AIRCRAFT NOISE AND CHILD BLOOD PRESSURE

Stephen L Morrell

University of Sydney

2003

This thesis is submitted in satisfaction of the requirements for the degree of Doctor of Philosophy, University of Sydney
TABLE OF CONTENTS

PREFACE .. xvi
I. Note on the author’s contribution ... xvi
II. Institutional Human Ethics Committee Approvals and Consent xviii
III. Acknowledgments ... xix

ABSTRACT ... xxi

GLOSSARY OF TERMS AND ABBREVIATIONS ... xxiii

CHAPTER 1 -- INTRODUCTION .. 1

1.1 Setting ... 2

1.2 Review of studies of aircraft noise and non-aural health effects 6
 1.2.1 Blood Pressure: historical antecedents, definitions 6
 1.2.1.1 Brief historical sketch of blood circulation, pulse and blood
 pressure ... 6
 1.2.2 Meaning and definitions of blood pressure and blood pressure
 variability .. 13
 1.2.2.1 Blood pressure regulation ... 13
 1.2.2.2 Haemodynamicity/BP variability ... 20
 1.2.2.3 A candidate mechanism from human studies for noise
 stimulus to affect resting blood pressure 23
 1.2.2.4 Issues of measurement of blood pressure 24

1.3 Determinants of child resting blood pressure ... 32
 1.3.1 Activity and fitness levels ... 32
 1.3.2 Diet and eating habits .. 33
 1.3.3 Ambient temperature ... 33
 1.3.4 Childhood conditioning factors .. 34
 1.3.4.1 Age .. 34
 1.3.4.2 Sex ... 34
 1.3.4.3 Race/Ethnicity ... 34
 1.3.4.4 Body mass, height, adiposity and growth stage 35
 1.3.4.5 Hormonal/metabolic factors ... 36
 1.3.4.6 ‘Tracking’ of BP levels ... 36
 1.3.4.7 Pulse rate ... 37
 1.3.5 Effect modifiers ... 37
 1.3.5.1 BP and sodium (Na) intake/excretion/sensitivity 37

1.4 Noise .. 38
 1.4.1 Definitions of noise ... 38
 1.4.2 Human perception of, and reaction to, noise 40
 1.4.3 Mechanical measurement of noise .. 41
 1.4.3.1 Development of the dB(A) scale .. 41
 1.4.3.2 The Effective Perceived Noise Level (EPNL) 43
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4.4 What is aircraft noise?</td>
<td>44</td>
</tr>
<tr>
<td>1.4.4.1 Social surveys of community reaction to noise</td>
<td>46</td>
</tr>
<tr>
<td>1.4.4.2 Event-based noise metrics</td>
<td>50</td>
</tr>
<tr>
<td>1.4.4.3 Energy-averaged noise metrics</td>
<td>50</td>
</tr>
<tr>
<td>1.4.4.4 Steps in construction of an ANEI (or ANEC or ANEF) value at a</td>
<td>53</td>
</tr>
<tr>
<td>given grid point</td>
<td></td>
</tr>
<tr>
<td>1.5 Noise and health</td>
<td>55</td>
</tr>
<tr>
<td>1.5.1 Definitions of health</td>
<td>55</td>
</tr>
<tr>
<td>1.5.2 “Stress” and health</td>
<td>56</td>
</tr>
<tr>
<td>1.5.2.1 Development of stress as a determinant of health</td>
<td>56</td>
</tr>
<tr>
<td>1.5.2.2 Stress and personality type</td>
<td>59</td>
</tr>
<tr>
<td>1.5.2.3 Stress and “locus of control”</td>
<td>61</td>
</tr>
<tr>
<td>1.5.2.4 Stress, locus of control and personality type</td>
<td>63</td>
</tr>
<tr>
<td>1.5.3 Noise as a stressor</td>
<td>64</td>
</tr>
<tr>
<td>1.5.3.1 Cardiovascular effects and noise exposure</td>
<td>67</td>
</tr>
<tr>
<td>1.6 Aircraft noise and child BP</td>
<td>79</td>
</tr>
<tr>
<td>1.6.1 Los Angeles Airport child BP study</td>
<td>79</td>
</tr>
<tr>
<td>1.6.2 The Munich Airport Study (1998)</td>
<td>81</td>
</tr>
<tr>
<td>1.7 Conclusions</td>
<td>82</td>
</tr>
<tr>
<td>CHAPTER 2 -- OBJECTIVES AND METHODS</td>
<td>84</td>
</tr>
<tr>
<td>2.0 Introduction</td>
<td>85</td>
</tr>
<tr>
<td>2.1 Hypotheses to be tested</td>
<td>85</td>
</tr>
<tr>
<td>2.1.1 Implications and interpretation of hypotheses</td>
<td>87</td>
</tr>
<tr>
<td>2.2 Study design and its evolution</td>
<td>89</td>
</tr>
<tr>
<td>2.2.1 Evolution of the study</td>
<td>89</td>
</tr>
<tr>
<td>2.3 Study sample, design effects, approvals, consent, exposure and</td>
<td>92</td>
</tr>
<tr>
<td>outcome measurement</td>
<td></td>
</tr>
<tr>
<td>2.3.1 Response Rates</td>
<td>97</td>
</tr>
<tr>
<td>2.3.2 Data Collection</td>
<td>96</td>
</tr>
<tr>
<td>2.3.3 Surveys/questionnaires</td>
<td>97</td>
</tr>
<tr>
<td>2.3.3.1 Child activity levels</td>
<td>99</td>
</tr>
<tr>
<td>2.3.3.2 Child eating before school and use of salt on food</td>
<td>99</td>
</tr>
<tr>
<td>2.3.3.3 Child dietary information</td>
<td>99</td>
</tr>
<tr>
<td>2.3.3.4 House structure</td>
<td>100</td>
</tr>
<tr>
<td>2.3.3.5 Socio-economic status</td>
<td>100</td>
</tr>
<tr>
<td>2.3.4 Physical Measurements</td>
<td>101</td>
</tr>
<tr>
<td>2.3.4.1 Blood Pressure</td>
<td>102</td>
</tr>
<tr>
<td>2.3.4.2 Skinfold thickness</td>
<td>102</td>
</tr>
<tr>
<td>2.3.4.3 Height</td>
<td>102</td>
</tr>
<tr>
<td>2.3.4.4 Weight</td>
<td>102</td>
</tr>
<tr>
<td>2.3.4.5 Ambient Temperature</td>
<td>103</td>
</tr>
</tbody>
</table>
2.3.5 Training and assessment of field workers .. 103
2.3.6 Ethics clearance and approval mechanisms 104
2.3.7 Reporting of measurements to participants 105
2.3.8 Noise Exposure measurement .. 105
2.3.9 Geocoding address information and aircraft noise exposure data 107
2.3.10 Non-aircraft noise sources ... 109

