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Abstract

Composite and hybrid metal/composite structures are nowadays present

not only in the aerospace industry, but thanks to continuous performance

improvement and cost reduction, also many more industrial fields are ap-

proaching the use of multimaterial structural elements.

This requires, in turn, extensive use of adhesive bonding and a more

and more sophisticated capability to simulate and predict the strength of

bonded connections where, for this purpose, analytical methods are being

progressively integrated or replaced by finite element analysis (FEA). To

ensure the safety of the resulting structures, it is imperative to understand

their fatigue behaviour. Thus the rise of the application of adhesive bonding

has gone hand in hand with the development of models capable to predict

the fatigue life that is related to the initiation and propagation of defects

starting at free edges of joining regions or other features, such as through-

thickness holes.

The cohesive zone model (CZM) has found a wide acceptance as a tool

for the simulation of debonding in adhesively bonded joints. This model

is commonly used for the simulation of the quasi-static fracture problems,

especially in the case of interface cracks such as in bonded joints and de-
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lamination in composites. The possibility to simulate the growth of a crack

without any remeshing requirements and the relatively easy possibility to

manipulate the constitutive law of the cohesive elements makes the cohesive

zone model attractive also for the fatigue crack growth simulation.

The purpose of this work is to develop the two-dimensional cohesive zone

model presented by Pirondi and Moroni [66, 65, 67]. A cohesive damage

model has been implemented by means of the USDFLD and URDFIL sub-

routines in the commercial software Abaqus, in order to take into account

the damage produced by fatigue loading. The fatigue debonding of com-

posite assemblies under Mode I, Mode II and mixed-Mode I/II loading con-

ditions is simulated by the cohesive zone model. The cohesive zone model

has been then extended to simulate the propagation of three-dimensional

cracks with quasi-straight crack front. The CZM was tested on various joint

geometries characterized by different mixed mode ratios, in order to verify

accuracy, robustness and performance in terms of computational time. In

order to investigate the model sensitivity to material behavior, two kind of

materials were simulated, one representing an elastic, isotropic aluminum

alloy and another one an elastic, orthotropic composite laminate. Lastly a

new procedure for simulating fatigue debonding with cohesive zone is pre-

sented. Unlike the previous approaches, propagation of arbitrarily shaped

cracks can be simulated.

The present work was supported by Regione Emilia Romagna within

SPINNER 2013: Program Number 067/11 - “Sviluppo, caratterizzazione

e modellazione di strutture in materiale composito intelligente”.
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Chapter 1

Introduction

Composite materials and structural adhesively bonded joints are nowadays present in
several fields beside the aerospace industry thanks to the continuous performance im-
provement and the cost reduction. However a sophisticated capability to simulate and
predict the strength of bonded connection or composite part is absolutely necessary. For
this purpose, analytical methods are being progressively integrated or replaced by finite
element analysis (FEA).

1.1 Fracture phenomena in engineering

Many different areas in engineering are concerned with the evaluating the fracture
strength and durability of constructions. Often the traditional strength theories, based
on the determination of the induced stresses and the subsequent comparison with crit-
ical values, fail in predicting and avoiding fracture processes. The specific field which
deals with fracture and failure processes in engineering materials and construction is
called fracture mechanics. In this theory it is assumed that every component and every
real material inevitably possesses flaws or other defects that can originate during the
manufacturing process or the course of mechanical, thermal or corrosive service load-
ing. The presence of these cracks modify the local stresses so that the classical strength
criteria are insufficient for a correct design. The existence of such defects is explicitly
assumed in fracture mechanics and modeled as crack of size a. Such a discrete crack
is surrounded by defect-free material which is described by established material laws of
continuum mechanics. Using computational methods, the stress and deformation states
at the crack are determined.

The fracture of materials is a a process of the nucleation of micro-cavities or micro-
cracks due to the breakage of atomic bonds from a nano/microscopic view point. From
the macroscopic point of view, however, it is a process of the extension of cracks brought
about by the coalescence of these micro-cavities. Between these two processes, there
exists a mesoscopic process where the nucleation, growth and the coalescence of the
microscopic cavities leads to the initiation of a macroscopic crack (see Fig. 1.1).

The development of cavities in the microscopic, mesoscopic and the macroscopic pro-
cess of fracture in materials together with the resulting deterioration in their mechanical
properties are called damage (Lemaitre and Caboche 1978,[2]). The continumm damage
mechanics (CDM) is suitable for the modelling of micro-mechanical failure processes in

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Fracture processes at different scales

a component, before a macro-crack is formed or for the modelling of the fracture process
zone at the tip of a macro-crack.

In the next chapters delamination/debonding problems will be dealt with fracture
mechanics and damage mechanics approaches. First it is necessary to introduce appro-
priate fracture-mechanical parameters to identify the loading conditions at the crack
and the computational methods necessary for their evaluation.

1.2 Fracture parameters

The distinction between small scale yielding (SSY) and large scale yielding (LSY) is
important with respect to the modelling of fracture. SSY correspond to case where the
size of the plastic zone is much smaller than the size of the structure or component.
In that case the overall behavior of the structure remains linear. LSY corresponds to
the opposite case: a large portion of the specimen is plastically yielded and the overall
behavior is non linear (Figure 1.2).

Figure 1.2: Overall behavior of a cracked structure (plastic zone in gray)

SSY can be analyzed using linear elastic fracture mechanics, LSY is analyzed using
NLFM (Non Linear Fracture Mechanics)
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1.2.1 Linear elastic fracture mechanics (LEFM)
It can be observed that to introduce a crack into an elastically stressed body one would
have to balance the decrease in potential energy and the increase in surface energy re-
sulting from the presence of the crack which creates new surfaces. The available amount
of potential energy -ΔΠ, which is supplied by the external load and the elastically
stored internal energy during the crack propagation by ΔA (the minus sign indicates
the decrease of the potential energy), is called energy release rate and is defined for
infinitesimal crack propagation as follows:

G = − lim
ΔA

ΔΠ

ΔA
= −

dΠ

dA
(1.1)

Thus the crack extension occurs whenG reaches a value required for material separa-
tion and formation of new surfaces. It depends on the material behavior and represents
the critical material parameter . This energy balance during crack propagation, compiled
by A. A. Griffith [1], has the form:

−
dΠ

dA
= G = Gc (1.2)

The value of G can be related to the applied loading using the expression of the
stress tensor close to the crack tip. The literature treats three types of cracks, termed
mode I, II, and III as illustrated in Figure 1.3. Mode I is a normal-opening mode and is
the one we shall emphasize here, while modes II and III are shear sliding modes.

Figure 1.3: Fracture modes

Figure 1.4: Local coordinate system at the crack tip

When defining a polar coordinate system (r, θ) with the origin at the crack tip (see
Figure 1.4) the stress field in any linear elastic cracked body can be written as
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σij =

(
k√
r

)
fij (θ) + other terms (1.3)

where k is a constant and fij is dimensionless function of θ. The magnitude of k
depends on sample geometry, the size and location of the crack, and loads on the part.
As evident from Eq. (1.3) the stress near the crack tip varies with 1/ √ r, regardless
of the configuration of the cracked body. Note that when r → 0 the stress approaches
to ∞. In other words, when a body contains a crack, a strong concentration develops
around a crack tip. Under mixed mode loading (I,II and III) each mode produces the
1/ √ r singularity at the crack tip, but the proportionality constant k and function fij in
Eq. (1.3) depend on a specific mode. It is customary to define k in terms of the stress
intensity factor K (SIF) and write

K = k
√

2π (1.4)

Thus Eq. (1.3) becomes

lim
r→0

σ
(I,II,III)
ij =

K(I,II,III)√
2πr

f
(I,II,III)
ij (θ) (1.5)

where I, II, III refer to individual modes. Individual contributions to a given stress
component are additive.

The corresponding energy release rate is given by:

G =


1−υ2

E (K2
I +K2

II) + 1+υ
E K2

III plane strain

1
E (K2

I +K2
II) + 1+υ

E K2
III plane stress

(1.6)

An alternative fracture criterion in addition to that shown in Eq. (1.2) deals with
the stress state near the tip of the crack. The stress intensity factor determines the
“amplitude” of the crack tip stress for a certain geometry and loading case. Thus it may
be concluded that a crack will grow when K reaches a critical value. This implies that a
crack growth criterion can be formulated, where the stress intensity factor for a certain
situation is compared to this critical value. The value of the stress intensity factor has
to be calculated. The critical value has to be known from experimental measurements.
It is called the Fracture Toughness and denoted as Kc.

