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Introduction

If you don’t know

where you are going,

any road will take you there.

Lewis Carroll

THIS thesis focuses on a very challenging problem which represents an ex-

tremely hot research topic and is being studied in almost allcar manufacturers

R&D departments.

The perception of the environment surrounding a road vehicle is of paramount

importance for the design of active and passive safety systems. An optimized trig-

gering of systems such as pre-crash belt tensioning or airbag blowing can lead to an

improvement in car occupants safety.

Many different sensors, each one using its own technology, can be used to sense

the surrounding environment in automotive applications. Each sensor delivers dif-
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ferent kind of information depending on its technology: radars deliver distance and

speed measurements, laser-scanners provide distance and shape information, sonars

provide short distance estimations, while traditional daylight cameras provide infor-

mation on the scene’s brightness.

Indeed, information conveyed by the use of the artificial vision (cameras) may

be used to estimate other measurements in addition to the color or brightness of the

scene. In fact artificial vision can be used to measure distances, shapes, speeds and

the presence of specific obstacles, as indirect measurements.

In other words the processing of image sequences can be used to provide infor-

mation about the whole 3D space around the vehicle by using appropriate algorithms.

Furthermore the decreasing cost of cameras and the increasing computational power

available at a low cost are the main reasons that justify the widespread use of this

technology as the main sensing device on vehicles.

After the above analysis, the work described in this thesis addresses the problem

of sensing automotive environments by using artificial vision, in particular the tech-

niques developed in this work were applied to the detection of the lane and to the

detection of pedestrians in front of the vehicle.

This work is structured as follows: chapter one provides an overall description of

the framework on which this thesis is based: the GOLD system,a software frame-

work that allows fast application prototyping. Chapter twodescribes an innovative

and evolutionary approach to lane markings detection. Chapters three, four, five and

six focus on the detection of pedestrians: in particular chapter three presents tech-

niques and results using a stereoscopic approach, chapter four describes a shape based
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approach, and chapter five integrates the two previous approaches and extends them

with tracking.

Finally chapter six describes the way in which quantitativeperformance have

been determined: the tool developed and described in this last chapter refers to the

collection of ground truth and its comparison to the resultsobtained by the pedestrian

detection algorithms.

Each one of the following chapters is structured for an easy standalone reading,

namely each of the chapters includes a brief introduction, the description of the core

system and a final section with the discussion on results and performance. In other

words the thesis conclusion is distributed throughout the different chapters.
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Chapter 1
Experiments in Robotics for

Intelligent Road Vehicles

Contenuto capitolo

This chapter presents the experience of the ARGO Project. Itstarted in 1996 at the University

of Parma, based on the previous experience within the European PROMETHEUS Project. In

1997 the ARGO prototype vehicle was set up with sensors and actuators, and the first version

of the GOLD software system –able to locate one lane marking and generic obstacles on the

vehicle’s path– was installed. In June 1998 the vehicle underwent a major test (theMilleMiglia

in Automatico, a 2000 km tour on Italian highways) in order to test the complete equipment.

The analysis of this test allowed to improve the system. Thischapter presents the current im-

plementation of the GOLD system, featured by enhanced Lane Detection abilities and extended

Obstacle Detection abilities, such as the detection of leading vehicles and pedestrians. More-

over it is described how this technology was transferred to the automatic driving of snowcats in

extreme environments.
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1.1 Introduction

The main target of the ARGO Project is the development of an active safety system

with the ability to act also as an automatic pilot for a standard road vehicle.

In order to achieve autonomous driving capabilities on the existing road network

with no need for specific infrastructures, a robust perception of the environment is es-

sential. Although very efficient in some fields of application, active sensors –besides

polluting the environment– feature some specific problems in automotive applica-

tions due to inter-vehicle interference amongst the same type of sensors, and due to

the wide variation in reflection ratios caused by many different reasons, such as ob-

stacles’ shape or material. Moreover, the maximum signal level must comply with

safety rules and must be lower than a safety threshold. For this reason in the imple-

mentation of the ARGO vehicle only the use of passive sensors, namelycameras, has

been considered.

A second design choice was to keep the system costs low. Thesecosts include

both production costs (which must be minimized to allow a widespread use of these

devices) and operative costs, which must not exceed a certain threshold in order not

to interfere with the vehicle performance. Therefore low cost devices have been

preferred, both for the image acquisition and the processing: the prototype installed

on ARGO is based oncheap camerasand acommercial PC.

The following section present the main functionalities integrated on the ARGO

vehicle:

• Lane Detection and Tracking
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• Obstacle Detection

• Vehicle Detection and Tracking

• Pedestrian Detection.

1.2 The GOLD System

GOLD is the acronym used to refer to the software that provides ARGO with au-

tonomous capabilities. It stands for Generic Obstacles andLane Detection since

these were the two functionalities originally developed. Currently it integrates two

other functionalities: Vehicle Detection and Pedestrian Detection.

1.2.1 The Inverse Perspective Mapping

The Lane Detection and Obstacle detection functionalitiesshare the same underlying

approach: the removal of the perspective effect obtained through the Inverse Perspec-

tive Mapping (IPM) [1,12].

The IPM is a well-established technique that allows to remove the perspective

effect when the acquisition parameters (camera position, orientation, optics,...) are

completely known and when a knowledge about the road is given, such as aflat road

hypothesis. The procedure aimed at removing the perspective effect resamples the

incoming image, remapping each pixel toward a different position and producing a

new 2-dimensional array of pixels. The so-obtainedremapped imagerepresents a top

view of the road region in front of the vehicle, as it were observed from a significant
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height. Figures 1.1.a and 1.1.b show an image acquired by ARGO’s vision system

and the corresponding remapped image.

1.2.2 Lane Detection

Lane Detection functionality is divided in two parts: a lower level part, which, start-

ing from iconic representations of the incoming images produces new transformed

representations using the same data structure (array of pixels), and a higher level one,

which analyzes the outcome of the preceding step and produces a symbolic represen-

tation of the scene.

Low- and Medium-level Processing for Lane Detection

Lane Detection is performed assuming that a road marking in the remapped image is

represented by a quasi-vertical bright line of constant width on a darker background

(the road). Thus, pixels belonging to a road marking featurea higher brightness value

than their left and right neighbors.

The first phase of road markings detection is therefore basedon a filter able to

detect dark-bright-dark transitions.

The brightness value of a generic pixel belonging to the remapped image is com-

pared to the two horizontal left and right neighbors at a given distance. A new image

(shown in figure 1.1.c), whose values encode the presence of aroad marking, is com-

puted assigning:

1. zero to the pixels whose one or both of the two neighbors have a higher bright-



1.2. THE GOLD SYSTEM 27

(a) (b)

(c) (d) (e)

Figure 1.1: The sequence of images produced by the low-levelLane Detection phase:

(a) original; (b) remapped; (c) enhanced; (d) binarized; (e) polylines.

ness value, or

2. the absolute difference between the pixel’s brightness and their neighbors’ ones

to the pixels whose brightness is higher than the ones of the two neighbors.

Due to different light conditions (e.g. in presence of shadows), pixels represent-

ing road markings may have different brightness, yet maintaining their superiority

relationship with their horizontal neighbors. Therefore,since a simple threshold sel-

dom gives a satisfactory binarization, the image is enhanced exploiting its vertical

correlation. Finally, the binarization is performed by means of an adaptive thresh-
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old. [1]; the result is presented in figure 1.1.c. The binary image is scanned row by

row in order to build chains of 8-connected non-zero pixels (see figure 1.1.d).

Subsequently, each chain is approximated with apolyline composed by one or

few segments, by means of an iterative process. Initially, asingle segment that joins

the two extrema of the chain is considered. The horizontal distance between seg-

ment’s mid point and the chain is used to determine the quality of the approximation.

In case it is larger than a threshold, two segments sharing anextremum are considered

for the approximation of the chain. Their common extremum isthe intersection be-

tween the chain and the horizontal line that passes through the segment’s mid point.

The process is iterated until a satisfactory approximationhas been reached (see fig-

ure 1.1.e).

High-level Processing for Lane Detection

in the high-level processing, the list of polylines is processed in order to semantically

group homologous features and to produce a high level description of the scene.

Each polyline is compared against the result of the previousframe, since continu-

ity constraints provide a strong and robust selection procedure. The distance between

the previous result and each extremum of the considered polyline is computed: if

all the polyline extrema lay within a stripe centered onto the previous result then the

polyline is marked as useful for the following process. Thisprocess is repeated for

both left and right lane markings.

Once the polylines have been selected, all the possibilities are checked for their

joining. In order to be joined, two polylines must have similar direction; must not be
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too distant; their projections on the vertical axis must notoverlap; the higher polyline

in the image must have its starting point within an elliptical portion of the image;

in case the gap is large also the direction of the connecting segment is checked for

uniform behavior. Figure 1.2 shows that polyline A cannot beconnected to: B due

to high difference of orientation; C due to high distance (does not lay within the el-

lipse); D due to the overlapping of their vertical projections; E since their connecting

segment would have a strongly mismatching orientation. It can only be connected to

F.

A

D

B

E
C

F

Figure 1.2: Joining of similar polylines.

All the new polylines, formed by concatenations of the original ones, are then

evaluated. In case the polyline does not cover the whole image, a penalty is given.

Then, the polyline length is computed and a proportional penalty is given to short

ones, as well as to polylines with extremely varying angularcoefficients. Finally,

the polyline with the highest score is selected as the best representative of the lane

marking.

The polyline that has been selected at the previous step may not be long enough
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Figure 1.3: Filtered polylines, joined polylines, and model fitting for the left (upper row) and

right (bottom row) lane markings.

to cover the whole image; therefore a further step is necessary to extend the polyline.

In order to take into account road curves, a parabolic model has been selected to be

used in the prolongation of the polyline in the area far from the vehicle. In the nearby

area, a linear approximation suffices.

The two reconstructed polylines (one representing the leftand one the right lane

markings) are now matched against a model that encodes some more knowledge

about the absolute and relative positions of both lane markings on a standard road.

The model is kept for reference: the two resulting polylinesare fitted to this model

and the final result is obtained as follows. First the two polylines are checked for

non-parallel behavior; a small deviation is allowed since it may derive from vehicle

movements or deviations from the flat road assumption, that cause the calibration to

be temporarily incorrect (diverging of converging lane markings). Then the quality
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Figure 1.4: Some results of Lane Detection in different conditions.

of the two polylines, as computed in the previous steps, is matched: the final result

will be attracted toward the polyline with the highest quality with a higher strength.

In this way, polylines with equal or similar quality will equally contribute to the final

result; on the other hand, in case one polyline has been heavily reconstructed, or is

far from the original model, or is even missing, the other polyline will be used to

generate the final result.

Finally, figure 1.3 presents the resulting images referringto the example pre-

sented in figure 1.1. It shows the results of the selection, joining, and matching

phases for the left (upper row) and for the right (bottom row)lane markings.
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Results of Lane Detection

This subsection presents a few results of lane detection in different conditions (see

figure 1.4) ranging from ideal situations to road works, patches of non-painted roads,

the entry and exit from a tunnel. Both highway and extra-urban scenes are provided

for comparison; the systems proves to be robust with respectto different illumination

situations, missing road signs, and overtaking vehicles which occlude the visibility

of the left lane marking. In case two lines are present –a dashed and a continuous

one–, the system selects the continuous one.

1.2.3 Obstacle Detection

The Obstacle Detection functionality is aimed at thelocalizationof generic ob-

jects that can obstruct the vehicle’s path, without their complete identification or

recognition. For this purpose a complete 3D reconstruction is not required and a

matching with a given model is sufficient: the model represents the environment

without obstacles, and any deviation from the model detectsa potential obstacle. In

this case the application of IPM to stereo images [3], in conjunction with a-priori

knowledge on the road shape, plays a strategic role.

Low-level Processing for Obstacle Detection

Assuming aflat roadhypothesis, IPM is performed on both stereo images. The flat

road model is checked computing a pixel-wise difference between the two remapped

images. In correspondence to anything rising up from the road surface, the result
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features sufficiently large clusters of non-zero pixels. Due to the stereo cameras’

different angles of view, an ideal homogeneous square obstacle produces two clusters

of pixels with a triangular shape in the difference image, incorrespondence to its

vertical edges [12].

