A reformulation of Coombs' Theory of Unidimensional Unfolding by representing attitudes as intervals

Tim Johnson
School of Psychology
University of Sydney

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in the Faculty of Science

July, 2004

The research completed in these studies was approved by the Human Ethics Committee at the University of Sydney.
Abstract

An examination of the logical relationships between attitude statements suggests that attitudes can be ordered according to favourability, and can also stand in relationships of implication to one another. The traditional representation of attitudes, as points on a single dimension, is inadequate for representing both these relations but representing attitudes as intervals on a single dimension can incorporate both favourability and implication.

An interval can be parameterised using its two endpoints or alternatively by its midpoint and latitude. Using this latter representation, the midpoint can be understood as the ‘favourability’ of the attitude, while the latitude can be understood as its ‘generality’. It is argued that the generality of an attitude statement is akin to its latitude of acceptance, since a greater semantic range increases the likelihood of agreement.

When Coombs’ Theory of Unidimensional Unfolding is reformulated using the interval representation, the key question is how to measure the distance between two intervals on the dimension. There are innumerable ways to answer this question, but the present study restricts attention to eighteen possible ‘distance’ measures. These measures are based on nine basic distances between intervals on a dimension, as well as two families of models, the Minkowski r-metric and the Generalised Hyperbolic Cosine Model (GHCM). Not all of these measures are distances in the strict sense as some of them fail to satisfy all the metric axioms.

To distinguish among these eighteen ‘distance’ measures two empirical tests, the triangle inequality test, and the aligned stimuli test, were developed and tested using two sets of attitude
statements. The subject matter of the sets of statements differed but the underlying structure was the same. It is argued that this structure can be known *a priori* using the logical relationships between the statement’s predicates, and empirical tests confirm the underlying structure and the unidimensionality of the statements used in this study. Consequently, predictions of preference could be ascertained from each model and either confirmed or falsified by subjects’ judgements.

The results indicated that the triangle inequality failed in both stimulus sets. This suggests that the judgement space is not metric, contradicting a common assumption of attitude measurement. This result also falsified eleven of the eighteen ‘distance’ measures because they predicted the satisfaction of the triangle inequality.

The aligned stimuli test used stimuli that were aligned at the endpoint nearest to the ideal interval. The results indicated that subjects preferred the narrower of the two stimuli, contrary to the predictions of six of the measures. Since these six measures all passed the triangle inequality test, only one measure, the GHCM (item), satisfied both tests. However, the GHCM (item) only passes the aligned stimuli tests with additional constraints on its operational function. If it incorporates a strictly log-convex function, such as cosh, the GHCM (item) makes predictions that are satisfied in both tests. This is also evidence that the latitude of acceptance is an item rather than a subject or combined parameter.
Acknowledgements

The research reported here was commenced in 2000 under an Australian Postgraduate Award.

My sincere thanks go to Associate Professor Joel Michell for initiating my interest in the area of psychological measurement, and for his thoughtful and helpful supervision throughout this research. Joel’s constant questioning and testing of assumptions epitomises good scientific research. I hope that his student reflects this attitude in the current study.

I would also like to thank my associate supervisor Associate Professor David Grayson for his helpful critiques and assistance, particularly in checking the mathematics used in this thesis. Thanks also to Mr George Oliphant who supervised me for 6 months in 2002. His fresh perspective and critical mind were extremely valuable in shaping the final form of this thesis.

During my period of study I benefited greatly from conversations with my fellow postgraduate students. In particular, William Landers, James Palethorpe, Michaela Davies and Sharon Medlow acted as sounding boards, advice givers and sanity preservers at various stages of the research. I thank each one of them.

