P+
AB(k)

P+T
AB(k) P+

BB(k)


 =


P−

AA(k) P−
AB(k)

P−T
AB(k) P−

BB(k)


 −


∆P−

AA(k) ∆P−
AB(k)

∆P−T
AB(k) ∆P−

BB(k)


 . (2.46)

A conservative covariance update is sought that minimises the loss of information during

the update. This in turn leads to the following conservative covariance update

P∗+(k) =


P−

AA(k) P−
AB(k)

P−T
AB(k) P−

BB(k)


 −


∆P−

AA(k) ∆P−
AB(k)

∆P−T
AB(k) 0


 (2.47)

or

P∗+(k) = P−(k) − ∆P∗−(k) (2.48)

that is shown to be consistent. The new update term, ∆P∗−(k), requires the calculation of

the nA×nA upper block matrix ∆P−
AA(k) plus the nA×nB cross-covariance term ∆P−

AB(k).

This calculation will require a multiplication of O(nA
2) plus a mutliplication of O(n). If

the state matrix for the SLAM algorithm is partioned such that nA � n this update term

will therefore be of O(n) for large n.

The partitioning of the state matrix required for the conservative update mechanism

will determine the degree to which the update is conservative. In the case of the SLAM

algorithm, the partitioned states, x̂−
B(k), are chosen from the feature estimates currently

contained in the map. The feature states chosen for the partitioned states will not have

their covariance estimate updated during an observation. The cross-covariance terms with

the x̂−
A(k) states must be calculated to maintain the consistency of the covariance estimate.

One of the properties of the SLAM algorithm is that the estimated covariance of the

landmark states will decrease monotonically to some lower bound [18]. Each update will

contribute some information to the state estimate of all the features in the map. The amount
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of information contributed to each feature estimate will depend on its current covariance

estimate as well as its correlation with the other features in the map. The choice of x̂−
B(k)

is made prior to each update to minimise the loss of information from a suboptimal update.

Guivant et al [26] propose two mechanisms for partitioning the update matrix based on

the relative change in the covariance estimate for each state and the absolute value of the

covariance estimate.

2.7.3 Alternative Map Representations

Much work in recent years has concentrated on the effect of the map representation on both

the computational complexity of the SLAM algorithm and on the achievable estimation

accuracy. In this section, a number of alternative map representations will be described.

The significant characteristics of each of these representations will be discussed.

Relative Maps

In his thesis, Csorba proposed using the relative position between features rather than their

absolute position as state variables [14] [15]. The relative location between landmarks is

clearly independent of any absolute coordinate frame and of the location of the vehicle

during an observation. Consequently, relative location estimates are uncorrelated. The

covariance matrix is therefore diagonal and each observation can be fused into the filter by

only updating the estimate of the relative state being observed.

Newman developed this idea further and showed that while the relative representation

is computationally efficient, it can result in inconsistent estimates of the relative states

[50]. For example, given estimates of the relative position between three landmarks, these

independent estimates may not be mutually consistent. Newman proposed the Geometric

Projection Filter (GPF) as a mechanism with which to enforce the consistency of the relative

state estimates. By applying constraints to the relative states, Newman was able to recover

a consistent map estimate at appropriate intervals at the cost of introducing correlations

between the states. It was suggested that the relative state estimates be maintained in one

filter and that at appropriate intervals the constraints be applied to recover a consistent
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map. This consistent map could then be used for reasoning about the state of the map. New

observations were fused into the original, relative map as they were received by the filter

and the process of applying the constraints repeated at appropriate intervals to recover the

consistent map.

Newman also pointed out a number of difficulties that may arise from the relative rep-

resentation of the map states. In particular, data association is potentially very difficult

using a relative state representation. Consider a hypothetical scenario in which the vehicle

moves amongst equally spaced features. Matching a relative observation to a particular

state is impossible without some knowledge of the absolute location of the vehicle and fea-

ture states. This requirement counteracts the computational savings that can be realised

using the relative representation of the map by requiring that the map be transformed to

the absolute frame of reference for the purposes of data association. While this situation is

an extreme example, it serves to illustrate the potential data association problems that may

arise through the use of the relative filter. In addition, Newman’s GPF does not maintain

an estimate of the vehicle position. While this information can be estimated using obser-

vations of particular features in the environment, it is subject to errors arising from false

associations and/or spurious measurements.

Submaps

Another possibility is to divide a large map into a series of smaller submaps in order to

reduce the computational complexity of the covariance update step. This approach has

been adopted by a number of researchers.

Chong and Kleeman [13] have proposed a submap strategy whereby a number of inde-

pendent, local submaps are generated as the vehicle operates. Estimates of the relative

position between the submaps are maintained and a search algorithm is instantiated to

relocalise the vehicle when the vehicle estimate has a high likelihood of being in the area of

a previous local submap. This hierarchical approach to the mapping problem is shown to

drastically reduce the memory and processing time requirements when compared with the

global approach to SLAM.
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Chong and Kleeman do not provide methods for generating a globally consistent map of

the environment. They suggest that this might be a possible extension to their work and

might be accomplished using a least squares formulation. In this work it will be shown,

through the development of the Constrained Relative Submap Filter in Chapter 4, that

globally consistent maps of the environment can in fact be generated through the use of

appropriately formulated constraints.

A computationally efficient method for SLAM using a number of globally referenced

submaps is presented by and Leonard and Feder [22, 35]. In this scheme, the submaps are

allocated in an a priori manner and a unique vehicle state is associated with each submap.

Methods are presented for transitioning the vehicle state estimates from one submap to

another in a conservative manner.

The method presented by Feder and Leonard has been demonstrated to yield empirically

consistent mapping results with significant improvements in computational complexity. It

relies, however, on a number of assumptions about the propagation of error between the

vehicle and map states. The method they describe for performing cross-map vehicle relo-

cation relies on randomizing the current vehicle estimate within the confines of the submap

being considered and using the prior vehicle estimate from the previous submap as an ob-

servation of vehicle position. This approach is shown to yield acceptable results in practice,

however it can be shown to be inconsistent in the manner in which the vehicle estimate is

reinitialised. In theory, the initial vehicle uncertainty when re-entering a submap should

be infinite prior to its initialisation - in a similar manner to that used for initialising map

feature estimates. A more consistent method for transitioning the vehicle would be to reini-

tialise the vehicle state based purely on observations of the features in the submap. This

approach will feature in the development of the work in this thesis.

Finally, recent work by Castellanos et al has introduced another method of performing

SLAM [10] using global and local frames of reference in the mapping process. Feature sets

are estimated with respect to landmark frames, themselves estimated in the global frame

of reference. Constraints between the various frames of reference are then used to generate

a consistent global estimate of the vehicle state. A unique vehicle estimate is maintained

with respect to each of the landmark frames. These distinct vehicle estimates are then fused
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together, using constraints, to recover a consistent estimate of the map states.

One problem with the approach proposed by Castellanos et al arises during the prop-

agation of the various vehicle state estimates. The vehicle models employed are often

characterised by a large growth in uncertainty during the prediction step. The SLAM

process allows this growth of uncertainty to be regulated through the use of terrain infor-

mation which acts to slow uncertainty growth. Given that the independent vehicle estimates

rely exclusively on dead reckoning when the vehicle is not observing features in its frame

of reference, the covariances associated with the independent vehicle estimates will grow

large. When constraints are applied, there is a risk that non-linearities introduced by large

covariances and large estimation errors may affect the achievable estimation accuracy.

2.8 Simulation

This section presents results of the application of the SLAM algorithm using a simulated

environment. The vehicle and feature observation models developed by the examples pre-

sented in the previous sections are used. Simulation is useful for understanding and verifying

the performance of the algorithm as the true vehicle and feature locations are available. This

allows for comparison between the true state of the system and the estimates generated by

the filter. During the deployment of a vehicle in a field environment, ground truth is often

not available and it is more difficult to accurately verify the performance of the algorithm.

Figure 2.6 shows a map of a simulated environment in which the vehicle described in

the example is operating. As can be seen, the desired vehicle trajectory is approximately

circular. The landmarks are randomly distributed throughout the environment and the

vehicle takes noisy range/bearing observations to random features that fall within the range

of it’s on-board sensor. The filter parameters used for the simulation are shown in Table

2.1. This same simulator will be used throughout the remainder of the thesis to illustrate

key properties of the algorithms developed.

Figure 2.7 shows the error in the estimate of the vehicle location along with the ±2σ

confidence bounds. The global vehicle covariance grows large as the vehicle navigates around

the loop. As the vehicle approaches its initial location, a large correction in the estimate
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Figure 2.6: The simulation environment showing the desired vehicle tra-
jectory and the landmarks randomly scattered through the environment.

Table 2.1: Simulation filter parameters
Sampling period ∆t(k) 0.1s

Vehicle velocity std dev σv 0.05V (k)m/s

Vehicle steer angle std dev σγ 0.005rad

Range measurement std dev σR 1.0m

Bearing measurement std dev σB 0.05rad

Vehicle Length L 1.5m

Sensor range 25m



2.8 Simulation 45

0 100 200 300 400 500 600 700 800 900 1000
−4

−2

0

2

4
X

 e
rr

or
 (

m
)

time (s)

0 100 200 300 400 500 600 700 800 900 1000
−5

0

5

Y
 e

rr
or

 (
m

)

time (s)

0 100 200 300 400 500 600 700 800 900 1000
−0.04

−0.02

0

0.02

0.04

P
si

 e
rr

or
 (

ra
d)

time (s)

Figure 2.7: Errors in the vehicle state estimates together with the estimated 2σ covariance
bounds. The AMF covariance estimates are shown for the vehicle pose states (xv, yv, ψv).
The errors appear to be within the 95% confidence bounds defined by the 2σ gate showing
that the filter is well tuned.

and corresponding reduction in position uncertainty occurs just before 300s as the vehicle

observes a feature with low variance. The errors in the vehicle estimates are within the 2σ

covariance bounds most of the time showing that the filter is well tuned. The innovation

sequences can also be checked to verify that the observation sequences are bounded. This

is clearly the case as shown in Figure 2.8. Given that the true state models are known in

simulation, generating a well tuned filter is straight forward. For real systems, the models

must often be tuned through an experimental process in order to work correctly, although

careful modeling of sensors and the environment can help to produce a well matched filter.

One of the major concerns with the SLAM algorithm is the computational complexity of

the covariance update step. Figure 2.9 shows the floating point operations required by the
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Figure 2.8: The innovation sequences. The estimates appear to be zero-mean and white
with approximately 95% of the innovations falling within the 2σ innovation covariances
bounds, again demonstrating that the filter is well tuned.
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Figure 2.9: The floating point operations required for the prediction and update stages of
the filters. The spikes in the plot occur when new features are initialised or observations are
rejected by the innovation gates. These operations require significantly less floating point
operations than an update of the covariance matrix.
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Figure 2.10: The final map estimates. As can be seen from the close-up portions of the
map, the map estimates (+) and their associated covariance bounds are clearly consistent
with the true feature locations (o).
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algorithm to maintain the estimates. The computational burden rises quadratically until

all of the observable features have been incorporated into the map. The complexity of each

update is then maintained. The cumulative floating point operations are linear once all the

features have been incorporated into the map.

The maps generated by the algorithm can be examined to verify that the algorithm does,

in fact, yield a consistent map. Figure 2.10 shows the map generated by the algorithm along

with the actual position of the landmarks. This map is consistent with the true location

of the features. It is interesting to note that features that are far from the origin maintain

a higher covariance bound than those incorporated early in the run. The uncertainty that

results from the application of the vehicle model accounts for this effect.

2.9 Summary

This chapter has reviewed the current state of the art of the Simultaneous Localisation and

Mapping algorithm. The three step estimation process involving prediction, observation

and update of the estimated states using the Extended Kalman Filter formulation were

described. This was followed by a discussion of feature management techniques required for

data association, feature identification and initialisation.

Motivation for the work in the remainder of this thesis was also presented. Given the

computational complexity inherent in the update step required to maintain consistent maps,

there has been a considerable amount of work in recent years examining alternative map

representations that can help to minimise the cost of an update. This work is reviewed and

the major contributions of each approach are examined. While there have been some major

developments in this field in recent years regarding the performance of this algorithm, there

is still a need for further improvements before a long duration, real time version of the

SLAM algorithm can be deployed.

This thesis presents a novel approach the construction of the feature map that helps to

further manage the complexity of the update. In spite of its weaknesses in the area of

data association, the relative map representation presented by Csorba and later adopted by

Newman for the GPF is characterised by a number of appealing characteristics in terms of



2.9 Summary 50

computational complexity. These characteristics motivate the development of an approach

to the construction of the SLAM map that forms the major contribution of this thesis. This

method forms the basis of chapter 3 and extensions to the method are presented in Chapter

4.



Chapter 3

The Constrained Local Submap

Filter

3.1 Introduction

This chapter presents a novel approach to SLAM that exploits the manner in which ob-

servations are fused into the global map of the environment to manage the computational

complexity of the algorithm and improve the data association process. Rather than incor-

porating every observation directly into the global map of the environment, the Constrained

Local Submap Filter (CLSF) creates an independent, local submap using observations of

the features present in the immediate vicinity of the vehicle. This local submap is then

periodically fused into the global map of the environment. It will be shown that this ap-

proach to the SLAM algorithm reduces the computational complexity of maintaining the

global map estimates and improves the data association process.

Section 3.2 begins by summarising the key characteristics of the proposed SLAM algo-

rithm. Section 3.3 describes the system states that are estimated. Section 3.4 describes the

estimation process using this representation and highlights the differences between it and

the AMF. Section 3.5 demonstrates that the local vehicle and map feature estimates are, in

fact, independent of the global map feature estimates. Section 3.6 describes the mechanism

used to transform the local states estimates into the global frame of reference. Section 3.7
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introduces a mechanism for fusing the local map into the global map through the application

of appropriately formulated constraints in order to recover all of the information gathered

by the sensors. Section 3.8 describes the computational savings that are realised with this

approach and Section 3.9 discusses methods that can be used for establishing data associa-

tion between the feature estimates. Section 3.10 presents simulation results illustrating the

application of the approach, highlighting the performance of the Constrained Local Submap

Filter. Finally, Section 3.11 summarises the chapter and provides concluding remarks.

3.2 Constrained Local Submap Filter

The Constrained Local Submap Filter (CLSF) presents a novel scheme for addressing the

computational complexity of the SLAM algorithm by allowing the update of the full covari-

ance matrix to be scheduled at appropriate intervals. The method developed here maintains

an independent, local submap estimate of the features in the immediate vicinity of the ve-

hicle (see Figure 3.1). The observations are fused into an independent submap centered

at a local frame of reference whose global position is known. At appropriate intervals, the

information contained in the local map is transferred into the global map and a new local

map is created. It will be shown that, subject to the usual linearising assumptions, the re-

sulting map and vehicle estimates are identical to those obtained using the AMF algorithm

described in Chapter 2. This approach to the SLAM algorithm allows the computationally

expensive process of updating the cross-covariances in the global map to be scheduled at

appropriate intervals and for a potentially large number of observations to be fused consis-

tently into the global map in a single step. It also aids in the data association problem as

the uncertainties of the feature and vehicle estimates in the local frame of reference tend

to be comparatively small. Furthermore, it allows data association decisions in the global

frame to be deferred until an improved local map of the environment is available. As will be

shown, this is especially important when the vehicle has accumulated significant uncertainty

in its global position estimate.

Figure 3.2 shows the basic steps in this approach to SLAM. At some time, a new frame of

reference is defined at the current vehicle position. The estimate of the vehicle pose therefore
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Figure 3.1: Local submap state estimation. The vehicle maintains a local map of the
features around it. At appropriate intervals, the local map features are fused into the global
feature map using appropriately formulated constraints. This approach to map building
significantly improves the computational complexity of SLAM.
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Figure 3.2: Scheduling of the application of constraints using the Constrained Local Submap
Filter. The vehicle operates in a local frame of reference, building an independent map of
the features around it. At appropriate intervals, indicated by the switch, the local map is
transformed into the global frame of reference and the information fused into the global
map using constraints to produce the updated global map estimate.
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represents an estimate of the pose of this frame of reference with respect to the global frame.

The vehicle is now at the origin of this local reference frame with zero uncertainty at the

instant the local frame is created. A new, local vehicle estimate is initialised relative to the

new frame and the algorithm begins building a standard AMF SLAM map with respect to

the local frame. The estimates in this frame of reference will be shown to be independent of

the estimates in the global frame of reference, implying that only a small state covariance

matrix must be updated with each observations.

When the decision is made to transfer information contained in the local map into the

global map, indicated by the switch in Figure 3.2, the state vector will contain both local

and global position estimates of some of the landmarks. A data association strategy is used

to identify the landmarks that have duplicate estimates in the state vector and a constraint

based projection is used to yield a single, consistent estimate of these landmark states. This

step effectively recovers all of the information available to the filter and allows the filter to

generate the AMF state estimate despite the fact that the full covariance matrix has not

been updated with each observation. Methods for establishing the correspondence between

the local and global map estimates will be examined in more detail in Section 3.9. Once

the local map has been fused into the global map, a new local map is instantiated at the

updated vehicle position and the process of building a local map begins again.

The key contributions of the Constrained Local Submap Filter lie in the transformation

between submaps and the application of constraints to allow the full state information to

be recovered at convenient intervals. The approach blends the ideas presented in the GPF

[50] with the intuitive nature of the AMF algorithm. The representation of the vehicle and

map states proposed here allows the vehicle to operate locally within a frame of reference

with high accuracy while at the same time providing a mechanism for globally consistent

estimates of the vehicle and landmark states to be generated.

3.3 System States

The state vector of the CLSF, comprising local vehicle and landmark states together with

the global map states and the relative pose between the frames of reference, takes on the
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form

xcls(k) =




GxL(k)
Gx1(k)
Gx2(k)

...
Lxv(k)
Lx1(k)

...




(3.1)

where the notation Lxi(k) indicates the location of the landmark i in the local frame of

reference centered at GxL(k) and Gxi(k) refers to the location of the same landmark in the

global frame of reference. As shown here, the vehicle state, Lxv(k), is maintained in the

local frame of reference together with locations of the features it has observed in this frame.

The pose of the frame of reference, GxL(k), is also maintained and allows the local states

to be transformed into the global frame of reference.

This state vector can be written more concisely as

xcls(k) =




GxL(k)
Gxm(k)
Lxv(k)
Lxm(k)




(3.2)

with Gxm(k) representing the global map states and Lxm(k) representing the local map

states.

3.4 The Estimation Process

For the CLSF formulation of the SLAM algorithm, the EKF is again used to estimate the

pose of the vehicle xv(k) along with the positions of the nf observed features xi(k), i =

1...nf . The major difference with this representation arises from the fact that only those

feature estimates observed in the current local frame of reference must be updated during

an observation. The remaining state estimates represent the feature estimates in the global
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map of the environment and are not updated until the information in the local map is fused

into the global map. The augmented state vector, Equation 3.1, gives rise to the augmented

state estimate consisting of all states associated with the vehicle as well as those associated

with the global and local map features. The pose of the local frame of reference is also

estimated relative to the global frame of reference.

x̂+
cls(k) =




Gx̂+
L (k)

Gx̂+
1 (k)

Gx̂+
2 (k)
...

Lx̂+
v (k)

Lx̂+
1 (k)
...