Due to the texture, irregular shape, and non-homogeneous brightness of real ob-

stacles, the detection of the triangles becomes difficult. Nevertheless, in the differ-

ence image some clusters of pixels with a quasi-triangular shape are anyway rec-

ognizable, even if they are not clearly disjointed. Moreover, in case two or more

obstacles are present in the scene at the same time, more thantwo triangles appear in

the difference image. A further problem is caused by partially visible obstacles which

produce a single triangle. The low-level portion of the process, detailed in figure 1.5,

is consequently reduced to the computation of difference between the two remapped

images, a threshold, and a morphological opening aimed at removing small-sized

details in the thresholded image.

Medium- and High-level Processing for Obstacle Detection

The following process is based on the localization of pairs of triangles in the differ-

ence image by means of a quantitative measurement of their shape and position [23].

A polar histogramis used for the detection of triangles: it is computed scanning

the difference image with respect to a point calledfocusand counting the number

of overthreshold pixels for every straight line originating from the focus. A low-

pass filter is applied in order to decrease the influence of noise (see figure 1.5.f and

1.5.g). When the focus is placed in the middle point between the projection of the
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(f)(e) (g) (h)

(c) (d)

(a) (b)

Figure 1.5: Obstacle Detection: (a) left and(b) right stereo images, (c) and(d) the remapped

images, (e) the difference image, (f ) the angles of view overlapped with the difference image,

(g) the polar histogram, and (h) the result of Obstacle Detection using a black marking su-

perimposed on the acquired left image; the thin black line highlights the road region visible

from both cameras.

two cameras onto the road plane, the polar histogram presents an appreciable peak

corresponding to each triangle [12]. Since the presence of an obstacle produces two

disjointed triangles (corresponding to its edges) in the difference image, Obstacle

Detection is limited to the search for pairs of adjacent peaks. The position of a peak

in fact determines the angle of view under which the obstacleedge is seen (figure 1.6).

Peaks may have different characteristics, such as amplitude, sharpness, or width.

This depends on the obstacle distance, angle of view, and difference of brightness and
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Figure 1.6: Correspondence between triangles and directions pointed out by peaks detected

in the polar histogram.

texture between the background and the obstacle itself. Twoor more peaks can be

joined according to different criteria, such as similar amplitude, closeness, or sharp-

ness. The analysis of a large number of different situationsmade possible the deter-

mination of a weight function embedding all of the above quantities. According to

the notations of figure 1.7,R is defined as the ratio between areasA1 andA2. If R is

greater than a threshold, two adjacent peaks are consideredas generated by the same

obstacle, and then joined; otherwise, when the two peaks arefar apart or the valley

is too deep they are left alone (not joined). Figure 1.8 showssome examples of peak

joining. Obviously, a partially visible obstacle producesa single peak that cannot be

joined to any other. The amplitude and width of peaks, as wellas the interval between

joined peaks, are used to determine the angle of view under which the whole obstacle

is seen.

The difference image is also used to estimate the obstacle distance. For each peak

of the polar histogram aradial histogramis computed scanning a specific sector of

the difference image. The widthαi of the sector is determined as the width of the

polar histogram peak in correspondence to 80% of the peak maximum amplitudehi .
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Figure 1.7: If the ratio between areasA1 andA2 is greater than a threshold, the two peaks are

joined.

The number of overthreshold pixels is computed and the result is normalized. The

radial histogram is analyzed to detect the corners of triangles, which represent the

contact points between obstacles and road plane, thereforeallowing the determination

of the obstacle distance through a simple threshold.

Results of Obstacle Detection

Figure 1.10 shows the results obtained in a number of different situations. The re-

sult is displayed with black markings superimposed on a brighter version of the left

image; they encode both the obstacles’ distance and width.

1.2.4 Vehicle Detection

The Platooning task is based on the detection of the distance, speed, and heading of

the preceding vehicle. Since Obstacle Detection does not generate sufficiently reli-

able results –in particular regarding obstacle distance–,a new functionality, Vehicle

Detection, has been considered; the vehicle is localized and tracked using a single

monocular image sequence.
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Figure 1.8: Some examples of peaks join: (a) one obstacle, (b) two obstacles and(c) a large

obstacle.

The Vehicle Detection algorithm is based on the following considerations: a ve-

hicle is generally symmetric, characterized by a rectangular bounding box which

satisfies specific aspect ratio constraints, and placed in a specific region of the image.

These features are used to identify vehicles in the image in the following way: first an
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Figure 1.9: Steps involved during the computation of radialhistogram for peakP2: (a) origi-

nal image; (b) binary difference image; (c) polar histogram; (d) sector used for the computa-

tion of the radial histogram; (e) radial histogram.

area of interest is identified on the basis of road position and perspective constraints.

This area is searched for possible vertical symmetries; notonly gray level symme-

tries are considered, but vertical and horizontal edges symmetries as well, in order to

increase the detection robustness. Once the symmetry position and width has been

detected, a new search begins, which is aimed at the detection of the two bottom cor-

ners of a rectangular bounding box. Finally, the top horizontal limit of the vehicle is

searched for, and the preceding vehicle localized.
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Figure 1.10: Obstacle Detection: the result is shown with a black marking superimposed onto

a brighter version of the image captured by the left camera; ablack thin line limits the portion

of the road seen by both cameras.

The tracking phase is performed through the maximization ofthe correlation be-

tween the portion of the image contained into the bounding box of the previous frame

(partially stretched and reduced to take into account smallsize variations due to the

increment and reduction of the relative distance) and the new frame.

Symmetry detection

In order to search for symmetrical features, the analysis ofgray level images is not

sufficient. Strong reflections cause irregularities in vehicle symmetry, while uniform

areas and background patterns present highly correlated symmetries. In order to get
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rid of these problems, also symmetries in other domains are computed. In fact, to get

rid of reflections and uniform areas, edges are extracted andthresholded, and sym-

metries are computed into this domain as well. Similarly, the analysis of symmetries

of horizontal and vertical edges produces other symmetry maps, which –with specific

coefficients detected experimentally– can be combined withthe previous ones to form

a single symmetry map. Figure 1.11 shows all symmetry maps and the final one, that

allows to detect the vehicle. For each image, the search areais shown in dark gray

and the resulting vertical axis is superimposed. For each image its symmetry map

is also depicted. Bright points in the map encode the presence of high symmetries.

The 2D symmetry maps are computed by varying the axis’ horizontal position within

the grey area (shown in the original image) and the symmetry horizontal size. The

lower triangular shape is due to the limitation in scanning large horizontal windows

for peripheral vertical axes.

Bounding box detection

After the localization of the symmetry, the width of the symmetrical region is checked

for the presence of two corners representing the bottom of the bounding box around

the vehicle. Perspective constraints as well as size constraints are used to reduce the

search. Figure 1.12 presents the results of the lower corners detection. This process

is followed by the detection of the top part of the bounding box, which is looked

for in a specific region whose location is again determined byperspective and size

constraints.
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Figure 1.11: Computing the resulting symmetry: (a) grey-level symmetry; (b) edge symme-

try; (c) horizontal edges symmetry; (d) vertical edges symmetry; (e) total symmetry. For each

row the resulting symmetry axis is superimposed onto the leftmost original image.

Backtracking

Sometimes it may happen that in correspondence to the symmetry maximum no cor-

rect bounding boxes exist. Therefore, a backtracking approach is used: the symmetry
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(a) (b) (c)

Figure 1.12: Detection of the lower part of the bounding box:(a) original image with super-

imposed results; (b) edges; (c) localization of the two lower corners.

map is again scanned for the next local maximum and a new search for a bounding

box is performed.

Results of Vehicle Detection

Figure 1.13 shows some results of vehicle detection in different situations.

1.2.5 Pedestrian Detection

The latest functionality integrated in the ARGO prototype vehicle is aimed at detect-

ing pedestrians in road environments. The system is able to localize pedestrians in

various poses, positions and clothing, and is not limited tomoving people.

The processing is divided in two different stages. Initially, attentive vision tech-

niques relying on the search for specific characteristics ofpedestrians such as vertical

symmetry and strong presence of edges, allow to select interesting regions likely to

contain pedestrians. Then, such candidates areas are validated verifying the actual

presence of pedestrians by means of an shape detection technique based on the appli-

cation of autonomous agents.
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Figure 1.13: Results of Vehicle Detection in different roadscenes.

Attentive vision

The areas considered as candidate in the first step are rectangular bounding boxes

which:

• have a size in pixels deriving from the knowledge of the intrinsic parameters

of the vision system;

• enclose a portion of the image which exhibits a strong vertical symmetry and a

high density of vertical edges.

The search for candidates would require an exhaustive search in the whole image.

However, the knowledge of the system’s extrinsic parameters, together with a flat
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scene assumption, is exploited to limit the analysis to a stripe of the image. The

displacement of this stripe depends on the pedestrian’s distance, while its height is

related to the pedestrian’s height. Indeed, the analysis cannot be limited to a fixed size

and distance of the target and a given range for each parameter is in fact explored.

A pre-attentive filter is applied, aimed at the selection of the areas with a high

density of edges. Then, for each vertical symmetry axis lying in these areas the best

candidate area is selected among the bounding boxes which share that symmetry axis,

while having different position (base) and size (height andwidth). Vertical symmetry

has been chosen as a main distinctive feature for pedestrians. Alternatively, two dif-

ferent symmetry measures are performed: one on the gray-level values and one on the

gradient values, considering only edges with a vertical direction The selection of the

best bounding box is based on maximizing a linear combination of the two symmetry

measures, masked by the density of edges in the box. Figure 1.14 shows the origi-

nal input image, the result of a clustering operation used toimprove the detection of

edges, a binary image containing the vertical edges, and a number of histograms rep-

resenting the maximum (i) symmetry of gray-levels, (ii) symmetry of vertical edges,

and (iii) density of vertical edges among the bounding boxesexamined for each axis.

The histogram in figure 1.14.g represents the linear combination of all the above. It

is evident that, using the density of vertical edges as a mask, interesting areas present

high values for both the symmetry of gray-levels and symmetry of vertical edges. The

resulting histogram is therefore thresholded and its overthreshold peaks are selected

as representing candidate bounding boxes.
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Shape detection using autonomous agents

The outcome of the low-level processing is a list of candidate bounding boxes which

is fed to the following stage, whose task is their validationas pedestrians, based

on higher-level characteristics. Different edges are selected and connected, where

possible, in order to form a contour. Essentially, the process consists in adapting a

deformable coarse model to the bounding box. Thanks to its roughness the model is

sufficiently general and can be adapted to a variety of postures. Anyway, it is limited

to standing pedestrians.

The model adjustment is done through an evolutionary approach with a number

of independent agents acting as edge trackers. The agents explore a feature map

displaying the edges contained in a given bounding box and stochastically build hy-

potheses of a feasible contour of a human. The idea is taken from the Ant Colony

Optimization (ACO) metaheuristic originally inspired by the communication behav-

ior of real ants [20].

This model can be applied to the analysis of an image by creating a colony of

artificial ants that looks for an optimal combination of edgepixels that maximizes

the coherency of their position according to a given model (see figure 1.15). Each

ant in turn traces a solution in a solution space made up of allthe possible paths

connecting two pixels in a matrix. The decisional basis for each step of an ant is

provided by two factors: one is a local heuristic that quantifies the attractiveness of

pixel for its intrinsic characteristics; the second is the information on that pixel made

available by previous attempts of other ants, in the form of aquantity of pheromone.
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The world is visited by a number of ants in parallel, and the process is repeated for

several cycles. At the end of each cycle, new pheromone is deposed on the trails

pursued by the ants, and some of that accumulated evaporates. In this way, solutions

built several cycles before, progressively loose their importance. On the other hand,

pheromone on pixels that compose the path of frequently selected solutions grows.

and eventually this information surpasses that given by theheuristic. Finally, the

output is the path of the ant of the highest rank in the last cycle.