Parts of this material have been presented at the Australasian Mathematical Psychology Conference, the International Spearman Conference, Melbourne University’s Quantitative research seminar, and the Sydney University School of Psychology Postgraduate Conference. Thank you to the participants who asked hard questions and made insightful comments, enabling the material to be sharpened and improved.
Finally, I want to thank my fantastic family. To my mum and dad Elizabeth & Kevin, and my siblings Ruth & Andrew, thank you for your lifelong support and encouragement. To my wife Anna, thank you for listening to the triumphs, encouraging me during the failures, rebuking me during the periods of slackness, and putting up with my frequent mental drifting away to the land of intervals! I love you all, and I could not have completed this project without your love and support. This thesis is dedicated to you.
Contents

1 Introduction

1.1 What is an attitude? .. 1

1.2 The logical structure of attitudes 2
 1.2.1 Order according to favourability 3
 1.2.2 Implication ... 4

1.3 The customary representation of attitudes 5
 1.3.1 The customary representation and favourability 5
 1.3.2 The customary representation and implication 7

1.4 An Alternative Representation of Attitudes 7
 1.4.1 The Parameters of an Interval and their Empirical Interpretation 8
 1.4.2 An Interval Theory of Judgements 10

1.5 Coombs’ theory of Unidimensional Unfolding 11

1.6 Necessary and Sufficient Conditions for the Confirmation of Coombs’ Theory 12
 1.6.1 The Transitive Condition 13
 1.6.2 The Folding Condition .. 13
 1.6.3 The Single Path Condition 14
 1.6.4 The Cancellation Condition 15

1.7 Derivations of Coombs’ Theory and Implication 17
 1.7.1 Multidimensional unfolding 18
 1.7.2 Random Configuration Theories 19
 1.7.3 Latitude of Acceptance – Social Judgment Theory 21
 1.7.4 Latitude of Acceptance – Hyperbolic Cosine Model 23
1.7.5 Michell (1973) .. 26
1.7.6 Interval Orders .. 27
1.8 The present study .. 29

2 Coombs’ Unfolding Theory for Intervals 30
 2.1 Reformulating Coombs’ Theory 31
 2.2 Nine ‘basic distances’ between two intervals 32
 2.3 Considerations for each Distance Measure 34
 2.3.1 Metric Spaces ... 35
 2.3.2 Psychological Interpretation 38
 2.4 Distance Measures based on the nine basic distances 39
 2.4.1 Midpoint Measure ... 39
 2.4.2 Gap Measure ... 40
 2.4.3 Ratio Gap Measure ... 44
 2.4.4 Total Distance .. 46
 2.4.5 Plus-Minus Measures ... 49
 2.4.6 Mid-Near Measures .. 54
 2.4.7 Ratio Mid-Near Measures 56
 2.4.8 Mid-Far Measures ... 58
 2.5 Minkowski r-metric ... 60
 2.5.1 City-Block Metric based on Endpoints (Michell, 1973) 63
 2.5.2 City-Block Metric based on mid-point and latitude 71
 2.5.3 Euclidean Distance ... 75
 2.6 The Generalised Hyperbolic Cosine Model (GHCM) 76
 2.6.1 The Metric properties of GHCM measures 82
 2.7 Summary .. 83

3 General Methods 85
 3.1 Subjects ... 86
 3.2 Design .. 86
 3.3 Stimuli .. 87
3.4 Procedure ... 88
 3.4.1 Choose 1 of 9 preference task 89
 3.4.2 Choose 1 of 3 preference task 89
 3.4.3 Pair Comparison preferences 91
 3.4.4 Single Stimulus agreement judgments 91
 3.4.5 Ratings of preference 93
 3.4.6 Triadic similarity judgements 94
3.5 Constructing Stimulus Sets 94
 3.5.1 Theoretical Justification for the Stimulus Structure . 95
 3.5.2 Empirical Test of the Stimulus Structure 105
3.6 Specific Statements 108
 3.6.1 Convert Statements 109
 3.6.2 Homosexuality Statements 110
3.7 Results of the Empirical Test of Statement Structure 111
 3.7.1 Convert Statements 111
 3.7.2 Homosexuality Statements 113
3.8 Conclusion .. 113