2.4 Statistical Analyses .. 110
2.4.1 Distributions .. 111
2.4.2 Regression Models ... 111
2.4.3 The effect of overflights during blood pressure measurement 117
 2.4.3.1 The effect of aircraft overflights on blood pressure measurement 120
2.4.4 Within-subject blood pressure and pulse rate variability 123
 2.4.4.1 Conclusions on BP and pulse rate variability 129
2.4.5 Discussion of Methods .. 131

2.5 Preliminary results ... 132
2.5.1 Response Rates ... 132
2.5.2 Blood pressure, weight, height and sub-scapular skinfold distributions .. 134
 2.5.2.1 Baseline ... 134
 2.5.2.2 Follow-up ... 137
 2.5.2.3 Distribution of baseline-to-follow-up BP differences 138
 2.5.2.4 Distributions of anthropometric measurements 139
 2.5.3 Mean values of physical measurements by sub-group: descriptive statistics of physical factors normally associated with BP 141
 2.5.3.1 Baseline ... 141
 2.5.3.2 Follow-up ... 145
 2.5.4 Changes and differences in BP and anthropometric measures between baseline and follow-up samples .. 148
 2.5.4.1 Differences between follow-up and lost-to-follow-up at baseline 148
 2.5.4.2 Within-subject changes between baseline and follow-up 149
 2.5.5 Distributions of school aircraft noise values and children 153

2.6 Summary and conclusions ... 157

CHAPTER 3 -- RESULTS ... 160

3.0 Introduction .. 161

3.1. cross-sectional associations between aircraft noise and blood pressure ... 161
 3.1.1. School aircraft noise exposure -- Pre-baseline, baseline and follow-up ... 161
 3.1.1.1 Systolic blood pressure and school aircraft noise exposure 161

iii
3.1.1.2 Diastolic Blood Pressure and school aircraft noise exposure .. 166
3.1.2 Total (school + home) aircraft noise exposure, pre-baseline, baseline and follow-up ... 170
3.1.2.1 Systolic BP and total aircraft noise exposure 170
3.1.2.2 Diastolic BP and total aircraft noise exposure .. 174
3.1.3 BP and noise measurement artefacts .. 179
3.1.3.1 BP and aircraft noise exposure as an ordinal variable 179
3.1.3.2 Panel analysis of BP and non-zero aircraft noise exposure 183
3.1.3.3 Summary of unadjusted cross-sectional associations 188

3.2 Regression models of cross-sectional associations between BP and School Aircraft noise exposure -- baseline and follow-up ... 189
3.2.1 Systolic BP and school aircraft noise exposure ... 190
3.2.1.1 Baseline systolic BP and pre-baseline noise ... 190
3.2.1.2 Baseline and follow-up ... 191
3.2.2 Diastolic BP and school aircraft noise exposure ... 193
3.2.2.1 Baseline BP and pre-baseline noise ... 193
3.2.2.2 Baseline and follow-up ... 193

3.3 Regression models of cross-sectional associations between BP and Total Aircraft noise exposure -- baseline and follow-up ... 196
3.3.1 Systolic blood pressure and total (home + school) aircraft noise exposure ... 196
3.3.1.1 Baseline BP and pre-baseline noise ... 196
3.3.1.2 Baseline and follow-up ... 196
3.3.2 Diastolic blood pressure and total (home + school) aircraft noise exposure ... 197
3.3.2.1 Baseline BP and pre-baseline noise ... 197
3.3.2.2 Baseline and follow-up ... 197

3.4 Subsidiary BP outcome measures .. 198
3.4.1 Baseline subsidiary BP measure and pre-baseline noise 198
3.4.2 Baseline subsidiary BP measures and noise ... 199
3.4.3 Follow-up subsidiary BP measures and noise ... 199

3.5 Summary of cross-sectional results in relation to hypotheses 199

3.6 Longitudinal associations between aircraft noise and blood pressure 204
3.6.1 Baseline blood pressure and prior changes in aircraft noise exposure ... 205
3.6.1.1 Recent school aircraft noise exposure change -- pre-baseline to baseline ... 205
3.6.1.2 Pre-baseline total aircraft noise exposure change and baseline BP ... 209
3.6.2 Follow-up blood pressure and prior changes in aircraft noise exposure ... 212
3.6.2.1 Follow-up BP and recent school noise exposure change 212
LIST OF TABLES

Table 1.1 Selection of noise sources in domestic aircraft operation, the mechanism for their generation and areas/people affected (reproduced with modification from [Rodda, 1967]).

Table 1.2 Summary of selected studies examining the effects of aircraft noise on mental health.

Table 2.1 Events surrounding and following construction of new runway, BP study, and changes in flight operations.

Table 2.2 Variables used in regression models of blood pressure and aircraft noise.

Table 2.3 Proportions of positive differences in successive BP measurements (%), by exposure to aircraft overflights, baseline.

Table 2.4 Proportions of instances of higher third BP readings than second BP reading (%), in those whose second BP reading did not exceed the first, baseline.

Table 2.5 Means of blood pressures overall and for main sub-groups, baseline.

Table 2.6 Means of anthropometric variables and pulse rate by major sub-group, baseline.

Table 2.7 Means of blood pressures overall and for main sub-groups, follow-up.

Table 2.8 Means of anthropometric variables and pulse rate by major sub-group, follow-up.