(3.3)

which can also be written more concisely as

x̂+
cls(k) =




Gx̂+
L (k)

Gx̂+
m(k)

Lx̂+
v (k)

Lx̂+
m(k)




. (3.4)

The covariance matrix takes on the usual form and contains estimates of the vehicle state

covariances and map feature covariances together with the appropriate cross-covariance

terms. As will be shown in Section 3.5, the local map estimates are decorrelated from the

global estimates and the covariance matrix therefore takes on a block diagonal structure

with the global map representing one block and the local map the other. It will be shown

that only the local map estimates need to be updated during the estimation process as a

result of this covariance structure.
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P+
cls(k) =




GP+
LL(k) GP+

L1(k) GP+
L2(k) . . . 0 0 0

GP+T
L1 (k) GP+

11(k) GP+
12(k) . . . 0 0 0

GP+T
L2 (k) GP+T

12 (k) GP+
22(k) . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . LP+
vv(k) LP+

v1(k) LP+
v2(k)

0 0 0 . . . LP+T
v1 (k) LP+

11(k) LP+
12(k)

0 0 0 . . . LP+T
v2 (k) LP+T

12 (k) LP+
22(k)




where LP+
vv(k) represents the vehicle covariance in the local frame of reference, LP+

ii (k),

i ∈ {1 . . . nL} represent the local landmark covariances, GP+
jj(k), j ∈ {1 . . . nG} represent

the local landmark covariances, GP+
LL(k), represents the covariance of the estimate of the

local frame of reference in the global frame, P+
vi(k) represents the cross-covariance between

the vehicle and landmark estimate and P+
ij(k) represent the cross-covariances between land-

marks.

P+
cls(k) =




GP+
LL(k) GP+

mL(k) 0 0
GP+T

mL(k) GP+
mm(k) 0 0

0 0 LP+
vv(k) LP+

vm(k)

0 0 LP+T
vm (k) LP+

mm(k)




(3.5)

3.4.1 Prediction

The prediction stage uses a model of the motion of the vehicle to predict the vehicle position,
Lxv(k), at time k given the information available up to time k − 1.

x̂−
cls(k) =




Gx̂+(k − 1)

f(Lx̂+
v (k − 1),u(k))

Lx̂+
m(k − 1)


 (3.6)

During the prediction step, the covariance matrix must also be propagated through the

vehicle model. Notice, however, that the global estimates remain unchanged during this
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step due to the decorrelation between the local and global state estimates. This reduces

the computational burden of generating the predicted covariance estimate.

P+
cls(k) =




GP+(k − 1) 0 0

0 ∇vf(k)LP+
vv(k − 1)∇vfT (k) + Q(k) ∇vf(k)LP+

vm(k − 1)

0 (∇vf(k)LP+
vm(k − 1))T LP+

mm(k − 1)




(3.7)

where the process noise, Q(k), represents the combined effect of process and control uncer-

tainty as shown in Equation 2.27.

3.4.2 Observation

The fusion of the observation into the state estimate is accomplished by first calculating a

predicted observation, ẑ−(k), using the observation model, h. The observation equation is

identical to the AMF but is once again only a function of the local map feature estimates

ẑ−(k) = h(Lx̂+
v (k − 1), Lx̂+

i (k − 1)) (3.8)

The innovation and innovation covariances are calculated in an identical manner to that

used for the AMF update but are again only a function of the local estimates.

ν(k) = z(k) − ẑ−(k) (3.9)

S(k) = ∇xh(k)LP−(k)∇xhT (k) + R(k) (3.10)

3.4.3 Update

The update mechanism for the filter is also identical to that used for the AMF map.

x̂+
cls(k) = x̂−

cls(k) + W(k)ν(k) (3.11)

P+
cls(k) = P+

cls(k) − W(k)S(k)WT (k) (3.12)
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where

W(k) = P+
cls(k)∇xhT (k)S−1(k) (3.13)

The global estimates are, however, independent of the local map estimates and are there-

fore not updated. Since the local map will, in general, be significantly smaller than the

global map, this update step requires considerably less computational effort. This is where

the major computational savings from the algorithm occur, as will be discussed more fully

in Section 3.8.

P+
cls(k) =




GP−(k) 0

0 LP−(k) − W(k)S(k)WT (k)


 (3.14)

where

W(k) = LP−(k)∇xhT (k)S−1(k) (3.15)

3.5 Decorrelated Local State Estimates

A local submap, as defined in Section 3.2, consists of a frame of reference within which

the vehicle and map states are estimated. This frame of reference is defined by an initial

estimate of the position of the vehicle when the frame of reference is initialised. This

approach results in the local estimates of vehicle and map states being fully decorrelated to

the global map estimates, as shown in Equation 3.5.

Theorem 3.1. If an independent vehicle estimate is initialised in a new frame of reference,

the vehicle estimate remains independent of the global frame landmark estimates.

Proof. Consider the case where an estimate of the vehicle position, Gx̂+
v (k − 1) and map

feature estimates, Gx̂+
m(k − 1), exist relative to some global frame of reference FG.

Initially the state matrix will be comprised of

x̂+
cls(k − 1) =




Gx̂+
v (k − 1)

Gx̂+
m(k − 1)


 . (3.16)
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The covariance matrix for these states relative to the current frame of reference are given

by

P+
cls(k − 1) =




GP+
vv(k − 1) GP+

vm(k − 1)
GP+

vm(k − 1)T GP+
mm(k − 1)


 (3.17)

At time k − 1 a decision is made to build a new local map based on the new coordinate

frame, FL, coincident with the estimate of the current vehicle location, Gxv(k − 1). The

estimated position of the vehicle, Gx̂+
v (k − 1), represents the transformation from the cur-

rent frame of reference, FG, to the new frame of reference, FL and will be replaced with the

term Gx̂+
L (k − 1). This indicates that the previous vehicle estimate is no longer a vehicle

estimate but instead represents the estimate of the local frame within the global frame of

reference. As the new frame of reference is centered at the current vehicle position, the

new local position of the vehicle, Lx̂+
v (k − 1), is at the origin of the local frame with no

uncertainty;

x̂+
cls(k − 1) =




Gx̂+
L (k − 1)

Gx̂+
m(k − 1)

Lx̂+
v (k − 1)


 , (3.18)

with covariance

P+
cls(k − 1) =




GP+
LL(k − 1) GP+

mL(k − 1) 0
GP+

mL(k − 1)T GP+
mm(k − 1) 0

0 0 0


 (3.19)

As the vehicle operates in the new frame of reference, the process noise will add uncer-

tainty to the vehicle estimate in the local frame of reference via the process noise covariance,

Q(k). This will cause the local vehicle covariance, LP−
vv(k), to become non-zero although

the local vehicle state estimate will still be fully decorrelated with respect to the global map

estimates;

x̂−
cls(k) =




Gx̂+
L (k − 1)

Gx̂+
m(k − 1)

f(Lx̂+
v (k − 1),u(k))


 (3.20)
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with covariance

P+
cls(k) =




GP+
LL(k − 1) GP+

mL(k − 1) 0
GP+T

mL(k − 1) GP+
mm(k − 1) 0

0 0 ∇uf(k)U(k)∇ufT (k) + Q(k)


 (3.21)

As the vehicle continues to operate in this new frame of reference, the global map estimates

remain unchanged. The local vehicle estimate is updated using the usual vehicle model and

hence remains uncorrelated with the global frame estimates.

Corollary 3.1. Given that an independent vehicle estimate is used, the new map elements

will also be independent of the global frame estimates .

Proof. After the vehicle has operated for some time in the new frame of reference, assume

that an observation of a feature is received and that the observed landmark is initialised

relative to this new frame of reference

x̂+
cls(k) =




Gx̂+
L (k)

Gx̂+
m(k)

Lx̂+
v (k)

Lx̂+
m(k)




(3.22)

with covariance

P+(k) =




GP+
LL(k) GP+

mL(k) 0 0
GP+

mL(k)T GP+
mm(k) 0 0

0 0 LP+
vv(k) LP+

vm(k)

0 0 LP+
vm(k)T LP+

mm(k)




(3.23)

This covariance matrix is clearly block diagonal and the new vehicle and landmark estimates

are therefore independent of the estimates from the global frame of reference. As observa-

tions are made in the local submap, features are initialised relative to the current frame of

reference using the vehicle estimate, Lx̂+
v (k). This implies that the new features will also

be independent of the previous features in the map. The update of the local covariance
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estimates will therefore be a function of the number of features in the local submap and

not of the entire map.

3.6 Transforming to The Global Frame

The estimate of the pose of the local frame, Gx̂+
L (k), represents the relative transformation

between the initial frame of reference, FG, and the current frame of reference, FL with

associated covariance, GP+
LL(k). The transformation matrix T(k) transforms the local

CLSF state estimates into the global frame of reference. This allows the vehicle and map

estimates from local frame FL to be transformed to the global frame of reference at any time

using the estimated relationships between the frames of reference. The covariance estimate

for the transformed states can be generated by also projecting through the transformation

matrix

Gx̂+
cls(k) = T(k)x̂+

cls(k) (3.24)

GP+
cls(k) = ∇T(k)P+

cls(k)∇TT (k) (3.25)

Applying the transformation operator to the state estimate shown in Equation 3.4 results

in

Gx̂+
cls(k) = T(k)




Gx̂+
L (k)

Gx̂+
m(k)

Lx̂+
v (k)

Lx̂+
m(k)




(3.26)

=




Gx̂+
L (k)

Gx̂+
m(k)

Gx̂+
L (k) ⊕ Lx̂+

v (k)
Gx̂+

L (k) ⊕ Lx̂+
m(k)




where, following the compact notation given in [58], ⊕ denotes a compounding operator used

to calculate the resultant relationship from addition between different frames of reference.
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Note that these transformations may involve rotations between the frames of reference and

are therefore not equivalent to simple vector addition.

Example 3.1. This is perhaps best illustrated with a simple example. Figure 3.3 shows a

situation in which there exists an estimate of a feature,

Lx̂+
i (k) =




Lx̂i(k)
Lŷi(k)




in the local frame of reference FL. There is also an estimate of the pose of the local frame

of reference with respect to the global frame of reference,

Gx̂+
L (k) =




Gx̂L(k)
GŷL(k)
Gψ̂L(k)


 .

The estimate of the local frame of reference can be used to transform the local landmark

estimate into the global frame of reference to generate an estimate of the landmark location

in the global frame, Gx̂+
i (k), as shown by the dashed line. Combining the two estimates into

a single state vector yields

x̂+
cls(k) =




Gx̂L(k)
GŷL(k)
Gψ̂L(k)
Lx̂i(k)
Lŷi(k)




.

The transformation matrix, T(k), is used to transform the local landmark estimates into
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FL

FG

Lxi

GxL

Gxi

x

Figure 3.3: Transforming a local landmark estimate to the global frame. The estimate of
the local frame of reference FL in the global frame is used to transform the local landmark
estimate into the global frame of reference. The transformed local estimate is represented
by the dashed lines. Notice that the uncertainty in the estimate of the local frame inflates
the global estimate of the feature location.
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the global frame

Gx̂+
cls(k) � T(k)x̂+

cls(k)

=




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

1 0 0 cos(Gψ̂L(k)) − sin(Gψ̂L(k))

0 1 0 sin(Gψ̂L(k)) cos(Gψ̂L(k))







Gx̂L(k)
GŷL(k)
Gψ̂L(k)
Lx̂i(k)
Lŷi(k)




=




Gx̂L(k)
GŷL(k)
Gψ̂L(k)

Gx̂L(k) + Lx̂i(k) cos(Gψ̂L(k)) − Lŷi(k) sin(Gψ̂L(k))
GŷL(k) + Lx̂i(k) sin(Gψ̂L(k)) + Lŷi(k) cos(Gψ̂L(k))




Assuming that the local and global covariances are initially decorrelated, the corresponding

covariance estimate is

GP+
cls(k) = ∇T(k)




GP+
LL(k) 0

0 LP+
ii (k)


∇TT (k)

with

∇T(k) =
∂Gx̂+(k)

∂(Gx̂+
L (k), Lx̂+

i (k))
(3.27)

=




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

1 0 −(Gŷi(k) − GŷL(k)) cos Gψ̂L(k) − sin Gψ̂L(k)

0 1 (Gx̂i(k) − Gx̂L(k)) sin Gψ̂L(k) cos Gψ̂L(k)



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3.7 Constraining the Independent Feature Estimates

In the CLSF approach to SLAM, an independent estimate of the vehicle state is used while

the vehicle is operating with respect to the local frame of reference. This implies that the

global estimate of a landmark state cannot be used for observations arising in the local

frame of reference without introducing correlation between the states. Information about

the landmark states may therefore be distributed between the global and local frames of

reference. This may result in multiple estimates associated with a single feature once

the local map feature estimates are transformed to the global frame. These independent

estimates of the landmark location must be fused together to recover all of the information

available to the filter.

At any time, consistent estimates of the feature states can be recovered by applying

constraints to recover the known relationship between common states. The constraint is

used to fuse the independent estimates of the feature state to produce a single, consistent

estimate of the state by enforcing the known relationship between the common states.

Constraints are applied to ensure that the estimates are consistent and to recover all of the

information available to the filter. The constraint operation can be considered a weighted

projection of the estimates onto the space spanned by the constraints, as shown in Figure

3.4. The weighting factors are functions of the variance of the prior estimates. For the case

of non-linear constraints, the m constraint equations can be written as

C(x̂+(k)) = b. (3.28)

A first order approximation to the solution of this system of constraints can be derived

in a similar manner to that used for the extended Kalman filter [50]. This results in the

following constrained estimate.

x̂+
c (k) = x̂+

cls(k) + Wc(k)[b − C(k)(x̂+
cls(k))] (3.29)

P+
c (k) = P+

cls(k) − Wc(k)Sc(k)WT
c (k) (3.30)
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x1

x2=x1

x1
+(k)

x2
+(k)
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Figure 3.4: The constraint operation as a weighted projection. In this case, two prior esti-
mates, x̂+

1 (k) (red) and x̂+
2 (k) (green) are shown together with their respective 2σ bounds.

The constraint line x1 = x2 represents the constraint surface onto which the estimates are
projected. The projection is weighted according to the variances of the prior estimates. The
resulting estimates x̂+

c (k) (blue) are fully-correlated and equivalent.

with

Wc(k) = P+
cls(k)∇C(k)S−1

c (k) (3.31)

and

Sc(k) = ∇C(k)P+
cls(k)∇C(k) (3.32)

Given an estimate of the position of landmark i in the global frame, Gx̂+
i (k), an estimate

of the pose of the local frame with respect to the global frame, Gx̂+
L (k), and an estimate of

the landmark position in the local frame, Lx̂+
i (k), the following constraint must hold

Gx̂+
i (k) − (Gx̂+

L (k) ⊕ Lx̂+
i (k)) = 0. (3.33)
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An example of this relationship is shown in Figure 3.5. The two estimates of the state
Gx̂+

i (k), indicated by the dashed green and solid red lines, must be equivalent since they both

represent estimates of the same quantity. The application of constraints serves to recover

the information contained in the two distinct estimates, shown as the blue constrained

estimates.

Example 3.2. A simple example of this case is illustrated in Figure 3.5. There is an

estimate of the position of feature i from frame FG, Gx̂+
i (k), as well as one resulting from

the transformation of the estimate in frame FL, Lx̂+
i (k), to the global frame using the

estimated position of the base frame, Gx̂+
L (k). Assuming that these are the only estimates

to be considered for this example, the state matrix is

x̂+
cls(k) =




Gx̂+
L (k)

Gx̂+
i (k)

Lx̂+
i (k)




=
[
Gx̂L(k) GŷL(k) Gψ̂L(k) Gx̂i(k) Gŷi(k) Lx̂i(k) Lŷi(k)

]T

The application of constraints involves the non-linear transformation between the two

frames of reference. This transformation is a function of the estimated vehicle position and

orientation at the time the new frame of reference was instantiated. In order to apply a

constraint between the two estimates of the common feature, the local feature must first be

transformed to the global frame of reference

Gx̂+
cls(k) = T(k)x̂+(k)

=




Gx̂+
L (k)

Gx̂+
i (k)

Gx̂+
L (k) ⊕ Lx̂+

i (k)



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FL

FG
x

Gxi

GxL

Lxi

Figure 3.5: Multiple global feature position estimates in the submap encoding. The dashed
green line shows the estimate of feature i generated through the frame FL while the estimate
in the global frame is shown by the solid red line labelled Gxi. After constraints are applied,
the updated local frame estimate and the estimate of the feature location are shown in blue.
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with

T(k) =




1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

1 0 0 0 0 cos(Gψ̂L(k)) − sin(Gψ̂L(k))

0 1 0 0 0 sin(Gψ̂L(k)) cos(Gψ̂L(k))




The constraint that the two estimates of the common feature are equivalent must hold

Gx̂+
i (k) − (Gx̂+

L (k) ⊕ Lx̂+
i (k)) = 0.

or 


Gx̂i(k)
Gŷi(k)


 −




Gx̂L(k)
GŷL(k)


 −


cos(Gψ̂L(k)) − sin(Gψ̂L(k))

sin(Gψ̂L(k)) cos(Gψ̂L(k))







Lx̂i(k)
Lŷi(k)


 = 0

For this case, the Constraint matrix

C(k) =


0 0 0 1 0 −1 0

0 0 0 0 1 0 −1


 ,

is multiplied by the transformed state estimate, Gx̂+
cls(k)

C(k)T(k)x̂+
cls(k) = 0

with

C(k)T(k) =


−1 0 0 1 0 − cos(GψL) sin(GψL)

0 −1 0 0 1 − sin(GψL) − cos(GψL)




to yield the series of constraints to be enforced. In order to apply the update equation, the
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jacobian of the constraint matrix is also required

∇C(k)∇T(k) =


−1 0 Gx̂L(k)sin(Gψ̂L(k)) + GŷL(k) cos(Gψ̂L(k)) 1 0

0 −1 Gx̂L(k) cos(Gψ̂L(k)) − GŷL(k) sin(Gψ̂L(k)) 0 1
. . .

. . .
− cos(Gψ̂L(k)) sin(Gψ̂L(k))

sin(Gψ̂L(k)) cos(Gψ̂L(k))




Theorem 3.2. The constrained estimate yields an identical feature estimate to the AMF

update.

Proof. The fact that this method is consistent and recovers the full state estimate can be

verified as follows. Consider a simplified linear case similar to that developed previously.

By verifying the consistency of a single step observation in the estimation process, the result

for the general case can be inferred.

Consider an estimate of the vehicle and map in some global frame of reference, FG.

Assume also that an observation of a particular feature, xi, is received. Under normal

circumstances, this observation would be fused into the state estimate using the standard

Kalman update equations. Now the predicted state and covariance estimates for this update

are

Gx̂−
cls(k) =




Gx̂−
v (k)

Gx̂−
m(k)

Gx̂−
i (k)


 (3.34)

with covariance

P−(k) =




P−
vv(k) P−

mm(k) P−
ii (k)

P−T
vm (k) P−

mm(k) P−
mi(k)

P−T
vi (k) P−T

mi (k) P−
ii (k)


 (3.35)

Using the standard SLAM update equations, the state estimate can be updated as

x̂+(k) = x̂−(k) + W(k)ν(k) (3.36)



3.7 Constraining the Independent Feature Estimates 73

with

P+(k) = P−(k) − W(k)S(k)WT (k) (3.37)

where the gain matrix W(k), innovation, ν(k)and innovation covariance, S(k), have their

usual meaning.

Alternatively, consider a new frame of reference instantiated relative to the current vehicle

estimate, Gx̂−
v (k). The vehicle estimate is reinitialised in this new frame of reference prior

to fusing the new observation. The vehicle estimate in the global frame, Gx̂−
v (k), simply

becomes an estimate of the relative position between the global frame of reference and the

new local frame of reference and will be replaced by the symbol Gx̂−
L (k). The new vehicle

estimate, Lx̂−
v (k), is now added with no uncertainty and the new observed feature, Lx̂−

i (k),

is initialised.

x̂+
cls(k) =




Gx̂−
L (k)

Gx̂−
m(k)

Gx̂−
i (k)

Lx̂−
v (k)

Lg(x̂−
v (k), zi(k))




(3.38)

with covariance

P+(k) =




GP+
LL(k) GP+

Lm(k) GP+
Li(k) 0 0

GP+T
Lm(k) GP+

mm(k) GP+
mi(k) 0 0

GP+T
Li (k) GP+T

mi (k) GP+
ii (k) 0 0

0 0 0 0 0

0 0 0 0 ∇zg(k)LR(k)∇zgT (k)




(3.39)

It might seem that information is being lost at this point due to the initialisation of

the new feature. However, it is possible to use a ‘virtual observation’, in the form of a

constraint, to recover the true feature estimate. In the case considered above, the following

relationship between the states is known to exist.

