Quantitative Fibroblast Acylcarnitine Profiling

In

The Diagnostic and Prognostic Assessment of Mitochondrial Fatty Acid ß-Oxidation Disorders

Keow Giak Sim

A thesis submitted in fulfilment of the requirements for the degree of Master of Science in Medicine

Department of Paediatrics and Child Health University of Sydney

March 2002
Mitochondrial fatty acid β-oxidation disorders are a group of clinically and biochemically heterogeneous defects mainly associated with intolerance to catabolic stress. The diseases are potentially fatal, but treatable and the prognosis for most diagnosed disorders is generally favourable. Early diagnosis is thus important to prevent morbidity and mortality.

This project describes an improved and validated quantitative fibroblast acylcarnitine profile assay for the investigation of suspected fatty acid β-oxidation disorders. Intact cells were incubated with deuterium-labelled hexadecanoate and L-carnitine, and the accumulated acylcarnitines in the medium analysed using electrospray tandem mass spectrometry. This modified procedure is less demanding technically, requires fewer cells and better reflects the in vivo acylcarnitine status than previously published methods.

Mitochondrial fatty acid β-oxidation is coupled to the respiratory chain. Functional defects of one pathway may lead to secondary alterations in flux through the other. The diagnostic specificity and the prognostic potential of the in vitro acylcarnitine profile assay were investigated in fibroblasts from 14 normal controls, 38 patients with eight enzyme deficiencies of fatty acid β-oxidation presenting with various phenotypes, and 16 patients with primary respiratory chain defects including both isolated and multiple enzyme complex defects. All fatty acid β-oxidation deficient cell lines revealed disease-specific acylcarnitine profiles related to the sites of defects irrespective of the severity of symptoms or of different mutation. Preliminary studies suggested a
correlation between severity of symptoms and higher concentrations of long-chain acylcarnitine species. However, the fibroblast acylcarnitine profiles from some patients with respiratory chain defects were similar to those of controls, whereas others had abnormal profiles resembling those found in fatty acid β-oxidation disorders.

In vitro acylcarnitine profiling is useful for the detection of fatty acid β-oxidation deficiencies, and perhaps the prediction of disease severity and prognostic evaluation facilitating decisions of therapeutic intervention and genetic counselling. However, abnormal profiles do not exclusively indicate these disorders, and primary defects of the respiratory chain remain a possibility. Awareness of this diagnostic pitfall will aid in the selection of subsequent confirmatory tests and therapeutic options.
DECLARATION

The experimental work described in this thesis was carried out in the Department of NSW Biochemical Genetics Service, The Children’s Hospital at Westmead, Sydney, during the period from January 2000 to December 2001. All experimental work and data presented is a result of my own work, except where explicit reference to the work of others is given in the text or acknowledgements.

None of the material presented herein has been submitted to any other university or institute for the purpose of obtaining a higher degree.

Keow Giak Sim

Date
ACKNOWLEDGEMENTS

I would like to thank my supervisor Bridget Wilcken, and associate supervisors John Christodoulou, Kevin Carpenter and Judith Hammond, for their support and encouragement. Their guidance and assistance in all aspects of the work is very much appreciated. I am also grateful to my colleagues Vida Khalili, Paola Lecaros and Roslyn Esber for their unwavering support in cell culture work and other technical matters.

Thanks to Jim Minchenko, Metabolic Research laboratory, The Children’s Hospital at Westmead, NSW; Lawrence Greed, Metabolic Laboratory, Prince Margaret Hospital, WA; Michael Feitz, Chemical Pathology Department, Women and Children’s Hospital, SA; and Simon Olpin, Neonatal Screening and Chemical Pathology, Sheffield Children's Hospital, United Kingdom for providing cell lines from patients with documented defects for this study.

I would like to acknowledge Daphne Heath at NSW Newborn Screening Program for performing the MCAD 985A>G mutation assay; Kathryn Green at NSW Biochemical Genetics Service for performing the LCHAD 1528G>C mutation assay; David Thorburn at The Murdoch Children’s Research Institute, Royal Children's Hospital, Victoria, for analysing the enzyme complex activities of respiratory chain; and Brage Andresen at Research Unit for Molecular Medicine, Arhus University Hospital, Arhus, Denmark for the mutational analyses on the β-oxidation deficient fibroblasts.

Thanks to Liang Sim and Carolyn Ellaway for their assistance in proofreading.
Thanks to my entire family for their unfailing support and never-ending patience.