Table 2.9 Group proportions, follow-up and lost-to-follow-up, at baseline.

Table 2.10 Baseline BP, anthropometric and noise exposure differences between follow-up and lost-to-follow-up.

Table 2.11 Mean within-subject change in blood pressures between baseline and follow-up, overall and for main sub-groups.

Table 2.12 Mean within-subject change between baseline and follow-up in anthropometric variables and pulse rate by major sub-group, follow-up.

Table 2.13 Participating schools, numbers of children measured, and mean monthly aircraft noise exposure values for month of measurement occasion, baseline and follow-up.

Table 3.1 Unadjusted regression estimates of BP (mmHg) versus aircraft noise exposure (ANEI units).

Table 3.2 Regression estimates of baseline measures of blood pressure versus pre-runway (pre-baseline) school and total aircraft noise exposures.

Table 3.3 Regression estimates of measures of baseline blood pressure versus baseline school and total aircraft noise exposure.
Table 3.4 Regression estimates of follow-up measures of BP versus follow-up aircraft noise exposure, school and total 203
Table 3.5 Regression estimates of baseline BP measure versus recent prior (pre-baseline) aircraft noise exposure change, school and total 218
Table 3.6 Regression estimates of follow-up BP measure versus recent prior aircraft noise exposure change, school and total 219
Table 3.7 Regression estimates of follow-up BP measures versus baseline-to-follow-up aircraft noise exposure change, school and total 226
Table 3.8 Regression estimates of baseline-to-follow-up change in BP measure versus follow-up aircraft noise exposure, school and total 226
Table 3.9 Summary of BP variables significantly associated with aircraft noise exposure after adjustment for confounder, effect modifiers, sources of measurement bias and within-subject BP variability 233
Table RA9 Regression estimates of diastolic blood pressure (mmHg) versus school aircraft noise exposure (ANEI), controlling for confounding factors, effect modifiers and sources of measurement bias, baseline and follow-up, school aircraft noise 15 ANEI or above. 244

Table RA10 Regression estimates of diastolic blood pressure (mmHg) versus school aircraft noise exposure (ANEI), controlling for confounding factors, effect modifiers, sources of measurement bias and measures of within-subject BP variability, baseline and follow-up, school aircraft noise 15 ANEI or above. ... 245

Table RA11 Regression estimates of baseline systolic and diastolic blood pressure (mmHg) versus pre-baseline total aircraft noise exposure (ANEI), controlling for confounding factors, effect modifiers and sources of measurement bias .. 246

Table RA12 Regression estimates of baseline systolic and diastolic blood pressure (mmHg) versus pre-baseline total aircraft noise exposure (ANEI), controlling for confounding factors, effect modifiers, sources of measurement bias and measures of within-subject BP variability 247

Table RA13 Regression estimates of systolic blood pressure (mmHg) versus total aircraft noise exposure (ANEI), controlling for confounding factors, effect modifiers and sources of measurement bias, baseline and follow-up .. 248

Table RA14 Regression estimates of systolic blood pressure (mmHg) versus total aircraft noise exposure (ANEI), controlling for confounding factors, effect modifiers, sources of measurement bias and measures of within-subject BP variability, baseline and follow-up .. 249

Table RA15 Regression estimates of diastolic blood pressure (mmHg) versus total aircraft noise exposure (ANEI), controlling for confounding factors, effect modifiers and sources of measurement bias, baseline and follow-up .. 250

Table RA16 Regression estimates of diastolic blood pressure (mmHg) versus total aircraft noise exposure (ANEI), controlling for confounding factors, effect modifiers, sources of measurement bias and measures of within-subject BP reactivity, baseline and follow-up .. 251

Table RA17 Regression estimates of baseline systolic and diastolic BP (mmHg) versus prior pre-post runway school aircraft noise exposure change (ANEI), controlling for confounding factors, effect modifiers and sources of measurement bias .. 252

Table RA18 Regression estimates of baseline systolic and diastolic BP (mmHg) versus prior pre-post runway school aircraft noise exposure change (ANEI), controlling for confounding factors, effect modifiers, sources of measurement bias and measures of within-subject BP variability 253

Table RA19 Regression estimates of baseline systolic and diastolic BP (mmHg) versus prior pre-post runway school aircraft noise exposure change (ANEI), controlling for confounding factors, effect modifiers and sources of measurement bias, boys .. 254
Table RA20 Regression estimates of baseline systolic and diastolic BP (mmHg) versus prior pre-post runway school aircraft noise exposure change (ANEI), controlling for confounding factors, effect modifiers and sources of measurement bias, girls ... 255
Table RA21 Regression estimates of baseline systolic and diastolic BP (mmHg) versus prior pre-post runway school aircraft noise exposure change (ANEI), controlling for confounding factors, effect modifiers, sources of measurement bias and measures of within-subject BP variability, boys 256
Table RA22 Regression estimates of baseline systolic and diastolic BP (mmHg) versus prior pre-post runway school aircraft noise exposure change (ANEI), controlling for confounding factors, effect modifiers, sources of measurement bias and measures of within-subject BP variability, girls 257
Table RA23 Regression estimates of baseline systolic and diastolic BP (mmHg) versus pre-baseline change in total aircraft noise exposure (ANEI), controlling for confounding factors, effect modifiers and sources of measurement bias ... 258
Table RA24 Regression estimates of baseline systolic and diastolic BP (mmHg) versus recent change in total baseline aircraft noise exposure (ANEI), controlling for confounding factors, effect modifiers, sources of measurement bias and measures of within-subject BP variability 259
Table RA25 Regression estimates of baseline systolic and diastolic BP (mmHg) versus pre-baseline change in total aircraft noise exposure (ANEI), controlling for confounding factors, effect modifiers and sources of measurement bias, boys ... 260
Table RA26 Regression estimates of baseline systolic and diastolic BP (mmHg) versus pre-baseline change in total aircraft noise exposure (ANEI), controlling for confounding factors, effect modifiers and sources of measurement bias, girls ... 261
Table RA27 Regression estimates of baseline systolic and diastolic BP (mmHg) versus recent change in total baseline aircraft noise exposure (ANEI), controlling for confounding factors, effect modifiers, sources of measurement bias and measures of within-subject BP variability, boys 262
Table RA28 Regression estimates of baseline systolic and diastolic BP (mmHg) versus recent change in total baseline aircraft noise exposure (ANEI), controlling for confounding factors, effect modifiers, sources of measurement bias and measures of within-subject BP variability, girls 263
Table RA29 Regression estimates of follow-up systolic and diastolic BP (mmHg) versus recent change in school aircraft noise exposure (ANEI), controlling for confounding factors, effect modifiers and sources of measurement bias ... 264
Table RA30 Regression estimates of follow-up systolic and diastolic BP (mmHg) versus recent change in school aircraft noise exposure (ANEI), controlling for confounding factors, effect modifiers, sources of measurement bias and measures of within-subject BP variability 265
Table RA31 Regression estimates of follow-up systolic and diastolic BP (mmHg) versus recent change in school aircraft noise exposure (ANEI), controlling for confounding factors, effect modifiers and sources of measurement bias, boys ... 266
Table RA32 Regression estimates of follow-up systolic and diastolic BP (mmHg) versus recent change in school aircraft noise exposure (ANEI), controlling for confounding factors, effect modifiers and sources of measurement bias, girls ... 267