4 Testing the Triangle Inequality 115
 4.1 Tversky and Gati’s test of the triangle inequality 115
 4.2 Testing the triangle inequality using attitude statements . 119
 4.2.1 Similarity Judgements 122
 4.2.2 Preference Judgements 125
 4.3 Specific Predictions for the different measures 126
 4.3.1 Midpoint .. 128
 4.3.2 Gap ... 129
 4.3.3 Ratio Gap .. 131
 4.3.4 Total Distance 131
 4.3.5 Plus-Minus (item) 133
 4.3.6 Plus-Minus (subject) 134
 4.3.7 Mid-Near (item) 135
4.3.8 Mid-Near (subject) ... 136
4.3.9 Ratio Mid-Near (item) ... 138
4.3.10 Ratio Mid-Near (subject) 138
4.3.11 Mid-Far (item) ... 140
4.3.12 Mid-Far (subject) .. 141
4.3.13 City-Block (endpoints) 142
4.3.14 City-Block (midpoint) 144
4.3.15 Euclidean ... 146
4.3.16 GHCM (combined) .. 148
4.3.17 GHCM (item) .. 149
4.3.18 GHCM (subject) .. 150
4.3.19 Summary ... 151
4.4 Method .. 151
4.5 Results .. 153
 4.5.1 Similarity Judgements 153
 4.5.2 Preference judgements 160
4.6 Discussion .. 166

5 Aligned Stimuli Test ... 171
 5.1 Introduction .. 171
 5.1.1 Disjoint Aligned Stimuli 172
 5.1.2 Adjoining Aligned Stimuli 172
 5.2 Specific Predictions for the different measures 174
 5.2.1 Midpoints ... 174
 5.2.2 Gap .. 175
 5.2.3 Ratio Gap ... 176
 5.2.4 Total Distance ... 177
 5.2.5 Plus-Minus (item) 177
 5.2.6 Plus-Minus (subject) 178
 5.2.7 Mid-Near (item) .. 178
 5.2.8 Mid-Near (subject) 179
5.2.9 Ratio Mid-Near (item) .. 180
5.2.10 Ratio Mid-Near (subject) ... 181
5.2.11 Mid-Far (item) .. 181
5.2.12 Mid-Far (subject) ... 182
5.2.13 City-Block (Endpoints) ... 182
5.2.14 City-Block (Midpoint) .. 183
5.2.15 Euclidean ... 184
5.2.16 GHCM (combined) ... 185
5.2.17 GHCM (item) ... 195
5.2.18 GHCM (subject) ... 197
5.2.19 Summary of Predictions ... 197
5.3 Method ... 198
5.4 Results ... 201
5.4.1 Disjoint Aligned Stimuli .. 202
5.4.2 Adjoining Aligned Stimuli .. 204
5.4.3 Deterministic Fit ... 205
5.5 Discussion .. 206

6 General Discussion ... 213
6.1 Logical Relations between Attitude Statements 213
6.2 Coombs’ Theory of Unidimensional Unfolding representing attitudes as Intervals 215
6.3 Experimental tests of the eighteen ‘distance’ measures 216
6.4 Future Research ... 220

References ... 225

Appendices ... 232

A Probabilistic Results for the Generalised Hyperbolic Cosine Model 232
A.1 Preliminary Derivations ... 232
A.2 Triangle Inequality Test .. 234
A.2.1 Combined Parameter Model .. 235
List of Tables

2.1 The nine basic distances and their corresponding measures. 34
2.2 The metric axioms and spaces generated by them. 38
2.3 Bossuyt’s (1990) classification of probabilistic unfolding models 77
2.4 The eighteen different measures and their respective metric properties 84