The NSW Biochemical Genetics Service Department, The Children’s Hospital at Westmead, Sydney, Australia, fully supported the study.

Funding was partially provided by The Children’s Hospital at Westmead Fund Research Grants, Small Grant Scheme (ref #SG2000-01). Their financial assistance is greatly appreciated.
CONTENTS

ABSTRACT ii

DECLARATION iv

ACKNOWLEDGEMENT v

CONTENTS vii

LIST OF TABLES xi

LIST OF FIGURES xiii

PUBLICATIONS ARISING FROM THIS THESIS xviii

ABBREVIATIONS AND TERMS USED xx

CHAPTER 1 Background and Literature Review 1

1.1 The Metabolic Roles of Fatty Acids 1

1.2 The Mitochondrial Fatty Acids β-Oxidation Pathway 1

1.2.1 Plasma Membrane Cellular Uptake and Activation of Fatty Acids 3

1.2.2 The Intracellular Transport of Fatty Acids and Derivatives 4

1.2.3 The Trans-Mitochondrial Membrane Carnitine Cycle 4

1.2.4 The Intra-Mitochondrial β-Oxidation Spiral 4

1.2.5 Hepatic Ketogenesis 5

1.3 The Mitochondrial Fatty Acid β-Oxidation Disorders 6

1.3.1 Clinical Phenotypes 6

1.3.2 Inheritance and Incidence 6

1.3.3 Association of Sudden and Unexpected Death with Mitochondrial Fatty Acid β-Oxidation Disorders 10

1.3.4 Association of Fetal Fatty Acid β-Oxidation Disorders with Severe Complications during Pregnancy 10

1.3.5 Prognosis 11

1.3.6 Treatment 11

1.3.7 Newborn Screening of Mitochondrial Fatty Acid β-Oxidation Disorders 12

1.3.7.1 What is the prognosis for asymptomatic fatty acid β-oxidation deficient neonates detected by newborn screening? 12

1.4 Pathophysiology of Mitochondrial Fatty Acid β-Oxidation Disorders 13
1.5 Biochemical Investigation of Mitochondrial Fatty Acid ß-Oxidation Disorders 13

1.6 In Vivo Metabolic Screening in Physiological Fluids 14

1.7 In Vitro Metabolic Studies in Cells 15
 1.7.1 Fatty Acid Oxidation Rate Study 15
 1.7.2 Acylcarnitine Profile Study 17
 1.7.2.1 Reaction Principle 17
 1.7.2.2 The In Vitro Acylcarnitine Profile Assay 17
 1.7.2.3 Overview of the In Vitro Acylcarnitine Profile Assay 17
 1.7.2.4 Summary: Previous Studies of the In Vitro Acylcarnitine Profile Assay 20
 1.7.2.5 Questions Relating to the In Vitro Acylcarnitine Profile Assay 22

1.8 Enzymatic Studies 23

1.9 Molecular Studies 24

1.10 Research Questions and Aims 25

CHAPTER 2 Materials and Methods 28

2.1 Background 28

2.2 Outline of the In Vitro Acylcarnitine Profile Assay 29

2.3 Materials 29
 2.3.1 Materials for Tissue Culture 29
 2.3.2 Materials for In Vitro Acylcarnitine Profile Assay 30
 2.3.3 Materials for Preparation of External Calibration Curves 30
 2.3.4 Materials for Total Protein Measurement 31

2.4 Cell Lines 31

2.5 Tissue Culture 31
 2.5.1 Culture Medium 31
 2.5.2 Cell Culture Technique 31

2.6 Reaction Mixture for the In Vitro Acylcarnitine Profile Assay 32
 2.6.1 Preparation of [15,15,16,16,16-2H5]hexadecanoic Acid 2.2 mmol/L 32
 2.6.2 Preparation of Reaction Mixture 33

2.7 Electrospray Ionisation Tandem Mass Spectrometer 33
 2.7.1 Electrospray Ionisation 34
 2.7.2 Tandem Mass Spectrometry 34
 2.7.3 Application of ESI-MS/MS to Acylcarnitine Profiling 35

2.8 The In Vitro Acylcarnitine Profile Assay 36
 2.8.1 Preparation of the Cell Monolayer 36
 2.8.2 Incubation of the Cell Monolayer with the Reaction Mixture 36
 2.8.3 Sample Preparation for Acylcarnitine Analysis 36
CHAPTER 3 Validation and Optimisation of the *In Vitro* Acylcarnitine Profile Assay