Results of Pedestrian Detection

This algorithm suits a medium distance search area. In fact,large bounding boxes

may contain a too detailed shape, showing many disturbing small details that would

certainly make their detection extremely difficult. On the other hand, very small

bounding boxes enclosing far away pedestrians feature a very low information con-

tent. In these situations it is easy to obtain false positives, since many road par-

ticipants (other than pedestrians), other objects, and even road infrastructures may

present morphological characteristics similar to a human shape. With the current

setup the search area ranges from 10 to 30 m.

The candidate selection procedure based on vertical symmetry and edge density

proved to be a robust technique for focusing the attention oninteresting regions. As

an example, figure 1.16 shows the result of the selection of candidate bounding boxes

in three different situations. Some general considerations can be drawn. In situations

in which pedestrians are sufficiently contrasted with respect to the background and

completely visible the localization of candidates proves to be robust. Thanks to the
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use of vertical edges the width of the bounding boxes enclosing pedestrians is gen-

erally determined with a good precision. On the other hand, alower accuracy is

obtained for the localization of the top and bottom of the bounding box. A refine-

ment of the bounding box height is under development. Symmetrical objects other

than pedestrians may happen to be detected as well. In order to get rid of such false

positives a number of filters have been devised which rely on the analysis of the

distribution of edges within the bounding box. These filters, which are still under

evaluation, show promising results regarding the elimination of both artifacts (such

as poles, road signs, buildings, and other road infrastructures) and symmetrical areas

given by a uniform portion of the background between two foreground objects with

similar lateral borders (see figure 1.16.c).

From the first preliminary results, the ant-based processing appears to be a promis-

ing method for detecting the contour of a human shape. To extend the detection to a

larger set of pedestrian postures, other models are currently under development.

1.3 The ARGO Prototype Vehicle

ARGO, shown in figure 1.17, is an experimental autonomous vehicle equipped with

vision systems and an automatic steering capability.

It is able to determine its position with respect to the lane,to compute the road

geometry, to detect generic obstacles on the path, and to localize a leading vehicle

and pedestrians. The images acquired by a stereo rig placed inside the cabin are

analyzed in real-time by a computing system located into theboot. The results of the
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processing are used to drive an actuator mounted onto the steering wheel and other

assistance devices.

The system was initially conceived as a safety enhancement unit: in particular it

is able to supervise the driver behavior and issue both opticand acoustic warnings

or even take control of the vehicle when dangerous situations are detected. Further

developments have extended the system functionalities to fully automatic driving ca-

pabilities.

Thanks to a control panel the driver can select the level of system intervention.

The following three driving modes are integrated.

• Manual Driving: the system simply monitors and logs the driver’s activity.

• Supervised Driving: in case of danger, the system warns the driver with

acoustic and optical signals.

• Automatic Driving: the system maintains the full control of the vehicle’s tra-

jectory, and the two following functionalities can be selected: Road Following:

consisting of the automatic movement of the vehicle inside the lane; orPla-

tooning: namely the automatic following of the preceding vehicle.

1.4 TheMilleMiglia in Automatico Test

In order to extensively test the vehicle under different traffic situations, road envi-

ronments, and weather conditions, a 2000 km journey was carried out in June 1998.

Other prototypes were tested on public roads with long journeys (CMU’s NavlabNo
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Hands Across America, and a tour from Munich to Odense organized by the Univer-

sität der Bundeswehr, Germany) whose the main

differences were that the former was relaying also on non-visual information

(therefore handling occlusions in a different way) and thatthe latter was equipped

with complex computing engines.

The MilleMiglia in Automaticotest was carried out about 2 years ago, and the

system was much more primitive than it is currently. Only Lane Detection and Ob-

stacle Detection were tested: Lane Detection was based on the localization of a single

line, while the detection of the preceding vehicle was performed by the Obstacle De-

tection module; no tracking was done and only the Road Following functionality was

available.

1.5 Discussion and Technology Transfer

The functionalities, the algorithms, and –more generally–the experience developed

within the ARGO project were transferred to different domains. One of them is the

automatic driving of a snowcat in extreme environments. In this project, founded by

ENEA, visual information acquired from the driving cabin ofa snowcat are used to

localize the tracks of preceding vehicles, with the aim of following them as precisely

as possible. The reason is that cracks in the ice can put in serious danger both the

driver and the snowcat itself. Therefore it is imperative that the vehicle follows the

same precise path defined by preceding vehicles.

Due to the extreme conditions of the working environment –where temperatures
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can reach even -80 degrees Celsius, the terrain is completely covered by snow or ice,

strong sun lighting and reflections may be present, and no specific ground references

are available nor assumptions can be made on the terrain slope– this application is

extremely challenging and presents many additional problems with respect to the

driving of unmanned vehicles on traditional (un)structured roads.

Figure 5.9 shows some results of snowcat track detection in different conditions.

The algorithm [14], not discussed in this paper, is able to successfully detect the

tracks even in noisy or critical conditions such as shadows,sun reflections, unknown

terrain slope, and when dark objects are present as well.
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Figure 1.14: Intermediate results leading to the localization of bounding boxes:(a) origi-

nal image;(b) clusterized image;(c) vertical edges;(d) histogram representing grey level

symmetries;(e) histogram representing vertical edges symmetries;(f) histogram represent-

ing vertical edges density;(g) histogram representing the overall symmetry S for the best

bounding box for each column;(h) the resulting bounding box.
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Figure 1.15: Artificial ants move through the world-matrix starting from the left half of the

lower border, and moving through regions 1, 2, 3 and 4 until they reach the arrival line.
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Figure 1.16: Result of low-level processing in different situations:(a) a correct detection of

two pedestrians(b) a complex scenario in which only the central pedestrian is detected; the

left one is confused with the background, the right one is only partially visible, while the

high symmetry of a tree has been detected as well;(c) two crossing pedestrians have been

localized, but other symmetrical areas are highlighted as well.
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Figure 1.17: The ARGO prototype vehicle.

Figure 1.18: The prototype vehicle during a test in the Italian test site.
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Figure 1.19: Results of snowcat track detection in different conditions.



Chapter 2
An Evolutionary Approach to Lane

Markings Detection in Road

Environments

Contenuto capitolo

This chapter presents the application of an evolutionary technique to lane markings detection

in road environments. The aim is the localization of the pathin images acquired by a vision

system installed on-board of a vehicle for driving assistance or automation purposes. The first

step of the procedure is the removal of the perspective effect from the images. The resulting

bird’s eye view image is analyzed by means ofant agents able to locate the lane markings.

Results are compared against the ones obtained thanks to a deterministic approach.
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2.1 Introduction

An autonomous intelligent vehicle has to perform a number offunctionalities. Among

themLane Detectionplays a basic role. A number of research groups has developed

Lane Detection systems using artificial vision [16,30,37,41].

The visual perception of the road environment is a challenging task: the knowl-

edge of the lane position has to be extracted from visual patterns detected in the

images. In the localization of specific features such as roadmarkings painted on the

road surface, basic problems have to be faced:

• shadows (projected by trees, buildings, bridges, or other vehicles) may produce

artifacts onto the road surface, and thus alter the road texture;

• the system has to be robust enough to cope with situations where lane markings

are worn and partly missing;

• the system should be enough flexible to adapt to different road environments.

This chapter presents an approach aimed at the identification of lane markings in

road images by means ofcollaborative autonomous agents.

The action paradigm of the agents has been conceived on the basis of the behavior

of real ants that seek for food: each ant has the task of exploring the world, locating

food, and signalling to other ants the path toward food. Ant leave the nest and explore

the world in a stochastic way. When they find a place with food,they mark the

path from the nest to that place with pheromone. Pheromone attracts other ants,

swiftly leading them to food. In this way paths leading to regions rich of food will
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attract more and more ants. At the same time, pheromone evaporates as time passes,

avoiding to mislead ants to old places where food is already exhausted or toward not

enough profitable paths [5,20,21].

In this approach, autonomous agents (theants) explore the image looking for lane

markings (the food). Digital pheromone is used to mark best paths.

This chapter is organized as follows: section 2.2 illustrates principles and data

representation of the agent paradigm. Section 2.3 introduces the model involved

with agents’ supervision, while section 2.4 presents significant results and touches

possible improvements of the system.

2.2 Lane detection algorithm

A camera installed onto the ARGO prototype vehicle [12] is used to obtain images

of the road (see figure 2.1.a).

2.2.1 Pre-processing phase

The initial processing step is the removal of the perspective effect [3]. Thanks to the

knowledge of the camera calibration and to the assumption ofa flat road in front of the

vehicle, pixel are remapped onto a new domain. Resulting images represent a bird’s

eye view of the road (see figure 2.1.b). In these images lane markings are nearly-

vertical bright lines surrounded by a darker background. Hence, a specific adaptive

filtering is used to extract quasi-vertical bright lines (see figure 2.1.c) [4,11,12].

The result is a binary image where overtrheshold pixels represent lane markings.
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2.2.2 The motion domain

An evolutionary approach with a number of independent agents acting as lane mark-

ings trackers is used for detecting lane markings. Agents explore the resulting binary

image and stochastically detect the markings. The idea derives from theAnt Colony

Optimizationmeta-heuristic, devised to solve hard combinatorial optimization prob-

lems, originally inspired by the communication behavior ofreal ants [20].

The ants’ motion domainD is the binary image obtained from the pre-processing

phase: overthreshold pixels represent ant’s food, namely afood-fieldmapping defined

asF : D 7→ { fyes; fno}. Initially, the pheromone levelP : D 7→ [0..R+] is 0 for each

element inD. Anyway,P is continuously updated by ants, whileF is constant during

the processing.

The domainD is recursively explored by subsequent batches of ants. The first

ant of the batch entersD from the bottom in a random position (a = (xant,yant) with

yant = 0). Since lane markings are nearly vertical lines, at each step, the ant performs

a single pixel movement along the vertical axis toward the top end of the image.

Thus vertical movements are fully deterministic, while horizontal movements are

stochastically computed according to the rules described in the following paragraph.

2.2.3 Evolutional algorithm

The horizontal position of an ant (xant) is modified according to values ofF andP

into sub-domainN
•
= {a∈D | y = 1+yant, xant−ρ < x < xant+ ρ}, whereρ rep-

resents the lateral field of view of each agent. In the currentimplementation of the
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(a) (b) (c)

Figure 2.1: Initial steps of the processing: (a) original image, (b) removal of the perspective

effect and (c) binary result.

Figure 2.2: TheN domain and possible ant’s moves.

algorithmρ = 3 as shown in figure 2.2.

For each pixeln ∈N a quality parameterwN (F (n),P (n)) is computed as:

wN =















































α×P (n)+ β×F (n)+ γ× (xn−xant)×P (n) where F (n) = fyes∧P (n) 6= 0

2×α−3× γ× (xn−xant) where F (n) = fyes∧P (n) = 0

α×P (n)+ γ× (xn−xant)×P (n) where F (n) = fno∧P (n) 6= 0






0 where |xn−xant|> 1

2−|xn−xant| elsewhere
where F (n) = fno∧P (n) = 0

(2.1)
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(a) (b) (c) (d)

Figure 2.3: Two examples of ants paths: (a) motion domain, (b) ant’s presence level,

(c) pheromone mapP (D), and (d) detected markings.

(a) (b) (c) (d)

Figure 2.4: Marking selection: (a) synthetic example of pheromone distribution, the darker

the pixel the higher the pheromone value, (b) selected markings, namely pheromone maxima

for (a), (c) real example of pheromone distribution and (d) selected markings for (c).

beingα, β andγ empirically computed values.

The higherwN , the higher the pixel’sattraction for ants. Therefore, an ant tends
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foreachx ∈D
updateF (x)
resetP (x)

endfor
repeat followingn times

foreachtrack in {left; right}
updatestartingpoint(track)
with every ants.v

food placesvisited← 0
consecutiveempty← 0
path length←W
k← 0
cyclerow through{0..W}

ant step(ak, F , P , track)
path[k] ← ak

if F (ak) = Fyes
increase empty placevisited

fi
if on lateral border(ak)

path length← row
next cyclebreak

fi
kill path if(consecutiveempty, foodplacesvisited)
k← k+1

endcycle
max food placesvisitedmax= food placesvisited

endwith
with every ants.v

if food placesvisited = maxfood placesvisited
raise(P (path[∗]) )

fi
endforeach

Figure 2.5: Main processing flow illustrated using a pseudo-language.

to move left, stay in center, or move rightaccording towN belonging to pixels on the

left side, in front, or on the right side respectively. More precisely, an attraction index

(τ) for the three possible horizontal moves is computed as:
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τleft = ∑
xn<xant

wN (n)

τcenter = ∑
xn=xant

wN (n)

τright = ∑
xn>xant

wN (n)

(2.2)

A truly random parameteru where 0≤ u ≤ τleft + τcenter+ τright is used to intro-

duce a stochastic behavior in horizontal movements. Whenu < τleft a left movement

is chosen, whenτleft ≤ u≤ τleft + τcenterthe central pixel is chosen, otherwise a right

move is performed.