3.1 The design of the study showing the six judgement tasks and the number of judgements required for each task. 86
3.2 Guttmann’s cross-tabulated responses to the questions ‘Is war good?’ and ‘Is war bad?’ ... 99
3.3 When subjects undertake three pairwise preference judgements on binary opposites (p and ¬p, q and ¬q, and r and ¬r), the following crosstabulated response patterns are expected. .. 106
3.4 When subjects undertake three ‘Choose 1 of 3’ preference judgements on each pair of binary opposites together with the ‘Unable to choose’ statement (p, ¬p and ?, q, ¬q and ?, and r, ¬r and ?), the following crosstabulated response patterns are expected. .. 106
3.5 When subjects undertake three ‘Choose 1 of 3’ preference judgements on each pair of binary opposites for the Convert Statements together with the ‘Unable to choose’ statement (b, ¬b and ?, e, ¬e and ?, and x, ¬x and ?), the following crosstabulated response patterns are expected. .. 110
3.6 When subjects undertake three ‘Choose 1 of 3’ preference judgements on each pair of binary opposites for the Homosexuality Statements together with the ‘Unable to choose’ statement (i, $\neg i$ and $?$, s, $\neg s$ and $?$, and c, $\neg c$ and $?$), the following crosstabulated response patterns are expected. .. 111

3.7 Observed response patterns for the Convert statements for each pair of binary opposites and the ‘Unable to Choose’ category. .. 112

3.8 Observed response patterns for the Homosexuality statements for each pair of binary opposites and the ‘Unable to Choose’ category. 113

4.1 The assumptions involved in Michell’s (1973) tests of unfolding theory. 123

4.2 The possible orders of the three latitudes of a, b and c and the resulting stimulus selection patterns on the comparisons abh and cbh. 146

4.3 The predictions for the judgements in the triangle inequality test provided by each of the different measures. ... 152

4.4 The pair comparisons that are relevant for testing the triangle inequality for people with ideal stimuli a, b, c or d. ... 153

4.5 Cross-tabulated frequencies for the two similarity judgements ahb and chb using the Convert statements ... 154

4.6 Cross-tabulated frequencies for the two similarity judgements dic and bic using the Convert statements. ... 154

4.7 Cross-tabulated frequencies for the two similarity judgements ahb and chb using the Homosexuality statements. .. 154

4.8 Cross-tabulated frequencies for the two similarity judgements dic and bic using the Homosexuality statements 155

4.9 The summary statistics for the C-scores obtained from two stimulus sets 155

4.10 A generalised array for similarity judgements, where the Greek letters represent cell frequencies .. 157

4.11 The error rates for the different prediction patterns within each stimulus set 158

4.12 The total error rates across both stimulus sets for each prediction pattern on the similarity judgements ... 159
4.13 The number of people in each set selecting stimuli a, b, c or d in the ‘Choose 1
of 9’ task. ... 160
4.14 The frequency with which stimuli are chosen in particular pair comparisons by
people with ideal stimuli approximated by a, b, c or d. 161
4.15 The observed Chi-Square values and their probabilities after combining the indi-
vidual probabilities for preference judgements on the triangle inequality test. 164
4.16 A generalised array for the preference judgements where the Greek letters repre-
sent the frequencies of people selecting statements in the relevant pair comparison. 164
4.17 The preference judgement errors for each prediction pattern within the two stim-
ulus sets ... 166
4.18 Total errors for each prediction pattern on the preference judgments 166
4.19 The predictions made by each of the different measures and an indication of
whether these predictions is the best available fit to the data. 170
5.1 The possible orderings of the latitudes of i, w and x and the resulting order on
distances in the City-Block (midpoint) measure. 184
5.2 The different measures and their predictions concerning aligned stimuli 198
5.3 The pair comparisons that are relevant for the aligned stimuli tests for people
with each ideal stimulus. .. 199
5.4 The pair comparisons that are relevant for the aligned stimuli test for people in
the pooled stimuli groups, a, b, c, d, g. 200
5.5 The number of subjects in each stimulus set selecting particular stimuli in the
‘Choose 1 of 9’ task. ... 201
5.6 The frequencies with which individuals select disjoint aligned stimuli and the
 correspondings two-tailed binomial probability. These individual probabilities
 are also combined together to give a Chi-Squared value and its correspon-
 ding probability. .. 203
5.7 The frequencies with which pooled groups of individuals select disjoint aligned
stimuli and the corresponding two-tailed binomial probability. 203
5.8 The frequencies with which individuals select unilateral adjoining stimuli and the
 corresponding two-tailed binomial probability. 204
5.9 The frequencies with which individuals select bilateral adjoining stimuli and the corresponding two-tailed binomial probability. 205