3.1 Introduction

3.2 Comparison Study
 3.2.1 Aim
 3.2.2 Methods
 3.2.3 Results
 3.2.4 Discussion

3.3 Linearity Study
 3.3.1 Aim
 3.3.2 Methods
 3.3.3 Results
 3.3.4 Discussion

3.4 Time Course Study
 3.4.1 Aim
 3.4.2 Methods
 3.4.3 Results
 3.4.4 Discussion

3.5 Within-Run Reproducibility Study
 3.5.1 Aim
 3.5.2 Methods
 3.5.3 Results
 3.5.4 Discussion

3.6 Influence of Cell Line Passage Number Study
 3.6.1 Aim
 3.6.2 Methods
 3.6.3 Results
 3.6.4 Discussion

3.7 Summary of Validation and Optimisation Study

CHAPTER 4 Acylcarnitine Profile Study in Fibroblasts from Patients with Mitochondrial Fatty Acid β-Oxidation Disorders

4.1 Introduction
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>Aim</td>
<td>71</td>
</tr>
<tr>
<td>4.3</td>
<td>Materials and Methods</td>
<td>72</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Cell Lines</td>
<td>72</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Case Reports of Some Fatty Acid β-Oxidation Deficient Patients</td>
<td>73</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Cell Culture</td>
<td>75</td>
</tr>
<tr>
<td>4.3.4</td>
<td>In Vitro Acylcarnitine Profile Assay</td>
<td>75</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Total Protein Determination</td>
<td>75</td>
</tr>
<tr>
<td>4.3.6</td>
<td>Data Analysis</td>
<td>76</td>
</tr>
<tr>
<td>4.4</td>
<td>Results</td>
<td>76</td>
</tr>
<tr>
<td>4.5</td>
<td>Discussion</td>
<td>91</td>
</tr>
</tbody>
</table>

CHAPTER 5 Acylcarnitine Profile Study in Fibroblasts from Patients with Respiratory Chain Defects 96

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>96</td>
</tr>
<tr>
<td>5.2</td>
<td>Aim</td>
<td>97</td>
</tr>
<tr>
<td>5.3</td>
<td>Materials and Methods</td>
<td>97</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Cell Lines</td>
<td>97</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Case Reports of Some Respiratory Chain Deficient Patients</td>
<td>98</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Cell Culture</td>
<td>99</td>
</tr>
<tr>
<td>5.3.4</td>
<td>In Vitro Acylcarnitine Profile Assay</td>
<td>99</td>
</tr>
<tr>
<td>5.3.5</td>
<td>Total Protein Determination</td>
<td>99</td>
</tr>
<tr>
<td>5.3.6</td>
<td>Data Analysis</td>
<td>100</td>
</tr>
<tr>
<td>5.4</td>
<td>Results</td>
<td>100</td>
</tr>
<tr>
<td>5.5</td>
<td>Discussion</td>
<td>112</td>
</tr>
</tbody>
</table>

CHAPTER 6 Summary and Future Studies 117

REFERENCES 120

APPENDIX 1 – Media Recipe 146

APPENDIX 2 – Total Protein Quality Controls 147
LIST OF TABLES

Table 1.1 Mitochondrial fatty acid oxidation disorders – genetics and biochemical features 7

Table 1.2 Differential diagnosis of mitochondrial fatty acid β-oxidation disorders and other defects based on the in vitro fatty acid oxidation rate study analysing tritium labelled water production 16

Table 2.1 Constituents of external calibration mixture and their concentrations for construction of standard curves 39

Table 2.2 Parameters in Neolynx editor for calculation of individual acylcarnitine concentrations 40

Table 3.1 Paired samples statistics - all cell lines investigated 48

Table 3.2 Paired samples statistics - normal control cell lines 49

Table 3.3 Paired samples statistics - fatty acid β-oxidation deficient cell lines 49

Table 3.4 Within-run variations – assay with cells at the same passage number 64

Table 3.5 Between-run variations – assays with cells at different passage number 66

Table 4.1 Acylcarnitine results for fibroblasts from patients with mitochondrial fatty acid β-oxidation disorders after incubation
with [15,15,16,16,16-2H\textsubscript{5}]hexadecanoic acid and L-carnitine for 72 hours