Table RA33 Regression estimates of follow-up systolic and diastolic BP (mmHg) versus recent change in school aircraft noise exposure (ANEI), controlling for confounding factors, effect modifiers, sources of measurement bias and measures of within-subject BP variability, boys . . . 268

Table RA34 Regression estimates of follow-up systolic and diastolic BP (mmHg) versus recent change in school aircraft noise exposure (ANEI), controlling for confounding factors, effect modifiers, sources of measurement bias and measures of within-subject BP variability, girls 269

Table RA35 Regression estimates of follow-up systolic and diastolic BP (mmHg) and recent change in total aircraft noise, controlling for confounding factors, effect modifiers and sources of measurement bias 270

Table RA36 Regression estimates of follow-up systolic and diastolic BP (mmHg) and recent change in total aircraft noise, controlling for confounding factors, effect modifiers, sources of measurement bias and measures of within-subject BP variability 271

Table RA37 Regression estimates of follow-up systolic and diastolic BP (mmHg) and recent change in total aircraft noise, controlling for confounding factors, effect modifiers and sources of measurement bias, boys 272

Table RA38 Regression estimates of follow-up systolic and diastolic BP (mmHg) and recent change in total aircraft noise, controlling for confounding factors, effect modifiers and sources of measurement bias, girls 273

Table RA39 Regression estimates of follow-up systolic and diastolic BP (mmHg) and recent change in total aircraft noise, controlling for confounding factors, effect modifiers, sources of measurement bias and measures of within-subject BP variability, boys 274

Table RA40 Regression estimates of follow-up systolic and diastolic BP (mmHg) and recent change in total aircraft noise, controlling for confounding factors, effect modifiers, sources of measurement bias and measures of within-subject BP variability, girls 275

Table RA41 Regression estimates of follow-up systolic and diastolic BP (mmHg) versus baseline-to-follow-up school aircraft noise exposure change (ANEI), controlling for confounding factors, effect modifiers and sources of measurement bias 276

Table RA42 Regression estimates of follow-up systolic and diastolic BP (mmHg) versus baseline-to-follow-up school aircraft noise exposure change (ANEI), controlling for confounding factors, effect modifiers, sources of measurement bias and measures of within-subject BP variability 277

Table RA43 Regression estimates of follow-up systolic BP (mmHg) and baseline-to-follow-up school aircraft noise exposure change (ANEI), controlling for confounding factors, effect modifiers and sources of measurement bias, boys & girls 278
Table RA44 Regression estimates of follow-up systolic BP (mmHg) and baseline-to-follow-up school aircraft noise exposure change (ANEI), controlling for confounding factors, effect modifiers, sources of measurement bias and measures of within-subject BP variability, boys & girls .. 279

Table RA45 Regression estimates of follow-up diastolic BP (mmHg) and baseline-to-follow-up school aircraft noise exposure change (ANEI), controlling for confounding factors, effect modifiers, and sources of measurement bias, boys & girls .. 280

Table RA46 Regression estimates of follow-up diastolic BP (mmHg) and baseline-to-follow-up school aircraft noise exposure change (ANEI), controlling for confounding factors, effect modifiers, sources of measurement bias and measures of within-subject BP variability, boys & girls .. 281

Table RA47 Regression estimates of follow-up systolic and diastolic BP (mmHg) versus baseline-to-follow-up total aircraft noise exposure change (ANEI), controlling for confounding factors, effect modifiers and sources of measurement bias .. 282

Table RA48 Regression estimates of follow-up systolic and diastolic BP (mmHg) versus baseline-to-follow-up total aircraft noise exposure change (ANEI), controlling for confounding factors, effect modifiers, sources of measurement bias and measures of within-subject BP variability .. 283

Table RA49 Regression estimates of follow-up systolic BP (mmHg) and baseline-to-follow-up total aircraft noise exposure change (ANEI), controlling for confounding factors, effect modifiers and sources of measurement bias, boys & girls .. 284

Table RA50 Regression estimates of follow-up systolic BP (mmHg) and baseline-to-follow-up total aircraft noise exposure change (ANEI), controlling for confounding factors, effect modifiers, sources of measurement bias and measures of within-subject BP variability, boys & girls .. 285

Table RA51 Regression estimates of follow-up diastolic BP (mmHg) and baseline-to-follow-up total aircraft noise exposure change (ANEI), controlling for confounding factors, effect modifiers and sources of measurement bias, boys & girls .. 286

Table RA52 Regression estimates of follow-up diastolic BP (mmHg) and baseline-to-follow-up total aircraft noise exposure change (ANEI), controlling for confounding factors, effect modifiers, sources of measurement bias and measures of within-subject BP variability, boys & girls .. 287