5.10 The preference judgement errors for the consistent choice of w or of x prediction patterns .. 206

5.11 The predictions of the different measures and their results for the two versions of the aligned stimuli test. ... 207

6.1 The different measures and whether their predictions matched or contradicted the results of the triangle inequality test and the aligned stimuli test 217

C.1 Predictions for the GHCM (combined) with strictly log-convex operational function, for adjoining aligned stimuli and the two deviations from this, where the ideal is disjoint from or overlapping the attitude statements. 254
List of Figures

1-1 A geometric representation of the relationship \(b \) implies \(a \) .. 4
1-2 The lower bound, \(\lambda \), and upper bound, \(\upsilon \), of the interval \(a \) 8
1-3 The midpoint, \(\mu \), and width parameter, \(\rho \), of the interval \(a \) 9
1-4 An example of the folding of six stimuli (ABCDEF) around an ideal point \(i \) resulting in the preference ordering DCEBFA ... 14
1-5 A quantitative J Scale for six stimuli (ABCDEF) showing that the midpoints of the stimuli divide the dimension into sixteen different regions 14
1-6 Proximity graph for the dimensional order, ABCDEF 16
1-7 The five distinct tests of double cancellation which must be satisfied in the case of six stimuli that are ordered ABCDEF ... 17

2-1 The lower bound, \(\lambda \), upper bound, \(\upsilon \), midpoint, \(\mu \), and latitude, \(\rho \), of an interval \(a \) .. 32
2-2 The nine basic distances between an ideal interval and an attitude interval 33
2-3 The triangle inequality states that the distance from \(a \) to \(b \) via \(c \) is at least as far as the direct distance from \(a \) to \(b \) ... 36
2-4 The distance between two intervals \(i \) and \(a \) measured by their midpoints 39
2-5 Two intervals with the same midpoint (\(a \) and \(b \)) but different widths are considered equidistant from the ideal interval \(i \) when midpoint distance alone is considered .. 40
2-6 The distance between two intervals \(i \) and \(a \) when measured by the gap between them ... 40
2-7 When intervals overlap there is no longer any gap between them but rather a
region of overlap. ... 41
2-8 Two intervals with the same lower bound (a and b) but different upper bounds are
considered equidistant from the ideal interval i when the gap between intervals
is used to measure distance. .. 43
2-9 The triangle inequality is breached in the Gap measure as $d_{ab} + d_{bc} < d_{ac}$ 43
2-10 The distance between two intervals i and a when the Total Distance is measured . 46
2-11 The situation where one interval is contained in another interval raises questions
about how to measure the Total Distance. 46
2-12 Two intervals with the same upper bound (a and b) but different lower bounds
are considered equidistant from the ideal interval i when the Total Distance is
used. .. 48
2-13 The distance between two intervals i and b when measured by the distance be-
tween their corresponding bounds. .. 49
2-14 Using the distance between the corresponding lower bounds the intervals a and
b are equidistant from interval i. ... 50
2-15 When the intervals a and b are separated from interval i by a gap the lower
bound distances are given by $d_{ia} = |\mu_i - \mu_a| + \rho_a - \rho_i$ and $d_{ib} = |\mu_i - \mu_b| + \rho_i - \rho_b$
respectively. ... 50
2-16 When the intervals a and b are separated from interval i by a gap the upper
bound distances are given by $d_{ia} = |\mu_i - \mu_a| - \rho_a + \rho_i$ and $d_{ib} = |\mu_i - \mu_b| - \rho_i + \rho_b$
respectively. ... 51
2-17 Although the intervals a and b appear to be the same distance from i, using the
lower bounds $d_{ia} < d_{ib}$ and using the upper bounds $d_{ia}^* > d_{ib}^*$. 52
2-18 The two Mid-Near measures, d_{ia}, from the endpoint of i to the midpoint of a,
and d_{ia}^*, from the midpoint of i to the endpoint of a. 55
2-19 The triangle inequality is breached when the Mid-Near measure is used. 56
2-20 The two Mid-Far measures, d_{ia}, from the endpoint of i to the midpoint of a, and
d_{ia}^*, from the midpoint of i to the endpoint of a. 58
2-21 The isosimilarity contours for the Minkowski r-metric with $r = 1$, $r = 2$ and $r = \infty$ in two-dimensional space.