Gx̂+
i (k) − (Gx̂+

L (k) ⊕ Lx̂+
i (k)) = 0 (3.40)
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Appendix A presents the development of a constrained estimator based on the kalman fil-

ter as proposed in [50]. The constraint in Equation 3.40 can be satisfied using the constraint

equation with the following values.

C(k)x̂+
cls(k) = b (3.41)

C(k) =
[
−1 0 1 0 −1

]

b = 0

Applying the constraint that the two estimates of the common feature xi(k) are the same

yields the constrained estimate,

x̂+
c (k) = x̂+

cls(k) + Wc(k)(−Cx̂+
cls(k)) (3.42)

P+
c (k) = P+(k) − Wc(k)Sc(k)WT

c (k) (3.43)

where

Wc(k) = P+(k)CT (k)S−1
c (k) (3.44)

Sc(k) = C(k)P+(k)CT (k) (3.45)

This constraint enforces consistency between the two estimates of the feature, Gx̂+
i (k)

and Gx̂+
L (k) ⊕ Lx̂+

i (k). In order to recover the AMF state matrix, the vehicle estimate

must be transformed to the global frame of reference. Applying this transformation to the

augmented state and covariance matrices yields the following estimate

Gx(k) = T(k)x̂+
c (k) (3.46)

=




Gx̂−
L (k)

Gx̂−
m(k)

Gx̂−
i (k)

Gx̂−
L (k) ⊕ Lxv(k)

Gx̂−
L (k) ⊕ Lx̂−

i (k)




(3.47)
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with covariance
GP+(k) = ∇T(k)P+

c (k)∇TT (k). (3.48)

Once the estimates of the local frame of reference and the duplicate feature estimates are

removed from the state matrix, this estimate is identical to the AMF estimate generated

if the observation were fused directly in the global frame of reference. A demonstration of

this equivalence is shown in Appendix B.

3.8 Computational Complexity

The computational savings that can be realised using this method arise during the update

step of an observation. Assume that there are nf features in the AMF state matrix. Fur-

thermore, assume that there are nG features in the global map and nL features in the local

map in which the vehicle is currently operating with nL � nG. Some of the states may be

estimates in both the global and local maps such that nL + nG ≥ nf .

With each observation in the AMF case the full covariance update matrix must be calcu-

lated. This step requires at best O(n2) operations to compute the matrix update. For the

CLSF, however, the update requires only O(n2
L) operations - a considerable saving for each

individual observation. The computationally intensive step in the filter of updating the full

covariance matrix is deferred until the constraints are applied.

During the period between the application of constraints there will be some number of

observations that have been fused into the filter. These nobs observations will have resulted

in update calculations of O(nobs × n2). When the decision is made to apply the constraints

to fuse the local estimates into the global map there will be some nC common states between

the global and local map estimates. In general, given the nature of the SLAM problem the

number of constraints, nC , will be significantly less than the number of observations, nobs,

taken between applications of the constraints. The vehicle is physically constrained to move

within its environment and so will only observe those features currently within range of its

sensors. The rate at which sensor readings are taken is typically much higher than the rate

at which new features will be observed as the vehicle moves through its environment.
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With the high rate sensors available in many application domains, this can potentially lead

to a large saving in computational effort. Laser range finders and cameras yield observations

to large numbers of features at high rates. Using the Constrained Local Submap filter, the

computationally intensive update of the global map is not dependent on the number of

times a particular feature is observed but instead is dependent on the number of common

features between the maps. This will largely be a function of the rate with which new

features are observed and thus will be somewhat application dependent.

The constraints can either be applied in a single step or individually. Applying the

constraints in a single step requires the inversion of the constraint covariance matrix, Sc(k).

This leads to a complexity of O(n2
C × n2). However, since the constraints themselves are

independent, they can be applied sequentially yielding an update complexity of O(nC ×n2).

Additionally, it is possible to further manage the computational effort of the constraint

application by selective application of the constraints. By applying only a small subset of

the available constraints, the computational effort can be further reduced. Alternatively,

a suboptimal application of constraints might be used by adopting one of the suboptimal

update mechanisms described in Section 2.7.2.

3.9 Data Association

Data association is one of the key components of any feature based mapping algorithm.

Observations of features in the environment must be matched with known or estimated

features in a map. Should the association between an observation and a feature fail, either

by associating an observation to the wrong feature or by associating a spurious measurement

to a map feature, the algorithm can fail catastrophically causing the map estimate to diverge

from the true value.

The association of a single range/bearing measurement to a map feature can be a diffi-

cult undertaking. Given accurate knowledge regarding the position of the vehicle and an

appropriate observation model, statistical gates can be used to identify the likely source

of the observation. As the accuracy of the vehicle position estimate degrades however,

the reliability of this type of matching deteriorates and can fail without warning if a false
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association is selected. In the worst case scenario, where the vehicle position estimate is

distributed uniformly across the environment, associating a single range/bearing observa-

tion to the map is impossible. Using multiple features from a common scan can serve to

increase the probability of correct associations by decreasing the number of plausible ve-

hicle positions that might have produced the observations in question. This suggests that

increasing the number of features available for matching will increase the probability of

yielding a successful match between feature sets.

The CLSF representation of the map presents a mechanism for generating consistent, high

accuracy feature sets. Data association is simplified by maintaining an accurate local map of

the features surrounding the vehicle. The local map of the environment generated using this

approach is then fused periodically into the global map. This approach simplifies the data

association problem in two significant ways. Firstly, when a new observation is received,

it must only be matched against the limited number of features in the local submap. This

can lead to significant computational savings given that the new estimate does not need

to be compared against every estimate in the global map [64]. Secondly, when the local

map is fused into the global map a more robust association can be performed between the

two feature sets. This allows the distribution of features in the environment to be taken

into account when performing the association. It will be shown that using multiple features

to establish correspondence can aid in the data association problem by allowing a more

informed association to be established between the local and global map features.

3.9.1 Establishing Correspondence Between Feature Sets

When matching the local map to the global map there are three important sources of

information about the compatibility of particular feature correspondence sets. These three

sources of information can be combined to yield a more robust association between feature

estimates than can be achieved using simple nearest neighbour techniques:

1. Global information about the statistical estimate of the position of feature points.

2. Relative information regarding the distance between features and their layout with

respect to one another.
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3. Covariance estimates between the feature points indicating the degree of correlation

between the estimates.

The CLSF provides a mechanism for reliably generating sets of features in the global and

local map. Once the feature sets have been generated, it is critical that the correct corre-

spondence be established between the feature sets to allow the constraints to be applied.

This section examine methods that are currently available for establishing the correspon-

dence between feature sets.

Given a set of features, x̂+(k), and related covariance matrix, P+(k), the normalised

squared distance, d2
ij , between any two features x̂+

i (k) and x̂+
j (k) can be computed as

follows.

d2
ij = ∆T

ijS
−1
ij ∆ij (3.49)

with

∆ij = Mijx (3.50)

and

Sij = ∇xM(k)P+(k)∇xMT (k), (3.51)

where the matrix Mij selects the appropriate coordinate pairs for the features x̂+
i (k) and

x̂+
j (k). Under the assumption of normally distributed estimates, this distance measure is

distributed as χ2 in n degrees of freedom.

Consider two feature sets , x̂+
I (k) and x̂+

J (k), containing m features, x̂+
i (k), i = 1, ..., m,

and n features, x̂+
j (k), i = 1, ..., n, respectively. The combined feature vector takes the form

x̂+(k) =


x̂+

I (k)

x̂+
J (k)


 (3.52)

with covariance

P+(k) =


 P+

II(k) P+
IJ(k)

P+T
IJ (k) P+

JJ(k)


 (3.53)
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A proximity matrix between the feature sets is generated by computing the statistical

distance between the respective feature elements.

D =




d2
11 d2

12 . . . d2
1n

...
...

. . .
...

d2
m1 d2

m2 . . . d2
mn


 (3.54)

The statistical distance between the features can be used to evaluate the likelihood that

particular features are similar. Given an appropriate gate, the proximity matrix can be

transformed to a validation matrix, Ω, as

Ωij =




1 Dij < χ2
d,α

0 otherwise
(3.55)

This validation matrix describes the feature estimates that are statistically compatible

between the feature sets. In the case where there is a one to one matching between the

feature sets then a single 1 is located in each row and column for which a compatible match

is found. For features that do not fall within the gate of any features, the entries in their

respective row or column will all be zeros indicating that no match is found. Finally, if

more than one feature falls within the statistical gates set by the algorithm, indicated by

multiple ones in a row or column, a mechanism must be selected for resolving the ambiguity

in the data association. Two mechanisms are considered here for attempting to resolve the

ambiguity in associations between the feature sets.

3.9.2 Joint Compatibility Matching

Recent work by Neira et al has suggested a novel method for resolving ambiguities in data

association [48]. The method attempts to overcome some of the deficiencies of simple near-

est neighbour data association algorithms by making use of spatial coherence constraints.

Potential matched features are first screened according to a computed likelihood. This is

equivalent to generating the validation matrix, Ω. A branch and bound technique is then

used to incrementally search for the most likely associations using a joint compatibility test.
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This test effectively compounds the normalised innovation squared distance for all matches

and measures the likelihood that a set of assignments is jointly compatible. While searching

the entire set of potential assignments is NP complete, pre-pruning the possible associations

using the validation matrix drastically reduces the search space. It is also shown that the

joint compatibility test can be evaluated incrementally and thus acts as a criterion to bound

the search in the interpretation tree.

The method results in a very robust data association solution with an efficient traversal

of the solution space. The performance of this algorithm is equivalent to the more common

Nearest Neighbour data association algorithms in situations where the robustness of Near-

est Neighbour is guaranteed, but degrades gracefully with the increase in clutter and/or

imprecision in vehicle location. This work is readily adapted to the problem of matching

the global and local feature sets. In the work presented by Neira, a single observation

acquired using a trinocular vision system is matched against the map of the environment.

This approach can be used to match the local feature estimates transformed into the global

frame of reference with the existing global landmark estimates for the CLSF algorithm.

3.9.3 Maximum Common Subgraph Matching

Recent work by Bailey et al [3, 4] has shown that the correspondence between feature

sets can be established by means of a Maximal Common Subgraph (MCS). By using a

graph theoretic approach, the authors show that robust and reliable data association is

possible even in the absence of an initial estimate of vehicle location. Their approach

relies on generating a graph describing the inter-feature relationships within feature sets.

By searching for the Maximal Common Subgraph, or clique, between the feature sets a

correspondence is established with a high degree of robustness. This is arguably the only

feasible method of determining the relationship between the new local map and the global

map in the absence of any a priori location information.

When estimates of the relative position between the frames of reference are available,

they can be used to further improve the performance of the MCS algorithm, reducing the

space which must be searched for a solution to the correspondence problem.
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Figure 3.6: The simulation environment showing the desired vehicle tra-
jectory and the landmarks randomly scattered through the environment.

3.10 Simulation

This section presents results of the application of the CLSF techniques to the SLAM prob-

lem. Figure 3.6 shows a map of a simulated environment in which the vehicle is operating.

The landmarks are randomly distributed throughout the environment and the vehicle takes

noisy range/bearing observation using an on-board sensor. The vehicle trajectory is ap-

proximately circular.

Figure 3.7 (a) and (b) shows a comparison between the error in the estimate for the

AMF case versus the error committed by the CLSF along with the 2σ confidence bounds

for both cases. In this instance, the constraint application is scheduled to happen at fixed

intervals. As can be seen, the global covariance of the CLSF vehicle estimate increases when

the vehicle is operating relative to the local submap. When the constraints are applied,

however, the covariance estimate generated is identical to the covariance generated by the

AMF algorithm using the same series of observations. Another important property of the

CLSF arises due to the fact that the local covariance estimates are significantly smaller than
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(a) Global Vehicle Covariances
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(b) Close-up of Global Vehicle Covariances

Figure 3.7: The vehicle estimate errors with the 2σ covariance bounds. The AMF covari-
ance estimates (blue) are shown together with the CLSF case (pink). The global vehicle
uncertainty grows for the CLSF case between applications of the constraints but the full
covariance estimate is recovered when constraints are applied.
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(a) Local Covariances
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(b) Local Covariances

Figure 3.8: The local vehicle covariance estimates. As can be seen, the covariance estimates
for the three states are significantly smaller than the uncertainty in the global frame of
reference.
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the global estimates. This fact can be verified by comparing the local covariance estimates

for the vehicle states, shown in Figure 3.8 (a) and (b) to those shown previously in Figure

3.7 (a) and (b). It is clear that the local covariance estimates are smaller than those of

the global estimates. This simplifies the data association problem and results in a more

accurate linearisation of the state estimate about the current estimate when updating the

local state estimate, especially when the global vehicle uncertainty is large.

The innovation sequences can also be checked to verify that the observation sequences

are within expected bounds. This is clearly the case for both the AMF and the CLSF as

shown in Figure 3.9.

Figure 3.10 compares the floating point operations required by each algorithm to build

and maintain the map. It is clear that for the case of the AMF, the computational burden

rises quadratically until all of the observable features have been incorporated into the map.

The complexity of each update is then maintained. For the CLSF, on the other hand, each

observation incurs only a small computational cost associated with the update of the local

submap estimates. The application of the constraint, however, requires a computation-

ally intensive update of whole the map. By proper management of the update, however,

this approach can yield considerable computational savings when compared with the AMF

approach, as can be seen in Figure 3.10 (c).

Finally, the maps generated by the two implementations of the algorithm can be examined

to verify that the efficient method does, in fact, yield a similar map. Figure 3.11 shows the

two maps generated by the algorithm along with the actual position of the landmarks.

Figure 3.12 shows selected close up regions of the same maps. These maps are similar to

within the linearisation bounds of the algorithm.
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(a) AMF Innovations
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(b) CLSF Innovations

Figure 3.9: The innovation sequences. The estimates both appear to be zero-mean
and white with approximately 95% of the innovations falling within the 2σ inno-
vation covariances bounds. Both the AMF and the CLSF algorithm yield similar
innovation bounds due to the sensor uncertainty model used in the simulation
which is the major source of uncertainty in the range/bearing space considered.
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(b) Close-up of MFlops
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Figure 3.10: The floating point operations required for the prediction and update stages of
the filters. The CLSF (pink) has significantly less computational burden while operating in
the local submap with a large burden imposed when constraints are applied. This can be
significantly reduced by selective application of constraints.
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Figure 3.11: The final map estimates. The AMF (blue) and CLSF (pink) landmark esti-
mates together with the true landmark locations and estimated vehicle trajectories.
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(d) An enlarged portion of the map

Figure 3.12: The final map estimates. As can be seen from these close-up portions of
the map, the CLSF estimates (pink) are similar to those generated by the AMF estimator
(blue).
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It is perhaps instructive at this point to examine the data association issues relating to

the CLSF representation of the map estimates more closely. It has been suggested that

data association can be simplified by maintaining an accurate local map of the features

surrounding the vehicle. This map is then fused periodically into the global map. It will

be shown that this approach can aid in the data association problem and the following

figures help to illustrate why this is the case. These figures are again generated through a

simulated environment in which a vehicle travels amongst randomly placed point features

in a roughly circular trajectory.

It is common when the vehicle executes an extended circular trajectory to have a large

global vehicle covariance at the time the vehicle closes the loop. When the vehicle returns to

the area from which it began its navigation cycle, the global uncertainty in vehicle position

is likely to be at its largest. As it approaches the region from which it started navigating, it

will reobserve features with very small initial covariances incorporated into its map early in

the run. This often leads to a large change in the vehicle position estimate as the observation

of a well-known feature is incorporated into the state estimate. This is known as the loop-

closure problem and can lead to significant problems in the linearisation assumptions of the

filter. It can also make data association difficult since the large vehicle uncertainty can map

an observation onto a relatively large region of high probability.

In Figure 3.13 a loop-closure scenario is presented. The vehicle is operating with a

relatively large covariance. It has entered the region from the top of the screen and is

heading towards its original location. It has just made an observation of a well-known feature

previously held in its map. The estimated positions of the landmarks in the environment,

‘+’, are shown together with their true locations, ‘o’, and their 3σ covariance bounds. The

covariance of the estimated position of the observation is shown as a dotted line. As can

be seen, the data association in this case is somewhat ambiguous. Due to an accumulation

of error in the estimated position and orientation of the vehicle, the estimated landmark

position is quite far removed from the true position when the observation is made. There are

a number of other features in the environment which might also satisfy the data association

criteria at this point.

Now consider the same observation in the local map of the environment that is currently
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Figure 3.13: Data Association in the Global Frame. The vehicle is approaching the area from
which it began its navigation cycle and has just made an observation to a landmark. The
estimated 3σ observation bounds have been plotted to show the area in which landmarks
are likely to have generated the observation. As can be seen, there is some ambiguity in the
association between the observation and the estimated features in the map. The 3σ bounds
are plotted for the vehicle and feature positions. The estimated position of the observation
is shown as a dotted line.
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Figure 3.14: Data Association in the Local Frame. As can be seen, the observed feature
has not been seen previously in this frame of reference. The 3σ confidence bounds are much
tighter in the local frame of reference and there is no ambiguity in the obsrvation. Notice
that the local frame of reference is rotated with respect to the global frame of reference.

being built using the Constrained Local Submap Filter. This is shown in Figure 3.14. The

3σ bounds for the vehicle and feature estimates are much tighter in this local frame of

reference. The observed feature has not yet been observed in this frame of reference and

the data association problem is not present. Notice that the local frame of reference is

rotated with respect to the global frame of reference.

Finally, at some appropriate time the local map must be fused into the global map of

the environment. Figure 3.15 shows the two maps superimposed on one another. There is

a very clear one to one association between the local features and the features contained

in the global map. Any ambiguity can be resolved by first assigning unambiguous feature

pairings. Since the constraints can be applied sequentially, these unambiguous constraints

can be applied to the map prior to finalising the associations. Thus the data association

problem can be iterated until a sufficient number of constraints have been applied and

enough information about the global map states has been recovered. Alternatively, one of

the data association methods presented in section 3.9 can be used for establishing a jointly
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Figure 3.15: Data Association between the Local and Global Frames. Using the CLSF
approach to SLAM, the vehicle is allowed to continue building its local map. At some
appropriate time, the local map is fused into the global map of the environment. The
local map (green) is shown transformed into the global frame together with the global map
estimates (pink). As can be seen, there is a very close one to one association between
the local features and their corresponding features in the global map. The ambiguity that
existed when the known landmark was observed is resolved using the pair of landmarks.
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compatible feature pairing.

3.11 Summary

This chapter has presented the CLSF. This novel approach to the construction of the SLAM

map generates a local map of the features in the immediate vicinity of the vehicle. This local

map is then periodically fused into the global map to recover the full global map estimate.

This approach to the SLAM problem allows the computationally intensive update of the

global map covariance matrix to be scheduled at appropriate interval. It also allows a

potentially large number of observations to be fused into the map in a single step, thus

increasing the efficiency of the process.

The CLSF can also help to resolve ambiguity in data association. By deferring the

association of observations to features in the map, a more informed choice of associations

is possible. Asymmetry in the environment can help to resolve any ambiguity that might

arise from the association of a single range/bearing measurement.

This approach has been shown to perform very well in a simulated environment. Simula-

tion allows the performance of the filter to be checked to verify that it is, in fact, generating

consistent estimates of the map and vehicle states. It is clear from the results presented

that the approach yields nearly identical results to the AMF despite the fact that the entire

global map covariance matrix is not updated with each observation.