In order to speed up computation, invalid or scarce-food paths are immediately

discarded: when an ant reaches lateral borders ofD or when too many consecutive

path’s positions haveF = fno, the ant is eliminated. This aspect is clearly evident in

figure 2.3.b where ant’s presence shows a number of ending paths.

The ant action performed during the stepk has been implemented into the routine

ant step( . . .), summarized in figure 2.5.

2.2.4 Batch processing

When an ant reaches the top end of the image, another ant of thebatch entersD. At

the end of the batch, the path of the ant that ran across the highest number of lane

markings pixels is chosen as the best, and the pheromone level P of all of the pixels

belonging to this path is increased by a unit.

Thanks to the iteration of this procedure on a number of batches, the attraction

of the best paths becomes greater and greater. The number of ants that stepped over

a pixel ofD is shown in figure 2.3.b. Figure 2.3.c depicts the pheromone deposed at
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the end of the recognition phase.

As shown in figure 2.4, at the end of the image processing, the pixel representing

the marking is selected for each row as the pixel that features the maximum ofP (x),

with x belonging to the row. No thinning procedure is needed, sincefor each row

there is only a single maximum; on the other side, this approach does not guarantee

that detected markings would be continuous (see figure 2.4.d).

Since the final target is to find the lane, thus both left and right markings, two dif-

ferent processings are performed for locating the left and the right lane markings, the

only difference being the initial position of ants used for crossingD. The assumption

that the initial position of right and left markings is in theright and left half portion of

D respectively is used. Ants used for detecting the left marking enterD in a random

positions within an intervalE left
D in the left portion of the image bottom. Analogously,

the detection of the right marking starts from the right sideof the bottom ofD within

theE
right
D interval. The distance between left and right markings prevents the ants to

reach the other marking allowing a reliable separate detection.

2.3 Lane tracking

At the beginning of the processing, the vision system is assumed to be centered inside

the lane. Therefore entrance intervalsE left
D andE

right
D of ants batches are centered in

given positions symmetrical with respect to the center of the image (see figure 2.6.a).

A simple tracking is performed in order to cope with lateral vehicle movements

inside the lane and to take advantage of the high temporal correlation amongst subse-

quent frames. The assumption that the car is always orientedalong the road direction
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is used and only slow lateral shifts and lane changes are considered. Strong correla-

tion is then expected between position of markings in subsequent images.

E left
D andE

right
D are updated according to the result of the processing. The average

value of left and right lane markings abscissa within a bottom band ofD is computed

(see figure 2.6.b). Resulting values for left and right markings are used to moveE left
D

andE
right
D where next frame markings are supposed to be found (see figure2.6.c).

This mechanism allows to also cope with varying width lanes.

A more complex strategy is used when the driving system is executing a lane

change. In such a caseE left
D or E

right
D move outsideD. When this event occurs,

namely when the left or the right marking leaves the field of view, a new marking is

supposed to enter the image from the opposite side. The new marking is searched

for assuming the same width for different lanes. At each stepthe lane widthWl is

computed as the average distance betweenE
right
D andE left

D in the previous 5 frames.

For example, when executing a left lane change,E left
D andE

right
D move rightward until

E
right
D exitsD. ThenE left

D is assumed as the newE right
D , while a newE left

D is placed at
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Figure 2.6: Update of entrance intervals: (a) initial position of intervals, (b) computation
band used for determining the new position and (c) new intervals positions.
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distanceWl on the left.

2.4 Discussion

The system has been implemented and tested on an Athlon 1.3 GHz architecture

using Linux. The whole processing can be carried out in 8.6 ms, namely at a 116 Hz

rate without considering image acquisition.

The algorithm has been tested and proven to be robust in different conditions:

without obstacles, on straight and curved roads, in different illumination conditions.

Figure 2.7 shows a number of partial and final results of the processing. Figures 2.7.a

and 2.7.b show the original image before and after the removal of the perspective

effect, while figures 2.7.c and 2.7.d present the final resultsuperimposed on 2.7.a and

2.7.b.

The most critical behavior corresponds to the absence of markings in presence of

very strong curves and to the presence of vehicles that occlude markings. Figure 2.8

shows such a situation: the border of a marking-occluding vehicle is wrongly detected

as the lane marking. Nevertheless, the misdetection only affects the portion of the

image where no marking is detectable, while the visible portion of the marking is

always correctly detected.

Figure 2.9 shows a comparison between the results obtained through this ap-

proach and the ones obtained by a previously developed fully-deterministic algo-

rithm [4]. In particular, the most critical situation for the deterministic approach is

the presence of obstacles occluding lane markings that could lead to the misdetection

of the whole marking as shown in the first row of figure 2.9.a. Conversely, the new
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(a) (b) (c) (d)

Figure 2.7: Overview of the processing: (a) original image, (b) binarization after the removal
of the perspective effect, (c) result superimposed on the image without the perspective effect

and (d) results superimposed onto original image.
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(a) (b) (c) (d)

Figure 2.8: Example of critical situation (occluding obstacle): (a) original image, (b) bi-
narized, (c) result superimposed onto the image obtained by the removalof the perspective

effect and (d) result superimposed onto original image.

(a) (b)

Figure 2.9: Different approaches comparison: (a) results of the deterministic approach [4]
and (b) results of the stochastic technique.

stochastic approach has evidenced not only a faster execution time in all conditions,

but also a better precision and robustness even with differently positioned vehicles or

obstacles. On the other side, ant’s paths are less smooth than the ones deterministi-

cally computed.
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Chapter 3
Stereo-based Preprocessing for
Human Shape Localization in
Unstructured Environments

Contenuto capitolo

This chapter describes the research activities for the localization of human shapes using visual
information in the frame of a common project with the TACOM Department of U. S. Army.
The chapter proposes the application of a stereoscopic technique as a preprocessing for the
localization of humans in generic unstructured environments. Each row of the left image is
matched with the epipolar row of the right image. This creates a map of each object in the scene
as well as the slope of the road. Preliminary results have proved to be promising.
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3.1 Introduction

Auonomous navigation will be a vital part in the near future for the U. S. Army. The

Vetronics Technology Area, a division within the Army’s TACOM Research, Devel-

opment, and Engineering Center (TARDEC), and the University of Parma are work-

ing towards detect human shapes from a moving vehicle. Programs within Vetronics

have a need for autonomous navigation, the Robotic Follow program [10], and semi-

autonomous navigation, the Crew integration and Automation Test bed program [9].

Human shapes detection is a vital piece to make these programs within the Vetronics

Technology Area succeed.

The Robotic Follower is a robotic vehicle that is used to follow behind a person

or another vehicle to carry supplies to and from areas [10]. The path the robotic

follower takes is based on electronic breadcrumbs that are left behind by the lead

person or vehicle. The greater the distance between the leader and the follower,

the more chance of people interrupting the breadcrumb trail. The Robotic Follower

needs the ability to detect people in and around it so that it can take the necessary

precautions to avoid them.

The Crew integration and Automation Test bed program is designed to incorpo-

rate several driver aided packages [9], one of which is detecting humans. As the

driver traverses through an area, the system will detect people, and highlight them,

so that the driver is more aware of their presence.

However, the need for automatic human detection goes beyondthe Vetronics

Technology Area. Within the Army, and throughout the commercial community,
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the need for detecting people is great. Driver awareness systems, security systems,

traffic/pedestrian control systems, and automatic switching systems are just a few

areas that would benefit greatly from this technology.

There are many approaches to pedestrian detection. Some uselearning machines

like neural networks [47] or support vector machines [32], some use motion to detect

pedestrians [40, 43]. Throughout this study, motion was notused. The authors felt

that approaching the problem of solving the cases for individual frames will prove

to be more beneficial than using continuous frames. Trackingcan be added later to

reduce the number of false positives. The specific application of the method shown

in this chapter is unique to the stereo vision community. Each row of the left image

is matched with the corresponding row of the right image. This creates a map of each

object in the scene as well as the slope of the road. Both information can be used

in the human shape localization algorithm presented in [5].Preliminary results have

proved to be promising.

This chapter is organized as follows: section 3.2 introduces the vision-based sys-

tem for detecting pedestrians in road environments developed in the last years by

the University of Parma in collaboration with TACOM. Section 3.3 presents a stereo

based technique for the extraction of features of interest.The results of this approach

are shown in section 3.4, while its application and advantages are discussed in sec-

tion 3.5.



72 CHAPTER 3. HUMAN SHAPE LOCALIZATION

3.2 A stereo-based approach in structured environments

In the last years the University of Parma and the TACOM Department of U. S. Army

developed a vision-based system for detecting pedestriansin road environments [5,6].

The system is aimed at the localization of pedestrians in various poses, positions and

clothing, and is not limited to moving people.

Attentive vision techniques relying on the search for specific characteristics of

pedestrians, such as vertical symmetry and strong presenceof edges, are used to se-

lect interesting regions likely to contain pedestrians. More precisely, the acquired

image is scanned and symmetries and edges are extracted; since a human shape is

characterized by a strong vertical symmetry, symmetrical areas with a specific as-

pect ratio identify possible candidates. Thanks to some a-priori knowledge on the

environment (the slope is known since the road is assumed flat), size and perspective

constraints are also adopted to ease and speed up the search.

Specific filters are then used to remove evident detection errors and false posi-

tives.

Subsequently, the remaining candidate areas are validatedverifying the actual

presence of pedestrians by means of shape-based techniques. A method based on the

application of autonomous agents has been investigated [5], and other approaches are

under study.

This system, completely based on monocular techniques, hassubsequently been

enhanced thanks to a stereo-based refinement. In fact, some errors may arise in the

first phase due to an incorrect localization of candidates. In other words, a human
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body may present a sufficiently high symmetry to be detected,but the detected area

may not be precise. This generally happens to the legs, whichcan be in different

positions. In these cases, a bounding box enclosing the human body is drawn around

the detected shape, but it may cut out a part of the body –generally the legs.–

An incorrect localization of the bounding box may be critical for the following

shape detection process aimed at its validation. Moreover,this error affects distance

estimation in monocular images. The stereo refinement is targeted to fix this problem

in the assumption of a flat road.

First, the left image is searched for symmetries, bounding boxes corresponding

to candidates are generated, and a set of filters are applied to remove obvious errors

in the detection. Then, for each surviving bounding box the right image is searched

for areas which exhibit a content similar to the one includedin the bounding box (a

correlation measure is performed). Once the correspondence between the bounding

box located in the left image and its counterpart in the rightimage has been found,

stereoscopy can be used to determine the distance to the vision system. This step

requires the correct calibration of cameras parameters andorientations.

Once the correct distance estimation for each bounding box has been provided to

the system by means of stereoscopy, a refinement of the bounding box base can take

place, based on calibration and perspective constraints. More precisely, the knowl-

edge of the camera orientation with respect to the ground andthe road slope can

provide information about the position of the point of contact of the human shape

with the ground. This knowledge is used to stretch the bottomof the bounding box

till it reaches the ground and frames the entire shape of the pedestrian, thus easing
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(a) (b)

Figure 3.1: Distance refinement: (a) result before refinement: a potential pedestrian is de-
tected but the bounding box cuts the legs thus affecting the distance estimation; (b) result
after stereo refinement: the bounding box has been stretchedtill the ground; the distance

estimation is now correct.

the following shape-based validation. Figure 3.1 shows theresult of this stereo re-

finement.

3.3 A stereo technique for feature extraction

The current research addresses the problem of human shape localization in generic

environments, including urban, country, and desolate.