2-22 The distance between two intervals i and a when measured using the City-Block metric based on endpoints is the sum of the component distances d_{ia1} and d_{ia2}.

2-23 Changing between the endpoint and the midpoint / latitude parameterisations is equivalent to rotating the isosimilarity contour 45°.

2-24 When $|\mu_i - \mu_a| \leq |\rho_i - \rho_a|$ one interval is completely contained in the other one.

2-25 Using the city-block metric based on midpoint and latitude, the ideal interval is closer to a than b, despite the fact that i implies b.

3-1 The rating scale used for the ratings of preference task.

3-2 An approximation of the dimensional structure of the nine attitude statements in each set.

3-3 A dimension which represents attitude statements and ideal attitudes about a particular subject x, ranging from ‘most anti-x’ to ‘most pro-x’.

3-4 If p is a simple evaluative predicate relative to x then it divides the attitude dimension into two disjoint parts called P and $\neg P$.

3-5 The question, ‘Is War Good?’ has a cutting point, a such that people on the right of a answer ‘yes’ while those on the left of a answer ‘no’.

3-6 The questions ‘Is War Good?’ and ‘Is War Bad?’ divide the dimension at a and b respectively, resulting in three distinct regions.

3-7 Two simple evaluative predicates p (where $p \succ \neg p$) and q (where $q \succ \neg q$) are unidimensional if and only if one they can be respresented as shown in (a) or (b).

3-8 The six ways intervals can stand in relation to each other given three predicate pairs p, q and r (such that $p \succ \neg p$, $q \succ \neg q$ and $r \succ \neg r$).

3-9 A possible stimulus configuration for three predicate pairs p, q and r showing their cutting points β, γ and δ together with the most anti-x point (α) and the most pro-x point (ϵ) on the dimension.

3-10 The approximate dimensional structure of nine attitude statements (a to i) generated from three pairs of binary opposites.
3-11 A possible configuration of three predicate pairs p, q and r on the attitude dimension.

3-12 The dimensional representation of the three binary pairs for the Convert Statements.

3-13 The dimensional representation of the three binary pairs for the Homosexuality statements.

4-1 The array of the stimuli in the Tversky and Gati (1982) series of experiments.

4-2 An example of the type of stimuli used by Tversky & Gati (1982) in their test of the triangle inequality.

4-3 One of the ‘triangles’ used by Tversky & Gati (1982).

4-4 An approximation of the dimensional structure of the nine attitude statements in each set.

4-5 The dimensional structure of the four stimuli a, b, c and h which form a ‘triangle’. The relative sizes of a, b and c are not known but h encompasses these three stimuli.

4-6 When represented using the upper and lower bounds as two separate dimensions, the statements a, b, c, d, h and i form two triangles $abch$ and $bcdi$.

4-7 The distances involved in the test of the triangle inequality using the Midpoint measure.

4-8 Under Coombs’ Theory of Unidimensional Unfolding if a is closer to b than to h, then c must be closer to h than to b.

4-9 The specific ‘distances’ involved in the test of the triangle inequality using the Gap measure.

4-10 The specific distances involved in the test of the triangle inequality, using the Total Distance measure.

4-11 The specific ‘distances’ involved in the test of the triangle inequality using the Plus-Minus (item) measure.

4-12 The specific ‘distances’ involved in the test of the triangle inequality using the Plus-Minus (subject) measure.