KI = KIC ; KII = KIIC ; KIII = KIIIC (1.7)

As mentioned above plasticity occurs at the crack tip. As long as small scale yielding
prevails, it is possible to apply Irwin plastic correction [2]. Using this correction a crack
of length a is considered equivalent to an effective crack of length ae= a + ry where ry
depends on K and the yield strength of the material.

1.2.2 Non linear fracture mechanics (NLFM)

LEFM is only valid as long as nonlinear material behavior is confined to a small region
surrounding the crack tip. There are many materials that show elastic-plastic deforma-
tion for which the applicability of LEFM is impossible or at least suspicious. The plastic
deformations influence the situation at the crack and in the body considerably. Thus,
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special failure criteria need to be established to deal with this kind of problems. This
task is pursued in Elastic-plastic fracture mechanics (EPFM ).

A parameter characterizing the nonlinear behavior at the crack tip is the J-integral.
Rice [3] presented a path-independent contour integral of analysis of cracks and showed
that the value of this integral is equal to the energy release rate in a nonlinear elastic body
that contains crack, i.e.: J=G. This relation has become a common technique to calculate
stress-intensity factors in linear elastic fracture mechanics (LEFM). Hutchinson [5, 6]
and also Rice and Rosengren[7] further showed that J-integral uniquely characterizes
crack tip stresses and strains in nonlinear material. In other words J-integral plays the
role of an intensity factor like K in the case of linear elastic material behavior.

Consider an arbitrary counter-clockwise path (Π ) around the tip of a crack (see
Figure 1.5). The J-integral is a given by

J =

ˆ
Π

(
Wdy −

−→
T
∂−→u
∂x

ds

)
(1.8)

where W is the strain energy density defined as

W =

ˆ
σijdεij (1.9)

Crack

x

y

n
T

Figure 1.5: The J contour integral

Π is an arbitrary contour around the tip of the crack, −→n is the unit vector normal
to Γ. ~u is the displacement field,

−→
T is the stress acting on the contour:

−→
T = σ � −→n .

Because of its path independence, the integral can be calculated in the remote field and
characterizes also the near-tip situation.

1.3 Delamination/debonding problems

Currently, composite materials are used in a wide variety of high-performance applica-
tions. Delamination as a result of impact or a manufacturing defect can cause a sig-
nificant reduction in the compressive load-carrying capacity of a structure. The stress
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gradients that occur near geometric discontinuities such as ply drop-offs, stiffener termi-
nations and flanges, bonded and bolted joints, and access holes promote delamination
initiation, trigger intraply damage mechanisms, and may cause a significant loss of struc-
tural integrity. The fracture process in high performance composite laminates is quite
complex, involving not only delamination, but also intralaminar damage mechanisms
(e.g. transverse matrix cracking, fiber fracture).

Adhesive bonding of structural components is desirable in many instances because
it eliminates the stress concentration factors caused by mechanical fastener holes. Also,
weight and fabrication costs may be saved. Because composite material strength is sig-
nificantly reduced when a hole is introduced, composites are extremely attractive can-
didates for adhesive bonding. The two disciplines, delamination of composite materials
and debonding of adhesive joints, both essentially involve the separation of materials
held together by polymer resins.

Adhesive joints usually fail by the initiation and propagation of flaws and, since the
basic tenet of continuum fracture mechanics is that the strength of most real solids in
governed by the presence of flaws, the application of such theories to adhesive joint failure
has received considerable attention. The main aims of the various theories are to analyze
mathematically the loads at which the flaws propagate and describe the manner in which
they grow. For using bonded joints with confidence, a complete understanding of their
behavior is necessary; it is thus necessary to provide parameters for characterizing crack
growth independently of the geometry of the components. Different tests have been
developed in order to ascertain values of various fracture parameters.

1.3.1 Mode I characterization

Mode I characterization of adhesive bonds is widespread for bonded joints and compos-
ites. The Double Cantilever Beam (DCB) is undeniably the most popular test geometry
to assess the performance of an adhesive [23] or composite materials [24]. The DCB
specimens consist of two cantilever arms with uniform width and thickness, bonded to-
gether by an adhesive layer or co-cured between adherends with a starter crack at one
end. The first configuration is used for evaluating fracture toughness in adhesive joints,
whereas the second one is used for characterizing the Fiber Reinforced Polymer Matrix
Composites. The starter crack is created at one end of the specimen by placing a thin
Teflon film at the midplane.

(a) (b)

Figure 1.6: Geometries of the bonded (a) and co-cured (b) DCB

a0 is the initial crack length, tA the adhesive thickness and L the specimen length.
The load or a displacements is applied to provide a purely Mode I loading (opening
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mode). A typical repeated loading-unloading response of a DCB specimen is plotted in
Figure 1.7. The test is performed using a servohydraulic testing machine and the crack

Figure 1.7: Load versus Opening in a DCB test

mouth opening displacement (Δ) is monitored using a clip-gage (Figure 1.8). Typically,
loads are applied to the DCB via loading blocks or hinges adhesively bonded to the
surface of the DCB.

Figure 1.8: DCB test

The force increases almost linearly and reaches a peak in correspondence of which
there is the onset crack. After the peak, the force decreases and the crack propagates.
The several unloading/loadings are needed to make easier the strain energy release rate
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calculation.
The strain energy release rate can be evaluated using the following equations [16]:

G =
P 2

2b

dΨ

da
=

(Pa)
2

bEI

(
1 +

1

aλσ

)2

(1.10)

Ψ =
∆

P
=

2λσt

E′
ab

[
1 + 2 (λσa) + 2 (λσa)

2
+

2

3
2 (λσa)

3

]
(1.11)

λ4
σ =

6

h3t

E
′

a

E
(1.12)

where a is the crack length, P is the load, E is the Young’s modulus and I is the
second moment of area of the beam section, E

′

a is the plane strain Young’s modulus of
the adhesive and dΨ/da is the rate of change of compliance Ψ with respect to crack
length.

Figure 1.9: Contoured Double-Cantilever Beam Specimen[23]

Therefore, Eq. (1.10) allows one to determine the fracture energy of a test sample
when the evolution of crack growth is known from Eq. (1.11), which is in turn fed
by compliance values measured at given points during the test by unloading-reloading.
The testing for fracture toughness of interface bonds obtained with conventional DCB
specimens can require simultaneous measurements of critical load and crack length. The
value of dΨ/da in (1.10) depends on the accuracy of the crack length measurements,
which is generally a difficult task. The measurement of crack length can be avoided by
contouring the DCB specimen, such that dΨ/da is a constant, and, in this case, the
specimen in known as the contoured double cantilever beam (CDCB)(see Figure 1.9).

1.3.2 Mode II characterization

Fracture toughness under Mode II can be characterized with different popular tests:
end-notched flexure (ENF), end-loaded split (ELS) and four-point end-notched flexure
(4ENF). Between these, the ENF test is the most common for mode II fracture char-
acterization of adhesively bonded joints and composites. The ENF is similar to DCB,
although loading occurs by bending, induced by the loading cylinder at the specimen
mid-length, while the edges are supported (Figure 1.10). The resulting load creates an
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almost pure shear stress state at the crack tip, provided that the specimen is designed
so that the adherends deform elastically.

However there are several difficulties, to be overcome in developing mode II tests, that
cause a not good repeatability in GIIC values. This issue mainly depends on unstably
crack propagation and influence of friction caused by the relative sliding of two crack
faces during the entire test. In fact a standardized fracture test for mode II does not
exist. Since the beginning of 2009 a work item (WK22949) was initiated by the American
Society for Testing and Materials (ASTM) with the scope to standardize a test method
for mode II delaminations for UD fiber reinforced composites [25].

Figure 1.10: ENF test

1.3.3 Mixed-mode characterization
Although pure-mode testing is of fundamental interest, most structural applications
of composite materials involve a combination of fracture modes, particularly Modes I
and II. But, how these fracture modes combine to cause failure of the structure is not
well established. Thus, there has long been interest in performing mixed-mode testing.
Several mixed-mode test methods are presented and briefly discussed by J.H. Crews and
J.R. Reeder [26, 27]. A major limitation of all of these test methods, however is the
difficulty of determining the relative amounts of Mode I and Mode II fracture present
for a given specimen configuration.

In the mid-1980s, Reeder and Crews developed at the NASA-Langley Research Cen-
ter (Hampton, Va.) a much more suitable test method. They first published their work
in a NASA Technical Memorandum in 1988, followed by a publication in the open jour-
nal literature in 1990. Refinements to the test fixture, essentially modifying it to the
configuration standardized and in use today, were published in 1992. The governing
standard, ASTM D6671, was first published in 2001 [28]. The corresponding Mixed
Mode Bending (MMB) test fixture is shown in Fig. 1.11.