Table 5.1 Fibroblast acylcarnitine results from patients with respiratory chain defects after incubation with [15,15,16,16,16-2H\textsubscript{5}]hexadecanoic acid and L-carnitine for 72 hours

Table 5.2 Fibroblast acylcarnitine results from a patient with mutations in the nuclear encoded genome

Table 5.3 Fibroblast acylcarnitines results from a patient with mitochondrial DNA mutations
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Schematic representation of fatty acid oxidation pathway</td>
<td>2</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Schematic representation of electrospray ionisation. (Adapted from Micromass literature)</td>
<td>34</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Schematic representation of tandem mass spectrometer</td>
<td>34</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Butylation and fragmentation of acylcarnitines to yield a common fragment at m/z 85.2</td>
<td>35</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Acylcarnitine mass spectrum detected in the reaction medium of fibroblasts from a patient with medium chain acyl-CoA dehydrogenase deficiency</td>
<td>38</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Concentration of total protein in relation to number of fibroblasts</td>
<td>52</td>
</tr>
<tr>
<td>Figures 3.2a</td>
<td>Relationship of accumulated acylcarnitines (pmol/mL) and the corresponding number of multiple acyl-CoA dehydrogenase deficient cells - overall acylcarnitine profile</td>
<td>53</td>
</tr>
<tr>
<td>Figures 3.2b</td>
<td>Relationship of accumulated octanoylcarnitine (pmol/mL) and the corresponding number of multiple acyl-CoA dehydrogenase deficient cells</td>
<td>53</td>
</tr>
<tr>
<td>Figures 3.2c</td>
<td>Relationship of accumulated hexadecanoylcarnitine (pmol/mL) and the corresponding number of multiple acyl-CoA dehydrogenase deficient cells</td>
<td>53</td>
</tr>
</tbody>
</table>
Figure 3.2d Relationship of quantified octanoylcarnitine (nmol/mg protein),
the corresponding number of cells and total protein after 72 hour
incubation 54

Figure 3.2e Relationship of quantified hexadecanoylcarnitine (nmol/mg protein),
the corresponding number of cells and total protein after 72 hour
incubation 54

Figure 3.3 Relationship of total protein, number of cells and accumulated
hexadecanoylcarnitine (nmol/mg protein) observed in cultured
fibroblasts from a patient with carnitine acylcarnitine translocase
deficiency 55

Figure 3.4 Time course study with cell lines from control subjects 58

Figure 3.5 Time course study with a cell line from a patient with hepatic
carnitine palmitoyltransferase I deficiency 59

Figure 3.6 Time course study with a cell line from a patient with medium
chain acyl-CoA dehydrogenase deficiency 59

Figure 3.7 Time course study with a cell line from a patient with
multiple acyl-CoA dehydrogenase deficiency 60

Figure 3.8 Time course study with a cell line from a patient with short chain
acyl-CoA dehydrogenase deficiency 60

Figure 3.9 Influence of cell line passage number study 66
Figure 4.1 A typical acylcarnitine profile detected in the reaction medium of fibroblasts from a normal subject 79

Figure 4.2 Acylcarnitine profile detected in the reaction medium of fibroblasts from a patient with hepatic carnitine palmitoyltransferase I deficiency 79

Figure 4.3 Acylcarnitine profile detected in the reaction medium of fibroblasts from a patient with carnitine acylcarnitine translocase deficiency 80

Figure 4.4 Acylcarnitine profile detected in the reaction medium of fibroblasts from a patient with carnitine palmitoyltransferase II deficiency 80

Figure 4.5 Acylcarnitine profile detected in the reaction medium of fibroblasts from a patient with short chain acyl-CoA dehydrogenase deficiency 81

Figure 4.6 Acylcarnitine profile detected in the reaction medium of fibroblasts from a patient with medium chain acyl-CoA dehydrogenase deficiency 81

Figure 4.7 Acylcarnitine profile detected in the reaction medium of fibroblasts from a patient with very long chain acyl-CoA dehydrogenase deficiency 82
Figure 4.8 Acylcarnitine profile detected in the reaction medium of fibroblasts from a patient with long chain L-3-hydroxyacyl-CoA dehydrogenase deficiency

Figure 4.9 Acylcarnitine profile (profile 1) detected in the reaction medium of fibroblasts from a patient with multiple acyl-CoA dehydrogenase deficiency