The previously discussed approach could be easily generalized to any scenar-

ios (including non flat ones) removing the assumption on the knowledge of the road

slope. In this case, however, size and perspective constraints are to be dropped, and

an exhaustive search has to be performed in the candidates generation phase. This

entails both a higher computational complexity and a more complex selection of the

interesting areas since a high number of candidates must be considered and com-

pared.

Moreover, the stereo refinement of the bounding boxes, as defined previously, is
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not possible if the scene slope is unknown, and possible errors in the bounding box

localization are to be tackled in the following shape-basedvalidation step.

Following these considerations, a new stereoscopic approach has been developed

to deal with generic environments where the scene slope is unknown, featuring low

computational complexity. This method is based on a row-wise comparison of the

two stereo images, assuming the two optical axes lie on the same plane and both

cameras have a null roll angle.

This approach has been tested on both synthetic and real images, see figure 3.3.

The left and right images (figures 3.3.a and 3.3.b) are processed with the following

steps: an edge extraction, followed by a binarization and a morphological horizontal

expansion are performed. The results are pixel-ORed with the original images. In

this way, the original grey-level values are only preservedin correspondence to areas

with a relevant information content (i.e. edge points). Figures 3.3.c show the result

of the processing of figures 3.3.a (left images); the same processing is applied to the

right images. The resulting images will be referred to in thefollowing as feature

images.

For each line the correlation between the left and right epipolar lines of the feature

images is computed for different offsets. Figures 3.3.d show the value of the corre-

lation of each image line for different offsets: thesecorrelation imagesdisplay the

offset on the horizontal axis and the image line number on thevertical axis, encoding

high correlation values with bright pixels.

Perspective considerations allow to discriminate different components (modeled

in figure 3.2) in this correlation image:
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3 3

1

2

Figure 3.2: Different components of correlation: (1) ground slope, (2) background, and
(3) obstacles.

1. a slanted line encodes the ground slope (in this cases, theroad),

2. a vertical line on the top left of the image encodes the background (above the

horizon), and

3. other vertical segments originating upward from the slanted line represent po-

tential obstacles (in this case, pedestrians).

These components are hardly discernible as shown in figures 3.3.d, because they

mask each other; moreover, noise affects the correlation measure.

The following procedure is aimed at extracting them one by one.

In fact, the strongest component of the correlation encodesthe longitudinal slope

of the scene, provided that the transversal slope of the scene is neglectable. For

example, in case of a flat scene without obstacles the offset yielding the maximum

correlation decreases with the distance from the vision system according to a known

function (component 1), and becomes constant in correspondence to the horizon and

upper (component 2) [34]. This behavior is due to the fact that the difference of

displacement in left and right images for 3D points lying close to the camera is larger
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Figure 3.3: Obstacle detection in a synthetic and a real situation: (a) left and (b) right images,
(c) relevant features computed for the left images, (d) line-wise correlation values between
left and right features images for different offsets, (e) left features image after the removal of

background, (f ) line-wise correlation values computed after the removal of background.

(a) (b)

Figure 3.4: Reconstruction of correlation components extracted from figures 3.3.d: (a) road
and background components, (b) components given by the closest pedestrians.

than for 3D points lying far away from the vision system. On the other hand, 3D

points at infinite distance are imaged in the same position inthe left and right images

when the two optical axes are parallel, or at a constant offset in case the axes are

convergent or divergent.

Components 1 and 2 are evident when the ground surface and background present

an appreciable texture When present, they prevail and partially mask the other obsta-
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cles’ components. Each obstacle contributes to a vertical segment in the correlation

image correspondent to a constant offset. However, components 1 and 2 are stronger

than the obstacle’s one. This effect can be exploited to identify and remove the ground

and background features leaving only the features belonging to the obstacles. The

correlation image is thus analyzed to detect its components. More specifically, the

slanted line corresponding to the road slope and the vertical line representing the

background offset are first extracted by using a Hough transform on the correlation

image. Figures 3.4.a show a reconstruction of components 1 and 2 extracted from

figures 3.3.d in the synthetic and real case.

The set of offsets encoded in this polyline are then applied to match the epipolar

lines of the left and right feature images. This comparison is used to remove matching

features (i. e. ground texture and background objects), thus leaving non-matching

areas (i. e. foreground obstacles). Figures 3.3.e show the left features images after

the removal of ground and background features; it can be noticed that obstacles are

more evident since many disturbing features have been filtered out.

The computation of the correlation image is then repeated, starting from the fea-

ture images with ground and background removed (see figures 3.3.f). Now, the ob-

stacle components prevail in the correlation image and can be extracted thanks to a

vertical histogram. Figures 3.4.b show a synthetic reconstruction of the correlation

values for the closest obstacles.

Once its offset is known, the area of each obstacle can be further analyzed to

derive the cluster of features belonging to it. The right feature image is shifted with

the offset corresponding to the obstacle and compared to theleft, and their matching
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features are examined. A vertical histogram allows the identification of the position

of the lateral borders of the obstacle. A horizontal histogram computed in the vertical

stripe the object belongs to gives hints on the bottom and toplimits of the object.

In presence of multiple objects lying at different distances from the vision sys-

tem, the localization of individual objects is simplified ifthe previously segmented

objects are in turn eliminated from the feature image and thecorrelation function

is every time recomputed. In this manner, the strong contribution to the correlation

given by an evident object does not mask weaker contributions given by other ob-

jects, and objects can be extracted in subsequent iterations of the processing. At each

stage the features belonging to a different obstacle can be clustered and labeled. Fig-

ures 3.5.c-g show how the features belonging to the ground and background and three

different obstacles are identified and removed at subsequent steps of the processing.

In figure 3.5.h the detected clusters of features have been labeled with different col-

ors.

3.4 Results

Figures 3.6 and 3.7 show examples of extraction of obstacles’ features from stereo

images in unstructured environments. The original left image is displayed together

with a copy with obstacles’ edges highlighted with different colors.

Figure 3.6 presents three examples of correct detection, detailed in the following.

Figure 3.6.a shows a parking lot with four pedestrians and vehicles on the sides:

edges of pedestrians are correctly localized. Figure 3.6.bdisplays descending ramp:

four objects are localized (three pedestrians and a short wall on the right), the wall
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on the left is also detected despite its weak texture. Figure3.6.c side view of a

steep descending ramp with a group of children: humans are localized. Note that the

high transversal slope causes an incorrect detection of thetop left group of children

(shadows are misinterpreted as belonging to obstacles).

Figure 3.7 shows some problems of the current version of the algorithm. In par-

ticular, figure 3.7.a presents an off-road country environment: the very weak texture

of the ground does not allow the determination of its slope and the resulting cluster

of pixels include also features of the ground under the obstacle. Figure 3.7.b shows a

descending ramp with trees’ shadows: one pedestrian is not detected due to low con-

trast and the problems in the detection of the ground slope generate a too large cluster

for the pedestrian on the right. Figure 3.7.c refers to uphill driving: one pedestrian is

not detected due to low contrast and the long wall on the rightis correctly detected

as an obstacle but sliced in three parts due to the large rangeof distances (offsets)

covered.

3.5 Discussion

The stereo technique discussed in section 3.3 provides clusters of features that can

be fed into the original monocular processing described in section 3.2 aimed at dis-

tinguishing human shapes from other obstacles. The inclusion of this preprocessing

allows to limit the computation of symmetries to the detected area of interest only,

improving computational time.

Moreover, the preprocessing ability to determine the ground slope permits both

the application of perspective considerations and the correct detection of the objects’



3.5. DISCUSSION 81

point of contact with the ground.

This approach has the advantage to adapt the original methodto generic scenar-

ios. Furthermore, since the scene slope can be obtained fromthe stereo row-wise

correlation, different approaches could be developed for flat and non-flat scenarios.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.5: (a) and (b) Left and right images, (c) relevant features computed for the left
images, (d) removal of ground texture and background, (e) removal of first object, (f ) removal
of second object, (g) removal of third object, (h) the clusters of features labeled with different
colors; the ground features are shown in blue, while background objects are highlighted in

green.
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(a) (a) (a)

Figure 3.6: Results in different situations.

(a) (a) (a)

Figure 3.7: Situations in which the features extraction experience problems.
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Chapter 4
Shape-based pedestrian detection
and localization

Contenuto capitolo

This chapter presents a vision-based system for detecting and localizing pedestrians in road
environments by means of a statistical technique.
Initially, attentive vision techniques relying on the search for specific characteristics of pedestri-
ans such as vertical symmetry and strong presence of edges, allow to select interesting regions
likely to contain pedestrians. These regions are then used to estimate the localization of pedes-
trians using a Kalman filter estimator.
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4.1 Introduction

The pedestrians detection is an essential functionality for intelligent vehicles, since

avoiding crashes with pedestrians is a requisite for aidingthe driver in urban environ-

ments.

Vision-based pedestrian detection in outdoor scenes is a challenging task even in

the case of a stationary camera. In fact, pedestrians usually wear different clothes

with various colors that, sometimes, are barely distinguishable from the background

(this is particularly true when processing grey-level images). Moreover, pedestrians

can wear or carry items like hats, bags, umbrellas, and many others, which give a

broad variability to their shape.

When the vision system is installed on-board of a moving vehicle additional prob-

lems must be faced, since the observer’s ego-motion entailsadditional motion in the

background and changes in the illumination conditions. In addition, since Pedestrian

Detection is more likely to be of use in a urban environment, also the presence of a

complex background (including buildings, moving or parkedcars, cycles, road signs,

signals. . . ) must be taken into account.

Widely used approaches for addressing vision-based Pedestrian Detection are:

the search of specific patterns or textures [17], stereo vision [24,32,47], shape detec-

tion [26–28], motion detection [18,35,36], neural networks [45,46]. The great part of

the research groups use a combination of two or more of these approaches [17,40,47].

Anyway, only a few of these systems have already proved theirefficacy in applica-

tions for intelligent vehicles.



4.2. ALGORITHM STRUCTURE 87

This chapter presents the first results of a new localizationand association rule

specifically designed to follow the detection process previously developed [5].

In this work the strong vertical symmetry of the human shape is exploited to deter-

mine specific regions of interest which are likely to containpedestrians. This method

allows the identification of pedestrians in various poses, positions and clothing, and

is not limited to moving people. In order to improve the reliability of the system and

as preliminary work for pedestrian tracking, a pedestrian localization step has been

added. Pedestrian localization iteratively computes the position of pedestrians in the

3D world. It has been conceived to be used for a tracking system.

This chapter is organized as follows. Section 2 introduces the structure of the al-

gorithm. Section 3 describes the detection module, section4 presents the localization

procedure. Section 5 ends with some final remarks.

4.2 Algorithm structure

Figure 5.1 shows the algorithm structure. As a first processing step, attentive vision

techniques are applied to concentrate the analysis on specific regions of interest only.

In fact, the aim of the low-level part of the processing is thefocusing on potential

candidate areas to be further examined at a higher-level stage in a following phase.

The areas considered as candidate are rectangular boundingboxes which:

• have a size in pixels falling in a specific range. This range iscomputed from the

knowledge of the intrinsic parameters of the vision system (angular aperture

and resolution) and from allowed size and distance of pedestrians;
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Figure 4.1: The algorithm architecture.

• enclose a portion of the image which exhibits the low-level features that char-

acterize the presence of a pedestrian, i. e. a strong vertical symmetry and a high

density of vertical edges.

A stereo refinement is used to refine the computed bounding boxes. The other

image is searched for the same detected object and a triangulation is used to determine

the distance.

Moreover, since other objects than pedestrians feature high symmetrical content,

a set of filters is used to remove objects like poles, trees. . ..

The forward loop process ends by estimating the pedestrian position in the road

scene. This stage uses an internal model (thescene bounding box) that allows to take

into account the possible bad fitting of the detected bounding box with respect to the

real pedestrian shape.

Beside the obvious usefulness of a pedestrian localizationfunctionality for a

driver assistance system (for example, in order to know which pedestrian is the more

dangerous and to focus the perception on him); in addition, as shown on figure 5.1

(dotted lines) localization can also be use to foresee the future position of the bound-

ing boxes (i.e. to track the pedestrians). The tracking can be used to directly act onto
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the detection stages in order to improve the reliability of the system. Currently, the

loop has not been yet closed. The full tracking system is under development.