The concept is simple: the fixture simultaneously applies a direct combination of
Mode I (Double Cantilever Beam) and Mode II (End-Notched Flexure) loadings. The
hinges of the test specimen are clamped at the right end to both the fixture base and
the loading beam. The left end of the specimen rests on a cylindrical support that
is mounted in ball bearings so that it is free to rotate and, thus, not restrain lateral
movement of the specimen. This support can be repositioned as required to achieve a
desired support span length. The center bracket on the loading beam can be adjusted
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(a) (b)

Figure 1.11: Scheme (a) and fixture (b) of MMB test

to center the loading cylinder with respect to the support span. Then, by moving the
saddle at the left end of the loading beam, various ratios of Mode I to Mode II can be
induced in the test specimen. For example, if the saddle is positioned above the center-
loading cylinder, pure Mode II is achieved. If the center-loading cylinder were positioned
above the left support and the saddle moved to the left end of the beam, then pure Mode
I could be achieved. Applied load versus load point deflection are recorded. Different
values of interlaminar fracture toughness GC, and mode mixture, GII/GI + GII , are
calculated using different critical loads reads from the load displacement curve. The
critical loads, precisely defined in the standard, are however close to maximum applied
load, when the crack starts growing.

The MMB test fixture is, today, the preferred method for quantifying the mixed-
mode fracture toughness of composites, particularly now that ASTM D 6671 is available.
The test specimen is simple and of a familiar form, and the test procedure is relatively
straightforward. This test method has been successfully used to assess the toughness of
adhesive joints.

1.4 Computational methods

An extensive use of adhesive joints or composite materials is permitted by the capability
to simulate and predict the strength of these structures. So analytical methods are
being progressively integrated or replaced by finite element analysis (FEA) for assess
the resistance of complex structures in which delamination/debonding phenomena can
occur.
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1.4.1 Virtual crack closure technique (VCCT)

The energy release rates can be evaluated using the virtual crack closure technique
(VCCT) proposed by Rybicki and Kanninen [8]. The VCCT is based on Irwin’s as-
sumption that when a crack extends by a small amount, the energy released in the
process is equal to the work required to close the crack to its original length. The Mode
I, Mode II, and Mode III energy release rates, GI , GII and GIII respectively, can then
be computed from the nodal forces and displacements obtained from the solution of a
finite element model. Indeed the VCCT derivates from the crack closure method (CCM)
in which two-steps analysis in needed (see Figure 1.12).

(a) First step

(b) Second step

Figure 1.12: Crack Closure Method

The energy ΔE released when the crack is extended by Δa from a to a+Δa is
identical to the energy required to close the crack between location l and i . Index “1”
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denotes the first step depicted in Figure 1.12.a and index “2” the second step as shown in
Figure 1.12.b. For a crack modeled with two-dimensional four nodes elements as shown
in Figure 1.12 the work ΔE required to close the crack along one element side can be
calculated as

∆E =
1

2
[X1l ·∆u2l + Z1l ·∆w2l] (1.13)

where X1l and Z1l are the shear and opening forces at nodal point l to be closed and
Δu2 and Δw2 are the differences in shear and opening nodal displacements at node l.
The forces required to close the crack are identical to the forces acting on the upper and
lower surfaces of the closed crack. The forces X1l and Z1l may be obtained from a first
finite element analysis where the crack is closed. The displacements Δu2and Δw2 are
obtained from a second finite element analysis where the crack has been extended to its
full length a+Δa as shown in Figure 1.12.b.

This approach is made computationally effective if the energy release rates is obtained
from only one analysis. The additional assumption is that a crack extension of Δa from
a+Δa (node i) to a+2Δa (node k) does not significantly alter the state at the crack tip
(Figure 1.7).

Figure 1.13: Modified Crack Closure Method

Therefore the displacements behind the crack tip at node i are approximately equal
to the displacements behind the original crack tip at node l. Further, the energy ΔE
released when the crack is extended by Δa from a+Δa to a+2Δa is identical to the
energy required to close the crack between location i and k. For a crack modeled with
two-dimensional, four-noded elements, as shown in Figure 1.13, the work ΔE required
to close the crack along one element side therefore can be calculated as

∆E =
1

2
[Xi ·∆ul + Zi ·∆wl] (1.14)
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where Xi and Z i are the shear and opening forces at nodal point i and Δuland Δwl
are the shear and opening displacements at node l. Thus, forces and displacements
required to calculate the energy ΔE to close the crack may be obtained from one single
finite element analysis. The energy release rate G=ΔE/ΔA (where A is the crack surface
created) has to be separated into the individual mode components (GI and GII). The
approach just presented for Two-Dimension finite element can be extended to Three-
Dimensional cases in which the third dimension allows to calculate the distribution of
the energy release rate along the delamination front and makes it possible to obtain
GIII.

The virtual crack closure technique is implemented into several commercial finite
element codes such as Abaqus/Standard®, MD Nastran™, Marc™ and ANSYS®. For
the automated delamination propagation analysis, the VCCT implementation in Abaqus
requires the calculation of the energy release rate at the crack tip at the end of converged
increment. Once the energy release rate exceeds the critical strain energy release rate,
Geq ≥ GeqC , the node at the crack tip is released in the following increment and so the
crack propagates. It must be highlighted that GeqC is based on the user-specified mixed-
mode criterion (GeqC = f(GIC , GIIC , GIIIC)) and the bond strength of the interface.
For pure mode I, Geq reduces to GI and GeqC is replaced by GIC . Fracture analysis
without crack propagation can also involve only the evaluation of energy release rate
values, at a given crack length for a particular load. This involves that bonded region
along the interface, should not debond under the application of load. In order to achieve
this, the critical energy release rate are set at very high values.

Although valuable information concerning the onset and the stability of delamination
can be obtained using the VCCT, its use in the simulation of delamination growth may
require complex moving mesh techniques to advance the crack front when the local
energy release rates reach a critical value. Furthermore, an initial delamination must
be defined and, for certain geometries and load cases, the location of the delamination
front might be difficult to determine.

1.4.2 The cohesive model

Some of the above difficulties explained at the end of the last paragraph can be overcome
by using cohesive elements. The idea for the cohesive model is based on the consideration
that infinite stresses at the crack tip are not realistic. Models to overcome this drawback
have been introduced independentely by Dugdale [9] and Barenblatt [10]. Both authors
divided the crack in two parts: one part of the crack surfaces, region I in Figure 1.14, is
stress free, the other part, region II, is loaded by cohesive stresses that representing the
material resistance to fracture.

In Dugdale’s model the closure stress is the yield strength σvy; in Barenblatt’s model it
represents the molecular force of cohesion and varies along the plastic zone (the stresses
in the cohesive zone follow a prescribed distribution σv(x), where x is the ligament coor-
dinate). Most of the recently developed and proposed models are different from Baren-
blatt’s model in that they define the traction acting on the ligament in dependency to
the opening and not to the crack tip distance as Barenblatt did. Needleman was the
first, who used the model for crack propagation analyses of ductile materials. More than
ten years earlier, Hillerborg [11] already applied the cohesive model to brittle fracture
of concrete using the finite element method for the first time, followed in the 80’s by
Petersson [12] and Carpinteri [13] amongst others. In between, the cohesive model has
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Figure 1.14: Dugdale (left) and Barenblatt (right) crack models

been applied to almost any kind of materials and to many different size and time scales
from micro to macro and from impact to long term creep.

In FEM models the material separation and thus damage and failure of the structure
is described by interface elements. Using this technique, the behavior of the material is
split in two parts, the damage-free continuum with an arbitrary material law, and the
cohesive interfaces between the continuum elements, which specify only the damage of
the material. The interface elements open during loading and finally loose their stiff-
ness such that the continuum elements are disconnected. For this reason the crack can
propagate only along the element boundaries. If the crack propagation direction is not
known in advance, the mesh generation has to make different crack paths possible. The
central point of all cohesive zone models is the function that describes the interaction
force between the two interfaces (crack faces). This law represents a real local material
property that is independent of the external load. The so-called cohesive law or sep-
aration law is usually a relation between the boundary tractions σv and the separation
δn = u+

n − u−n of the interfaces, i.e., the distance between the crack faces. Meanwhile,
many proposal for cohesive laws exist in the literature, which differ according to various
material and failure mechanism; for an overview see the review of Brocks et al. [14][15].
Some typical shapes are shown in Figure 1.15.

Initially, the stress increases with growing distance up to a maximum called the
cohesive strength σ0

max of the material. If the separation has reached a critical decohesion
length δc, then the material is completely separated and no stress can be transmitted.
Notice that the area under the stress-separation curve corresponds to the dissipated
work during a material’s separation - the specific fracture energy per surface area GC
as introduced by Griffith.