Table RA53 Regression estimates of baseline to follow-up systolic BP change (mmHg) versus baseline-to-follow-up school aircraft noise exposure change (ANEI), controlling for confounding factors, effect modifiers and sources of measurement bias, boys & girls .. 288
Table RA54 Regression estimates of baseline to follow-up systolic BP change (mmHg) versus baseline-to-follow-up school aircraft noise exposure change (ANEI), controlling for confounding factors, effect modifiers, sources of measurement bias and measures of within-subject BP variability, boys & girls ... 289
Table RA55 Regression estimates of baseline to follow-up diastolic BP change (mmHg) versus baseline-to-follow-up school aircraft noise exposure change (ANEI), controlling for confounding factors, effect modifiers and sources of measurement bias, boys & girls ... 290
Table RA56 Regression estimates of baseline to follow-up diastolic BP change (mmHg) versus baseline-to-follow-up school aircraft noise exposure change (ANEI), controlling for confounding factors, effect modifiers, sources of measurement bias and measures of within-subject BP variability, boys & girls ... 291
Table RA57 Regression estimates of baseline to follow-up systolic BP change (mmHg) versus baseline-to-follow-up total aircraft noise exposure change (ANEI), controlling for confounding factors, effect modifiers and sources of measurement bias, boys & girls ... 292
Table RA58 Regression estimates of baseline to follow-up systolic BP change (mmHg) versus baseline-to-follow-up total aircraft noise exposure change (ANEI), controlling for confounding factors, effect modifiers, sources of measurement bias and measures of within-subject BP variability, boys & girls ... 293
Table RA59 Regression estimates of baseline to follow-up diastolic BP change (mmHg) versus baseline-to-follow-up total aircraft noise exposure change (ANEI), controlling for confounding factors, effect modifiers and sources of measurement bias, boys & girls ... 294
Table RA60 Regression estimates of baseline to follow-up diastolic BP change (mmHg) versus baseline-to-follow-up total aircraft noise exposure change (ANEI), controlling for confounding factors, effect modifiers, sources of measurement bias and measures of within-subject BP variability, boys & girls ... 295

LIST OF FIGURES

Figure 1.1. Schema for pathways between childhood stress and raised blood pressure and hypertension in adulthood. Adapted from Cresanta et al [1980] ... 65
Figure 1.2 Major response mechanisms of the body and their interconnections with the central and autonomic nervous-glandular systems. Source: Kryter [1994] ... 66
Figure 2.1 Schema for hypotheses tested for association between aircraft noise exposure and blood pressure ... 86
Figure 2.2 Single flyover scenarios during 3 successive BP measurements ... 118
Figure 2.3 Double and triple flyover scenarios with 3 successive BP measurements ... 119
Figure 2.4 Systolic BP (mmHg) and pulse rate (beats per minute), baseline and follow-up .. 124
Figure 2.5 Diastolic BP (mmHg) and pulse rate (beats per minute), baseline and follow-up .. 125
Figure 2.6 Longitudinal changes in systolic and diastolic BP (mmHg), versus longitudinal change in pulse rate (beats per minute) .. 126
Figure 2.7 Systolic BP (mmHg) and systolic BP variability (mmHg of systolic BP standard deviation), baseline and follow-up .. 127
Figure 2.8 Diastolic BP (mmHg) and diastolic BP variability (mmHg), baseline and follow-up .. 128
Figure 2.9 Longitudinal change in BP (mmHg) and longitudinal change in BP variability (standard deviation, mmHg), systolic and diastolic BP .. 129
Figure 2.10 Distribution of mean of 2nd & 3rd systolic BP readings (mmHg), boys & girls, baseline .. 134
Figure 2.11 Distribution of mean of 2nd & 3rd diastolic BP readings (mmHg), boys & girls, baseline .. 135
Figure 2.12 Distribution of weights (kg), boys & girls, baseline .. 135
Figure 2.13 Distribution of heights (cm), boys & girls, baseline .. 136
Figure 2.14 Distribution of sub-scapular skinfold thicknesses (mm), boys & girls, baseline .. 136
Figure 2.15 Distribution of systolic BP (mmHg), boys & girls, follow-up .. 137
Figure 2.16 Distribution of follow-up diastolic BP reading (mmHg), boys & girls, follow-up .. 138
Figure 2.17 Distribution of longitudinal change in systolic BP (mmHg), boys & girls .. 138
Figure 2.18 Distribution of baseline-to-follow-up change in mean of 2nd & 3rd diastolic BP reading (mmHg), boys & girls .. 139
Figure 2.19 Distributions of weight (kg), boys & girls, follow-up .. 139
Figure 2.20 Distribution of height (cm), boys & girls, follow-up .. 140
Figure 2.21 Distributions of subscapular skinfold thickness (mm), boys & girls, follow-up .. 140
Figure 2.22 Aircraft noise contours from Sydney Airport, in ANEI units, and schools (stars), August 1997 .. 156
Figure 3.1 Baseline systolic BP (mmHg) versus pre-baseline school aircraft noise exposure (ANEI units) .. 162
Figure 3.2 Systolic blood pressure (mmHg) versus school aircraft noise exposure (ANEI units), baseline and follow-up .. 163
Figure 3.3 Systolic blood pressure (mmHg) and school aircraft noise exposure (ANEI units), baseline and follow-up, boys .. 164
Figure 3.4 Systolic blood pressure (mmHg) and school aircraft noise exposure (ANEI units), baseline and follow-up, girls .. 165
Figure 3.5 Baseline diastolic BP (mmHg) versus pre-baseline school aircraft noise exposure (ANEI units) .. 166
Figure 3.6 Diastolic BP (mmHg) and school aircraft noise exposure (ANEI units), baseline and follow-up .. 167
Figure 3.7 Diastolic blood pressure (mmHg) and school aircraft noise exposure (ANEI units), baseline and follow-up, boys .. 168
Figure 3.8 Diastolic blood pressure (mmHg) and school aircraft noise exposure (ANEI units), baseline and follow-up, girls .. 169
Figure 3.9 Baseline systolic BP (mmHg) versus pre-baseline total (home + school) aircraft noise exposure (ANEI units) 171
Figure 3.10 Systolic BP (mmHg) versus total aircraft noise exposure (ANEI units), baseline and follow-up 172
Figure 3.11 Systolic BP (mmHg) and total aircraft noise exposure (in ANEI units), baseline and follow-up, boys 173
Figure 3.12 Systolic BP (mmHg) and total aircraft noise exposure (in ANEI units), baseline and follow-up, girls 174
Figure 3.13 Baseline diastolic BP (mmHg) versus pre-baseline total aircraft noise exposure (ANEI units) .. 175
Figure 3.14 Diastolic BP (mmHg) versus total (school + home) aircraft noise exposure (ANEI units), baseline 175-176
Figure 3.15 Diastolic BP (mmHg) versus total (school + home) aircraft noise exposure (ANEI units), baseline, boys 176-177
Figure 3.16 Diastolic BP (mmHg) and total aircraft noise exposure (in ANEI units), baseline, girls ... 177-178
Figure 3.17 Systolic blood pressure (mmHg) by school aircraft noise in ordinal scale of ANEI units, baseline and follow-up 180
Figure 3.18 Diastolic blood pressure (mmHg) versus school aircraft noise exposure, ordinal scale of ANEI units, baseline and follow-up 181
Figure 3.19 Scatter plots of systolic blood pressure by total aircraft noise exposure (school + home), scaled ordinarily in ANEI units, baseline and follow-up ... 182
Figure 3.20 Scatter plots of diastolic blood pressure by total aircraft noise exposure (school + home), scaled ordinarily in ANEI units, baseline and follow-up .. 183
Figure 3.21 Scatter plots of systolic blood pressure and school aircraft noise exposure 15 ANEI and above, baseline and follow-up 184
Figure 3.22 Scatter plots of diastolic blood pressure and school aircraft noise exposure 15 ANEI and above, baseline and follow-up 185
Figure 3.23 Scatter plots of systolic blood pressure and school or home aircraft noise exposure 15 ANEI and above, baseline and follow-up 186
Figure 3.24 Scatter plots of diastolic blood pressure and total aircraft noise exposure, school or home aircraft noise exposure 15 ANEI and above, baseline and follow-up .. 187
Figure 3.25 Baseline systolic BP (mmHg) and prior change in school aircraft noise exposure (ANEI), boys and girls 206
Figure 3.26 Baseline diastolic BP (mmHg) and prior change in school aircraft noise exposure (ANEI), boys and girls 207
Figure 3.27 Baseline systolic BP (mmHg) and recent pre-baseline change in total (school + home) aircraft noise exposure (ANEI), boys & girls .. 209
Figure 3.28 Baseline diastolic BP (mmHg) and pre-baseline total aircraft noise exposure change (ANEI), boys & girls 210
Figure 3.29 Follow-up systolic BP (mmHg) and recent school aircraft noise exposure change (ANEI) ... 212
Figure 3.30 Follow-up diastolic BP (mmHg) and recent change in school noise exposure (ANEI) ... 213
Figure 3.31 Follow-up systolic BP (mmHg) and recent change in total noise exposure (ANEI) ... 213