Chapter 4

Extending Constraints

4.1 Introduction

As shown in Chapter 3, the Constrained Local Submap Filter (CLSF) approach to the

SLAM problem can aid in managing the computational complexity of the algorithm. The

CLSF allows information gathered from observations to be fused periodically into the global

map of the environment using appropriately formulated constraints. This approach lends

itself well to three natural extensions that will be described in more detail in this chapter.

This Chapter is essentially divided into three parts.

Section 4.2 explores the possibility of incorporating multiple vehicles into a mapping effort

using the the CLSF approach to SLAM. Given the decorrelated nature of the local submaps,

it will be shown that adding extra vehicles is a straightforward and natural extension to

consider. Additionally, this method is shown to allow vehicles to be added to the mapping

effort even in the absence of information regarding their initial location relative to the global

map.

Section 4.3 develops the Constrained Relative Submap Filter (CRSF) based on a map

representation similar to that used for CLSF. Rather than applying constraints each time

a new submap is instantiated, this approach maintains the frames of reference in a tree

structure. These independent submaps can then be fused together at some later time to

create a consistent global map of the environment.
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Section 4.4 introduces a novel initialisation scheme that extends the approach presented

in Section 2.5.3 for identifying new confirmed features. This approach builds on the idea

of consolidating information through the application of constraints. The novel feature ini-

tialisation scheme can be used to improve the steady-state performance of the filter by

incorporating tentative features into the filter as soon as they are observed. Constraints

are then applied between multiple feature estimates when a feature is confirmed. Observa-

tions that are subsequently deemed as spurious are removed from the state vector after an

appropriate timeout. It will be shown that information that would otherwise be lost can

therefore be used consistently in the filter.

Finally, Section 4.5 summarises the chapter and provides concluding remarks.

4.2 Multi-vehicle SLAM

In many applications, a single sensing platform may not be sufficient for collecting data

or creating maps of an unknown environment. There are a whole host of applications

currently under development in which a number of distributed sensing systems are deployed

to gather information about some remote environment. Fleets of Autonomous Underwater

Vehicles (AUVs) [1, 56] and Unmanned Aerial Vehicles (UAVs) [29] have been proposed for

applications ranging from environmental monitoring through surveillance to defense. These

systems require the ability to share information across a wide variety of platforms and to

fuse information from different sources into a consistent picture of the environment [49].

Deploying multiple vehicles into an environment and providing them with a mechanism for

sharing information can provide higher data rates, increase robustness, and minimize the

chance of catastrophic system failure. This section extends the work presented in Chapter

3 to the multi-vehicle SLAM problem.

In a distributed SLAM environment, a brute force method might see every control input

and observation communicated between every vehicle. Each vehicle could then safely receive

observation information being generated by remote vehicles and fuse this information into

its map of the environment and update its estimate of the remote vehicle’s location. This

approach would clearly result in enormous bandwidth requirements as all the observation
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and control inputs would need to be transmitted. Alternatively, each vehicle might com-

municate its control input and observations to a central agent that would run a monolithic

SLAM filter to estimate the vehicle and landmark positions. This would put severe com-

putational requirements on the central agent and require that the full covariance matrix be

updated with each prediction and observation of each vehicle.

A better approach would see each vehicle build an independent map of its local environ-

ment. As shown through the development of the CLSF, each local submap is independent

of the global feature map of the environment and the prior estimate of vehicle position.

Using the application of appropriate constraints, these independent maps can then be fused

together to form an aggregate, global map of the environment. In a patch-work fashion,

each vehicle can add the current estimate of its local environment to the global map.

4.2.1 Multiple Vehicle Constrained Local Submap Filter

In Chapter 3 a novel approach to SLAM was presented through the introduction of the

CLSF. The main features of this novel map representation are the decorrelated nature

of the local submaps and the delay of data association, leading to increased robustness

in associating feature observations. These two characteristics of the CLSF representation

make it an ideal approach for multiple vehicle map building. Figure 4.1 shows a situation

in which two vehicles are operating in an unknown environment. Each of the vehicles can

build an independent local submap as described in Chapter 3. At appropriate intervals, the

features present in the local maps can be transformed to the global coordinate frame, data

association be performed, and the information fused into the global map. Demonstrating

that this approach is consistent is a straightforward extension to the proofs developed in

Chapter 3.

Theorem 4.1. Assuming that independent vehicle estimates are initialised in new frames

of reference, the vehicle estimates remain independent of one another and of the global frame

estimates.

Proof. Consider the case where location estimates of two vehicles, Gx̂+
v1

(k − 1) and Gx̂+
v2

(k − 1),

and the map feature estimates, Gx̂+
m(k − 1), exist relative to some global frame of reference
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Figure 4.1: Multi-vehicle submap state estimation. Two vehicles are shown operating in
their respective local frames of reference. The global map (grey) contains estimates of the
poses of the frames of reference for each vehicle. At any time, the local vehicle estimates
can be fused into the global map in a manner similar to that proposed for the CLSF.
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FG. Initially the state estimate will be comprised of

x̂+(k − 1) =




Gx̂+
v1

(k − 1)
Gx̂+

v2
(k − 1)

Gx̂+
m(k − 1)


 . (4.1)

The covariance matrix for these states relative to the current frame of reference is given by

the following.

P+(k − 1) =




GP+
v1v1

(k − 1) GP+
v1v2

(k − 1) GP+
v1m(k − 1)

GP+T
v1v2

(k − 1) GP+
v2v2

(k − 1) GP+
v2m(k − 1)

GP+T
v1m(k − 1) GP+T

v2m(k − 1) GP+
mm(k − 1)


 (4.2)

At time k − 1 the decision is made to instantiate two new submaps defined by the new

coordinate frames, FL1 and FL2 centered at the current vehicle locations. Given that the

new submaps are defined relative to the current vehicle estimate, the estimated position of

the vehicles, Gx̂+
v1

(k − 1) and Gx̂+
v2

(k − 1), represent the transformation from the current

frame of reference, FG, to the new frames of reference, FL1 and FL2 . These will be replaced

by the symbols Gx̂+
L1

(k − 1) and Gx̂+
L2

(k − 1) respectively. As the new frames of reference are

centered at the current vehicle positions, the new local positions of the vehicles, L1x̂+
v1

(k − 1)

and L2x̂+
v2

(k − 1), are at their respective origins with no uncertainty;

x̂+(k − 1) =




Gx̂+
L1

(k − 1)
Gx̂+

L2
(k − 1)

Gx̂+
m(k − 1)

L1x̂+
v1

(k − 1)
L2x̂+

v2
(k − 1)




(4.3)
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with covariance

P+(k − 1) =




GP+
L1L1

(k − 1) GP+
L1L2

(k − 1) GP+
L1m(k − 1) 0 0

GP+T
L1L2

(k − 1) GP+
L2L2

(k − 1) GP+
L2m(k − 1) 0 0

GP+T
L1m(k − 1) GP+T

L2m(k − 1) GP+
mm(k − 1) 0 0

0 0 0 0 0

0 0 0 0 0




(4.4)

As the vehicles operate in their respective frames of reference, the process uncertainty,

Q11(k) and Q22(k), will add uncertainty to the vehicle estimate in the local frames of

reference. This will cause the local vehicle covariances, L1P−
v1v1

(k)v1 and L2P−
v2v2

(k)v2, to

become non-zero but the local vehicle state estimates will still be fully decorrelated with

respect to one another and to the global map estimates

x(k) =




Gx̂−
L1

(k)
Gx̂−

L2
(k)

Gx̂−
m(k)

L1 x̂−
v1

(k)
L2 x̂−

v2
(k)




(4.5)

with covariance

P−(k) =




GP−
L1L1

(k) GP−
L1L2

(k) GP−
L1m(k) 0 0

GP−T
L1L2

(k) GP−
L2L2

(k) GP−
L2m(k) 0 0

GP−T
L1m(k) GP−T

L2m(k) GP−
mm(k) 0 0

0 0 0 L1Q11(k) 0

0 0 0 0 L2Q22(k)




. (4.6)

As the vehicles continue to operate in these new frames of reference, the global map

estimates remain unchanged. The local vehicle estimates are updated using the usual vehicle

model and hence remain uncorrelated with each other and with the global frame estimates.
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Corollary 4.1. Given that independent vehicle estimates are used, the new map elements

will also be independent of one another and of the global frame estimates.

Proof. After the vehicles have operated for some time in the new frames of reference, assume

that independent observations of one or more features are received and that the observed

landmarks are initialised relative to the respective frames of reference.

x(k) =




Gx̂+
L1

(k)
Gx̂+

L2
(k)

Gx̂+
m(k)

L1 x̂+
v1

(k)
L1 x̂+

m1
(k)

L2 x̂+
v2

(k)
L2 x̂+

m2
(k)




(4.7)

with covariance

P+(k) =




GP+
L1L1

(k) GP+
L1L2

(k) GP+
L1m(k) 0 0

GP+T
L1L2

(k) GP+
L2L2

(k) GP+
L2m(k) 0 0

GP+T
L1m(k) GP+T

L2m(k) GP+
mm(k) 0 0

0 0 0 L1P+
v1v1

(k) L1P+
v1m1

(k)

0 0 0 L1P+T
v1m1

(k) L1P+
m1m1

(k)

0 0 0 0 0

0 0 0 0 0

. . .

. . .

0 0

0 0

0 0

0 0

0 0
L2P+

v2v2
(k) L2P+

v2m2
(k)

L1P+T
v2m2

(k) L2P+
m2m2

(k)




(4.8)
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This covariance matrix is clearly block diagonal and the new vehicle and landmark es-

timates are therefore independent of the estimates from the global frame of reference. As

observations are made in the local submap, features are initialised relative to the current

frame of reference using the vehicle estimates, L1x̂+
v1

(k) and L2x̂+
v2

(k). This implies that

the new features will also be independent of the previous features in the map and of the

submap being created by the other vehicle. The update of the local covariance estimates

will therefore be a function of the number of features in the local submap and not of the

entire map.

The fact that the local map estimates remain independent of one another and of the

global map allows each vehicle to operate independently of the estimates contained in the

global map. When a vehicle has built a map of its local environment, this map can be safely

transmitted to other vehicle nodes or a central map agent for incorporation into the global

map. The vehicle then begins building a new local map. The extension to an arbitrary

number of vehicles is straightforward from the preceding proofs.

4.2.2 Data Association

There are two important cases for which correct data association must be established in the

multi-vehicle case; map to map for a single vehicle and vehicle to vehicle. In an identical

fashion to the single vehicle case, the correspondence set between the local map and the

global map for each individual vehicle estimate is established when the individual local

maps are fused into the global state estimate.

An additional feature of this approach arises when a new vehicle is initialised into the

mapping effort. If the origin of the new vehicle trajectory is known relative to other vehicles

already operating or relative to some global coordinate frame, this data association step

is relatively straightforward and the local map can simply be checked against the global

map for matching feature estimates. If, however, no knowledge of the initial position of the

vehicle is available, a correspondence between the vehicle’s current local map and the global

map can be established. This correspondence can then be used to estimate the origin of the
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vehicle’s trajectory. From that point onwards, estimation proceeds in a manner identical to

that for a single vehicle.

As described in Section 3.9.3, recent work by Bailey et al [3] has shown that correspon-

dence between feature sets can be established by means of a Maximal Common Subgraph

(MCS). By building a map of the local environment in which the new vehicle is operating,

this information can be used to determine the relationship between the global map and the

new local map even in the absence of any information regarding the initial relative position

of the vehicles.

4.2.3 Estimating Relative Coordinate Frames

Once the correspondence set has been generated between the features in the local map of

the new vehicle and the existing global map, the relative position between the frames of

reference must be estimated. Given that the estimated positions of two sets of features are

available together with their respective covariances, it is possible to compute the relationship

between the frames of reference. Lu and Milios give the analytical solution to the case of

point based features with no uncertainty [38]. However, the analytical solution does not

account for uncertainty in the estimated states. To solve for the transformation relating

the frames of reference, a non-linear, least squares approach must be used to account for

the uncertainty in the estimates.

A pair of features is selected to generate an initial estimate of the rotation and translation

that relate the two frames of reference. By solving for the rotation that aligns the vectors

joining the two features in each reference frame and subsequently generating an estimate

of the translation that relates the two end-points of the line, a starting point for the non-

linear solution can be generated. The full solution is then sought using the application of

appropriate constraints to fuse the remaining feature estimates into the global map.

Example 4.1. Figure 4.2 shows the steps involved in performing the initialisation. A

vehicle estimate is assumed to exist in the local frame of reference. The objective is to

fuse the local map into the global map with no knowledge of the relative position of the

local frame of reference. Assuming that data association is successful and that the feature
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Figure 4.2: Fusing two frames of reference in the absence of an a-priori vehicle estimate.
Once the features have been associated, the relative orientation of the frames of reference
can be found. This is then used to generate an initial estimate of the relative position of
the second frame within the first. Constraints are used to improve this estimate and to fuse
the information from the remaining matched features.
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correspondences between frames are established, a common pair of features is selected to

define a vector in each of the two frames of reference. Let the points be defined by the tuples

(xA, yA) and (xB, yB) respectively. This vector is shown as the dark dashed line in the two

frames of reference. By calculating the orientation of this line in each of the frames of

reference, it is possible to estimate the relative orientation between the frames of reference.

Gψ̂L = arctan(
GŷB − GŷA
Gx̂B − Gx̂A

) − arctan(
LŷB − LŷA
Lx̂B − Lx̂A

) (4.9)

This estimate of the relative orientation between the frames of reference is then used to

generate an initial estimate of the relative position between the frames of reference.

Gx̂L = Gx̂A − Lx̂A cos(Gψ̂L) + LŷA sin(Gψ̂L) (4.10)

GŷL = GŷA − Lx̂A sin(Gψ̂L) − LŷA cos(Gψ̂L) (4.11)

The covariance in the initial estimate is also required. This covariance can be computed

using the covariances of the state estimates in the two frames of reference. The two initial,

independent covariances matrices are used to form a block diagonal initial covariance matrix.

This is then projected through the jacobian of the initial estimates to yield the correlated

covariance matrix that includes the initial estimate of the relationship between the frames of

reference. The initial estimate of the relative position and orientation between the frames of

reference can then be used to fuse the remaining features from the local frame of reference

into the global frame using the constraint mechanism developed for the CLSF in Chapter 3.

4.2.4 Fusing Multiple Local Maps

Given that the local frames of reference for each of the vehicles are independent, they can

be fused into the global map of the environment in an identical manner to that developed

for the CLSF. Once the decision has been made to establish a new reference frame for a

particular vehicle, its local map is fused into the global map of the environment and it

begins generating a new map - with its last position used as the estimate of the relative
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pose of the local frame within the global frame of reference. This step is identical to that

used for the single vehicle case.

4.2.5 Multi-Vehicle Simulation

This simulation shows the steps required to fuse a new vehicle’s map into the global map of

the environment. Given the two maps shown in Figure 4.3 a correspondence must first be

established between the two maps. By comparing the inter-feature distances within each

map, it is possible to establish the correspondences that yield the most matches.

Once the correspondences are established, the transformation relating the two frames of

reference must be established. This is done by selecting two features and establishing a first

estimate of the rotation and translation that align the inter-feature vectors. This is used

as the initial guess for the least squares solution. By applying a constraint between two

features sets using the initial transformation, it is possible to combine the two estimated

feature sets. The updated transformation is then used to transform the second vehicle

estimate and any new features into the selected frame of reference.

Figure 4.4 shows the initial and fused maps. The first plot shows the map generated by

the first vehicle plotted against the actual landmark position. The second vehicle is then

deployed and generates its own map of its local environment. This map is fused into the

first map using the mechanism described above.
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Figure 4.3: The two vehicle’s maps. The first vehicle will be used to define the global
reference frame. Incorporating the new vehicle into the mapping effort requires that the
correspondence between the feature sets be established. Using the inter-feature relation-
ships, the correspondence set can be established.



4.2 Multi-vehicle SLAM 107

0 50 100 150

0

50

100

150
Beacon Positions

X (m)

Y
 (

m
)

(a) Original Map

0 50 100 150

0

50

100

150
Beacon Positions

X (m)

Y
 (

m
)

(b) Fused Map

Figure 4.4: The original and fused maps. Once the correspondence sets are established,
the new map is fused into the global map by first estimating the relationship between the
frames of reference. Constraints are then applied to recover the information contained in
duplicate feature estimates. The fused map (b) now has estimates for the features seen by
the second vehicle.
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4.3 The Constrained Relative Submap Filter

The concept of the relative local frame of reference introduced by the CLSF also leads to

an alternative approach to mapping, referred to as the Constrained Relative Submap Filter

(CSRF). Rather than constraining the feature estimates to generate a consistent, global map

of the environment each time a new submap is instantiated, the local frames of reference can

be maintained in a hierarchy of relative submaps, as shown in Figure 4.5. When the decision

is made to create a new submap, the previous submap is stored rather than being fused

directly into a global map. This submap contains an estimate of the relative pose between

the new frame of reference and the old as the new map is initialised at the current vehicle

location. Maintaining the independent local maps allows the vehicle to reuse the accurate

local maps when it returns to an area it has previously explored. Methods are presented to

transition the vehicle back into a prior local submap and for generating a consistent, global

map at some desired time.

This representation is similar in spirit to the methods proposed by Chong and Kleeman

[13] and Gutmann and Konolige [27], and also draws inspiration from topological map

representations first proposed by Kuipers and Byun in [30] and later used by a number of

other researchers. Using this approach, an estimate of each frame of reference exists with

respect to some previous frame of reference. If required, the global position estimate of

the vehicle and map estimates can be generated by recursively transforming the estimates

through the hierarchy until the global frame of reference is reached.

This hierarchical map representation is appealing for situations in which the global esti-

mate of vehicle position is of secondary importance to maintaining accurate local maps of

the environment. Depending on the accuracy of the vehicle model and the rate of growth

of uncertainty of the vehicle position, the global vehicle covariance can become large. This

situation can lead to errors in the linearising assumptions introduced by the EKF. Rather

than referencing all estimates to a common base frame, this approach allows the landmark

estimates to be made from an independent, local frame of reference with high accuracy. As

the vehicle moves around within its environment, each local map can be generated with

high accuracy in the same manner as presented for the CLSF. Instead of using constraints
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Figure 4.5: CRSF state estimation. In this case the vehicle estimate is made relative to a
local frame of reference. The position of each of the local frames of reference is maintained in
a tree relative to a previous frame of reference. A globally consistent map can be recovered
using appropriately formulated constraints.
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to enforce consistency between the frames of reference, the vehicle instantiates a new frame

of reference that is maintained in a tree.

This approach yields a modified state vector of the form

xcrs(k) =




GxL1(k)
Gx1(k)
Gx2(k)

...
L1xv(k)

L1xL2(k)
L1xL3(k)
L1x1(k)

...
L2x1(k)
L2x2(k)

...




(4.12)

where the notation Ljxi(k) indicates a state in the local frame of reference, Fj , centered at
LkxLj(k). States taken in the global frame of reference will again be referred to using the

notation Gxi(k).

The computational complexity of the CRSF is small whenever the vehicle is operating

within a local submap. This representation results in a covariance matrix that is block

diagonal. Each block represents an independent, local submap. When an observation is

made from within a particular submap, only the feature states associated with that submap

need to be updated. When a new frame of reference is initialised, there is effectively no

computational burden associated with the transition. A new frame of reference is initialised

with the vehicle assumed to be at the origin. Subsequent observations are then made relative

to the new frame of reference in a manner identical to that introduced with the Constrained

Local Submap Filter.

There are two considerations, however, that can add complexity to this approach.
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1. When the vehicle re-enters a frame of reference, a reinitialisation step is required to

generate a consistent vehicle estimate in the prior frame of reference. This requires

robust data association to be performed between the vehicle’s current observation set

and the candidate frame of reference.

2. Features may be estimated in multiple submaps. This can lead to multiple global

estimates if the feature states are transformed to a common frame of reference. The

application of appropriate constraints can serve to recover a consistent, global map of

the environment that incorporates all of the information available to the filter.