Γ =

ˆ δc

0

σ(δn)dδn = GC energy of separation (1.15)

Thus, through (12) the relationship between cohesive zone model and classical frac-
ture mechanics is established. The fracture process, as just described above, implies
that the part modelled with cohesive elements is continuously under loading. In case of
global unloading of the structure it is necessary to define a behavior of the cohesive ele-
ments under decreasing separation, which accounts for the irreversibility of the damage
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Figure 1.15: Typical forms of separation laws

process. Since damage evolution is a nonlinear process like inelastic deformation, the
cohesive models are established in analogy to the principles of plasticity, but allowing
for strain softening. The terms “loading” and “unloading” will be used in the sense of
increasing or decreasing separation, respectively, as the tractions decrease also under
increasing separation beyond maximum stress, σvmax. More generally, “unloading” is any
change of the deformation direction by which the stress state removes from the limit-
ing traction-separation curve. This definition also applies for shear separation. Two
principle mechanisms depending on the material behavior have to be distinguished:

• Ductile unloading The mechanical work for producing damage is totally dissi-
pated, the void growth and hence the inelastic separation are irreversible and any
reduction of separation occurs purely elastically with unchanged elastic stiffness,
as shown in Figure 1.16.a.

• Cleavage unloading The elastic stiffness of the material is reduced by damage,
but the separation vanishes when the stresses decrease to zero, as shown in Figure
1.16.b.



16 CHAPTER 1. INTRODUCTION

σ

δn

A

(a)

σ

δn

A

(b)

Figure 1.16: “Ductile” (a) and “Cleavage” (b) unloading behavior

Since the cohesive model is a phenomenological model, which can be used inde-
pendently of the fracture mechanism, the two assumptions apply to different material
behavior. The first one is valid only for ductile crack propagation. Brittle fracture,
which is characterized by micro cracks, would not be modelled correctly with a perma-
nent separation on unloading, since the micro cracks close entirely (without getting back
their stiffness). In this case the second unloading mechanism should be used.

Cohesive zone model involves three important parameters: the critical separation
δc, the cohesive strength σvmax and the cohesive energy Γ0. It is usual to take Γ0and
σvmaxto be the constitutive parameters in the research. The cohesive parameters of the
traction separation law in each fracture mode should be determined for application of
this method. Both experimental method and numerical method are used for determining
the cohesive parameter. As above, the DCB test is used to obtain the opening Mode I
fracture toughness GIC of adhesives in bonded metal joints or fiber-reinforced composite
materials. After determining the the opening fracture toughness GIC, σvmax can be
obtained by fitting the experimental force-opening curve with FEA results.
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Fatigue Crack Propagation

Fatigue fracture is one of the failure modes in engineering where crack initiates, propa-
gates, and finally results in the failure of components under cyclic loading. It is widely
spread in the fields of aerospace, transportation, machinery, and other industries, bring-
ing on great economic loss and casualties every year. Therefore, it is extraordinary
significant to avoid the occurrence of fatigue fracture. To do this, the factors influencing
fatigue fracture have to be clear. In general, there are two approaches for fatigue life-
time prediction, which have been extensively used in the literature, namely, stress-life
approach and fatigue crack initiation/propagation approach. In the stress-life approach,
a series of tests under various loads are performed in order to obtain the plot of stress
versus the number of cycles to failure, which is known as S-N curve or Wohler’s curve.
Theoretically speaking, at a fatigue threshold the structure has an infinite life. However,
this is not the case for adhesively bonded joints and the threshold is usually specified
at a certain number of cycles, for example, one million cycles. Instead in the second
approach it is studied how the presence of a crack could reduce the life of a component
or structure.

2.1 Theoretical framework

During fatigue of materials the following damage mechanism is observed. As a result
of alternating micro-plastic deformations (dislocations, slip bands) first microcracks are
formed on the surface or on microstructural inhomogeneities (inclusion, grain bound-
aries) in the interior. Only above a crack length of about 10 grain diameter do we call it
a crack. Its behavior can now be described with methods of classical fracture mechanics.
From a macroscopic view very small negligible plastic deformations occur and fatigue
crack growth takes place in the K-controlled near-field, so that the LEFM is applicable
(Figure 2.1). Many authors have neglected the crack initiation phase and based their
lifetime analysis only on the crack propagation phase. The main reason for doing this
is that the crack initiation phase is harder to deal with due to the difficulties associ-
ated with modelling the nucleation of a crack and the ability to monitor and detect the
initiation phase.

Under alternating loads cracks may propagate stably although the stress intensity
factor is far below the static fracture toughness. This phenomenon of subcritical crack
propagation is called fatigue crack growth. Fatigue crack growth is the most common

17
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R= min/ max
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Figure 2.1: Relation between alternating load and stress intensity factors

cause of failure in mechanics, vehicles, aircraft and other constructions that are exposed
to time-varying operating loads. Depending on their temporal course one can be distin-
guish between periodic (cyclic) or stochastic loads with constant or variable amplitude.

An important parameter in high-cycle fatigue is the rate of fatigue crack propagation
that is determined by subjecting fatigue-cracked specimens, like the compact specimen
used in fracture toughness testing, to constant-amplitude cyclic loading. The increase in
crack length a is recorded along with the corresponding number of elapsed load cycles
N during the test (see Figure 2.2).

Figure 2.2: a - N trend Figure 2.3: ΔK -da/dN trend

At cyclic loading both the external load, the stress distribution and the stress in-
tensity factors are time-independent. In particular the stress intensity factor range is
described by:

∆K = Kmax −Kmin = ∆σ
√
πaβ (2.1)

where the ∆σ is the remote stress applied to the component and β depends on the
crack length and the thickness of the component. The crack growth velocity or the crack
growth rate is so defined as the ratio da/dN obtained by taking the derivative of the
above crack length a - cycles N curve. Plotting the experimentally determined crack
velocity da/dN on a double logarithmic scale as a function of cyclic stress intensity
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factor ∆K, it can be obtained the crack growth curve. Its typical behavior is shown in
figure 2.3. The fatigue crack propagation curve, which has a sigmoidal shape, has three
different regions: (I) threshold region defined by fatigue threshold ∆Kth below which
no crack growth takes place, (II) linear or steady state crack growth region, which can
be well described by Paris’ law [17, 18], and (III) fast or unstable crack growth region
where catastrophic failure takes place when the fracture toughness ∆KC = KC(1− R)
is reached.

The Paris relation above mentioned has been extensively used in the literature to
relate crack growth rate to the fracture parameter ∆K :

da

dN
= C∆Kn (2.2)

where C and n are empirical constants obtained by curve fitting of experimental
data. The previous equation was modified and applied to fatigue delamination and
debonding problems by Mostovoy and Ripling[19], using the strain energy release rate
∆G as fracture parameter, to give:

da

dN
= C∆Gn (2.3)

The exponent n and the coefficient C depend on the material, temperature, stress
ratio, R, and frequency [20, 21]. The behavior of the crack growth curve depends on the
specific material and is influenced by manifold factors as micro structure, temperature,
environment or R-ratio. With increasing R-ratio, the crack growth velocity da/dN and
the threshold value ∆Gth commonly diminish.

An accurate and efficient prediction of fatigue crack growth allows to adopt the “fail-
safe design” as design philosophy. So it is assumed that the component or structure may
be safely operated even in the presence of some damage, that may grow up to a limit value
before a structure replacement. In these structures a possible crack may grow in service,
but will not reach critical size before its detection. Useful life is defined by a critical
crack size (defined by the material toughness or other applicable criterion). Essential
ingredients of these approaches are the knowledge of crack propagation as related with
applied loading, and periodical inspections with a frequency ensuring that undetected
damage in one inspection will not grow up to critical size before next inspection. So
the progress of fatigue knowledge led to a damage tolerant approach where damage is
considered unavoidable and measures are taken for its control along a component life
cycle. This leads to weight savings but also to increased maintenance costs, particularly
those related with periodical inspections. Actually a fail-safe design may not always
possible and therefore it must be used the “safe-life design” approach. This design
philosophy is instead based on the intention of avoiding fatigue crack initiation during
the entire life time.