Figure 3.32 Follow-up diastolic BP (mmHg) and recent change in total aircraft noise exposure (ANEI) ... 214

Figure 3.33 Baseline-to-follow-up school aircraft noise exposure change (ANEI) and follow-up systolic BP (mmHg) 221

Figure 3.34 Baseline-to-follow-up school aircraft noise exposure change (ANEI) and follow-up diastolic BP (mmHg) 221

Figure 3.35 Follow-up systolic BP (mmHg) and baseline-to-follow-up total aircraft noise exposure change (ANEI) 221

Figure 3.36 Follow-up diastolic BP (mmHg) and baseline-to-follow-up total aircraft noise exposure change (ANEI) 223

Figure 3.37 Baseline-to-follow-up change in systolic BP (mmHg) and corresponding change in school aircraft noise exposure (ANEI), boys, girls .. 227-228

Figure 3.38 Baseline-to-follow-up change in diastolic BP (mmHg) and corresponding change in school aircraft noise exposure (ANEI), boys, girls .. 228-229

Figure 3.39 Baseline-to-follow-up change in systolic BP (mmHg) and corresponding change in total aircraft noise exposure (ANEI), boys & girls .. 230

Figure 3.40 Baseline-to-follow-up change in diastolic BP (mmHg) and corresponding change in total aircraft noise exposure (ANEI), boys & girls .. 231
I. NOTE ON THE AUTHOR’S CONTRIBUTION

The Inner Sydney Child Blood Pressure Study was part of a suite of studies commissioned and funded by the Federal Airports Corporation to examine aspects of the health effects of domestic aircraft noise exposure. The role of the author in the Inner Sydney Child Blood Pressure Study was in the design of the study itself, in supervision of child BP data collection, both at baseline and follow-up, and in the processing and statistical and epidemiological analyses of the BP, survey and noise and physical measurement data. The author was also responsible for the design of the survey instrument and the measurement protocols used.

Overall supervision of the project was by a steering committee consisting of members making up the Inner Sydney Child Blood Pressure Study group, including Associate Richard Taylor (School of Public Health, University of Sydney), Dr Norman Carter and Mr Peter Peploe (both of the National Acoustic Laboratories), Dr Soames Job, Department of Psychology, University of Sydney, and the author. Project supervision included liaising with the various school authorities and with the individual school principals in the recruitment of subjects to the study; the training and supervision of fieldworkers; assessment of data quality and its analysis; and the writing of reports for the funding body. Three major and two interim reports were prepared for the funding body relating to this study, co-authored by the study group members. These were:

Aircraft noise exposure data were collected and processed by Peter Peploe of the National Acoustic Laboratories, both at baseline and follow-up. Geocoding of school and home addresses and aircraft noise exposure data at study baseline was carried out by a research assistant (Layton Walton); geocoding of follow-up addresses and noise data was carried out by the author. The author also supervised a dietary salt study of a baseline subsample, with use of a standard food frequency questionnaire, and co-supervised the subsequent analysis and writing up of these data in 1997, as a treatise by a Master of Public Health candidate in the School of Public Health, University of Sydney.