4.3 Pedestrian detection

4.3.1 Search area

In the first phase a search for pedestrians candidates is performed. Thanks to the

knowledge of the system’s extrinsic parameters together with a flat scene assump-

tion, this search is limited to a reduced portion of the image(see figure 4.2). The

displacement of this area depends on the pedestrian’s distance, while its height is

computed as a function of the pedestrian’s maximum height. Besides the obvious

advantage of avoiding false detections in wrong areas, the processing of a reduced

search area only, reduces the computational time. The analysis is not limited to a tar-

get featuring a fixed size or a given distance, but a range for each parameter is in fact

considered. The introduction of these ranges generates twofurther degrees of free-

dom in the size and position of the bounding boxes. In other words, the search area

is enlarged to accommodate all possible combinations of height, width, and distance

for pedestrians.

4.3.2 Symmetry detection

The analysis proceeds in this way: the columns of the image are considered as possi-

ble symmetry axes for bounding boxes. For each symmetry axisdifferent bounding

boxes are evaluated scanning a specific range of distances from the camera (the dis-

tance determines the position of the bounding box base) and areasonable range of
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 tallest box

hood

min geometrical
distance

min actual distance
for area analysis dimensions

Figure 4.2: Undersampling constraints.

heights and widths for a pedestrian (the corresponding bounding box size can be

computed through the calibration).

However, not all the possible symmetry axes are considered:since edges are cho-

sen as discriminant in most of the following analysis, a pre-attentive filter is applied,

aimed at the selection of the areas with a high density of edges. Axes centered on

regions which contain a number of edges lower than the average value are dropped.

For each of the remaining axes the best candidate area is selected among the

bounding boxes which share that symmetry axis, while havingdifferent position

(base) and size (height and width). Vertical symmetry has been chosen as a main

distinctive feature for pedestrians. Symmetry edge maps, e. g. the Generalized Sym-

metry Transform (GST) [42], have already been proposed as methods to locate inter-

est points in the image prior to any segmentation or extraction of context-dependent

information. Unfortunately, these methods are generally computationally expensive.

Alternatively, two different symmetry measures are performed: one on the gray-level

values and one on the horizontal gradient values. The selection of the best bounding
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box is based on maximizing a linear combination of the two symmetry measures,

masked by the density of edges in the box.

4.3.3 Bounding boxes generation

An adjustment of the bounding boxes’ size is yet needed. In fact, when comparing the

gray-level symmetry of different bounding boxes centered on the same axis, larger

boxes tend to overcome smaller ones since pedestrians are generally surrounded by

homogeneous areas such as concrete underneath or the sky above. Therefore, the

bounding box which presents the maximum symmetry tends to belarger than the ob-

ject it contains because it includes uniform regions. For this reason, for each selected

symmetry axis, the exact height and width of the best bounding box are actually taken

as those possessed by the box which maximizes a new function among the ones hav-

ing the same axis. This function is computed as the product ofthe symmetry of

vertical edges and density of vertical edges only. Figure 4.3 summarizes the overall

candidate generation process.

The result of this step is a first list of candidate bounding boxes that contains

potential pedestrians.

4.3.4 Stereo refinement

The distance of the potential pedestrians can be computed using the knowledge of the

camera calibration and the assumption of a flat scene. Unfortunately, the computed

values are greatly affected by a wrong detection of the lowerpart of pedestrians. In

order to refine this measurement, which is of importance for discriminating amongst
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Figure 4.3: Bounding boxes generation phase: the two horizontal green lines represent the
search area; the symmetry histograms for grey-levels (red), vertical edges (green), the vertical
edges density (yellow), and their combination (black) are shown in the bottom part of the

image.

obstacles and actual pedestrians, a refinement phase is mandatory.

A simple stereo technique is used: for each bounding box in this list, starting from

a rough estimation of the distance, a portion of the other image is searched for areas

which exhibit a content similar to the one included in the bounding box by means of
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a correlation measure. The correlation formula used for matching leftai and rightbi

pixels is:

χ =
(∑aibi)

2

(∑ai
2)(∑bi

2)

Once the correspondence between the bounding box located inthe left image and

its counterpart in the right image has been found, a triangulation is be used to de-

termine the distance to the vision system. Therefore, a refinement of the bounding

box base can take place, based on calibration and perspective constraints. More pre-

cisely, the knowledge of the camera orientation with respect to the ground and the

road slope can provide information about the position of thepoint of contact of the

human shape with the ground. This knowledge is used to stretch the bottom of the

bounding box till it reaches the ground and frames the entireshape of the pedestrian

and the technique is robust in the sense that even if the background is different from

one image to another, the distance is correctly evaluated and the base exactly refined

for all observed cases (see figure 4.4).

4.3.5 Bounding boxes filtering

Symmetrical objects other than pedestrians may happen to bedetected as well. In

order to get rid of such false positives a number of filters have been devised which

rely on the analysis of the distribution of edges within the bounding box and on

segmentation and classification of the box region. These filters, which are still under

development, show promising results regarding the elimination of both artifacts (such

as poles, road signs, buildings, and other road infrastructures) and symmetrical areas
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Figure 4.4: Stereo refinement: the yellow bounding box is generated during the symmetry
detection, the red line represents the stereo refinement of the box’s bottoms.

given by a uniform portion of the background between two foreground objects with

similar lateral borders.

4.4 Discussion

A new localization technique has been presented. This technique exploits scene lo-

calization of pedestrians by means of iterative image coordinates modeling. The

reprojection onto the source images shows a correct spatialpositioning. The local-

ization is not affected by target’s movements.

The system has been tested in different situations. Currently, the result is not

exploited by the preattentive phase, but results obtained by the localization phase
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Figure 4.5: Localization results: the localization area issuperimposed on original images in
red, the three numbers below these areas represent the localization ID and its coordinates in
the world (meters). On the left side of the image a top view of the scene is sketched; each
horizontal line represents 1 meter. For each pedestrian an error ellipsoid is given with its ID

as well.
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promise to improve the reliability and efficiency of the preattentive stage.

A full tracking system that exploits the pedestrians localization function is de-

scribed.



Chapter 5
Pedestrian Localization and
Tracking with Kalman Filtering

Contenuto capitolo

This chapter presents an implementation of a vision-based system for recognizing pedestrians
in different environments and precisely localizing them with the use of a Kalman filter estimator
configured as a tracker. Pedestrians, in various poses and with different kinds of clothing, are
first recognized by the vision subsystem through the use of algorithms based on edge density and
symmetry maps. The information produced in this way is then passed on to the tracker module
which reconstructs an interpretation of the pedestrians positions in the scene. An appropriately
configured indoor system setup with an accurate measurementof the imposed human trajectory
has been realized. This setup has permitted an accurate evaluation of the accuracy of the results,
when the new auxiliary tracker is activated.
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5.1 Introduction

Widely used approaches for addressing vision-based pedestrian detection are: the

search of specific patterns or textures [17], shape detection [13,15,22,25,27,39] and

neural nets-based methods [38].

This chapter presents the system introduced in [2] that is aimed at the localization

of pedestrians by means of vision. This system has been designed to be installed on

board of moving vehicles in order to provide the driver with warning signals. In par-

ticular, the implementation of a new tracking layer based onKalman filtering [31,33]

for this system is examined and the article mainly deals withperformance measure-

ments of the system activity.

This chapter is composed of the following sections:

section 5.2 presents the system scheme,

section 5.3 introduces the new tracking functionality of the system,

section 5.4 summarizes the most valuable numerical resultsobtained,

section 5.5 discusses the results and outlines the possibilities for future improve-

ments of the system.

5.2 System structure

In this section the components of the pedestrian localization system are briefly ex-

plained. Fig. 5.1 depicts the relationships between the system components that per-

form the following tasks:

• “Preattentive Phase” - low level vision elaboration,
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Figure 5.1: The system architecture.

• “Symmetry Detection” - symmetry maps evaluation,

• “Bounding Boxes Generation” - pedestrians outlining,

• “Bounding Boxes Filtering” - pedestrian boxes selection,

• “Pedestrian Localization” - spatial position estimation for pedestrian boxes,

• “Bounding Boxes Tracking” - state variables and associatedaccuracy evalua-

tion.

5.2.1 Preattentive phase

The knowledge of the vision system’s extrinsic parameters and the flat scene assump-

tion allows to reduce the search for candidates to one limited part of the image, and

reasonable ranges and steps are considered for dealing withdifferent pedestrian di-

mensions.

Fig. 5.2 (a) presents the image clustering and edge extraction performed at this

stage of the processing. Besides the obvious advantage of avoiding false detections

in wrong areas, this technique, combined with an undersampling procedure, strongly
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(a)

(b) (c) (d)

(e)

Figure 5.2: The vision algorithm processing stages for an example outdoor image acquired
from a moving vehicle: (a) low level horizontal, vertical and combined edges; (b) preattentive
filtering; (c) search range for the homologous box; (d) stereo refinement for the base of the

box; (e) result (the stereo search area is surrounded with a border).
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reduces the computational time needed for frame elaboration and shows excellent

temporal results.

5.2.2 Symmetry detection

After the low level preprocessing and the analysis of vertical symmetry maps derived

from gray-level and horizontal gradient image values, the identification of regions

that can be characterized as human shapes takes place. Sincepedestrians evidence

an high symmetry, especially vertical, image columns can beconsidered as possible

symmetry axes and edges can be used as a discriminant in a pre-attentivefiltering

stage (see fig. 5.2 (b)).

Approaches based onto this kind of maps have already been illustrated with the

Generalized Symmetry Transform (GST) [42].

5.2.3 Bounding boxes generation

The axis-based approach is followed by maps analysis for theextraction of the boxes

and after this a particularstereo refinementtechnique is used to improve the accuracy

of the identification of the boxes’ bases (see fig. 5.2 (c,d)). Fig. 5.2 (e) presents the

box generation result for an image acquired from a moving vehicle.

This processing level produces boxes with an high probability to fit one pedes-

trian, and candidates are characterized by problem specificdimensions in pixels and

symmetry axes placed nearby the peaks of relative maximums in the axial weighted

symmetry sum.
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Figure 5.3: Bounding boxes filtering: the discarded pedestrian candidates are marked with a
black “x”, each example shows the original and the edges inside the candidate bounding box.

5.2.4 Bounding box filtering

Unfortunately symmetrical objects other than pedestriansmay happen to be detected

as well. In order to get rid of such false positives a number offilters based on re-

gionalization have been devised and are still under development. Fig. 5.3 illustrates

some examples of how the filters check the eligible candidates and eliminate some of

them that do not actually represent a human shape. These filters evidence promising

results with artifacts such poles, road infrastructures, traffic signs and buildings that

cause the box generation to fail.

5.2.5 Pedestrian localization

This module estimates the position of the pedestrians in thescene in the chosen co-

ordinate reference system. The contact point(Xp,Yp) of each pedestrian vertical axis

with the ground assumed flat is associated with opportune state variables for this pur-

pose. The height from the groundZc, the tilt angleα of the camera observing the
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(a) (b)

Figure 5.4: Setup scheme and problem variables: (a) world coordinate reference system; (b)
image coordinates of the scene bounding box.

scene and a set of intrinsic calibration parameters represented byeu andev must be

known. Fig. 5.4 (a) shows the coordinate system in which the contact point is defined

according to the road plane and also the position of the camera.

The estimation uses an original modeling that takes explicitely into account the

unavoidable difference of the vision-detected bounding box of a pedestrian with the

real ideal one, defined by a heightH and by a widthW with fixed average and stan-

dard deviation values, realistic enough to represent a human shape (H = 1.65 m,

σH = 0.1 m, W = kH with k = 0.3 a realistic width/height ratio,σW = 0.1 m). Z0

represents half of the difference between the scene bounding box height and the real

pedestrian height, with average value zero and standard deviation σZ0 = 0.1 m.