2.2 Mechanical characterizing fatigue crack propag-
tion

As mentioned in the first chapter, debonding and delamination are quite similar process
because they involve the separation of materials. The delamination occurs between two
plies of a composite laminate and, once initiated, will grow under fatigue loading. Dur-
ing delamination growth, the structural loads may be redistributed such that another
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delamination occurs in another location. The delamination may continue to grow and
accumulate until a structural failure occurs, such as buckling or fiber failure. Addition-
ally, the delamination may be arrested and the structure may maintain some integrity.
Efforts to predict the delamination efforts and growth have focused on interlaminar
fracture mechanics. The fracture mechanics prediction need the relation between strain
energy relation rate G and delamination length a and Paris law parameters. For a initial
delamination length, a strain energy relation rate values in known. From this value of G,
the delamination growth rate , da/dN is obtained. For an incremental number of cycles,
the increment in delamination length is determined. This gives a new value of G from
the G-a relationship and a new value of da/dN is obtained. This continues until the
delamination grows to a critical length, leading to a number of fatigue cycles to failure
at the given load. This approach requires both computer modelling (FE analysis for
obtaining G-a relationship) and experimental characterization under fatigue loading.

Delamination/debonding will grow under a combination of tension or peel, Mode I,
and shear stresses, in plane (Mode II) and transverse (Mode III) shear, respectively. Test
method have been developed for each of these modes along with some test that provide
mixed-mode testing, such as the mixed-mode bending test. The more critical modes are
mode I and mode II and these have received most attention in test development and
material characterization. While most of the test-method developed has focused on static
delamination growth, the importance on delamination fatigue has also been well covered
by some researchers. The test specimens used to characterize delamination in fatigue
are identical to those used for static characterization for all modes of fracture. In some
instances when the delamination characterization is focused on threshold testing, the
associated amplitudes may be small, particularly in mode II flexure tests. Therefore,
it is often advisable to use thinner specimens than ones for the static tests so that
amplitudes are higher. This, in turn, results in lower loads requiring appropriate load
cells.

In [22] tests were conducted in load control mode and interrupted at complete sepa-
ration of the adherends. Loads were applied with a sinusoidal wave at a fixed frequency
(2-3 Hz). The length of the growing crack is monitored and the number of cycles (N )
for each growth period was recorded. For computing the crack growth rate da/dN , the
following equation is used (secant method):

da

dN
=

(ai+1 − ai)
(Ni+1 −Ni)

(2.4)

The corresponding values of the strain energy release rate were evaluated analytically
using the expression 1.13. The slope and intercept obtained from the linear regression
analysis were used to determine the exponent n and the coefficient C, from the Paris
equation da/dN = C∆Gn. In order to monitor crack growth and measuring crack
length as a function of number of cycles, several techniques have been used in the
literature, for example, optical techniques such as video microscopic and magnification
lenses, chirped fibre Bragg grating sensors, and ultrasonic technique. An other method
consists in interrupting the test and loading up the specimen to the maximum force in
order to keep the crack faces open and to measure the crack extension. The Double
Cantilever Beam specimen has been widely used to measure the mode I interlaminar
fracture toughness both statically and in fatigue. In the DCB specimen the initial
crack is created placing at the mid-plane a non-adhesive insert, at one end prior to
curing or consolidation. When the composites behavior has to be assessed, both 0°,
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unidirectional and multidirectional layups can be used. However, if angle plies are used in
a multidirectional lay-up these specimens may experience branching of the delamination
away from the mid-plane through matrix crack in off-axis plies. If the delamination
branches away from the mid-plane, a pure mode I will be not achived because of the
coupling between extension and shear which may exists in the asymmetric sublaminates
formed as the delamination grows.

In [22] the authors have proposed an approach for the prediction of fatigue crack
propagation in a Tapered Single Lap Joint (Figure 2.4.b), made of relatively thick com-
posite laminate adherends and bonded with an epoxy adhesive, using a crack growth
law determined with DCB tests.

Adherend
Adhesive

(a)

Adherend
Adhesive

(b)

Figure 2.4: Single Lap Joints (a) Tapered Single Lap Joints (b)

The results were compared with experimental observations of the fatigue crack prop-
agation during fatigue testing of some tapered single lap joints. It is very interesting
to examine how a crack can propagate in a DCB with composite laminate adherends
and subsequently how it reflects on the experimental data in a plot ∆G/∆GIC versus
da/dN .

Figure 2.5: Fracture surface of an ad-
herend after the FCG test [22]

Figure 2.6: Results of the FCG test [22]

From the test results it clearly appears that the slope of the crack growth rate curve is
not constant. Two distinct lines interpolating the experimental points can be identified
by linear regression analysis. Fatigue crack propagation experiments on DCB specimens
showed a complex crack propagation behaviour, with a crack path developing in the
bondline and subsequently propagating in the adjacent layers. By visual inspection the
fracture surface of the DCB specimens after testing (see Figure 2.5), it clearly appears
that the first line of Figure 2.6 corresponds to FCG taking place at the interface between
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the composite and the adhesive, and that the second line corresponds to cracks growing
between the first (woven) and the second ply (unidirectional) of the composite laminate.
So each region can be described with a Paris law. For predicting the fatigue crack
growth of the tapered lap joint, the fatigue parameters (the exponent and the coefficient
of the Paris law), corresponding to the crack propagation within the adhesive, have been
used. This is a common approach to predict the fatigue behavior of defects in adhesive
joints or composite parts using mode I fatigue parameter. In fact if full mixed-mode
delamination characterization is not available the possibility of using the data from
DCB test is an option. This is a conservative approach for delamination that have a
high mode-II component because the mode II toughness of the composite is higher than
the mode I.

For what concerns mode-II loading, there are several tests used to characterize fatigue
delamination growth. These methods are mentioned in the previous chapter for the static
characterization: ENF, ELS, 4ENF. These tests essentially use the same specimen type:
it is the loading of this specimen that varies. For the ENF, the shear loading arises from
three-point bending. The loading fixture uses rollers to support the specimen and to
allow it to rotate freely. Delamination growth in this specimen is unstable and the fatigue
delamination growth rate increases as the test progresses. For the 4ENF the specimen is
placed in four-point bending with the delamination between the centre loading rollers,
which are free to rotate about their centre line to allow for the asymmetric deflection
of the specimen. The delamination growth is then stable and the fatigue delamination
growth decreases as the fatigue test progresses. Delamination growth is also stable for
certain delamination lengths with the ELS specimen, which is loaded as a cantilever
beam.

Indeed the approach just described implies that a defect in the adhesive joint or in
a composite part already exists. The other important approach for characterizing the
fatigue delamination deals with the delamination initiation. Both methods are needed to
accurately predict the structural integrity of a component. Many researchers focus their
work in the first phase spent in the nucleation of a crack. This phase is not negligible
since the fraction of life for crack initiation represents a significant part of the joint fatigue
life. For example in single lap bonded joints (see a SLJ in Figure 2.4.a), this fraction can
range from a minimum of about 20% up to more than 70% depending, mainly, on overlap
length and stress level [37]. Similar results are available in the literature for bonded joints
made from metallic or composite adherends [30, 32, 33, 36, 31]. These results clearly
indicate that neglecting the nucleation phase and considering the fatigue life of the joint
entirely spent in crack propagation, as done by some of the methodologies available for
the life prediction of bonded joints, could result in too conservative assessment of the
fatigue life of the joints.

Monitoring and detecting crack initiation has been performed in the literature using
back-face strain. Back-face strain has extensively been used in the literature to monitor
crack initiation in adhesively bonded joints [39, 40, 41, 42]. Zhang et al. [38] developed a
back-face strain technique to detect fatigue crack initiation in SLJs. Because of its simple
geometry, the single lap joint has been widely used to asses the mechanical behavior of
adhesive joints. When a single lap joint is loaded with two parallel forces, a moments
devolps, which causes the joint to rotate as shown in Figure 2.7.

The joint rotation produces a bending deformation in the adjoining beams. The
deformation of the beam is the most severe ate the end of the overlap, where two strain
gauges are placed on the “backface” of the beam. When a crack appears at one of the end,
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Figure 2.7: SLJ deformation during a fatigue test [38]

e.g., at side A, it relaxed the deformation of the beam locally, moving the location of the
maximum strain to a point close to the crack tip. Consequently, the strain reading at the
strain gauge placed at side A decreases as soon as the crack is initiated. The essence of
the backface strain techniques is that downfall of the backface strain from one of the two
gauges could be used as an indicator for fatigue crack initiation during fatigue laoding.
From experimental measurements, it has been found that fatigue crack initiation lives at
different stresses have greater proportion of the total fatigue life as the stress decreased.
However, Crocombe et al. [43] investigated the technique in more detail and showed
that the back face strain response was highly dependent on its location. The research
concluded that ideally the SG position should be inside the overlap because here it will
produce the largest change in back face strain with damage.

Ishii et al. [45] and Zeng and Sun [46] also used video-microscopy to monitor fatigue
damage in adhesive joints.