The following sections examine some of the practical considerations arising from this

approach.

4.3.1 Transforming Coordinate Frames

The transformation between frames of reference is identical to that used by the CLSF

for transforming a single local map into the global map of the environment. The vehicle

estimate in the parent frame describes the estimate of the location of the local frame of

reference within a child frame. In this case, the transformation can be applied recursively

through the hierarchy of submaps to recover the global position estimate of the vehicle and

landmarks in the associated frame of reference.

4.3.2 Vehicle Transitions

When the vehicle returns to a part of the map that it has previously explored, a mechanism

must exist for reinitialising itself within the previous frame of reference. The first step in

this process requires the vehicle to recognize when it has reentered a previous map. In effect,

the vehicle must be able to associate its current sensor readings with previous portions of

the map. Methods for establishing correspondences between features sets were examined in

some detail in Section 3.9.

Assuming that data association is successful, the vehicle estimate must be reinitialised

within the previous frame of reference. Given a number of observations to known landmarks
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in the environment, a least-squares solution can be found. This reinitialisation step can be

formulated in an identical manner to that used for fusing the local frame of reference into

the global frame of reference as described for the CLSF. Details of the steps required to

reinitialise the vehicle estimate in the absence of a prior estimate of the vehicle state were

presented in Section 4.2.3. For the case considered here, when the vehicle is thought to

be in the vicinity of a prior submap with high likelihood, a new local frame of reference

is initialised. Once the correspondence between observed features in this new frame and

the target frame is established, the vehicle estimate can be incorporated into the prior map

using constraints.

As the vehicle operates in the previous frame of reference it will improve the estimates of

all the features within the submap in question. This will improve the local estimates of the

features and will also improve the global estimates of the later features by improving the

estimate of the relative states between the current submap and the next frame of reference in

the tree. Unfortunately, due to the decorrelated nature of the submaps, these improvements

will not directly improve the estimates in the other submaps as is the case for the global

estimates in the CLSF representation. Also, multiple estimates for particular features will

exist in different submaps in regions where the submaps overlap, leading to a suboptimal

estimate of the map.

4.3.3 Applying Constraints

Chong and Kleeman suggested that there might exist a mechanism for enforcing global

consistency amongst the submaps. This mechanism can be formulated as a series of con-

straints between submaps. By solving for the least-square fit of feature estimates maintained

in multiple submaps, a consistent global map of the environment can be generated. The

map covariance for the consistent map will, of course, be fully correlated.

Lu and Milios [37, 38] have demonstrated that generating a consistent environment map

using scan alignment can be formulated as a least-squares fit problem between the scan

points. By finding the alignment of scan positions that minimises the disparity between

scan points, a consistent global map can be generated. This approach is well suited to the
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task of generating a consistent, global feature map of the environment given a series of

relative submap estimates.

In the work of Lu and Milios and in later work by Gutmann and Konolige [27], individual

scans are matched to produce a map of the environment. This approach requires that every

scan be stored in memory. The computational complexity of the search for the solution can

be exorbitant. It is also easily led astray by local minima if the initial estimate is poor.

Using the CRSF, salient environmental features are extracted from the sensor readings. By

extracting features from the scans, a smaller numbers of points need to be matched. Over

the small distances spanned by individual submaps, the filter is able to generate maps with

high accuracy in the local frame. Additionally, feature estimates will generally result from

multiple sightings of particular features, resulting in smaller local variances for each feature.

This will further reduce the complexity of the update since each feature is estimated from

multiple observations. Finally, the use of features allows sensor characteristics to be taken

into account. Rather than attempting to match unprocessed sensor data, which may contain

spurious measurements, only those features that are deemed relevant for the purposes of

localisation are used.

4.3.4 Loop Closure

The hierarchical representation can also help to overcome some of the problems introduced

by the loop closure problem. If the vehicle operates for a long period without reobserving

features detected early in its deployment, the global vehicle covariances will grow large

despite the use of terrain information to aid estimation accuracy. The global estimates

of the covariances for the map features will consequently also be large. The situation

described here often arises when the vehicle has executed a large loop and is returning to

the origin of its trajectory. When the vehicle reobserves a landmark with low covariance

from early in its run (and assuming that data association is successful) there is often a

large correction in the estimated vehicle position and a corresponding large adjustment to

the map estimates. This correction can have a detrimental effect on the filter by violating

the linearising assumptions made to implement the EKF. The linearisation of the filter

is especially poor if there is significant uncertainty in the vehicle heading estimate. By
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allowing the vehicle to always operate within local frames of reference with high accuracy,

the vehicle estimate always has a low covariance relative to the local frame of reference.

4.3.5 Simulation

This section presents simulation results of the Constrained Relative Submap filter and

discusses some of the characteristics of this representation. The simulation environment is

similar to that used for both of the previous filters and comprises a series of point features

randomly distributed within an environment. The vehicle undertakes an approximately

circular trajectory, taking range/bearing observations to the features and revisiting familiar

terrain during the course of its exploration.

Figures 4.6 (a) and (b) show a comparison between the error in the estimate for the the

AMF case, the CLSF and the CRSF along with the 2σ confidence bounds for both cases.

In this instance, the initialisation of new submaps is scheduled to happen at fixed intervals

during the first pass of the CRSF. When the vehicle revisits previous submaps, it uses

observations of a pair of features to reinitialise the vehicle in the old map. As can be seen,

the global covariance of the CRSF remains large when the vehicle is operating in submaps

that are far from the origin, despite the fact that it is revisiting a known portion of the

map and has successfully closed the navigation loop. This results from the fact that the

submaps are not correlated and the information from one submap is not transmitted directly

to the other submaps. When the constraints are applied, however, the covariance estimate

generated is similar to the covariance generated by the AMF using an identical series of

observations. The global estimates within submaps created later in the run will improve

marginally when the vehicle revisits earlier submaps. Since the relationships between the

submaps are stored as states within the parent submap, improvements in this map will

result in an improved estimate of the relative position between the submaps. The amount

of improvement will be a function of the correlation between the vehicle estimate and the

map at the time the original transition between the submaps is initialised.

Another important property of the local submap filtering approach arises due to the fact

that the local covariance estimates are significantly smaller than the global estimates. This
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(a) Global Vehicle Covariances
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(b) Close-up of Global Vehicle Covariances

Figure 4.6: The vehicle estimate errors with the 2σ covariance bounds are shown in figures
a) and b). The AMF covariance estimates (blue) are shown together with the CLSF (pink)
and CRSF (green) cases. The global vehicle uncertainty grows for the CRSF case because
information is not transmitted between the independent frames of reference. The spikes in
the global vehicle covariance estimate result from the reinitialisation stage when the vehicle
revisits a previously constructed map.
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(a) Local Covariances
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(b) Close-up of Local Covariances

Figure 4.7: The local vehicle covariance estimates. As can be seen, the covariance estimates
for the three states are significantly smaller than the uncertainty in the global frame of
reference. It is also interesting to note that once the vehicle begins revisiting previous
submaps, local covariance for the CRSF (green) can achieve a lower value than for the new
maps created by the CLSF (pink) case. This is due to the improvements achieved when the
vehicle revisits a map.
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fact can be verified by comparing the local covariance estimates for the vehicle states, shown

in Figure 4.7 (a) and (b) to those shown previously in Figure 4.6 (a) and (b). It is clear

that the local covariance estimates are smaller than those of the global estimates. This

facilitates the data association problem and results in a more accurate linearisation of the

state estimate about the current estimate when updating the local state estimate, especially

when the global vehicle uncertainty is large.

During the first pass, when the vehicle is initially building its maps, the CLSF and

the CRSF maintain identical local maps. When the vehicles close the loop, however, the

differences in the two approaches become apparent. For the first case, the vehicle continues

to build independent local maps of the environment, periodically fusing these maps into a

single, global map. In the latter case, the local vehicle estimate is reinitialised within the

stored local submap. The vehicle covariances are inflated during this initialisation process

due to the uncertainty in the observation. As the vehicle takes observations in the revisited

map, its covariance diminishes and can, in fact, be seen to achieve a smaller covariance than

that achieved in the new independent local frames of reference. The vehicle is able to use

information previously stored in the local maps to improve its navigation estimates.

The innovation sequences can also be checked to verify that the observation sequences

are bounded. This is clearly the case for both the AMF and the CLSF as shown in Figure

4.8.

Figure 4.9 compares the floating point operations required by each algorithm to maintain

the estimates. As before, the AMF is clearly more computationally intensive. For the CRSF,

on the other hand, each observation incurs only a small computational cost associated with

the update of the local submap estimates. Once the vehicle has begun revisiting previous

submaps, the computational burden is slightly higher than for the CLSF. This is a result

of the fact that the local maps will tend to grow larger as new features are incorporated

into the maps. This then becomes a map management issue and is a function of the criteria

used for initiating a transition into a previous submap.

As the vehicle continues to operate within its environment, it keeps updating the local

maps of the environment. These maps become more correlated each time the vehicle revisits

a particular map. At some time, it may be desirable to fuse all of the independent local
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(b) CRSF Innovations

Figure 4.8: The innovation sequences. The estimates are clearly bounded by the 2σ innova-
tion covariances bounds. Both the AMF and the CRSF algorithm yield similar innovation
bounds due to the sensor uncertainty model used in the simulation which is the major
source of uncertainty in the range/bearing space considered.
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Figure 4.9: The floating point operations required for the prediction and update stages of
the filters. The CRSF (green) has significantly less computational burden than the AMF
case (blue). Once the vehicle has re-entered previous submaps, the complexity of the update
increases slightly when compared with the CLSF (pink). This is due to the fact that the
re-entered submaps tend to grow larger when the vehicle has begun observing features on
its return.
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maps into a single, large map of the environment. This can be achieved by recursively

stepping through the map tree and applying constraints between the submaps containing

common features. Figure 4.10 shows the unconstrained estimates of the map features at

the completion of this particular run. Figure 4.11 shows a number of close up views of the

estimated maps. The local map estimates have been transformed to the global map frame

by stepping through the map tree and applying the appropriate transformation. As can

be seen, there are many duplicate feature estimates whose information can be consolidated

through the application of appropriately formulated constraints.

Finally, the constraints between adjacent submaps can be applied to yield a single, corre-

lated map of the environment. This map will have lost some information contained in the

vehicle estimates that are discarded when the vehicle is reinitialised in a new submap. How-

ever, the maps generated by the three implementations of the algorithm can be examined

to verify that the CRSF does, in fact, yield a nearly identical map to the maps generated

by the AMF and CLSF. Figure 4.12 shows the maps generated by the algorithm along with

the actual position of the landmarks. Figure 4.13 show selected close up regions of the map.

These maps are clearly similar to within the linearisation bounds of the algorithm.
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Figure 4.10: The unconstrained CRSF map estimates. The local map estimates have been
transformed to the global map frame by stepping through the map tree and applying the ap-
propriate transformation. The features are colour coded according to the submap to which
they belong. As can be seen, there are many duplicate feature estimates whose information
can be consolidated through the application of appropriately formulated constraints.
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(c) An enlarged portion of the map
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(d) An enlarged portion of the map

Figure 4.11: The unconstrained map estimates. The features are colour coded according
to the submap to which they belong. As can be seen from the close-up portions of the
map, there are multiple estimates for a relatively large number of features. These multiple
estimates occur because of the desire to keep the submaps decoupled.
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Figure 4.12: The AMF (blue), CLSF (pink) and CRSF (green) landmark estimates are
plotted together with the true landmark locations and estimated vehicle trajectories.
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Figure 4.13: The final map estimates. As can be seen from the close-up portions of the
map, the CRSF estimates (green) are identical to those generated by the AMF (blue) and
the CLSF (pink).
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4.4 Constrained Initialisation

This section builds on the idea of consolidating information through the application of

constraints to introduce a novel feature initialisation scheme that can be used to improve

the steady-state performance of the filter. By incorporating tentative feature observations

into the filter and then applying constraints when the feature is confirmed, information that

would otherwise be lost can be used in the filter. This is a valuable tool in instances where

observation rates are low compared with the speed of the vehicle or in areas of high signal

clutter, where data association is difficult. Both of these cases can result in relatively few

confirmed observations of each feature.

4.4.1 Associating Observations

When observations are received by the SLAM process, the first step is to perform data

association between the observed feature and the features currently in the map. This step

is one of the most crucial in the mapping process. Erroneous data association can destroy

the integrity of the map. In many instances, however, ambiguities can arise due to the

uncertainty in the vehicle position. This uncertainty translates through the large vehicle

covariance into a relatively large area of plausible vehicle locations. This in turn may lead

to multiple features yielding potentially consistent associations.

As discussed in Section 2.5.2, the normalised innovation squared distance is often used

as a statistical gate with which to validate the association between an observation and

an estimated feature state. There are instances, however, when this validation procedure

might result in ambiguous data associations. Should multiple features match to within

the confidence bounds set for the algorithm, there is a risk that the wrong feature will

be matched to the observation. Fusing this erroneous observation into the state estimate

can cause the filter to collapse and the estimate to diverge from the true state. This

situation can be difficult to detect in implementations of the SLAM algorithm given that

all future associations will be dependent on the estimated state of the vehicle. It is therefore

important to ensure that the risks of false associations are minimised. Methods for deferring

data association to allow a more informed choice of association possibilities will be examined
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in some detail in the remainder of this section.

4.4.2 Initialising the Mapping Process

When an observation is received by the filter, the decision must be made as to whether it

comes from a known feature in the environment, from a new feature in the environment

or is simply a spurious sensor reading. This section develops a constrained estimator that

allows the initialisation phase of the algorithm to be deferred until a potential feature is

confirmed by additional observations.

4.4.3 Rejecting Spurious Data

When data is received from a sensor there is a possibility that it may in fact be a spurious

measurement. Some spurious measurements can be eliminated by the development of ap-

propriate feature extraction routines: by studying and modeling the physical phenomena

that are being measured by the sensor it is possible to reduce the number of spurious mea-

surements picked up by a feature extractor. Regardless of the care that is taken in designing

the feature extractor, some spurious measurements may still be passed to the localisation

and mapping algorithm and it is important to have a mechanism for rejecting these.

As described in Section 2.5.3, this implementation of the SLAM algorithm relies on main-

taining a list of tentative features in the environment. Observations are matched against

these tentative features and a new feature is initialised by the mapping algorithm only af-

ter the tentative feature is confirmed through multiple sightings. This approach helps to

reduce the clutter that would result from adding every observation to the feature map as

a confirmed feature. One key problem with this approach is that important observation

information about the features is discarded since they are not incorporated into the map.

The next section develops a constrained estimator, similar to that described for the CLSF

that can be used to recover the initial features observations and allows them to be fused

consistently into the map.
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4.4.4 Constrained Feature Initialisation

One outstanding issue with the method for identifying new map features described in Section

2.5.3 arises from the fact that observations of the tentative features are not incorporated

into the estimation process. Since the covariance between the observed feature and the

vehicle and map estimates are not maintained, this information can not be used without

the estimate being inconsistent. This results in a loss of information about the vehicle and

map feature estimates. This is particularly problematic when the algorithm is first being

initialised.

Given that there are no features in the map to begin with, the vehicle must rely exclusively

on dead reckoning until the first map feature(s) are initialised. With a relatively poor dead

reckoning model, the growth of uncertainty in the vehicle position can be quite rapid and

the vehicle position uncertainty becomes large. This large uncertainty is reflected in the

feature position estimates which also become quite uncertain. The steady state covariance

of the feature estimates is a function of the vehicle covariance when the feature is first

initialised [14, 18] suggesting that it is important to use the earliest vehicle state estimate

possible when initialising new landmarks. A novel initialisation routine is proposed here

that allows the tentative observations to be used consistently in the estimation process. As

will be shown, this method can also be used to overcome ambiguous data association since

the data association decisions can be deferred until more information becomes available.

In the case where a feature estimate, x̂−
i (k), exists along with the estimates of the vehicle,

x̂−
v (k), and the rest of the map, x̂−

m(k), the state vector can be written as follows.

x̂−(k) =




x̂−
v (k)

x̂−
m(k)

x̂−
i (k)


 (4.13)

with covariance

P−(k) =




P−
vv(k) P−

vm(k) P−
vi(k)

P−T
vm (k) P−

mm(k) P−
mi(k)

P−T
vi (k) P−T

mi (k) P−
ii (k)


 (4.14)
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If an observation, zi(k), of feature i is made at time k this observation would normally

be used to update the full map estimate. Consider for a moment the linear case in which

the observation prediction equation can be written as

ẑ−i (k) = Hx̂−(k) (4.15)

= −Hvx̂−
v (k) + Hix̂−

i (k) (4.16)

with covariance HP−(k)HT . Using the standard Kalman Filter update equations, the state

estimate can be updated as

x̂+(k) = x̂−(k) + W(k)ν(k) (4.17)

with

P+(k) = P−(k) − W(k)S(k)WT (k) (4.18)

where W(k) is the Kalman gain, ν(k) represents the innovation and S(k) represents the

innovation covariance [41].

Alternatively, the observation of the feature, xi, can be used to initialise a new estimate of

the state. The state vector is first augmented with the observation and the linear observation

initialisation model is applied to yield the new estimate

x̂∗+(k) = Gx̂∗−(k) (4.19)

with

x̂∗−(k) =




x̂−
v (k)

x̂−
m(k)

x̂−
i (k)

z(k)




(4.20)
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and

G =




Iv 0 0 0

0 Im 0 0

0 0 Ii 0

H†
iHv 0 0 H†

i




(4.21)

where H†
i represents the generalised inverse of the landmark observation model and Iv, Im

and Ii represent the appropriately dimensioned identity matrices.

The updated state covariance estimate is

P∗+(k) = G(k)P∗−(k)GT (k) (4.22)

where

P∗−(k) =




P−
vv(k) P−

vm(k) P−
vi(k) 0

P−T
vm (k) P−

mm(k) P−
mi(k) 0

P−T
vi (k) P−T

mi (k) P−
ii (k) 0

0 0 0 R




(4.23)

While it might seem that information is being lost at this point, due to the initialisation

of the new feature, it is possible to use a virtual observation in the form of a constraint

to recover the true feature estimate. In the case considered above, the following constraint

between the states must hold

x̂+
i (k) − x̂+

i∗(k) = 0 (4.24)

Appendix A presents the development of a constrained estimator based on the Kalman

Filter as proposed in [50]. The constraint in Equation 4.24 can be satisfied using the

constraint equation with the following values.

Cx̂+(k) = b (4.25)

C =
[
0 0 1 −1

]

b = 0

Applying the constraints to the posterior estimates x̂∗+(k)and P∗+(k) considered above
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and rearranging terms yields the following constrained estimate.

x̂+
c (k) = x̂∗+(k) + Wc(k)(−Cx̂∗+(k)) (4.26)

P+
c (k) = P∗+(k) − Wc(k)Sc(k)WT

c (k) (4.27)

with

Wc(k) = P∗+(k)CTS−1
c (k) (4.28)

and

Sc(k) = CP∗+(k)CT (4.29)

The resulting constrained estimates are equivalent to those of Equations 4.17 and 4.18

if the duplicate state estimates are removed from the state vector. See Appendix B for a

demonstration of this fact. Ambiguity in the data association during the initialisation phase

of the algorithm can therefore be resolved by initialising each observation as a new feature.

When a number of observations are found to correspond to a single feature, a constraint

can be applied to consolidate all of the observation information in a single estimate of the

feature (see Figure 4.14). The state vector can then be collapsed by removing the redundant

feature estimates. Any observations that are not reconfirmed with additional observations

can simply be removed from the state vector after some appropriate time period has elapsed.