Parts of the literature review, have been published previously in a peer-reviewed journal and were co-authored by Associate Professor Richard Taylor and Professor David Lyle:

This publication has been included in Appendix 3.

The remaining work, including the formulation of specific hypotheses for testing within a coherent theoretical paradigm, the interpretation of the results, and the writing up and presentation of this thesis is that of the author.
II. INSTITUTIONAL HUMAN ETHICS COMMITTEE APPROVALS AND CONSENT

Ethics committee approvals were obtained from both the Sydney University Human Ethics Committee and the Central Sydney Area Health Service Ethics Committee to conduct this study. Permission was obtained from the NSW Department of Schools Education and the Catholic Schools Commission to survey and measure primary schoolchildren from schools proximate to the existing and projected flight paths of Sydney airport. Schools unaffected by aircraft noise were also approved for inclusion in the study in order to provide a suitable control comparison group (unexposed to aircraft noise). Permission was sought from each school principal of the individual schools to take part in the study. Also included at this level were independent schools not subject to the central State or Catholic education authorities.

Finally, individual consent was sought from the parents of the children. Consent was active -- that is, only those children whose parents had signed and returned the consent form to the school were measured.
III. ACKNOWLEDGMENTS

First I would like to acknowledge the Federal Airports Corporation (FAC), as it was known at the time, for funding both the baseline and follow-up phases of this study. Thanks in particular are due to Heloise Campbell who was the main liaison person at the FAC.

The most important component of any research project involving empirical measurement of study and outcome factors is the personnel responsible for the collection of the data. In this regard, I unreservedly acknowledge the contributions of the blood pressure measuring teams who comprised:

Baseline BP measurement team: Sara-Jane Bush, Gladys Hitchin, Amelia Howland, Denise Lawson, Yvette Lawson and Patrick Parlow.

Special thanks are due to Patrick Parlow for his efforts in liaising with school principals in ensuring the maximum response to the survey; and to Gladys Hitchin whose eye for detail, persistence and organisational aptitude ensured that the child BP data were collected in an orderly manner and entered into computer format accurately.

Follow-up BP measurement team: Gladys Hitchin, Estella Ortiz, Pam Richardson and Alice Uribe.

Special thanks again are due to Gladys Hitchin who was untiring in her efforts in liaising with school principals, and in collecting and entering the follow-up BP data into computer format. I thank Gladys also for training the follow-up BP measurement team.

I thank Peter Peploe from the National Acoustic Laboratories for his input and expertise in the devising of a system for measuring aircraft noise exposures and converting these raw data into the noise metric used in this study. This was an involved and arduous task requiring a rare and innovative talent and expertise in sound and noise measurement and analysis that has contributed to the cutting-edge rigour of the exposure measures used in this thesis.

I acknowledge the input of Layton Walton who was responsible for geocoding baseline
school and home address information along with baseline noise data into a geographic information system data base which in turn enabled analysis of BP and aircraft noise exposure data.

I thank Dr Norman Carter who headed our study team and provided overall guidance to the project. I thank Norm also for co-supervising this thesis.

I also would like to thank Professor Geoffrey Berry for reading an earlier draft of this thesis to check for statistical and methodological errors.

I especially would like to thank Associate Professor Richard Taylor who is the main supervisor of this thesis and who has been my mentor for the past 12 years. Without Richard’s patient, persistent and good-natured encouragement and sharply insightful critiques this thesis would not have appeared.

I also owe thanks for the moral support given freely by my parents, and by work colleagues, especially Dr KC Tang, Dr Milton Lewis and Professor Charles Kerr.

Finally, I would like to thank my wife, Margaret Penman, who has been more persistent than anyone in ensuring that I completed this thesis. She has made sacrifices above and beyond anything that might be called ‘spousal duty’ and I owe her a debt also beyond ‘spousal duty’.
ABSTRACT

The purpose of the study was to examine the existence of an association between child blood pressure (BP) and exposure to domestic jet aircraft noise in the context of the construction of a new parallel north-south runway at Sydney (Kingsford-Smith) Airport. The baseline study was commissioned and funded by the Federal Airports Corporation (FAC), with measurements conducted in 1994 and 1995. A follow-up longitudinal component to the study was subsequently commissioned and funded by the FAC in 1997, and measurements conducted in the same year. As the same individuals were measured and re-measured over changing conditions of exposure to aircraft noise, the quasi-experimental nature of the study allowed inferences to be made regarding exposure to aircraft noise and child BP.

The main hypotheses for testing were that BP, and within-subject longitudinal changes in BP, are positively related to domestic jet aircraft noise exposure and longitudinal changes in domestic jet aircraft noise exposure respectively. Subsidiary hypotheses tested for evidence of short- and long-term BP adaptation effects where BPs were related to prior changes to aircraft noise exposures.

A sample of 75 primary schools within a 20 km radius of Sydney Airport under various noise exposure conditions, both existing and those projected with the advent of the new runway, participated in the study. The baseline cohort comprised 1,230 Year 3/4 children attending the schools in 1994 and 1995, and the follow-up participants comprised 628 of the original baseline sample re-measured in 1997. Study participants were enrolled by active parental consent. The baseline response rate was approximately 40% of children in the participating schools.

Systolic (SBP) and diastolic (DBP) blood pressure readings of the children were taken using automated BP measuring equipment along with anthropometric measurements (heights, weights, skinfold thicknesses and waist measurements). Parental surveys captured items pertaining to the child’s ethnic background as measured by the country of birth of the child and parent(s), residential address and housing structure, child eating habits and activity levels, along with family and child history of high blood pressure.

Aircraft noise exposure data were collected by the National Acoustic Laboratories and
processed into the energy-averaged noise metric used in Australia for aircraft noise exposure assessment called the Australian Noise Exposure Index (ANEI). Mean exposures for a given calendar month were used in the analysis. ANEI values were geocoded to exact geographic locations using digitised street maps from which values for each house and school address, also geocoded, were interpolated. A child BP measured in a given month was matched to a aircraft noise exposure value both at their school and residential address for that month for analysis.