Chirped fibre Bragg grating sensors have been used by Capell et al. [44] and embed-
ded within GFRP substrates to monitor disbond initiation and growth in a GFRP/Al
SLJ. It was found that disbond initiation and growth between the substrates during fa-
tigue cycling caused peaks or dips in the reflection spectra from the chirped fibre Bragg
grating sensor.

2.3 CZM for fatigue crack propagation

Numerical simulation offers nowadays outstanding possibilities for the prediction of the
crack propagation process in debonding problems and has become an indispensable tool
in performing this task. The mechanisms involved in both debonding and delamination
are highly similar, as are the prediction methods developed to deal with them.

The Cohesive Zone Model has been receiving increasing attention in this direction. In
the CZM approach the interfaces, along which delaminations are expected to grow, are
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modelled using cohesive zone elements. These elements are not linear elastic, but follow
a prescribed traction-displacement relation. Often some kind of damage parameter is
used to progressively reduce the stiffness, simulating damage growth within the element.
Thus the constitutive behavior of the cohesive element is generally defined as:

σ = K0δ if 0 ≤ δ ≤ δ0

σ = (1−D)K0δ if δ0 ≤ δ ≤ δc

σ = 0 if δc ≤ δ

(2.5)

where δ is the current value of the relative displacement of the faces of the cohesive
element, D is the damage parameter, δ0 is the displacement at the onset of softening of
the element, δc is the displacement at failure, K0 is the stiffness and σ is the traction.
Several attempts to establish the CZM approach to fatigue have been made.

σ

δδ
0

K

(1-D)K
0

0

δ
c

Figure 2.8: Bi-linear constitutive law

2.3.1 Low-cycle fatigue

According to Lemaitre et al. (1999), low-cycle fatigue occurs when the damage is lo-
calized in domains of stress concentrations but it can be measured and evaluated at
the mesoscale. The number of cycles to failure is smaller than 104. Low-cycle fatigue
models account for fatigue damage evolution on a cycle by cycle analysis defining, in
the majority of the models, an evolution of the damage variables during the unloading
path. Within the context of the cohesive zone model, there are several models that
extend cohesive laws that were derived for monotonic loading into forms suitable for
cyclic loading.

Foulk et al. [47] simulated the interface failure under cyclic loading by adding an
unloading condition to softening CZM. Unloading and subsequent reloading follow the
same path, and consequently the traction-separation behavior stabilizes without further
progress in material separation. De Andrés et al. [48] took a similar approach, but
added an unloading condition and a cycle dependent damage variable defined as:

D =
φ(δmax)

Gc
(2.6)

where δmax, Φ(δmax), and GC are the maximum attained separation, corresponding
dissipated energy to δmax, and fracture energy, respectively. D ranges from 0 to 1, with
these limits referring to an uncracked solid and a fully formed new fracture surface.
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Figure 2.9: Schematic representation of the process of damage accumulation during
cyclic loading [49]

A point on the cohesive zone at the crack tip is considered for CZM to account for
accumulated damage process as depicted in Figure 2.9.

Suppose that the forward of the loading curve leads to the increasing separation of
cohesive surfaces. Upon unloading, the cohesive zone cannot close completely due to
plastic deformation of the surrounding materials. Then the damage locus is reached at
the forward part of subsequent loading and further damage accumulates. After sufficient
loading cycles, material in the cohesive zone will degenerate completely and form new
fracture surfaces, predicating the propagation of the fatigue crack. The crack fronts
of aluminum shafts subjected to axial loading have been predicted using this partial
unloading-reloading configuration. However, in [48] the state of the specimen and thus
the evolution of D was not an outcome of a cycle-by-cycle computation of FCG and
an extrapolation scheme was used to obtain estimates of D in dependence of number of
cycles. This allows the damage length to be evaluated at a limited set of cycle numbers,
without the need to find the intermediate behavior following in detail every loading
cycle. A cohesive law with an unloading-loading hysteresis behavior was introduced by
Nguyen et al. [50] and Yang et al. [51]. Linear unloading combined with nonlinear
reloading made it possible to take dissipative mechanism into account such as frictional
interactions between asperities as well as crystallographic slip. Material degradation
can accumulate below the limiting curve of the cohesive law for monotonic loading (the
“damage locus”) prior to failure due to the fact that unloading and reloading do not follow
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the same path, but show a hysteresis and thus dissipated energy (see Figure 2.10).

Figure 2.10: Cohesive law with accumulating damage under cyclic loading

The applied (global) loading range determines the upper and lower loading levels in
the cohesive elements. Since damage evolution is a nonlinear process for inelastic defor-
mation, CZM can be established in analogy to the principles of plasticity but allowing
for strain softening. The well-known characteristics of typical elastic-plastic damage evo-
lution laws include the following: (i) damage begins to accumulate once a deformation
measure, accumulated or current, is greater than a critical magnitude; (ii) the incre-
ment of damage is related to the increment of deformation as weighted by the current
load level; (iii) there exists an endurance limit which is a stress level below which cyclic
loading can proceed infinitely without failure. Based on this consideration, Roe and
Siegmund [52] proposed the evolution equation for damage of the cohesive zone under
cyclic sub-critical loads. Its increment form is written as

∆Dc =
| ∆δ |
δΣ

[
T

σmax
− σf
σmax,0

]
H
(
δn − δ0

n

)
(2.7)

with

∆Dc ≥ 0, (2.8)

where Δδ and T are the effective cohesive zone quantities, with H designating the
Heaviside function. In the expression, two additional parameters are introduced, that
is, the cohesive zone endurance limit σvf and the accumulated cohesive length δΣ, which
determines the amount of accumulated effective separation necessary to fail the cohesive
zone. δΣ is a multiple of the cohesive length δ0

n, which is the material separation across
the crack surfaces in the cohesive zone corresponding to the cohesive strength under
normal loading. The magnitude of the incremental damage is then dependent on the
two additional material parameters and the proportional to the scaled and normalized
incremental resultant separation, | ∆δ | /δΣ , weighted by a measure of current traction
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reduced by the endurance limit. Then the damage is translated as the degradation of
the cohesive properties in the CZM constitutive relation by

σmax = σ0
max(1−D)

τmax = τ0
max(1−D)

(2.9)

where σmax and τmax are the current cohesive normal and tangential strengths used
to substitute the initial ones. The unloading and reloading path in the investigation
follow a linear relationship with a slop equal to that of the current traction-separation
curve at zero separation. In the current model, the accumulated damage has been ac-
counted for explicitly and incrementally. In almost all of these references, the fatigue
damage accumulation is accounted for in a cycle-by-cycle analysis. For high-cycle fa-
tigue, where the number of cycles is larger than 106, a cycle-by-cycle analysis would be
computationally intractable.

2.3.2 High-cycle fatigue

According to Lemaitre et al. (1999), high-cycle fatigue occurs when the damage is
localized at the microscale as a few micro-cracks. Since a cycle-by-cycle analysis is
impractical another strategy, called cycle-jump strategy, is usually adopted: damage
evolution is extrapolated over a given number of cycles. In this way the computation
of the whole load history is reduced to a certain number of cycles that are simulated
blockwise each step. High-cycle fatigue models require the definition of the relation
between the damage variable and the number of cycles as an input for the cycle-jump
strategy (Figure 2.11). This means also that numerically applied loads and numerically
computed displacements are envelopes of the cyclic curves.