Ambiguous data associations that may occur at any point in the course of the algorithm

can also be resolved using this approach. The results shown here suggest that this ambi-

guity can be resolved by the introduction of new feature estimates and the application of

appropriate constraints. This is effectively the approach taken by the CLSF described in

Chapter 3.
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Figure 4.14: The constrained feature matching algorithm. As tentative features are iden-
tified, they are added to the state vector. When features are confirmed through multiple
sightings, these independent estimates are consolidated through the use of constraints.



4.5 Summary 132

4.5 Summary

This chapter has examined three extensions to the Constrained Local Submap Filter rep-

resentation proposed in Chapter 3. The first part of the chapter extends the CLSF to the

multi-vehicle case. This turns out to be a very natural extension to the representation and

requires only a small modification to the filtering process. Additionally, the multi-vehicle

case requires the ability to estimate the relative frames of reference if a vehicle originating

from an initially unknown location is to be incorporated into the mapping effort. Methods

for establishing this relationship are presented and simulation results examined.

The second part of the chapter presents the CRSF. This approach to SLAM maintains

the local frames of reference in a tree hierarchy. This hierarchical map representation is

appealing for situations in which the global estimate of vehicle position is of secondary

importance to maintaining accurate local maps of the environment. Methods for reinitial-

ising the vehicle in a previous submap and for generating a consistent global map of the

environment are both presented in relation to this approach.

Finally, a novel feature initialisation scheme is proposed to improve the performance of the

algorithm. Rather than discarding observations of tentative features in the environment,

this initialisation scheme incorporates them into the filter. When a feature is confirmed

through multiple sightings, the information is consolidated into a single estimate of the

feature through the application of appropriately formulated constraints.



Chapter 5

Experimental Results

5.1 Introduction

The goal of any Field Robotics project should ultimately be the deployment of a vehicle

into a natural terrain environment. This thesis has presented the development of novel

techniques designed to improve the performance of the SLAM algorithm. It remains to be

shown that these techniques can be adopted in a real world setting.

The subsea domain is one of the most challenging and hostile environments in which such

a vehicle might be deployed. Characterised by natural, unstructured environments and

often poor quality sensor data, understanding the oceans remains a daunting undertaking

requiring the development of some of engineering’s most advanced technologies. While

many land-based robots use GPS or maps of the environment to provide accurate position

updates for navigation, a robot operating underwater does not typically have access to this

type of information. In underwater scientific missions, a priori maps are seldom available

and other methods for localisation must be considered. Many underwater robotic systems

rely on fixed acoustic transponders that are surveyed into the robot’s work area [67]. These

transponders are then interrogated to triangulate the position of the vehicle. The surveying

of these transponders can be a costly and time consuming affair - especially at the depths

at which these vehicles often operate and their performance can vary with conditions within

the water column in which the vehicle is operating. All of these factors suggest that the use
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of terrain aiding information could prove invaluable to the deployment of these vehicles in

unexplored environments.

Current work on undersea vehicles at the Australian Centre for Field Robotics concen-

trates on the development of terrain-aided navigation techniques. Key elements of this

work include sensor fusion, vehicle control architectures for real-time platform control, the

development of sonar feature models, the tracking and use of these models in mapping and

position estimation, and the development of low-speed platform models for vehicle control.

This chapter presents results of the application of the SLAM techniques described in this

thesis to the deployment of an Autonomous Underwater Vehicle (AUV). Section 5.2 begins

by presenting a brief synopsis of the vehicle, highlighting the available sensors. Section

5.3 introduces the system states that are used to describe the vehicle and map elements.

Section 5.4 develops the vehicle model used for the purposes of navigation and Section 5.5

reviews the estimation process employed on board the vehicle. Section 5.6 describes the

feature extraction routines designed to identify salient environmental features for inclusion

in the mapping process. Section 5.7 presents results of the deployment of the vehicle during

at-sea trials performed on Sydney’s foreshore and the application of the techniques devel-

oped in this thesis to data collected during deployment of the vehicle. Finally, Section 5.8

summarises the chapter and provides concluding remarks.

5.2 Oberon : An Underwater Research Platform

The experimental platform used for the work reported in this thesis is a mid-size submersible

robotic vehicle called Oberon designed and built at the Australian Centre for Field Robotics

(see Figure 5.1). This vehicle is used to demonstrate the methods and algorithms proposed

in this thesis. The vehicle is equipped with two scanning low frequency terrain-aiding sonars

and a colour CCD camera, together with bathyometric depth sensors, a fiber optic gyroscope

and a magneto-inductive compass with integrated 2-axis tilt sensor [69]. This vehicle is

intended primarily as a research platform on which to test novel sensing strategies and

control methods. Autonomous navigation using the information provided by the vehicle’s

on-board sensors represents one of the ultimate goals of the project [51]. Appendix C
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Figure 5.1: Oberon at Sea

contains a more detailed description of the vehicle control architecture currently in place.

5.2.1 Embedded controller

At the heart of the robot control system is an embedded controller. Figure 5.2 shows a

schematic diagram of the vehicle sensors and their connections. The Oberon robot uses a

CompactPCI system running Windows NT that interfaces directly to the hardware and is

used to control the motion of the robot and to acquire sensor data. While the Windows

operating system doesn’t support hard real-time performance, it is suitable for soft real-

time applications and the wide range of development and debugging tools make it an ideal

environment in which to test new navigation algorithms. Time-critical operations, such as

sampling of the analog to digital converters, are performed on the hardware devices them-

selves and use manufacturer supplied device drivers to transfer the data to the appropriate

processes.

The sensor data is collated and sent to the surface using an ethernet connection where

a network of computers are used for further data processing, data logging and to provide

the user with feedback about the state of the submersible. Communications between the

computers at the surface and the submersible are via a tether. This tether also provides



5.2 Oberon : An Underwater Research Platform 136

Serial

Ethernet

Pencil
Beam

Scanning
Sonar

Fan Beam
Scanning

Sonar

A/D

Fiber
Optic

Gyroscope

Pressure
Transducer

D/A

8
C

ha
nn

el

8
C

ha
nn

el

Servo
Motor

Controller

Servo
Motor

Controller

Servo
Motor

Controller

Servo
Motor

Controller

Servo
Motor

Controller

Compass/
Tilt

Sensor

Serial
Serial

PCI Bus PCI Bus

Colour
CCD

Camera

Video
Frame

Grabber

Coaxial Cable

Tether to Surface

Surface Computer Surface Computer

Embedded
CompactPCI

Figure 5.2: Vehicle System Diagram

power to the robot, a coaxial cable for transmitting video data and a leak detection circuit

designed to shut off power to the vehicle in case water is detected inside the pressure hulls

using a pair of optical diodes.

5.2.2 Sonar

There are currently two sonars on the Oberon vehicle. A Tritech SeaKing imaging sonar

is mounted on top of the submersible and is used to scan the environment in which the

submersible is operating. It has a dual frequency 1.2o or 3.0o wide pencil beam sonar head

operating at frequencies of 0.6MHz or 1.2MHz. This narrow beam allows the sonar to

accurately discriminate bearing returns to objects in the environment. It can obtain a 360o

scan in as little as 4 seconds, depending on the selected range and step size. It is capable of

positioning the sonar head to within 1/16o and can achieve range resolution on the order of

50mm depending on the selected scanning range. It has an effective range to 300m allowing

for long range landmark acquisition in the low frequency mode but can also be used for high
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definition scanning at lower ranges. The output of the sonar consists of a serial stream of

data representing the echo amplitude of the return discretised at a programmable resolution.

The information returned from this sonar is used to build and maintain a feature map of

the environment.

The second sonar is an Imagenex sonar unit operating at 640 kHz. The Imagenex sonar

features a beam width of 15o x 1.8o allowing a broad swath to be insonified with each burst

of accoustic energy (“ping”). It is mounted at the front of the vehicle and positioned such

that its scanning head can be used as a forward and downward looking beam (see Figure

5.3). This position enables the altitude above the sea floor as well as the proximity of

obstacles to be determined using the wide angle beam of the sonar. This configuration

makes it an ideal sensor for altitude estimation and obstacle avoidance. The data returned

by this sensor is also a serial stream of data representing the echo amplitude of the return.

5.2.3 Internal Sensors

An Andrews Fiber Optic Gyroscope measures the yaw rate of the vehicle. The output

of this sensor is an analog voltage proportional to the angular rate about the vehicle’s

vertical axis. The gyroscope allows the robot’s orientation to be estimated. The bias in

the gyroscope is first estimated while the vehicle is stationery. The bias compensated yaw

rate is then integrated to provide an estimate of vehicle heading which is supplied to the

vehicle controller. Because the yaw rate signal is noisy and the bias can drift with time,

the integration of this signal causes the estimated heading to drift if there is no external

correction information available.

A magneto-inductive compass with integrated 2-axis tilt sensor is also used on the vehicle.

The compass provides independent measurements of the vehicle’s orientation. The compass

signal is filtered with the output of the gyroscope to estimate the yaw rate bias of the

gyroscope on-line. This allows the vehicle to undertake longer missions than were previously

feasible. The Simultaneous Localisation and Mapping algorithm also allows the yaw rate

bias to be estimated by using tracked features in the environment to provide corrections to

errors in the estimated yaw.
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allows the sonar to ping the altitude as well as search for obstacles in front of the vehicle.
(b) The configuration of the vehicle showing the thruster arrangement.
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A pressure sensor measures the external pressure experienced by the vehicle. This sen-

sor provides a voltage signal proportional to the pressure and hence allows estimation of

dive depth. This signal is sampled by an analogue to digital converter on the embedded

controller. Feedback from this sensor is used to control the depth of the submersible in

conjunction with the altitude information provided by the Imagenex sonar.

5.2.4 Camera

A colour video camera in an underwater housing is mounted externally on the vehicle. It is

used to provide video feedback of the underwater scenes in which the robot operates. The

video signal is transmitted to the surface via the tether. A Matrox Meteor frame grabber

is then used to acquire the video signal for further image processing.

5.2.5 Thrusters

There are currently 5 thrusters on the Oberon vehicle. Three of these are oriented in the

vertical direction while the remaining two are directed horizontally (see Figure 5.3 (b)).

This gives the vehicle the ability to move itself up and down, control its yaw, pitch and roll

and move forwards and backwards. This thruster configuration does not allow the vehicle to

move sideways but this does not pose a problem for the missions envisaged for this vehicle.

5.3 System States

In the current implementation, the vehicle pose is made up of the two dimensional position

(xv, yv) and orientation ψv of the vehicle. A schematic diagram of the vehicle model is

shown in Figure 5.4. An estimate of vehicle ground speed, Vv, slip angle, γv, and the gyro

rate bias, ψ̇bias, is also generated by the algorithm. The ‘slip angle’ γv is the angle between

the vehicle axis and the direction of the velocity vector. Although the thrusters that drive

the vehicle are oriented in the direction of the vehicle axis, the slip angle is often nonzero

due to disturbances caused by ocean currents, wave effects and the deployed tether.
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Figure 5.4: The vehicle model currently employed with the submersible vehicle. The posi-
tioning filter estimates the vehicle position, (xv, xv), orientation, ψv, velocity, Vv and slip
angle γv. The frame of reference used is based on the North-East-Down alignment com-
monly used in aeronautical engineering applications. The x axis is aligned with the compass
generated North reading.

The landmarks tracked in this implementation of the SLAM algorithm are assumed to

be point features. During the trials described in this chapter, sonar reflectors are deployed

in the area in which the vehicle operates. As will be shown, these reflectors present the

vehicle with easily identifiable return signatures that can be characterised as point features

for mapping purposes.

The augmented state matrix therefore consists of the six states that describe the vehicle

and the nf states that describe the position of the observed landmarks.

x(k) =


xv(k)

xm(k)


 (5.1)

=
[
xv(k) yv(k) ψv(k) Vv(k) γv(k) ψ̇bias(k) x1(k) y1(k) . . .

]T
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5.4 The Vehicle and Landmark Models

In the current implementation of the filter, the vehicle is modelled as a rigid body operating

in a two and a half dimensional world. Depth information is kept separate from the position

and orientation of the vehicle. This is not an entirely accurate reflection of the motion of

the vehicle in the underwater domain but serves to allow the algorithms to be developed

and tested. For many of the missions envisaged for this vehicle, the two dimensional model

is adequate given that the vehicle will generally be operating in close proximity to the sea

floor.

5.4.1 Vehicle Model

A constant acceleration model, shown in Equation 5.2, is used for the purpose of estimating

the vehicle state transitions.

ẋv(t) = Vv(t) cos(ψv(t) + γv(t)) + vx(t)

ẏv(t) = Vv(t) sin(ψv(t) + γv(t)) + vy(t) (5.2)

ψ̇v(t) = ψ̇gyro(t) − ψ̇bias(t) + vψ(t)

V̇v(t) = vV (t)

γ̇v(t) = vγ(t)

ψ̇bias(t) = vbias(t)

where vx, vy, vψ, vV , vγ and vbias are assumed to be zero-mean, temporally uncorrelated

Gaussian process noise errors with variance σ2
x, σ2

y , σ2
ψ, σ2

V , σ2
γ and σ2

bias respectively. The

standard deviations for these noise parameters are shown in Table 5.1.

The rate of change of vehicle ground speed, V̇v(t), and slip angle, γ̇v(t), are assumed to be

driven by white noise. The fiber-optic gyroscope measures the vehicle yaw rate and is used

as a control input to drive the orientation estimate. Given the small submerged inertia,

relatively slow motion and large drag-coefficients induced by the open frame structure of
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the vehicle and the deployed tether, the model described by Equation 5.2 is able to capture

the motion of the vehicle.

In order to implement the filter, the discrete form of the vehicle model is used to predict

the vehicle state xv(k) given the previous state xv(k − 1).

xv(k) = xv(k − 1) + ∆t(k)Vv(k − 1) cos(ψv(k − 1) + γv(k − 1))

yv(k) = yv(k − 1) + ∆t(k)Vv(k − 1) sin(ψv(k − 1) + γv(k − 1)) (5.3)

ψv(k) = ψv(k − 1) + ∆t(k)(ψ̇gyro(k − 1) − ψ̇bias(k − 1))

Vv(k) = Vv(k − 1)

γv(k) = γv(k − 1)

ψ̇bias(k) = ψ̇bias(k − 1).

This defines the discrete, non-linear vehicle prediction equation,

xv(k) = fv(xv(k − 1),u(k)) (5.4)

The filter parameters used in this application are shown in Table 5.1.

Table 5.1: SLAM filter parameters
Sampling period ∆t(k) 0.1s

Vehicle X process noise std dev σx 0.025m

Vehicle Y process noise std dev σy 0.025m

Vehicle heading process noise std dev σψ 0.6o

Vehicle velocity std dev σv 0.01m/s

Vehicle slip angle std dev σγ 1.4o

Gyro Bias std dev σbias 0.3o/s

Gyro Measurement std dev σgyro 0.6o/s

Compass std dev σcompass 2.9o

Range measurement std dev σR 0.1m

Bearing measurement std dev σB 1.4o

Sonar range 20m

Sonar resolution 0.1m
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5.4.2 Vehicle Observation Model

There are two types of observations involved in the map building process as implemented on

the vehicle. The first is the observation of the orientation from the output of the magneto-

inductive compass. The compass observations are assumed to be corrupted by zero-mean,

temporally uncorrelated white noise with variance σcompass.

zcompass(k) = ψ(k) + wcompass (5.5)

There is always a danger that a compass will be affected by ferrous objects in the en-

vironment and transient magnetic fields induced by large electric currents, such as those

generated by the vehicle’s thrusters. In practice, the compass does not seem to be affected

to a significant degree by the vehicle’s thrusters. In addition, the unit is equipped with a

magnetic field strength alarm. When the strength of the magnetic field increases, the alarm

is signalled indicating that the current observation may be in doubt.

Terrain feature observations are made using an imaging sonar that scans the horizontal

plane around the vehicle, as shown in Figure 5.5. Point features are extracted from the

sonar scans and are matched against existing features in the map. The feature extraction

algorithm will be described in more detail in Section 5.6. The observation consists of

a relative distance and orientation from the vehicle to the feature. The terrain feature

observations are assumed to be corrupted by zero-mean, temporally uncorrelated white

noise with variance σR and σθ respectively. Given the current vehicle position xv(k) and

the position of an observed feature xi(k), the observation, consisting of range, zR(k) and

bearing, zθ(k), can be modelled as

z(k) =


zR(k)

zθ(k)


 (5.6)

=




√
(xv(k) − xi(k))2 + (yv(k) − yi(k))2

arctan( (yv(k)−yi(k))
(xv(k)−xi(k))) − ψv(k)


 +


wr(k)

wθ(k)


 .
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Figure 5.5: The vehicle observation model currently employed with the submersible vehicle.
The scanning sonar is used to identify point features in the environment. These point
features are reported as a range, zR, and bearing, zθ, between the vehicle and the observed
feature.

5.5 The Estimation Process

For the undersea work reported here, an EKF is used to estimate the pose of the vehicle

x̂+
v (k) along with the positions of the nf observed features x̂+

i (k), i = 1, ..., nf . The aug-

mented state vector therefore consists of all states associated with the vehicle as well as

those associated with the observed features

x̂+(k) =




x̂+
v (k)

x̂+
1 (k)
...

x̂+
nf

(k)




. (5.7)
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5.5.1 Prediction

Given the discretised vehicle model shown in Equation 5.3, the prediction stage for the filter

results in




x̂−
v (k)

yv
−(k)

ψ̂−
v (k)

V̂ −
v (k)

γ̂−
v (k)

ˆ̇
ψbias

−
(k)




=




x̂+
v (k − 1) + ∆t(k)V̂ +

v (k − 1) cos(ψ̂+
v (k − 1) + γ̂+

v (k − 1))

ŷ+
v (k − 1) + ∆t(k)V̂ +

v (k − 1) sin(ψ̂+
v (k − 1) + γ̂+

v (k − 1))

ψ̂+
v (k − 1) + ∆t(k)(ψ̇gyro(k − 1) − ˆ̇

ψbias

+
(k − 1))

V̂ +
v (k − 1)

γ̂+
v (k − 1)

ˆ̇
ψbias

+
(k − 1)




(5.8)

As shown in Chapter 2, the covariance matrix must also be predicted by linearising about

the current state estimates.

P−
vv(k) = ∇xf(k)P+

vv(k − 1)∇xf(k)T + ∇uf(k)U(k)∇uf(k)T + Q(k) (5.9)

where

∇xf(k) =




1 0 −∆tV̂vsin(ψ̂v + γ̂v) ∆tcos(ψ̂v + γ̂v) −∆tV̂vsin(ψ̂v + γ̂v) 0

1 0 ∆tV̂vcos(ψ̂v + γ̂v) ∆tsin(ψ̂v + γ̂v) −∆tV̂vsin(ψ̂v + γ̂v) 0

0 0 1 0 0 −∆t

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




(5.10)

and

∇uf(k) =




0

0

∆t

0

0

0




(5.11)



5.5 The Estimation Process 146

with

U(k) = diag
[
σ2

gyro

]
(5.12)

and

Q(k) = diag
[
σ2

x σ2
y σ2

ψ σ2
V σ2

γ σ2
bias

]
(5.13)

The time indexes have been omitted from the Jacobians for conciseness.

5.5.2 Observation

The filter generates an estimate of the current yaw of the vehicle by fusing the predicted

yaw estimate with the compass output. A shaping state that estimates the yaw rate bias of

the gyroscope is also generated. The yaw measurements are incorporated into the SLAM

filter using the yaw observation estimate,

ẑ−ψ (k) = x̂−
ψ (k). (5.14)

The predicted terrain feature observation, ẑ−i (k), when observing landmark i located at

xi(k) can be computed using the non-linear observation model hi(x̂−
v (k), x̂−

i (k)).