Considering a perspective projection of the scene onto the image, the relationship

between the coordinates of the cornersP1 = (X1,Y1,Z1)
t andP2 = (X2,Y2,Z2)

t of a
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pedestrian bounding box in the camera coordinate system canbe linked in a linear

way, thanks to small angle approximation forα, to the planar position coordinatesXp

andYp (5.1). The correspondent image coordinatesp1 = (u1,v1), p2 = (u2,v2) and

the observation systemY = H ·X +v (5.2) are then easily deduced.
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The contribution of all the parameters subject to error is also taken into account

with the use of the covariance matrix of the noise vectorv, in order to improve the

estimation of the positions of the pedestrians, concretelyrealized with a Kalman filter.

More details on how this modeling deals with the pedestrian spatial positioning

are available in [2]. A new bounding box tracking stage now completes the approach.

5.3 Bounding Boxes Tracking

In this section the implementation of the tracker is explained in terms of design

choices, box management queues, tracking politics and Kalman filtering integration.

Each new pedestrian identified by the localization is provided with an unique

id. This is used to drop the box if the timeout for joining with anappropriately new
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detected pedestrian expires, to log the history of the pedestrian path, to differentiate it

from the others and also to render clearly all the graphical information (see fig. 5.6).

The tracker presents a flexible politic for data logging, boxprocessing, matrixes

allocation and an efficient method encapsulation for complex procedural sections;

the subsystem presents two possible working modalities:single trackingandmulti

tracking mode; these discriminates the way in which the rejoining of lost traces is

managed.

The main tasks of the tracker are: themergeof visual localizations with the

internal state representation, the calculations relatingto the evolution of the state

of each pedestrian (through Kalman filtering), and the prediction projection for the

triggering of the elaboration. Input and output buffering queues are used for filtering

purposes too, in order to implement insertion and removal politics that enhance the

reliability of noisy sensor data.

Graphics are used to illustrate the state variables historyof the pedestrian boxes.

This is done for sake of an efficient and constant system checkby the human su-

pervisor, both in the perspective image (fig. 5.6 (a)) and in the roadtop viewplane

(fig. 5.6 (b)). The current box position and the position prediction, inthe form of

probability-blended image projection areas, are drawn in the perspective representa-

tion. Moreover the error ellipsis for each box is represented on the experimental road

plane image.

The merge functionperforms one feedback task related to the association of

newly detected pedestrians with the set of spatially localized and tracked ones. This

approach solves problems related to wrong estimations and temporal mismatches. It
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is based on box areal overlapping and Mahalanobis distance estimation, and is re-

sponsible for updating the tracked set of pedestrians. The overlapping criterion is

based on probability image areas after Kalman prediction and the metric criterion

exploits the state of each tracked pedestrian. Instead of a Mahalanobis distance clas-

sification tout-court, the productH ·X is used as observations for the evaluation of

the metricr.

The most effective formula for the extraction ofr at the iterationκ for the vi-

sion observationn and the consequent classification has been found to be the match

criterion in (5.3),

r(k,)
n (i) = ∆⊤ ·C(k−1,i)−1

·∆

∆ , [H(k,)
n ·X(k,)

n −H(k−1,i) ·X(k−1,i)]

match: i |min{r(k,)
n (i)} ≤ t∗

(5.3)

where a generic matrix denoted asA(h,p) refers to the tracked pedestrianp at theh-th

iteration of the tracker andt∗ is an opportunely chosen threshold.
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Figure 5.5: Comparison between the estimated paths and the trajectory: (a) Planar estimation
for the slowly forward walking experiment; (b) normalized histogram of the error in theXp

coordinate for the slowly forward walking experiment; (c) histogram of the error in theYp co-
ordinate; (d,e,f ) analog data representation for the regular speed forward walking experiment;

(g,h,i) data for the backwards running experiment.
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5.4 Precision evaluation

Indoor experiments have been realized in order to verify thecorrectness of the esti-

mated coordinates of the pedestrian path with the use of the tracker.

A reference trajectory has been set up simply by defining a setof way-points on the

ground sufficiently close one to the next. TheX andY coordinates of all these points

have been measured with classical measurement instrumentsin the chosen reference

system. A calibrated camera has been positioned to look at this trajectory, with height

and orientation as if it was installed inside a car. The position of the camera observing

the reference points in the coordinate reference axes has been determined. Fig. 5.6 (a)

shows a camera view of the pedestrian trajectory including perspective and fig. 5.6 (b)

shows the associated bird-eye view.

The test includes the movement of a pedestrian along the predefined trajectory

and the acquisition of the corresponding images in order to post-process them with

the vision algorithm. An example of image acquired in this way is provided in fig. 5.7.

For convenience the experiments have been realized indoor;due to this the images

presented many vertical edges that lead to the generation ofadditional noise caused

by the indoor structure. To solve this problem, a simple background subtraction has

been applied in the middle of the processing; of course this is not needed in outdoor

scenes: it is only used to make the localization verificationpossible.

Fig. 5.6 (b) shows a superposition example of the reference trajectoryand of the

trajectory estimated by the system. The current pedestrianposition and its covariance

ellipsis are also drawn together with the estimated trajectory.
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(a) (b)

Figure 5.6: Pedestrian path and reference trajectory for the indoor acquisition as reported by
the tracker when thesingle-trackingmode is selected: (a) perspective projection; (b) top view
of the ground plane, the predefined trajectory is shown in black and the measured trajectory

is shown in green.

Thanks to the use of a digital camera, the experiments have been characterized

by a known intraframe temporal gap, so that the temporal synchronization of the esti-

mated and of the reference trajectories has been made possible through a parametriza-

tion. Since the estimator provides the values ofXp andYp separately, it has been

possible to compare theX and theY coordinates independently. The maximal and

average errors measured for theXp andYp planar pedestrian coordinates of the ex-

periments are reported in table 5.1; one time plot example ofthe euclidean error is in

fig. 5.8. Fig. 5.9 shows plots and error composition histograms regarding the result-
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Figure 5.7: Indoor test setup.

ing estimated paths for various ways of covering the trajectory. Considering that the

Y coordinate is the one related to the depth of the scene relatively to the camera, the

fact that the error onYp is greater than the one onXp is not surprising and is a rather

obvious conclusion in the field of computer vision; however,the overall precision is

remarkable.

Another significant result obtained with these experimentsis that the average

errors onXp andYp obtained by measurements coincide with thea priori error es-

timated at the output of the Kalman filter. This has the important meaning that the
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Table 5.1: Mean and maximum coordinate errors (m)

Sequence eXp Max eXp eYp Max eYp

forward slowly 0.12 0.38 0.53 1.35
forward regular 0.15 0.34 0.37 1.16
forward running 0.47 1.48 0.47 2.04
forward natural 0.17 0.44 0.39 1.98

backwards slowly 0.66 1.54 4.07 6.89
backwards regular 0.65 1.38 4.19 6.98
backwards running 0.98 1.87 4.47 6.46
backwards natural 0.76 1.67 2.66 5.38

errors provided by the estimator can be considered reliable.

5.5 Discussion

The high-level tracking module forenvironmental understandinghas evidenced with

its filtering capabilities a good accuracy in the spatial localization of a walking pedes-

trian. The maximum errors from the measured path and the maximum variances

along the axes that have been observed during the system activity on the indoor pre-

recorded image sequences, have proved a high reliability ofthe new approach. It has

been possible therefore to adopt the new tracker module for the outdoor vehicular

system activity and the multi trace results so obtained are illustrated in fig. 5.10. In-

tegration of observations obtained from other different types of sensors can be easily

achieved with the current system structure and can lead to more significant results in

the form of thedata fusionparadigm.
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Figure 5.8: Temporal comparison example of ground plane coordinates between the imposed
trajectory and the evaluated pedestrian path.
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Figure 5.9: Comparison between the estimated paths and the trajectory: (a) Planar estima-
tion for the slowly forward walking experiment; (b) normalized histogram of the error theXp

coordinate for the slowly forward walking experiment; (c) histogram of the error on theYp co-
ordinate; (d,e,f ) analog data representation for the regular speed forward walking experiment;

(g,h,i) data for the backwards running experiment.
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(a)

(b) (c)

Figure 5.10: Outdoor vehicular stereo results inmulti trackingmode: (a) the vision algo-
rithm recognizes the pedestrians (the stereo localizationarea is shown in transparent blue
on the ground); (b) perspective view of the results, trajectories provided bythe tracker are
also shown; (c) pedestrian trajectories and error ellipsis of the currentestimated pedestrian
positions are represented on the road plane and marked with the corresponding pedestrianid
(there is no correspondence between the reference grid of the graphical representation that

represents the camera reference system and the grid paintedon the asphalt).



Chapter 6
A tool for vision based pedestrian
detection performance evaluation

Contenuto capitolo

This chapter describes a system for evaluating pedestrian detection algorithm results.
The developed tool allows a human operator to annotate on a file all pedestrians in a previ-
ously acquired video sequence. A similar file is produced by the algorithm being tested using
the same annotation engine. A matching rule has been established to validate the association
between items of the two files. For each frame a statistical analyzer extracts the number of
mis-detections, both positive and negative, and correct detections. Using these data, statistics
about the algorithm behavior are computed with the aim of tuning parameters and pointing out
recognition weaknesses in particular situations.
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6.1 Introduction

The detection of human shapes is one of the most active research objective in the

field of artificial vision. Various approaches have recentlybeen proposed (many ap-

plications rely on such detectors, like automotive precrash, security and surveillance

systems) [2,7,22,27]. An important issue at the basis of thedesign of a human shape

detector is the availability of a tool for performance evaluation. Working on real im-

ages, because of the intrinsic problem complexity, some kind of external information

is necessary in order to validate the algorithm results.

A system for performance evaluation needs to know the ”ground truth”, this can

be obtained using two different approaches: recording additional data together with

processed images data and using the annotation based approach, presented in this

chapter. The former collects information about the pedestrians position using sensors

different from vision, such as radio transmitters. The correctness of the algorithm

can be evaluated in realtime but some problems may occur in cases, for example,

where a pedestrian is partially occluded but the radio transmitter (or other) is anyway

sensed by the detector. The other approach, the one dealt with in this chapter, relies

on a frame by frame manual annotation, by a human operator, ofall pedestrians

appearing in each frame of a video sequence. This is a post processing operation, thus

images must be acquired and saved on a storage device. Subsequently, the images are

annotated in laboratory: a human operator, using a GUI, defines the position and size

of pedestrians in each frame and produces a file containing the description of all

pedestrian in the image sequence. A similar file of the same format is created by the
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pedestrian detection algorithm which is under test. Finally the two files are compared

and statistics are extracted. Parameters and thresholds can be adjusted and their effect

on the algorithm behavior highlighted.

The outline of this chapter is as follows. Section 2 briefly reviews the state of

the art in performance evaluation tools for vision algorithms. Section 3 describes the

annotation tool composed by: engine, GUI, and performance analyzer. In section 4,

an evaluation method for algorithms is proposed along with acase study. Finally, the

chapter is concluded with a discussion describing results about the optimization of

the case study.

6.2 Performance evaluation

This section describes the state of the art in performance evaluation for vision algo-

rithms and in particular for pedestrian detection.

Vision applications proved their efficiency and usefulnessin many fields but cur-

rent research practices, and in particular system-building techniques, are inadequate

especially for fine tuning and filter combination testing. One key aspect of this prob-

lem is the inability to conduct adequate performance characterization of new tech-

nologies (like pedestrian detectors). Reasons of this factare due to the complexity of

real scenes, sometimes pedestrians are occluded by other obstacles, sometimes parts

of framed obstacles looks like pedestrians (even for humansobservers).

The main purpose of a general approach to Performance Characterization of

Computer Vision Systems [44] is the statistical testing, tuning, algorithmic combina-

tion and algorithmic re-use in order to improve algorithms reliability and robustness.
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The work presented in [8] uses ground truth automatically extracted from pseudo

synthetic video to perform evaluation of a pedestrian tracker on typical surveillance

images taken from a fixed camera. However when dealing with real images taken

from moving a cameras installed on a vehicle, the manual ground-truth generation

approach seems to be more robust.

ViPER (Video Performance Evaluation Resource) described in [29] and [19] is

a Java integrated tool for authoring ground truth meta-datain image sequences and

evaluate performance of algorithms.

A similar system is proposed in this chapter. A key advantageof this tool is

it’s integration in a complete environment for the development of vision algorithms.