Figure 2.11: Cycle Jump strategy (left), load and displacement envelopes (centre and
right)

The majority of the models relating the damage variable to the number of cycles use
a phenomenological law established a priori and formulated as a function of the number
of cycles. The damage evolution law is a function of several parameters that have to
be adjusted to calibrate the numerical model with experimental results, usually by trial
and error. An example of these models is the Peerling’s law [53] used to predict fatigue
in metals. Peerling’s law has been adapted successfully to simulate high-cycle fatigue
by means of an irreversible cohesive zone model (Robinson et al. [54]). In [54] it was
proposed a damage parameter that was split into two parts: one for the static portion
of delamination growth and one for the fatigue portion. Robinson et al. simulated the
fatigue behavior by numerically applying a constant load equal to the maximum of the
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fatigue load, and treating the damage parameter and displacement as dependent on
pseudo-time, as represented by the number of cycles. The static damage can be written
in terms of the displacement as:

Ds =
δc

δn
· δ − δ

0

δc − δ0
for δ0 < δ < δc (2.10)

with Ds=0 when δ is below δ0 and Ds=1 otherwise. The change in static damage
between N cycles and N+ΔN can then be computed from the respective displacements
and equation (2.25) as

∆Ds =
δ0δc

δc − δ0

(
1

δ(N)
− 1

δ(n+ ∆N)

)
(2.11)

The fatigue damage is introduced in the following way, which was first proposed by
Peerlings [53] following a modified version by Paas [55]

Ḋf =
∂Df

∂t
= AeλD

(
δ

δc

)β ˙δ(t)

δc
(2.12)

where β, λ and A are parameters which have to be determined so that the resulting
crack growth is in agreement with the experimentally determined Paris law and δ/δc is
a normalized displacement. Using this damage rate, fatigue damage can occur when the
initial damage is zero and thus a crack can grow even in an initially undamaged interface.
The fatigue damage after a number of cycles ΔN has elapsed can be found by integrat-
ing the fatigue damage rate over the respective number of cycles. This integration is
performed numerically. A constant μ with 0 ≤ µ ≤ 1 is found, so that

∆Df =

N+∆Nˆ

N

A

1 + β
eλD(N)

(
δn(N)

δc

)
dN = ∆N

∂Df (Dµ, δµ)

∂N
, (2.13)

Dµ = (1− µ)D(N) + µD(N + ∆N)

δµ = (1− µ)δ(N) + µδ(N + ∆N)
(2.14)

A value for μ of 0.7 was used. Combining equations (2.28) and (2.29), the damage
evolution with respect to a cycle jump ΔN can thus be expressed as

D(N + ∆N) = D(N) + ∆Ds + ∆Df (2.15)

This implicit formulation for D(N + ∆N) is approximated using a Newton-Raphson
algorithm.

In the model proposed by Robinson et al. a new set of parameters has to be deter-
mined for each mode-mix ratio in a manner similar to the way Blanco et al. [56] related
the Paris parameters C and n to the mode-mix. Tumino and Cappello [57] modified this
model by relating the model parameters A and β with the mode-mix. Robinson et al.
[54], Muñoz et al. [58], and Tumino and Cappello [57] all present comparisons between
predictions produced with (derivatives of) the model proposed in [54] and experimental
data. In each case the same dataset is used [60] and good agreement is shown. However
this dataset was also used to find the required input parameters of the model. Thus the
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demonstrated agreement between the model and the experimental data is tautological.
Until the model is compared to a new dataset it cannot be considered to be validated.

A different split parameter was proposed by Harper and Hallet [59]. In this model
the static component of the damage parameter is defined as:

Ds (δ) =
δ − δ0

δc − δ0
(2.16)

For the fatigue component, the model of Blanco et al. [56] is used to predict the
delamination growth rate. From this growth rate the matching fatigue damage zone size
and fatigue damage growth rate are calculated. The fatigue component of the damage
parameter follows from the fatigue damage growth rate. Such a linkage between CZM
and fracture mechanics was originally proposed by Turon et al. [61]. The SERR required
as input for the Blanco model is calculated by integrating the traction–displacement
curve of the cohesive element. Essentially, the model proposed by Harper and Hallet
provides a more complex method of calculating the SERR, but is otherwise not much dif-
ferent from the model proposed by Blanco et al. Harper and Hallet present a comparison
between their model and experimental data reported by Asp et al. [60]. However this
data was also used to find the empirical parameters in the Blanco model (and thus in the
Harper– Hallet model). Therefore this comparison cannot be regarded as a validation of
the Harper–Hallet model, and one must conclude a comparison with new experimental
data remains necessary.

Khoramishad et al. [62] proposed a damage parameter based on the maximum strain,
according to:

∆D

∆N
=

{
ζ (εmax − εth)

κ
εmax > εth

0 εmax ≤ εth
(2.17)

εmax =
εn
2

+

√(εn
2

)2

+
(εs

2

)2

(2.18)

where εmax is the maximum principal strain in the cohesive element, εth is the thresh-
old strain, below which no fatigue damage occurs, εn is the normal component of the
strain, εs is the shear component of the strain, ζ and κ are material constants. The
parameters ζ, κ and εth need to be calibrated against the experimental tests. The fa-
tigue damage was modelled by degrading the bi-linear traction–separation response. As
shown in Figure ??, the fatigue damage variable was used to determine the degraded
traction–separation response whereas the static damage parameter was utilized to define
the material status within that traction– separation response.

Khoramishad et al. produced a load-life diagram and predicted the back-face strain
at the point where a strain gauge was applied during the experiments. The experimental
and numerical results showed good agreement.

2.3.3 Concluding remarks on the CZM

The CZM approach suffers from the same shortcomings, i.e. a lack of grounding in an
understanding of the physics underlying the delamination process. This is seen both
in the cohesive relation itself and in the damage parameter formulations. The loci of
initiation and propagation are usually determined by means of a phenomenological cri-
terion based on the pure modes I and II values. Summarizing, to correctly define the
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Figure 2.12: Fatigue and static degradation of cohesive element properties

cohesive zone a number of parameters need to be determined. Of these parameters only
the values of GIC are determined experimentally, the others are chosen based on numer-
ical considerations. Even the GC values may be treated as fitting parameters however.
The damage parameter likewise requires a number of empirically determined parame-
ters of which the physical significance is not completely clear. The main advantages
of the CZM approach are that it avoids the need for re-meshing along a pre-defined
crack path, and can include the initiation phase in the model [58, 63, 62]. In the papers
discussed above the delamination size was always one-dimensional, implying a straight
delamination front. The advantageous behavior of the CZM would be more visible in the
investigation of delamination growth that is non-uniform along the delamination front.

In this context, this Phd thesis presents the developments of the model proposed by
Moroni and Pirondi [65, 66].



Chapter 3

Development of a CZM for
two-dimensional fatigue
debonding of adhesive joints

In this chapter, the fatigue delamination/debonding of composite assemblies under Mode
I, Mode II and mixed-Mode I/II loading conditions is simulated by the cohesive zone
model proposed by Moroni and Pirondi [65, 66, 67]. The method has been validated
using the Virtual Crack Closure Technique (VCCT) embedded in the software Abaqus.

3.1 Model theory

3.1.1 Cohesive law accounting for fatigue damage

The model presented in [65, 66, 67] started from the framework proposed by Turon et
al. [61]. In the approach presented by Turon, the evolution of the damage variable
associated with cyclic loading is derived from a Fracture Mechanics description of the
fatigue crack growth rate. Therefore, the proposed model links fracture mechanics to
damage mechanics. Considering a representative surface element (RSE) (represented in
the simulation by a cohesive element section) with a nominal surface equal to Ae, the
accumulated damage can be related to the damage area due to micro voids or crack (Ad)
(see Figure 3.1) according to Lemaitre [35]:

D =
Ad
Ae

(3.1)

In Turon et al. D is a related to the ratio between the energy dissipated during the
damage process and the critical energy release rate, Gc. Instead in this work, D acts
directly on stiffness, like in Lemaitre.

Referring to a mode I loading case, when the opening is relatively small the cohe-
sive element behaves linearly; this happens until a given value of displacement, δ0

22 (or
equivalently until a certain value of stress σ0

22max). This initial step is characterized
by a stiffness K0

22, that remains constant until δ0
22. Beyond this limit the stiffness is

31
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Figure 3.1: Nominal and Damaged Area in a Representative Surface Element
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Figure 3.2: Traction separation law in Mode I loading

progressively reduced by D, until the final fracture in δc22 where the two surfaces are
completely separated. Between δ0

22 and δc22 the stiffness K22 can be computed as

K22 = K22,0 (1−D) (3.2)

As mentioned in the first chapter, the area Γ1 underling the cohesive law is the energy
to make the defect grow of an area equal to the element cross-section and it is therefore
representative of the fracture toughness, GIC.

ΓI =

δĉ

0

σ22dδ22 (3.3)

In the monotonic case, the damage variable D can be written as a function of the
opening (δ22) and of the damage initiation and critical opening (respectively δ22,0 and
δ22,c ):

D =
δ22,c (δ22 − δ22,0)

δ22 (δ22,c − δ22,0)
(3.4)

When the element is unloaded, the damage cannot be healed, therefore, looking at
Figure 3.2, the unloading and subsequent loadings will follow the dashed line, until a
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further damage is attained. This simple model is able to describe the monotonic damage
in case of mode I loading.