ẑ−i (k) = hi(x̂−
v (k), x̂−

i (k)) (5.15)

where hi is defined by

ẑ−i (k) =




√
(x̂−

v (k) − x̂−
i (k))2 + (ŷ−v (k) − ŷ−i (k))2

arctan( (ŷ−
v (k)−ŷ−

i (k))

(x̂−
v (k)−x̂−

i (k))
) − ψ̂−

v (k)




5.5.3 Update

The estimated states are updated using the usual EKF update equations shown previously

in Equation 2.34.
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5.6 Feature Extraction

The development of autonomous map based navigation relies on the ability of the system

to extract appropriate and reliable features with which to build maps. Point features are

identified from the sonar scans returned by the imaging sonar and are used to build up a

map of the environment.

The extraction of point features from the sonar data is essentially a three stage process.

The range to the principal return must first be identified in individual pings. This represents

the range to the object that has produced the return. The principal returns must then be

grouped into clusters. Small, distinct clusters can be identified as point features and the

range and bearing to the landmark estimated. Finally, the range and bearing information

must be matched against existing features in the map. This section provides more details

of the feature identification algorithms used to provide observations for the filter.

5.6.1 Sonar Targets

In the current implementation, sonar targets are introduced into the environment in which

the vehicle will operate (see Figure 5.6). These act as identifiable and stable features.

Prominent portions of the reef wall and rocky outcrops can also be classified as a point

feature. If the naturally occurring point features are stable they will also be incorporated

into the map. Development of techniques to extract terrain aiding information from more

complex natural features, such as coral reefs and the natural variations on the sea floor, is

an area of active research [40]. The ability to use natural features would allow a submersible

to be deployed in a larger range of environments without the need to introduce artificial

targets.

The sonar targets produce strong sonar returns that can be characterised as point features

for the purposes of mapping (see Figure 5.8(a)) . The lighter sections in the scan indicate

stronger intensity returns. In the scan of Figure 5.8, two sonar targets are clearly visible.

The features extracted by the algorithm are shown in Figure 5.8 (b). More details of the

feature extraction algorithms are presented in the following subsections.
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Target

Figure 5.6: An image captured from the submersible of one of the sonar targets deployed
at the field test site.

5.6.2 Principal Returns

The data returned by the imaging sonar consists of the complete time history of each sonar

ping in a discrete set of bins scaled over the desired range. The first task in extracting

reliable features is to identify the principal return from the ping data. The principal return

is considered to be the start of the maximum energy component of the signal above a

certain noise threshold. Figure 5.7 (a) shows a single ping taken from a scan in the field.

This return is a reflection from one of the sonar targets and the principal return is clearly

visible. The return exhibits very good signal to noise ratio making the extraction of the

principal returns relatively straightforward.

At present the vehicle relies on the sonar targets as its primary source of navigation

information. It is therefore paramount for the vehicle to reliably identify returns originating

from the sonar targets. Examination of the returns generated by the targets shows that

they typically have a large magnitude return concentrated over a very short section of the

ping. This differs from returns from other objects in the environment such as rocks and the

reef walls that tend have high energy returns spread over a much wider section of the ping

as seen in Figure 5.7(b).
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(a) Feature Ping (b) Terrain Ping

Figure 5.7: (a) A single sonar ping showing the raw ping, the moving average and the
computed principal return. This ping is a reflection from one of the sonar targets and
shows very good signal to noise ratio. The dashed line marks the principal return. (b)
A single sonar ping reflected from the reef surrounding the vehicle showing the raw ping
and the moving average. The terrain returns are distinguishable from the target returns
by the fact that the high energy returns are spread over a much wider section of the ping.
The large amplitude return at low range in this ping results from the interface between the
oil-filled sonar transducer housing and the surrounding sea water. Large amplitude returns
are ignored if they are below 2.0m from the vehicle.
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5.6.3 Identification of Point Features

Following the extraction of the principal return from individual pings, these returns are then

processed to find regions of constant depth within the scan that can be classified as point

features. Sections of the scan are examined to find consecutive pings from which consistent

principal return ranges are located. The principal returns are classified as a point feature

if the width of the cluster is small enough to be characterised as a point feature and the

region is spatially distinct with respect to other returns in the scan[50]. The bearing to the

feature is computed using the centre of the distribution of principal returns. The range is

taken to be the median range of the selected principal returns.

A scan taken in the field is shown in Figure 5.8 (a). Two targets are clearly visible in the

scan along with a section of the reef wall. Figure 5.8 (b) shows the principal returns selected

from the scan along with the point features extracted by the algorithm. Both targets are

correctly classified as point features while the returns originating from the reef are ignored.

Future work concentrates on using the information available from the unstructured natural

terrain to aid in navigation.

5.7 Subsea Deployment

The SLAM algorithms have been tested in a natural environment off the coast of Sydney,

Australia. The submersible was deployed in a natural inlet with the sonar targets positioned

in a straight line at intervals of 10m. The vehicle controls were set to maintain a constant

heading and altitude during the run. Once the vehicle had reached the end of its tether

(approximately 50m) it was turned around and returned along the line of targets. The slope

of the inlet in which the vehicle was deployed meant that the depth of the vehicle varied

between approximately 1m and 5m over the course of the run.

5.7.1 Absolute Map Filter

Figure 5.9 shows a plot of the final map obtained by the SLAM algorithm. The position of

the sonar features are clearly visible along with a number of tentative targets that are still
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(a) Raw Scan

(b) Extracted Features

Figure 5.8: Extracting features from sonar scans. (a) a scan in the field showing sonar
targets (b) the principal returns (+) and the extracted point features (�) from the scan in
(a)



5.7 Subsea Deployment 152

not confirmed as sufficiently reliable. Some of the tentative targets are from the reef wall

while others come from returns off the tether. These returns are typically not very stable

and therefore do not get incorporated into the SLAM map. The absolute location of all

the potential point targets identified based on the sonar principal returns are also shown

in this map. These locations were computed using the estimated vehicle location at the

instant of the corresponding sonar return. The returns seen near the top and bottom of the

map are from the reef walls. As can be seen, large clusters of returns have been successfully

identified as landmarks.

Since there is currently no absolute position sensor on the vehicle, the performance of the

positioning filter cannot be measured against ground truth at this time. In previous work,

it was shown that the estimator yields consistent results in the controlled environment of

the swimming pool at the University of Sydney [68]. To verify the performance of the filter,

the innovation sequence can be monitored to check the consistency of the estimates. Figure

5.10 shows that the innovation sequences are within the covariance bounds computed by

the algorithm.

The state estimates can also be monitored to ensure they are yielding sensible estimates.

The vehicle is attached to an on-shore command station via a tether. This tether is deployed

during the mission and a number of floating buoys keep it from dragging on the ground.

The tether catenary creates a force directed back along its length. The effects of this force

are evident in the slip angle experienced by the vehicle. When the vehicle executes a large

turn, the slip angle tends to change direction. Figure 5.11 shows the slip angle estimates

throughout the run. Shortly after the sharp turn at 360s, the mean slip angle estimate

changes sign - reflecting the fact that the tether has changed its position relative to the

vehicle.

In addition to the identified target returns, strong energy returns from the reef walls and

the sea floor can also be extracted from the sonar pings. In Figure 5.12 (a) these strong

returns have been plotted. The return points are colour coded to reflect the depth at which

the observation was taken. The shape of the inlet can be clearly seen and it is evident that

the vehicle is observing the sea floor behind itself as it moves deeper along the inlet. Figure

5.12 (b) shows a close up view of the same scene showing the vehicle position estimates
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Figure 5.9: Path of robot shown against final map of the environment. The vehicle position
estimates are spaced evenly in time over the run. It is evident that the vehicle speed
changes during the run as a function of the tether deployment. The estimated position of
the features are shown as circles with the covariance ellipses showing their 2σ confidence
bounds. Tentative targets that have not yet been added to the map are shown as ’+’. The
series of tentative targets towards the top of the image occur from the reef wall. These
natural point features tend not to be very stable, though, and are thus not incorporated
into the map.
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Figure 5.10: The range and bearing innovation sequences plotted against their 2σ confidence
bounds. The innovation is plotted as a solid red line while the confidence bounds are the
blue dash-dot lines .
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Figure 5.11: (a) The vehicle orientation and (b) slip angle computed by the algorithm. The
vehicle executes a 180o turn at approximately the 360s. The mean slip estimate changes
from a positive to negative value at this time reflecting the change in the force induced by
the tether catenary.
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(a) Vehicle path against terrain

(b) Close up of vehicle path against terrain

Figure 5.12: (a) Path of robot shown against final map of the environment. The estimated
position of the features are shown as a vertical column of circles. The strong sonar returns
are color coded with the depth at which they were observed with a darker point indicating a
deeper depth. The shape of the inlet is clearly visible from this plot. The estimated vehicle
positions are shown spaced evenly in time. (b) A close-up view of the path of robot shown
against final map of the environment.
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more clearly.

5.7.2 Constrained Initialisation

The novel initialisation technique described in section 4.4 was used on the same subsea data

set presented in Section 5.7.1. The plot of the final map obtained by the SLAM algorithm is

reproduced here along with the new map generated using the constrained initialisation (see

Figure 5.13). Both the estimated feature locations and the estimated vehicle locations are

characterised by smaller covariances than in the original plot. This is due to the rapid rise

in uncertainty during the initialisation phase of the algorithm. With a poor dead reckoning

model and no sensor to estimate the vehicle velocity, the vehicle covariance grows large

prior to the incorporation of the first feature in the map. As mentioned previously, this

large uncertainty affects the lower bound achievable for the landmark covariances.

The comparative vehicle position covariance estimates can be examined to verify that

the constrained initialisation yields tighter covariance bounds. Figure 5.14 shows the final

covariance estimates generated by the constrained initialisation algorithm. Notice that the

vehicle y position variance is considerably smaller for the constrained initialisation case.

This is due to the high initial uncertainty associated with the vehicle velocity. Since the

vehicle does not have a velocity sensor at this time it must rely exclusively on observations

of the target positions in order to produce an estimate of vehicle velocity. This requires

a large initial uncertainty in this parameter in order to allow the filter to converge to an

estimate of vehicle velocity. This large uncertainty in turn translates into a large growth of

uncertainty in the vehicle position in the early part of the run.

It is also interesting to examine the landmark covariances. These are shown in Figure

5.15. Once again, the large initial vehicle velocity uncertainty has affected the steady state

covariance of the landmark estimates more prominently in the y direction. The constrained

initialisation overcomes this to some extent by using the early feature observations to gen-

erate the initial estimate of vehicle position and velocity.
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Figure 5.13: Path of the robot shown against the final map of the environment. It is
clear when compared against Figure 5.9 that both the landmark and vehicle estimates have
smaller covariances when the constrained initialisation routine is used.
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Figure 5.14: Comparative vehicle covariances. Notice that the original initialisation routine
(red) yields a much poorer covariance estimate than the constrained initialisation (blue),
especially in the case of the vehicle y position. This is due to the large initial uncertainty
in velocity that results in a rapid growth in position uncertainty along this axis.
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Figure 5.15: Comparative landmark covariances. Notice that the original initialisation
routine (red) yields a much poorer covariance estimate than the constrained initialisation
(blue), especially in the case of the landmark y position estimates. This is due to the large
initial uncertainty in vehicle velocity that results in a rapid growth in position uncertainty
along this axis. The uncertainty present in the vehicle estimate when the features are
initialised affects their steady state value.
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5.7.3 Constrained Local Submap Filter

The same vehicle run shown in the previous section is presented here to illustrate some

of the properties of the Constrained Local Submap Filter in a real world setting. In this

instance, the outward journey is used as the original, global map. When the vehicle is

turned around to return along the line of sonar targets, a new map is initialised and a new

local map is generated. This local map is relative to the final position of the vehicle in

the outward leg of the run. When the vehicle reaches the end of its journey, the local map

is transformed to the global frame of reference, associations between the feature estimates

in the two maps are established and the final map of the environment is generated using

the constrained map estimates. Figure 5.16 shows the two maps generated during by this

approach while Figure 5.17 shows the two maps superimposed on one another.

Finally, Figure 5.18 shows the resulting constrained map. It is plotted relative to the map

generated by the AMF algorithm. As would be expected, there is a good correspondence

between the two maps.

There is a clear one-to-one mapping between the global map estimates and the local

estimates transformed to the global frame of reference. This makes the data association

problem significantly easier. The proximity matrix in this case is generated by comparing

the estimates of the global features with those of the local features transformed to the global

frame of reference. The resulting proximity matrix for the run considered previously is as

follows.

D =




810.8 1715 1007. 225.4 1261 6.5 52.2 114.8

1216.0 2158 1108. 568.3 1241 97.3 273.2 7.5

118.7 469.4 493.3 3.8 958.4 212.6 40.2 450.0

119.1 233.2 616.3 138.2 108.2 378.4 180.9 580.6

67.0 2.8 331.2 224.5 720.3 502.7 334.7 773.1

1.1 54.1 289.4 90.3 698.1 363.6 180.8 630.7




(5.16)
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Figure 5.16: Paths of the robot shown for (a) the outward leg, considered the global map,
and (b) the return leg, considered the local map against the final map of the environment.
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Figure 5.17: The local map transformed to the global frame using the estimated vehicle
position at the end of the first superimposed on the global map. There is a clear one-to-one
correspondence between the features.
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Figure 5.18: The fused maps of the environment generated by applying consistency con-
straints to the estimated features. The map is plotted on top of the original map generated
by the AMF. There is a very good match between the two maps, as should be expected.
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The validation matrix is generated by evaluating the inequality in Equation 3.55.

Ω =




0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0




(5.17)

Clearly, each row and column in the validation matrix contains at most a single non-zero

entry. This indicates that there is no ambiguity in the data association and establishing the

correspondence between the feature sets is straightforward. This is not a surprising result

given the relatively short trajectory shown here. On longer missions, when the uncertainty

in global vehicle position is large, ambiguity in data association may arise when the vehicle

closes an extended loop. The techniques proposed for resolving ambiguity can be used in

this case.

5.8 Summary

This chapter has shown the application of the SLAM algorithm to the deployment of an

Autonomous Underwater Vehicle. This work represents the first instance of a deployable

underwater implementation of this algorithm. The novel mapping strategies developed in

this thesis were also applied to the data collected during deployment of the vehicle and were

shown to yield consistent results.

One of the most interesting areas of future research in this area is the possibility of using

the unstructured terrain information directly in the estimation process. While the three

dimensional terrain maps shown in this thesis are generated using the positioning infor-

mation supplied by the artificial targets, there is a considerable amount of information in

the natural terrain returns that might be exploited to further improve the localisation esti-

mates. Ultimately, the deployment of the vehicle in a completely unstructured environment

remains the major goal for on-going work in this area.



Chapter 6

Conclusions and Future

Considerations

6.1 Introduction

This thesis set out to investigate the Simultaneous Localisation and Mapping (SLAM) algo-

rithm as it pertains to the deployment of mobile robotic systems in unknown environments.

A novel approach to the incorporation of information into the SLAM algorithm has been

shown to improve the computational performance of the algorithm without a loss of in-

formation. A number of natural extensions to this approach are also demonstrated to be

feasible. Furthermore, an implementation of the algorithm has been shown to be effective

in estimating the motion of an underwater vehicle in previously unknown terrain.

This chapter summarises the contributions of this thesis. Section 6.2 highlights the major

theoretical and practical insights it has offered. Section 6.3 suggests areas of future work

in this fascinating field of research. Finally, 6.4 provides a brief summary of the thesis and

provides concluding remarks.
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6.2 Summary of Contributions

The major contributions of this thesis arise from the formulation of a new approach to the

mapping of terrain features that provide improved computational efficiency in the SLAM

algorithm. By manipulating the manner in which feature information is incorporated into

the map, it can be shown that significant improvements in the performance of the algorithm

can be realised.

6.2.1 The Constrained Local Submap Filter

The novel approach to the construction of the SLAM map is referred to as the Constrained

Local Submap Filter. This method generates a local map of the features in the immediate

vicinity of the vehicle. This local map is then periodically fused into the global map to

recover the full global map estimate. The major contributions of this approach are:

• Between the application of constraints, only a small, local map must be updated with

each observation.

• The computationally intensive update of the global map covariance matrix can be

scheduled at appropriate intervals.

• A potentially large number of observations can be fused into the global map in a single

step, thus increasing the efficiency of the filtering process.

• Ambiguity in data association can be resolved by deferring the association of obser-

vations to features in the map and a more informed choice of associations is possible.

Asymmetry in the environment can help to resolve any ambiguity that might arise

from the association of a single range/bearing measurement.

• The approach yields identical results, to within the linearisation bounds of the filter, to

the AMF despite the fact that the entire global map covariance matrix is not updated

with each observation.

The Constrained Local Submap Filter is also shown to give rise to three natural

extensions of the approach.
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6.2.2 Multi-Vehicle SLAM

Deploying multiple vehicle SLAM using the CLSF is shown to be a very natural extension

to the approach and requires only a small modification to the filtering process. Addition-

ally, the multi-vehicle CLSF allows vehicles originating from an initially unknown location

to be incorporated into the mapping effort by providing the ability to estimate the rela-

tionship between relative frames of reference. Methods for establishing this relationship are

presented.

6.2.3 The Constrained Relative Submap Filter

The Constrained Relative Submap Filter maintains the local frames of reference in a tree

hierarchy. This hierarchical map representation is appealing for situations in which the

global estimate of vehicle position is of secondary importance to maintaining accurate local

maps of the environment. Methods for reinitialising the vehicle in a previous submap and

for generating a consistent global map of the environment are both presented in relation to

this approach.

6.2.4 Constrained Initialisation

Finally, a novel feature initialisation scheme is proposed to improve the performance of the

algorithm. Rather than discarding observations of tentative features in the environment,

this initialisation scheme incorporates them into the filter. When a feature is confirmed

through multiple sightings, the information is consolidated into a single estimate of the

feature through the application of appropriately formulated constraints.

6.2.5 Subsea Deployment

The thesis also presented results of the application of these techniques to estimate the

motion of a vehicle during deployment in an underwater setting. This work represents the

first instance of a deployable underwater implementation of the SLAM algorithm. The

vehicle model and feature extraction techniques used for generating observations for the
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filter are outlined. This is followed by results generated from the deployment of the vehicle

in a natural terrain environment. By introducing sonar reflectors into the environment in

which the vehicle operated, easily identifiable features are made available. These are used

to verify the theoretical results developed in this thesis in a practical environment.

6.3 Future Research

Recent years have seen a fairly substantial body of literature dealing with the intricacies

of the SLAM problem. This work has focussed on issues ranging from representation to

computational complexity. One might therefore be tempted to wonder if the SLAM problem

has, in fact, been solved. The following sections outline a number of outstanding issues that

warrant further work in the area of SLAM.

6.3.1 Long Term Deployment

A number of works, including this one, have been concerned with the computational com-

plexity of the SLAM algorithm from a primarily theoretical standpoint. While a number of

elegant solutions exist in the literature, it remains to be shown that these approaches are

practically feasible for very long term deployment. Trials involving thousands of features

collected over a number of hours have recently been reported but the prospect of deploying

a vehicle for an indefinite period of time, during which there are few bounds on the size of

the environment the vehicle might visit, remains elusive. This comes down to a question of

representation and map management coupled with an even greater requirement for robust

data association. Perhaps as the size of the map extends beyond a certain size, metric

accuracy becomes less important.

6.3.2 Multi-vehicle SLAM

Deployment of multiple vehicles operating autonomously in previously unknown environ-

ments remains to be demonstrated. The intricacies of deploying multiple vehicle simultane-

ously and coordinating their control decisions adds an extra level of complexity to the SLAM
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problem. However, there is currently a considerable amount of work being undertaken in

the field of distributed data fusion algorithms. This work has important implications for

the multi-vehicle SLAM scenario and promises to allow fleets of vehicles to be deployed into

unknown environments. This will result in systems that are more robust to failure through

increased redundancy. These systems will also be able to collect data more quickly and

efficiently than traditional single vehicle systems.