Figure 4.10 Acylcarnitine profile (profile 2) detected in the reaction medium of fibroblasts from a patient with multiple acyl-CoA dehydrogenase deficiency

Figure 5.1a Acylcarnitine profile found in the reaction medium of fibroblasts from a patient with complex II deficiency demonstrated in liver but not in skin fibroblasts

Figure 5.1b Acylcarnitine profile found in the reaction medium of fibroblasts from a patient with medium-chain acyl-CoA dehydrogenase deficiency

Figure 5.2a Acylcarnitine profile seen in the reaction medium of fibroblasts from a patient with complex IV deficiency demonstrated in skeletal muscle and cultured skin fibroblasts

Figure 5.2b Acylcarnitine profile seen in the reaction medium of fibroblasts from a patient with multiple acyl-CoA dehydrogenase deficiency
Figure 5.3a Acylcarnitine profile seen in the reaction medium of fibroblasts from a patient with multiple deficiencies of complex I, III and IV in liver 104

Figure 5.3b Acylcarnitine profile seen in the reaction medium of fibroblasts from a patient with carnitine palmitoyltransferase II deficiency 104

Figure 5.4a Acylcarnitine profile found in the reaction medium of fibroblasts from a patient with multiple deficiencies of complex I, III and IV in skeletal muscle with mitochondrial tRNA^lys mutation 105

Figure 5.4b Acylcarnitine profile found in the reaction medium of fibroblasts from a patient with long-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency 105

Figure 5.5 Acylcarnitine profile found in the reaction medium of fibroblasts from a patient with multiple deficiencies of complex I, II+III, III and IV in skin fibroblasts 106
Publications Arising From This Thesis

Original Manuscripts

Abstracts

Conference. The University of Sydney, College of Health Sciences. Leura, New South Wales, Australia.