This simplify design and tuning of parameters allowing to directly check the impact,

of their variation, on performances.

The study presented in [27] points out the importance of a good performance

evaluation method for the actual deployment of systems on board of vehicles. This

study was based on a large number of tests. Results were analyzed using ROC curves

to highlight the impact of parameters variations on the algorithm performance in

terms of detection rate and false positive rate.

6.3 The annotation tool

6.3.1 Description

Performance evaluation using the annotation tool takes place in three steps: super-

vised sequence annotation by a human operator, automatic sequence annotation by

the algorithm being tested, annotations comparison and analysis. Thanks to a com-
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GUI

Algorithm

Video Sequence
Annotation

Engine

Annotation
File H

Annotation
File A

Statistical
Analisys

Video sequence specific
Algorithm performances

Annotation Tool

Figure 6.1: Block diagram of the algorithm: human and algorithm process the same video
sequence producing annotation files H and A. The two files are compared producing statistics

about algorithm performance

mon annotation engine, the tool allows the human operator and the algorithm to ex-

tract, into separate files, pedestrian information relative to the same image sequence.

Pedestrians are described by means of the bounding boxes (BBs) framing their shape.

The two files are compared and statistical information aboutthe algorithm behavior

are extracted. Each step is described below in detail. The performance evaluation

tool structure is shown in figure 6.1.

Supervised sequence annotation by a human operator

During this step a human operator analyzes every frame of a pre-recorded video se-

quence. For each frame in the sequence the operator manuallydraws the BB around

the pedestrian using a graphical user interface described in section 6.3.2. For each

BB, the operator also locates the region containing the pedestrian’s head. The head is

an important human shape feature that can easily be found. The existence of informa-

tions describing heads allows to profile recognition performances of the algorithms

that looks for this feature.
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It is also possible to classify the pedestrian as completelyvisible or partially

occluded by an obstacle. This description of the sequence ground truth is stored in a

file named H shown in figure 6.1. An example reporting a frame during the annotation

process is reported in figure 6.2.a.

Automatic sequence annotation by the algorithm under test

The output of a pedestrian detection algorithm can be described in terms of a list of

BBs for each frame. Optionally, the algorithm can also produce information regard-

ing the position of the head or some other interesting feature related to the pedestrian.

If needed an additional block can be added to the algorithm output stage in order

to translate its results in a format compatible with the annotation engine input. For

example if an algorithm extracts the human shapes from source images its output can

be converted in a list of BBs each one defining the pixel area inthe source image

occupied by the pedestrian’s shape. The description of the sequence produced by the

algorithm is saved in a file named A also shown in figure 6.1. An example of BB

generated by the algorithm under test is reported in figure 6.2.b.

Annotations Comparison and Analysis

This is the last step of the performance evaluation process.It takes as input the

two previously created files and compares them frame by frame, extracting statistical

information about the algorithm behavior. Three values arecalculated for each frame:

false positives (FP), false negatives (FN), and correct detections (CD).

In order to distinguish if a BB generated by the algorithm represents a correct



6.3. THE ANNOTATION TOOL 121

detection (CD) it is necessary to match it to all the BBs annotated by the human

operator.

Two BBs, p and q, of areaZp and Zq respectively, are defined asmatchingif

Zpq
.
= W2

pq/ZpZq is greater thanZTh, wereWpq is the overlapped area betweenp and

q andZTh is a threshold adjustable by the user (a good value may beZTh = 0.7).

This relation embodies the following property: well overlapped BBs generate

high values ofZpq, but as the overlapping area decreases linearly, the value of Zpq

decreases at higher rate (square).

Every frame of the sequence analyzed through a particular algorithm can be mod-

eled with the following two sets:

Hn
.
= {BBs annotated by a human operator}

An
.
= {BBs annotated by the examined algorithm}

wheren is the frame number of a specific video sequenceN frames long.

Let the symbol|X| represents the cardinality ofX, namely the number of elements

in the set.

It is possible to define the matching operator⊘ between a BB annotated by the

operator and one annotated by the algorithm under testing inthis way:

let ai ∈ An andh j ∈ Hn:

ai ⊘h j
.
=







1 Zaihj = max{Zaihk|Zaihk > ZTh}

0 otherwise
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Based on this definition∀ai ∈ An exists at most onej such thatai ⊘ h j = 1. In

fact, givenai , Zaihj > Zth for different values ofj. This ambiguity is resolved by the

max() function.

(a) (b) (c)

Figure 6.2: (a) Annotation window during the human supervised annotationprocess: the cur-
rently selected BB is cyan filled (it can be resized or moved),non-filled green BBs are non
selected BB, the yellow one is marked as occluded, the green-filled one is currently being
drawn by the operator. Each BB is composed of two rectangles framing the pedestrian shape
and head. (b) BBs generated by the algorithm. The red numbers indicate the distance of
the pedestrian, the violet area represents the 3D space where stereo vision can be applied.
(c) Matching phase result: BBs found by the pedestrian detector are presented in red, anno-

tated BBs are in blue and yellow (if occluded), matched BBs are in green.

A graphic representation of the matching process result is reported in figure 6.2.c.

Using these definitions, three different values are defined:

CDn =
|An|

∑
i = 0

|Hn|

∑
j = i

ai ⊘h j

FPn = |An|−CDn

FNn = |Hn|−CDn

These values represent respectively the number of correct detections, false posi-

tives, and false negatives for then-th frame of the sequence. In this way it is possible
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to identify frames in which the algorithm works fine and situations related to algo-

rithm weaknesses.

Now a set of global values is defined referred to the whole sequence in order to

compare different algorithms working on that sequence.

CDR=

N−1

∑
n=0

CDn

|Hn|
(6.1)

FPR=

N−1

∑
n=0

FPn

N
(6.2)

These values are sequence specific and measure respectively: the correct detec-

tion rate and the false positive rate.FPRcannot be normalized because false positives

have no upper limit.

6.3.2 User Interface

The input interface has been designed with the objective of reducing, as much as

possible, the workload for frame annotation. An example of the annotation window

during the drawing process of a new pedestrian is presented in figures 6.2.a. In figure

6.6.b is reported the annotation panel during the annotation process. The key points

for reducing the annotation time are the following:

Similarity between consecutive frames. Usually a frame in a real-time sequence

contains little differences from the previous one. For thisreason it can be assumed

that a BB containing a pedestrian will have a similar position and size in the subse-
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quent frame, possibly with some little corrections. To remove the need for a complete

redrawing of BBs on every frame of a sequence, the GUI copies all BBs of a certain

frame to the following one, leaving to the operator the task of adjusting size and

position, as well as adding and deleting new and disappearedBBs.

Easy input method. The interface has been studied keeping ergonomics in mind:

the operator uses one hand to command the mouse and the other one for the keyboard.

In this way all important commands such as tracing, resizingand repositioning of BBs

are directly available to the user. Moreover using the mousewheel the operator can

select the target BB to modify. Some additional keyboard commands allow to speed

up common operations such as deleting all BBs in the frame.

It has been proven that this kind of interface is user friendly. This GUI allows a

human operator to annotate about 100 frames/h. This number is the average speed

obtained from 10 different users who never used the tool before, each annotating 200

frames. However it is reasonable to assume this speed will increases with experience.

A more accurate drawing of BBs can be obtained magnifying thetracing area.

6.4 Algorithms Evaluation Space

This section contains some considerations regarding algorithms evaluation.

The valuesCDRandFPR introduced in the previous section were referred to a

single sequence. Indeed in order to have a more general and robust statistical descrip-

tion of the algorithm these values must be computed on a sufficiently large sequence

including a wide variety of different scenarios.

The 2D space< FPR,CDR> is defined as shown in figure 6.3; the optimal
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Figure 6.3: Vision based pedestrian detection normalized evaluation space.

algorithm is placed in the point(0,1). Namely, all algorithms that do not give any

false positive should stay in the segment[0,a] with a ∈ [0,1]. Algorithms with bad

performance fall in the right bottom part of the space while real cases fall inside the

central area.

This kind of evaluation allows to determine if an algorithm modification improves

(even slightly) the recognition performance. For example this system is useful to fine

tune parameters and thresholds. It is possible to evaluate the impact that a parameter

modification has on the algorithm performance observing themovement of the point

representing the algorithm in the evaluation space. Moreover the inclusion of new

filters can be evaluated measuring performance variations.Indeed the time consum-

ing annotation process that requires the human supervisionis performed only once

for every sequence.

It is also possible to define a metric (for example the euclidean distance from

the [0,1] point) to asses improvements. It is necessary to underline that the specific

optimality criterion is strictly dependent on the application. In some applications,
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such as quality control for example, it may be desirable to avoid false positives and

disregard false negatives. In other applications, such as automotive precrash systems,

some false positives may be acceptable, even if an excessivenumber of FP reduces

the user confidence in the recognition system. In these two cases the distance from

the optimum point should be defined in different ways.

6.5 Discussion

The performance evaluation tool described in this paper hasbeen used to evaluate

pedestrian detection algorithms. In particular, the algorithm presented in [13] has

been chosen as a case study. A number of sequences for nearly 1500 images have

been manually annotated. The sequences were taken in different scenarios (parking

lot, open field, and downtown), under different illumination and weather conditions,

and framed different subjects at different distances. The aim of this step was to create

a test set describing many of the the possible cases that the algorithm can deal with.

In the test sequence, composed of 1500 images, 1897 human shapes were annotated

as completely visible while 361 were marked as partially occluded. Figure 6.4 shows

a number of different situations for the test sequence.

The overall system performance shows that the correct detection rate is about

83% (1572/1897=82.9%). The high sensitivity of the algorithm (83%) comes along

with an appreciable false positives rate 0.46 FP per frame. Indeed, a set of higher

thresholds in the algorithm would decrease the number of false positives, but, at

the same time would reduce the correct detection rate. The false negatives rate

(426/1897=26.1%) summed up with the correct detection rateexceeds 100% (82.9%+26.1%=109%)
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since the latter also includes occasional detections of occluded human shapes.

(a) (b)

(c)

Figure 6.4: Examples of situations in which the human shape detection algorithms par-
tially fails: (a) background noise generated by parked vehicles introducesfalse positives;
(b) columns generate false positives due to their symmetry; (c) two pedestrians walking side

by side mislead symmetry evaluation.

The main result of these tests were the statistical characterization of the detector

behaviour and the precise identification of particularly challenging segments of a

large sequence. The program output while extracting statistics from the algorithm is

shown in figures 6.5 and 6.6.b.
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Figure 6.5: Statistics extraction screen-shot: for each frame values of CD, FP, FN and human
annotated (in yellow) are computed.

(a) (b)

Figure 6.6: (a) Statistics extraction screen-shot: for each frame valuesof CD, FP, FN are
computed and cumulated up to the current frame. (b) Annotation panel during the human

supervised annotation process: information about currentoperation are displayed

The presented performance evaluation tool has been proven to be effective though

it requires a very expensive annotation process. The time required to annotate one
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frame is a value than can be reduced only by either modifying the input method (find-

ing more efficient shortcuts for frequent operations) or trying to detect off-line the BB

modifications. Thus, improvements should be in GUI refining and in automatic re-

size/reposition of the bounding boxes using motion detection techniques whenever

possible. GUI refinement can be done following impressions of user that performs

longs annotations. Motion detection techniques such as correlation analysis between

frames and optical flow can be used to determine the new coarseposition and size

of BBs in new frame starting from those in the previous frames. It is necessary to

consider that the time spent to perform such detection can’tbe too hight in order to

maintain the number of annotated frames/h comparable with the human one. Relying

on an accurate prediction of the new BBs position, operator’s task would be reduced

to a mere supervision activity reducing the time spent to annotate each single frame.

This study shows a tool to detect positive aspects and weakness points of a pedes-

trian detector working on a given video sequence. The tool can also serve as a per-

formance comparison method between different algorithms.
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[45] C. Wöhler, U. Kreßel, and J. K. Anlauf. Pedestrian Recognition by Classifica-

tion of Image Sequences – Global Approaches vs. Local Spatio-Temporal Pro-

cessing. InProcs. IEEE Intl. Conf. on Pattern Recognition, Barcelona, Spain,

September 2000.
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