4-13 The specific ‘distances’ involved in the test of the triangle inequality using the Mid-Near (item) measure.
4-14 The specific 'distances' involved in the test of the triangle inequality using the
Mid-Near (subject) measure. .. 137
4-15 The specific 'distances' involved in the test of the triangle inequality using the
Mid-Far (item) measure. .. 141
4-16 The specific distances involved in the test of the triangle inequality using the
Mid-Far (subject) measure. .. 142
4-17 The specific distances involved in the test of the triangle inequality using the
City-Block (endpoint) measure. ... 143
4-18 The specific distances involved in the test of the triangle inequality using the
City-Block (endpoint) measure. ... 145
4-19 The binomial probabilities, corrected for continuity, for nine subjects making
judgements of stimuli h and b under the null hypothesis that \(p = 0.5 \). The
shaded region is the probability of obtaining as extreme a value as 8. 163

5-1 An example of a stimulus structure where the bounds nearer to the ideal interval
are aligned with one another. .. 172
5-2 An example of a stimulus structure where the bounds nearer to the ideal interval
are aligned with one another and also adjoin the nearer bound of the ideal interval. 173
5-3 The bilateral version of the adjoining intervals test, where the relative order of
\(\rho_w \) and \(\rho_x \) is not known. ... 173
5-4 The distances from the ideal statement to the two aligned stimuli using the
Midpoint measure. .. 175
5-5 The 'distances' from the ideal statement to the two aligned stimuli using the
Gap measure. ... 175
5-6 The distances from the ideal statement to the two aligned stimuli using the Total
Distance measure. .. 177
5-7 The 'distances' from the ideal statement to the two aligned stimuli using the
Plus-Minus (item) measure. ... 178
5-8 The 'distances' from the ideal statement to the two aligned stimuli using the
Plus-Minus (subject) measure. .. 179
5-9 The ‘distances’ from the ideal statement to the two aligned stimuli using the
 Mid-Near (item) measure. ... 179
5-10 The ‘distances’ from the ideal statement to the two aligned stimuli using the
 Mid-Near (subject) measure. .. 180
5-11 The ‘distances’ from the ideal statement to the two aligned stimuli using the
 Mid-Far (item) measure. .. 181
5-12 The ‘distances’ from the ideal statement to the two aligned stimuli using the
 Mid-Far (subject) measure. .. 182
5-13 The distances from the ideal statement to the two aligned stimuli using the
 City-Block (endpoints) distance is a weighted midpoint distance. 183
5-14 The distances from the ideal statement to the two aligned stimuli using the
 City-Block (midpoint) distance depend on the relative sizes of \(\rho_i, \rho_w, \) and \(\rho_x \). 184
5-15 The \(\cosh \) function is strictly convex since every chord joining two points on its
 graph lies below the graph. .. 187
5-16 When the \(\cosh \) function is graphed on log-linear axes every chord joining two
 points lies above the graph indicating that the \(\cosh \) function is strictly log-convex. 188
5-17 The configuration of three points, \(x, y \) and \(z \), and the resulting chords for a
 convex function \(f \). ... 189
5-18 The configuration of four points, \(w, x, y \) and \(z \), and the resulting chords for a
 convex function \(f \). ... 190
5-19 The graph of \(y = |x| \) on log-linear axes demonstrates that it is a half log-concave
 function. ... 194
5-20 An approximation of the dimensional structure of the nine attitude statements
 in each set. ... 199
5-21 For measures that use an ideal point and attitude intervals the same predictions
 are made all subjects with an ideal point on the same side of the attitude statements. 200

6-1 An approximation of the dimensional structure of the nine attitude statements
 in each set. .. 215
6-2 An empirical situation where the GHCM (item) would predict that the stimuli
 \(a \) and \(b \) should be equally preferred. 223
A-1 The dimensional structure of the four stimuli a, b, c and h which form a ‘triangle’.
The relative sizes of a, b and c are not known but h encompasses these three stimuli.234

A-2 An example of a stimulus structure where the bounds nearer to the ideal interval
are aligned with one another. .. 239

C-1 In the adjoining aligned stimuli test the ideal interval must adjoin the two aligned
attitude intervals. ... 250

C-2 The two possible deviations from the specifications of the adjoining version of the
aligned stimuli test, where the ideal interval is disjoint from the attitude stimuli
(A.), and where the ideal interval overlaps the attitude stimuli (B.) 251