LIST OF ABBREVIATIONS

\(^2\text{H}\) deuterium

\(^2\text{H}_2\)-C\(_{18}:1\) [9,10-\(^2\text{H}_2\)]oleic acid

\(^2\text{H}_3\)-C\(_{16}\) [16,16,16-\(^2\text{H}_3\)]palmitic acid

\(^2\text{H}_4\)-C\(_{18}:2\) 9,12-[17,17,18,18-\(^2\text{H}_4\)]linoleic acid

\(^2\text{H}_5\)-palmitate [15,15,16,16,16-\(^2\text{H}_5\)]hexadecanoic acid

\(^3\text{H}\) tritium

L litre

µmol micromole

µg microgram

µL microlitres

mg milligram

mL millilitre

nmol nanomole

pmol picomole

C\(_0\) free carnitine

C\(_2\)- acetylcarnitine

C\(_3\)- propionylcarnitine

C\(_4\)- butyryl- or isobutyrylcarnitine

C\(_5\)- isovaleryl or 2-methyl-butyrylcarnitine

C\(_6\)- hexanoylcarnitine

C\(_8\)- octanoylcarnitine

C\(_{10}\)- decanoylcarnitine

C\(_{12}\)- dodecanoylcarnitine
C$_{14}$- tetradecanoylcarnitine
C$_{14:1}$- tetradecenoylcarnitine
C$_{16}$- hexadecanoylcarnitine or palmitoylcarnitine
C$_{16:1}$- hexadecenoylcarnitine
C$_{18}$- octadecanoylcarnitine
C$_{18:1}$- octadecenoylcarnitine
C$_{4}$-OH- hydroxy-butyrylcarnitine
C$_{5}$-OH- 3-hydroxyisovalerylcarnitine or 2-methyl-3-hydroxy-butyrylcarnitine
C$_{6}$-OH- hydroxy-hexanoylcarnitine
C$_{8}$-OH- hydroxy-octanoylcarnitine
C$_{14}$-OH- hydroxy-tetradecanoylcarnitine
C$_{16}$-OH- hydroxy-hexadecanoylcarnitine
C$_{18}$-OH- hydroxy-octadecanoylcarnitine
ACD acyl-CoA dehydrogenases
ACS acyl-CoA synthetase
AFLP acute fatty liver of pregnancy
Alb-BP albumin-binding protein
ATP adenosine triphosphate
CACT carnitine acylcarnitine translocase
CoA coenzyme A
CID collision-induced dissociation
CPT1 carnitine palmitoyltransferase I
CPT1A hepatic carnitine palmitoyltransferase I
CPT1B muscle carnitine palmitoyltransferase I
CPT2 carnitine palmitoyltransferase II
CT plasma membrane carnitine transporter
CV coefficient of variation
DBS whole blood dried on filter paper sample
DNA deoxyribonucleic acid
DECR1 2,4-dienoyl-CoA reductase
ECH enoyl-CoA hydratases
ESI-MS/MS electrospray ionisation tandem mass spectrometry
ETF electron transfer flavoprotein
ETFDH electron transfer flavoprotein dehydrogenase
FAB-MS/MS fast atom bombardment tandem mass spectrometry
FABPpm membrane-associated plasmalemmal fatty acid-binding protein
FABPc cytoplasmic fatty acid-binding proteins
FAD flavin adenine dinucleotide
FADH$_2$ reduced form of FAD
FAO mitochondrial fatty acid β-oxidation
FAT fatty acid translocase
FATP long-chain fatty acid transporter protein
GC-CI-MS gas chromatography chemical ionisation mass spectrometry
HAD hydroxyacyl-CoA dehydrogenases
HELLP haemolysis, elevated liver enzymes and low platelet counts
HMGCL 3-hydroxy-3-methyl-glutaryl-CoA lyase
HMGCS2 3-hydroxy-3-methyl-glutaryl-CoA synthetase
KAT ketoacyl-CoA thiolases
LACS long chain acyl-CoA synthetase
LCAD long chain acyl-CoA dehydrogenase
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCEH</td>
<td>long-chain 2-enoyl-CoA hydratase</td>
</tr>
<tr>
<td>LCFA</td>
<td>long-chain fatty acid</td>
</tr>
<tr>
<td>LCFA-CoA</td>
<td>long-chain fatty acyl-CoA ester</td>
</tr>
<tr>
<td>LCHAD</td>
<td>long-chain 3-hydroxyacyl-CoA dehydrogenase</td>
</tr>
<tr>
<td>LCKAT</td>
<td>long-chain 3-ketoacyl-CoA thiolase</td>
</tr>
<tr>
<td>LSI-MS/MS</td>
<td>liquid secondary ionisation tandem mass spectrometry</td>
</tr>
<tr>
<td>M</td>
<td>[9,10-³H]myristate</td>
</tr>
<tr>
<td>MAD</td>
<td>multiple acyl-CoA dehydrogenase</td>
</tr>
<tr>
<td>MCA</td>
<td>multi-channel acquisition</td>
</tr>
<tr>
<td>MCAD</td>
<td>medium-chain acyl CoA dehydrogenase</td>
</tr>
<tr>
<td>MCFA</td>
<td>medium-chain fatty acid</td>
</tr>
<tr>
<td>MCFA-CoA</td>
<td>medium-chain fatty acyl-CoA ester</td>
</tr>
<tr>
<td>MCKAT</td>
<td>medium chain 3-ketoacyl-CoA thiolase</td>
</tr>
<tr>
<td>MELAS</td>
<td>mitochondrial encephalomyopathy, lactic acidosis and stroke like episodes</td>
</tr>
<tr>
<td>MERRF</td>
<td>myoclonic epilepsy ragged red fibre syndrome</td>
</tr>
<tr>
<td>M/SCHAD</td>
<td>medium/short chain 3-hydroxyacyl-CoA dehydrogenase</td>
</tr>
<tr>
<td>MTP</td>
<td>mitochondrial trifunctional protein</td>
</tr>
<tr>
<td>NAD⁺</td>
<td>nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>NADH</td>
<td>reduced form of NAD</td>
</tr>
<tr>
<td>O</td>
<td>[9,10-³H]oleate</td>
</tr>
<tr>
<td>O/M</td>
<td>oxidation rates of oleate to myristate ratio</td>
</tr>
<tr>
<td>RC</td>
<td>respiratory chain</td>
</tr>
<tr>
<td>radio-HPLC</td>
<td>radio-high-pressure liquid chromatography</td>
</tr>
<tr>
<td>SCAD</td>
<td>short-chain acyl CoA dehydrogenase</td>
</tr>
</tbody>
</table>
SCEH short chain 2-enoyl-CoA hydratase
SCFA short-chain fatty acid
SCFA-CoA short-chain fatty acyl-CoA ester
SCHAD short-chain 3-hydroxyacyl-CoA dehydrogenase
SD standard deviation
SIDS Sudden infant death syndrome
VLCAD very-long-chain acyl CoA dehydrogenase