After adjusting for confounding and other factors, the cross-sectional relationship between BP and aircraft noise exposure was found to be inconsistent. SBP was non-significantly negatively associated with school aircraft noise exposure at baseline (−0.05 mmHg/ANEI, cluster-sampling-adjusted p>0.05), but positively and non-significantly associated with school aircraft noise exposure at follow-up (0.05 mmHg/ANEI, p>0.05). As for SBP, baseline DBP was significantly negatively related to school aircraft noise exposure at (−0.09 mmHg/ANEI, p<0.001) and non-significantly positively associated with school aircraft noise exposure at follow-up (0.05 mmHg/ANEI, p>0.05).

Within-subject BP changes, occurring from baseline to follow-up, regressed on corresponding longitudinal changes in aircraft noise exposures produced inconsistent results. SBP change was positively and non-significantly (0.027 mmHg/ΔANEI, p>0.05) associated with corresponding school aircraft noise exposure change, while SBP change was negatively associated total aircraft noise exposure change (statistically non-significant, −0.06 mmHg/ΔANEI, p>0.05). DBP changes were similarly and non-significantly related to corresponding aircraft noise exposure changes.

Some evidence for short-term BP adaptation to recent changes in aircraft noise exposure was found. Consistent negative associations between systolic and diastolic BP and recent changes in school aircraft noise exposure were found. This association was statistically significant at study baseline (SBP: −0.19 mmHg/ΔANEI, p<0.001; DBP: −0.12 mmHg/ΔANEI, p<0.001), and of similar magnitude although not statistically significant at follow-up (SBP: −0.14 mmHg/ΔANEI; DBP: −0.10 mmHg/ΔANEI, p>0.05). In the presence of inconsistent cross-sectional BP-aircraft noise exposure associations, this finding is consistent with evidence of a homoeostatic BP response to recent changes in aircraft noise exposure, where resting BP returns to pre-existing levels unrelated to aircraft noise exposure. The public health implication of this finding appears to be benign.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAMI</td>
<td>American Association for Advancement of Medical Instrumentation</td>
</tr>
<tr>
<td>ACTH</td>
<td>Adrenocorticotropic Hormone</td>
</tr>
<tr>
<td>ADH</td>
<td>Antidiuretic Hormone</td>
</tr>
<tr>
<td>AMP</td>
<td>Adenosine Monophosphate</td>
</tr>
<tr>
<td>ANEC</td>
<td>Australian Noise Exposure Concept</td>
</tr>
<tr>
<td>ANEF</td>
<td>Australian Noise Exposure Forecast</td>
</tr>
<tr>
<td>ANEI</td>
<td>Australian Noise Exposure Index</td>
</tr>
<tr>
<td>AV</td>
<td>Atrioventricular</td>
</tr>
<tr>
<td>BCE</td>
<td>Before the Current Era (a secular version of Before Christ)</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>BP</td>
<td>Blood Pressure</td>
</tr>
<tr>
<td>CAD</td>
<td>Coronary Artery Disease</td>
</tr>
<tr>
<td>CHD</td>
<td>Coronary Heart Disease</td>
</tr>
<tr>
<td>CVD</td>
<td>Cardiovascular Disease</td>
</tr>
<tr>
<td>dB</td>
<td>Decibel</td>
</tr>
<tr>
<td>dB(A/B/C)</td>
<td>A, B or C-weighted decibel</td>
</tr>
<tr>
<td>DBP</td>
<td>Diastolic Blood Pressure</td>
</tr>
<tr>
<td>EIS</td>
<td>Environmental Impact Study</td>
</tr>
<tr>
<td>EPNdB</td>
<td>Effective Perceived Noise Decibel</td>
</tr>
<tr>
<td>EPNL</td>
<td>Effective Perceived Noise Level</td>
</tr>
<tr>
<td>ESB</td>
<td>English Speaking Background</td>
</tr>
<tr>
<td>GAS</td>
<td>General Adaptation Syndrome</td>
</tr>
<tr>
<td>GHQ</td>
<td>General Health Questionnaire</td>
</tr>
<tr>
<td>INM</td>
<td>Integrated Noise Model</td>
</tr>
<tr>
<td>K4/5</td>
<td>4th/5th Korotkov phase</td>
</tr>
<tr>
<td>Ldn</td>
<td>Average sound level with day/night weighting</td>
</tr>
<tr>
<td>LAeq</td>
<td>Equivalent continuous sound pressure level, A-weighted</td>
</tr>
<tr>
<td>MAP</td>
<td>Mean Arterial Pressure</td>
</tr>
<tr>
<td>MPP</td>
<td>Multi-centre Postinfarction Program</td>
</tr>
<tr>
<td>MRFIT</td>
<td>Multi Risk Factor Intervention Trial</td>
</tr>
<tr>
<td>N70</td>
<td>Mean hourly number of noise events exceeding 70 dB(A)</td>
</tr>
<tr>
<td>NEF</td>
<td>Noise Exposure Forecast</td>
</tr>
<tr>
<td>NESB</td>
<td>Non-English Speaking Background</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>NIMBY</td>
<td>Not In My Back Yard</td>
</tr>
<tr>
<td>N.I.</td>
<td>Noise Number Index</td>
</tr>
<tr>
<td>PNdB</td>
<td>Perceived Noise Decibel</td>
</tr>
<tr>
<td>PNL</td>
<td>Perceived Noise Level</td>
</tr>
<tr>
<td>RSNA</td>
<td>Renal Sympathetic Nerve Activity</td>
</tr>
<tr>
<td>SA</td>
<td>Sinoatrial</td>
</tr>
<tr>
<td>SBP</td>
<td>Systolic Blood Pressure</td>
</tr>
<tr>
<td>SES</td>
<td>Socio-economic Status</td>
</tr>
<tr>
<td>SEL</td>
<td>Sound Exposure Level</td>
</tr>
<tr>
<td>SPL</td>
<td>Sound Pressure Level</td>
</tr>
<tr>
<td>WCGS</td>
<td>Western Collaborative Group Study</td>
</tr>
<tr>
<td>WCH</td>
<td>White-coat Hypertension</td>
</tr>
</tbody>
</table>