6.3.3 Natural Terrain Features

One of the most fundamental issues still outstanding for the SLAM algorithm is the incor-

poration of natural terrain feature information into the estimation process. There are many

instances in which point features are not a sufficient representation of the environment in

which the vehicle is operating. Even straight-line and corner primitives that have been

used successfully in a variety of indoor implementations of the algorithm are not usually

found in unstructured field environments. The question of how to represent terrain with

no fundamental underlying model is a difficult one. Recent work by Majumder [39, 40] has

focussed on using sums of Gaussians as a primitive for modelling unstructured terrain. This

work shows some promise for application to the SLAM problem with no underlying model.

There is still a considerable amount of work required before this approach yields a solution

that can be deployed in real time in a completely unstructured environment.

6.3.4 Integrating Control Decisions

Another area of active research [23] which will continue to grow in the coming years is the

prospect of coupling control decisions to the SLAM algorithm. Ultimately, map building is

a means to an end rather than an end in itself. An accurate map that successfully captures

uncertainty in the quantities it is estimating allows informed decisions to be made by an

autonomous agent attempting to accomplish some goal. How those decisions are made and

what form of higher level reasoning might be applied to making these control decisions

presents another area for future work.
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6.4 Summary

This thesis has made significant inroads into the development of techniques for improving

the performance of the SLAM algorithm. It has also shown SLAM to be practically feasible

in an underwater setting. There are a still a number of significant research issues to be

tackled in this area of research. These will no doubt continue to provide researchers with a

focus for future work.



Appendix A

Constraints

A.1 Linear Constraints

A set of m linear constraints on a random vector x(k) can be written as

Cx(k) = b (A.1)

where C is an m × n constraint matrix and b is a vector of dimension m.

As shown in [50], given an estimate x̂+(k) with covariance P+(k), constraint matrix

C and solution vector b it is possible to generate the constrained posterior x̂+
c (k) with

covariance P+
c (k) as follows.

x̂+
c (k) = x̂+(k) + Wc(k)[b − Cx̂+(k)] (A.2)

P+
c (k) = P+(k) − Wc(k)Sc(k)WT

c (k) (A.3)

with

Wc(k) = P+(k)CTS−1
c (k) (A.4)

and

Sc(k) = CP+(k)CT (A.5)
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This operation can be considered a weighted projection of the estimates onto the space

spanned by the constraints. The weighting factors are functions of the variance of the prior

estimates.

A.2 Non-linear Constraints

For the case of non-linear constraints, the m constraint equations become

C(x̂+(k)) = b (A.6)

A first order approximation to the solution of this system of constraints can be derived in

a similar manner to that used for the Extended Kalman Filter. This results in the following

non-linear constrained estimate.

x̂+
c (k) = x̂+(k) + Wc[b − C(x̂+(k))] (A.7)

P+
c (k) = P+(k) − Wc(k)Sc(k)WT

c (k) (A.8)

with

Wc(k) = P+(k)∇CTS−1
c (k) (A.9)

and

Sc(k) = ∇CP+(k)∇CT (A.10)

Figure A.1 shows an example of the projection operation. The original estimate, x̂+(k),

is projected onto the constraint surface C(x̂+(k)) = b. The dimensionality of the resulting

estimate, x̂+
c (k) is therefore reduced.
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x (k)
+

x (k)c

+

C(x (k))=b
+

x1

x2

x3

Figure A.1: The application of constraints as a projection operation. The initial estimate
is projected onto the constraint surface, thereby reducing its dimensionality while meeting
the constraints.



Appendix B

The Constrained Update Step

The fact that the constrained update methods presented in this thesis are consistent and

recover the full state estimate can be verified as follows. Consider a simplified linear case

similar to that developed previously. By verifying the consistency of a single step observation

in the estimation process, the result for the general case can be inferred.

Consider an estimate of the vehicle and a feature xi in some global frame of reference,

FG. For this demonstration, the rest of the map features will not be considered. It is

straightforward to extend the demonstration to the case of extra map estimates but this

results in numerous additional terms that are difficult to show here.

Now the predicted state and covariance estimates are

Gx̂−(k) =




Gx̂−
v (k)

Gx̂−
i (k)


 (B.1)

with covariance

P−(k) =


P−

vv(k) P−
ii (k)

P−T
vi (k) P−

ii (k)


 (B.2)

Assume that an observation of the feature, xi, is received. Under normal circumstances,

this observation would be fused into the state estimate using the standard Kalman update
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equations. The linear observation model for this case, H(k), can be written as

H(k) =
[
−Hv(k) Hi(k)

]
(B.3)

which reflects the fact that this is a relative observation between the vehicle and the feature.

x̂+(k) = x̂−(k) + W(k)ν(k) (B.4)

with

P+(k) = P−(k) − W(k)S(k)WT (k) (B.5)

where the gain matrix

W(k) = P−(k)HT (k)S−1(k), (B.6)

innovation,

ν(k) = z(k) − H(k)x̂−(k) (B.7)

and innovation covariance,

S(k) = H(k)P−(k)HT (k) + R(k), (B.8)

have their usual meaning. This results in the following update of the covariance matrix

P+(k) = P−(k) −

M1S−1(k)MT

1 M1S−1(k)MT
2

M2S−1(k)MT
1 M2S−1(k)MT

2


 (B.9)

with

M1 = −P−
vv(k)HT

v (k) + P−
vi(k)HT

i (k)

M2 = −P−
vi(k)HT

v (k) + P−
ii (k)HT

i (k)
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B.1 Constrained Initialisation

A one step implementation of the constrained initialisation algorithm developed in Section

4.4 is shown here. Although this approach appears later in the thesis than the Constrained

Local Submap Filter, the demonstration that it is consistent is somewhat more straightfor-

ward and will be shown first.

In the case of constrained initialisation, the observation of the feature, xi, will be used to

initialise a new estimate of the state. The state vector is first augmented with the obser-

vation and the linear observation initialisation model is applied to yield the new estimate

x̂∗+(k) = Gx̂∗−(k) (B.10)

with

x̂∗−(k) =




x̂−
v (k)

x̂−
i (k)

z(k)


 (B.11)

and

G =




1 0 0

0 1 0

H†
iHv 0 H†

i


 (B.12)

where H†
i represents the generalised inverse of the landmark observation model.

The covariance matrix is also updated through a similar mechanism

P∗+(k) = GP∗−(k)GT (B.13)

with

P∗−(k) =




P−
vv(k) P−

vi(k) 0

P−T
vi (k) P−

ii (k) 0

0 0 R(k)


 (B.14)
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resulting in the updated augmented covariance matrix

P∗+(k) =




P−
vv(k) P−

vi(k) MT
3

P−T
vi (k) P−

ii (k) MT
4

M3 M4 M5


 (B.15)

with

M3 = H†
iHvP−

vv(k)

M4 = H†
iHvP−

vi(k)

M5 = H†
iHvP−

vv(k)HT
v H†T

i + H†
iR(k)H†T

i .

The application of the constraint that the two estimates of the common feature, xi, are

identical can be shown to recover all of the information available to the filter and results in

an identical updated covariance matrix to that of the AMF. Using the constraint

C =
[
0 1 −1

]
(B.16)

enforces this condition. This results in the constrained covariance update

P+
c (k) = P∗+(k) − Wc(k)Sc(k)WT

c (k) (B.17)

with the constraint gain

Wc(k) = P∗+(k)CTS−1
c (k)

=




P−
vi(k) − MT

3

P−
ii (k) − MT

4

MT
4 − MT

5


S−1

c (k)
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and constraint innovation covariance

Sc(k) = CP∗+(k)CT

= P−
ii (k) − M4 − MT

4 + M5

= H†
i (HiP−

ii (k)HT
i − HiP−

vi(k)HT
v − HvP−T

vi (k)HT
i + HvP−

vv(k)HT
v + R(k))H†T

i

= H†
i (HP∗+(k)HT + R(k))H†T

i . (B.18)

Expanding the update term yields

P+
c (k) = P∗+(k) − P∗+(k)CTS−1

c (k)CP∗+(k)

= P∗+(k) −




P−
vi(k) − MT

3

P−
ii (k) − MT

4

MT
4 − MT

5


 (H†

i (HP∗+(k)HT + R(k))H†T
i )−1CP∗+(k)

= P∗+(k) −




P−
vi(k) − P−T

vv (k)HT
v H†T

i

P−
ii (k) − P−T

vi (k)HT
v H†T

i

P−T
vi (k)HT

v H†T
i − MT

5


HT

i ((HP∗+(k)HT + R(k)))−1HiCP∗+(k)

= P∗+(k) −




P−
vi(k)HT

i − P−
vv(k)HT

v

P−
ii (k)HT

i − P−
vi(k)HT

v

P−
ii (k)HT

i − P−
vi(k)HT

v


 ((HP∗+(k)HT + R(k)))−1CP∗+(k)

= P∗+(k) −




M1S−1(k)MT
1 M1S−1(k)MT

2 M1S−1(k)MT
2

M2S−1(k)MT
1 M2S−1(k)MT

2 M2S−1(k)MT
2

M2S−1(k)MT
1 M2S−1(k)MT

2 M2S−1(k)MT
2




Eliminating the duplicate estimate of the feature xi results in an identical update to the

full covariance update.

P+
c (k) = P+(k) (B.19)
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B.2 Constrained Local Submap Filter

A one step implementation of the CLSF algorithm can be used to show that the resulting

estimate is identical to this update generated by the normal update step. The application

to the more general case can be inferred from this result.

In the case of the CLSF, the observation of the feature, xi, will be used to initialise

a new estimate of the state in a new frame of reference defined by the current vehicle

state estimate. The state vector is first augmented with the new vehicle estimate, which

is assumed to be known with no uncertainty relative to the previous vehicle estimate, and

the observation. The linear observation initialisation model is then applied to yield the new

estimate

x̂∗+(k) = Gx̂∗−(k) (B.20)

with

x̂∗−(k) =




x̂−
v (k)

x̂−
i (k)

0

z(k)




(B.21)

and

G =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 H†
iHv H†

i




(B.22)

where H†
i represents the generalised inverse of the landmark observation model.

The covariance matrix is also updated through a similar mechanism

P∗+(k) = GP∗−(k)GT (B.23)
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with

P∗−(k) =




P−
vv(k) P−

vi(k) 0 0

P−T
vi (k) P−

ii (k) 0 0

0 0 0 0

0 0 0 R(k)




(B.24)

resulting in the updated augmented covariance matrix

P∗+(k) =




P−
vv(k) P−

vi(k) 0 0

P−T
vi (k) P−

ii (k) 0 0

0 0 0 0

0 0 0 M6




(B.25)

with

M6 = H†
iR(k)H†T

i .

The application of the constraint that the two estimates of the common feature, xi, are

identical can be shown to recover all of the information available to the filter and results

in an identical updated covariance matrix to that of the AMF. This relies on a two step

process. The constraint is first applied and then the new local estimates are transformed

back into the global frame of reference. Using the constraint

C =
[
−1 1 0 −1

]

enforces the condition that the two estimates are equal. Note that in this case the constraint

is a function of both the estimate of the local frame state and the two estimates of the

feature. This results in the constrained covariance update

P+
c (k) = P∗+(k) − Wc(k)Sc(k)WT

c (k) (B.26)
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with the constraint gain

Wc(k) = P∗+(k)CTS−1
c (k)

=




−P−
vv(k) + P−

vi(k)

−P−T
vi (k) + P−

ii (k)

0

−M6




S−1
c (k)

and constraint innovation covariance

Sc(k) = CP∗+(k)CT

= P−
vv(k) − P−

vi(k) − P−T
vi (k) + P−

ii (k) + M6

= H†
i (HiP−

vv(k)HT
i + −HiP−

vi(k)HT
i − HiP−T

vi (k)HT
i + HiP−

ii (k)HT
i + R(k))H†T

i

= H†
i (HP∗+(k)HT + R(k))H†T

i . (B.27)

For the purposes of this demonstration, it has been assumed that the vehicle and landmark

observation models are equal and opposite yielding the modified observation model

H(k) =
[
−Hi(k) Hi(k) 0 0

]
(B.28)
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Expanding the update term yields

P+
c (k) = P∗+(k) − P∗+(k)CTS−1

c (k)CP∗+(k)

= P∗+(k) −




−P−
vv(k) + P−

vi(k)

−P−T
vi (k) + P−

ii (k)

0

−M6




(H†
i (HP∗+(k)HT + R(k))H†T

i )−1CP∗+(k)

= P∗+(k) −




−P−
vv(k) + P−

vi(k)

−P−T
vi (k) + P−

ii (k)

0

−M6




HT
i ((HP∗+(k)HT + R(k)))−1HiCP∗+(k)

= P∗+(k) −




P−
vi(k)HT

i − P−
vv(k)HT

i

P−
ii (k)HT

i − P−
vi(k)HT

i

0

−H†
iR(k)




((HP∗+(k)HT + R(k)))−1CP∗+(k)

In order to return the new vehicle and landmark estimates to the global frame of refer-

ence, they must be transformed into this coordinate frame using the old vehicle estimate.

However, these states will be duplicates of the global vehicle and map states shown due to

the fact that the local vehicle estimate is unchanged and the application of the constraint

forces the feature states to be identical. Eliminating the duplicate estimate of the feature

xi results in an identical update to the full covariance update.

P+
c (k) = P+(k) (B.29)
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The Oberon Vehicle Sensors and

Control

C.1 The Oberon Vehicle

The experimental platform used is a mid-size submersible robotic vehicle called Oberon

designed and built at the University of Sydney’s Australian Centre for Field Robotics (see

Figure 5.1). The vehicle is equipped with two scanning low frequency terrain-aiding sonars

and a colour CCD camera, together with bathyometric depth sensors and a fiber optic

gyroscope [69]. This device is intended primarily as a research platform upon which to test

novel sensing strategies and control methods. Autonomous navigation using the information

provided by the vehicle’s on-board sensors represents one of the ultimate goals of the project

[51].

C.2 Vehicle Control System

This section describes the distributed, decoupled control architecture used to help simplify

the controller design for this vehicle.
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C.2.1 Low Level control

The dynamics of the Oberon vehicle are such that the vertical motion of the vehicle is

largely decoupled from the lateral motion. The vehicle is very stable in the roll and and

pitch axes due to the large righting moment induced by the vertical configuration of the

pressure vessels. A steel keel provides an added moment to maintain the vehicle in an

upright pose. Two independant PID controllers can therefore be used to control horizontal

and vertical motion of the vehicle. This greatly simplifies the individual controller design.

Furthermore, this particular division of control fits in with many of the anticipated missions

to be undertaken by the vehicle. For example, one of the target missions is to use Oberon

to survey an area of the Great Barrier Reef while maintaining a fixed height above the sea

floor [69]. The surveying task can then be made independent of maintaining the vehicle

altitude.

The low-level processes run on the embedded controller and are used to interface directly

with the hardware (see figure C.1). This allows the controllers to respond quickly to changes

in the state of the submersible without being affected by delays due the data processing and

high-level control algorithms running on the remote computers. Set points to the low-level

controllers are provided by the behaviours and high-level controllers described in the next

section.

C.2.2 High-level Controller

The high-level controllers are based on the Distributed Architecture for Mobile Naviga-

tion (DAMN) [54]. DAMN consists of a group of distributed behaviours sending votes for

desirable actions and against objectionable ones to a centralized command arbiter, which

combines these votes to generate actions. The arbiter then provides set-points to the low-

level controller such that the desired motion is achieved.

Within the framework of DAMN, behaviours must be defined to provide the task-specific

knowledge for the domain. These behaviours operate independently and asynchronously,

and each encapsulates the perception, planning and task execution capabilities necessary to
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Figure C.1: The low level control processes that run on the embedded controller. These
processes include processes for sampling the internal sensor readings, computing the PID
control outputs and driving the thrusters.
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achieve one specific aspect of robot control, and receives only the data specifically required

for that task [7].

The raw sensor data is preprocessed to produce information that is of interest to multi-

ple behaviours designed to control the vehicle’s actions. These preprocessors act as virtual

sensors by providing data for the behaviours that is abstracted from the raw sensor data,

simplifying the individual behaviour design. The behaviours monitor the outputs of the

relevant virtual sensors and determine the optimal action to achieve the behaviour’s ob-

jectives. The behaviours send votes to the arbiter which combines the votes in the system

to determine the action which will allow the system to best achieve its goals. A task-level

mission planner is used to enable and disable behaviours in the system depending on the

current state of the mission and its desired objectives. A command arbitration process

combines the votes from the behaviours and selects the ‘best’ action to satisfy the goals of

the system.

In the present implementation, two arbiters are used to provide set-points to the low-level

controllers. One arbiter is responsible for setting the desired depth of the vehicle while the

other sets the desired yaw and forward offset to achieve horizontal motion.

For a survey mission, the vertical behaviours are responsible for keeping the submersible

from colliding with the sea floor. The vertical behaviours that run on the vehicle include

maintain minimum depth, maintain minimum altitude, maintain depth and maintain alti-

tude. The combination of the outputs of these behaviours determines the depth at which

the vehicle will operate. A large negative vote by the maintain minimum altitude behaviour,

for example, will keep the vehicle at a minimum distance from the sea floor.

The horizontal behaviours that run during a typical survey mission include follow line

(using sonar and/or vision), avoid obstacles, move to a location and perform survey. The

combination of the outputs of these behaviours determines the orientation maintained by

the vehicle as well as the forward offset applied to the two horizontal thrusters. This allows

the vehicle to move forward while maintaining its heading.

A schematic repsentation of the control structure of the Oberon vehicle is shown in Figure

C.2. The vertical behaviours rely primarily on the depth sensor whereas the horizontal
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Figure C.2: The high level process and behaviours that run the vehicle. The sensor data
is pre-processed to produce virtual sensor information available to the behaviours. The
behaviours receive the virtual sensor information and send votes to the arbiters who send
control signals to the low level controllers. The greyed out boxes are the SLAM processes
that are the focus of this thesis.

behaviours use vision, gyro and the imaging sonar (Tritech SeaKing). The forward look

sonar (Imagenex) is shared between both horizontal and vertical behaviours. It is used to

provide periodic altitude measurements for the maintain altitude behaviour while providing

an indication as to the presence of obstacles in front of the vehicle to the obstacle avoidance

behaviour.

A task scheduler that allow resources to be shared between various tasks is used to allocate

this sensor to the two behaviours. Clearly, tasks that are deemed more important to the

accomplishment of the vehicle’s mission need to be given preferential access to the resources

they require. For example, the altitude task is allowed to ping the bottom in preference to

the avoid obstacles behaviour since the AUV typically operates at relatively low speeds and

collision with the bottom is more of a concern than collision with obstacles in front of the

vehicle.
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C.2.3 Distributed control

The control structure described in the previous sections is implemented using a distributed

control strategy. A number of processes have been developed to accomplish the tasks

of gathering data from the robot’s sensors, processing this data and reasoning about the

course of action to be taken by the robot. These processes are distributed across a network

of computers and communicate asynchronously via a TCP/IP socket-based interface using

a message passing protocol developed at the Centre.

A central communications hub is responsible for routing messages between the distributed

processes running on the vehicle and on the command station. Processes register their

interest in messages being sent by other processes in the system and the hub routes the

messages when they arrive. While this communications structure has some drawbacks, such

as potential communications bottlenecks and reliance on the performance of the central hub,

it does provide some interesting possibilities for flexible configuration, especially during the

development cycle of the system. In the context of the low information rates present in

an underwater vehicle, the system performs well. The implementation also allow for easy

system development. For example, as shown in Figure C.3, the low-level processes that

control the vehicle can easily be replaced by a data playback process to replay mission data

or by a simulator. This enables the development of closed-loop control algorithms prior to

vehicle deployment.

The control architecture provides a distributed environment in which to control the robot.

Processes can be developed and added to the system without major changes to the overall ar-

chitecture. New mission-dependent behaviours can be introduced without requiring changes

to the rest of the controller. The communications have also been abstracted away from the

operation of the various processes. This provides the potential to change the inter-process

communications medium without necessitating major changes to the behaviours themselves.
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