Considering the entire cohesive layer, the crack extension (A) can be computed as
the sum of damaged areas of all the cohesive elements (Ad) [61]:

A = ΣAd (3.5)

When the fatigue damage is considered, from the previous equation, the crack growth
(dA) can be written as a function of the increment of the damage area of all the cohesive
elements (dAd), therefore:

dA = ΣdAd (3.6)

However the damage increment would not concern the whole cohesive layer, but it
will be concentrated in a relatively small process zone close to the crack tip, ACZ. In
order to estimate the size of ACZ, analytical relationships can be found in the literature
(Harper and Hallett, 2008 [68]), where the size per unit thickness is defined as the
distance from the crack tip to the point where σ0

22max is attained. In this work, different
definition and evaluation method are proposed: ACZ corresponds to the sum of the
nominal sections of the cohesive elements where the difference in opening between the
maximum and minimum load of the fatigue cycle, ∆δ22 = δ22,max − δ22,min, is higher
than a threshold value ∆δth22. The value ∆δth22 is supposed to be the highest value of ∆δ22

in the cohesive layer when ∆G in the simulation equals ∆Gth experimentally obtained
by FCG tests. It has to be underlined that in this way FCG may take place even at
δ22,max ≤ δ22,0, which is a condition that should be accounted for since δ22,0 results
from the calibration of cohesive zone on fracture tests and may not be representative of
a threshold for FCG. The process zone size ACZ has therefore to be evaluated by finite
element analysis while performing the FCG simulation but, on the other hand, does not
need to be assumed from a theoretical model. The Eq. (3.6) can be therefore rewritten
as

dA = Σ
iεACZ

dAid (3.7)

where only the elements lying in the process zone, ACZ, are considered. In order to
represent the crack growth due to fatigue (dA/dN), the local damage of the cohesive
elements (D) has to be related to the number of cycles (N ). This is done using the
equation

dD

dN
=

dD

dAd

dAd
dN

(3.8)

The fist part of Eq. 3.8 can be easily obtained deriving Eq. (3.1). Therefore

dD

dAd
=

1

Ae
(3.9)

The process to obtain the second part is quite more complicated: the derivative of
Eq. (3.7) with respect to the number of cycles is

dA

dN
= Σ
iεACZ

dAid
dN

(3.10)
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At this point an assumption is introduced: the increment of damage per cycle is
supposed to be the same for all the elements lying in the process zone. Therefore the
value dAd/dN is assumed to be the average value of the damaged area growth rate
dAid/dN for all of the elements in the process zone.

Hence the crack growth rate can be rewritten as [61]

dA

dN
= Σ
iεACZ

dAid
dN

= nCZ
dAd
dN

(3.11)

where ncz is the ACZ. ncz can be written as the ratio between the process zone
extension (ACZ) and the nominal cross section area (Ae) leading to the equation

dA

dN
=
ACZ
Ae

dAd
dN

(3.12)

The second part of Eq. (3.8) can be therefore written as:

dAd
dN

=
dA

dN

Ae
ACZ

(3.13)

The crack growth rate can be finally expressed as a function of the applied strain
energy release rate, in the simplest version using Eq. (2.3)

dD

dN
=

1

ACZ
C∆Gn (3.14)

3.1.2 Strain energy release rate computation

In the previous section, a relationship between the applied strain energy release rate and
the increase of damage in the cohesive zone was defined. In order to simulate the fatigue
crack growth, it is therefore required a general method to calculate the value of the strain
energy release rate as a function of crack length. In order to simulate the fatigue crack
growth, it is therefore required a general method to calculate the value of the strain
energy release rate as a function of crack length. The most common methods for the
strain energy release rate evaluation by using the finite element method are the contour
integral (J) and the Virtual Crack Closure Technique (VCCT)(see Section 1.4.1). This
two methods are usually available in finite element software, but VCCT is intended in
general as alternative to using cohesive elements and, additionally, the software used
in this work (Abaqus®) did not output the contour integral for an integration path
including cohesive element. In order to compute the J-integral, a path surrounding the
crack has to be selected. Considering for example the crack in Figure 3.3, the path, Π,
is displayed by the dashed line and it is represented by all the top and bottom nodes of
the cohesive elements.

According to the expression (1.8) given in Section 1.2.2, the strain energy density,
W, the traction vector,

−→
T , and the derivative of the displacement field with respect to

x1 are needed to compute J-integral. Expression (1.8) in a 2D plane stress case become

J =
´

Π

(
Wdx2 −

−→
T ∂−→u

∂x ds
)

=
´

Π
1
2 (σ12ε12 + σ22dε22)dx2

−
´

Π
(σ22n1 + σ12n2)∂u1

∂x1
ds−

´
Π

(σ22n1 + σ12n2)∂u1

∂x1
ds

(3.15)
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Figure 3.3: J-integral

where nk is the outward unit normal vector to integration path and s is the path
coordinate. Following a rectangular path around the cohesive element and considering
that its vertical part (along x2 direction) is faraway from the crack tip, the equation
(3.15) can be simplified in that way:

J =

ˆ
Π

(
−σ12

∂u1

∂x1
− σ22

∂u2

∂x1

)
ds (3.16)

Extracting the opening/sliding and the stresses in the cohesive elements at the be-
ginning of the increment, the strain energy release rate is then computed. An inter-
esting feature of this approach is that the mode I and the mode II component of the
J-integral can be obtained by integrating separately the second or the first components
of the integral in Eq. (3.16), respectively. This method can be easily implemented for
a two-dimensional problem, since there is only one possible path. In the case of three
dimensional problem the implementation is more difficult since several paths can be
identified along the crack width, and moreover their definition is rather troublesome,
especially when dealing with irregular meshes.

3.2 Finite element implementation Abaqus®

3.2.1 User subroutines

The theoretical framework described in the previous section and the strain energy release
rate calculation procedure are implemented using the suitable Fortran subroutines in the
commercial software Abaqus®. User-subroutines allow users to adapt ABAQUS to their
particular analysis requirements. In particular the USDFLD subroutine is used to modify
the cohesive element stiffness by means of a field variable that accounts for damage, while
the URDFIL subroutine is used to get the result in terms of stresses, displacements
and energies. Figure 3.4 shows the basic flow of data, actions from the start of an
ABAQUS/Standard analysis to the end of a step. User subroutine USDFLD is typically
used when complex material behavior needs to be modeled; some material properties in
ABAQUS/Standard can be defined as functions of field variables, fi. ABAQUS/Standard
allows the fi to be defined as functions of solution data, such as stress or strain, at
the material points. The values of the solution data provided are from the beginning
of the current increment; subroutine USDFLD must use the ABAQUS utility routine
GETVRM to access this material point data. The flow diagram in Figure 3.4 shows
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Beginning of Analysis

Define Initial Condition

Start of Step

Start of Increment

Define Kel

Define Loads R

Solve Keld=R

Converged?

Write Output

End of Step

Start of Iteration

URDFIL

USDFLD

YesNo

No

Figure 3.4: Global Flow in Abaqus/Standard

that the USDFLD is called at the start of the increment for defining the properties of
the cohesive elements. Subroutine URDFIL is used to read the results (.fil) file at the
end of an increment. Subroutine URDFIL must call the utility routine DBFILE to
read records from the results file. Results are extracted from the results file, stored in
COMMON blocks, and passed into the subroutine USDFLD.

The fatigue analysis is carried out as a simple static analysis, divided in a certain
number of increments. Each increment corresponds to a given number of cycles. As-
suming that the fatigue cycle load varies from a maximum value Pmax to a minimum
value Pmin, the analysis is carried out applying to the model the maximum load Pmax.
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The load ratio is defined as the ratio between the minimum and maximum load applied

R =
Pmax
Pmin

(3.17)

The strain energy release rate amplitude is therefore

∆G = (1−R2)Gmax (3.18)

This latter is compared with the strain energy release rate threshold ∆Gth. If ∆G >
∆Gth the analysis starts (or it continues is the increment is not the first) otherwise the
analysis is stopped. The flow diagram in Figure 3.5 shows the operations done within
each increment.

ΔG j
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increment j
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ΔNmin
j
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number of cycles, 
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Damage 
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Accumulated

number of cycles, 
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Figure 3.5: Flow diagram of the automatic procedure for the crack growth rate prediction

At the beginning of the increment j the number of cycles (N j ) and the damage
variable for each of the i-th element (Dj

i ) are known. Now for each element the maximum
possible damage change within the increment (∆Dj

i ) is computed. If ∆Dmax is the
maximum allowable variation in a single increment (it is a user defined value and it is
used in order to ensure a smooth enough crack growth) ∆Dj

i is calculated as follow:

ΔDj
i = ΔDmax if 1−Dj

i > ∆Dmax

ΔDj
i = 1-Dn

i if 1−Dj
i < ∆Dmax

(3.19)

In other words, ∆Dj
i is the minimum between the ∆Dmaxand the amount needed

for D to reach the unity. Therefore, for each element, the amount of number of cycles
∆N j

i to produce ∆Dj
i is calculated by integrating Eq. (3.14) using the ∆G evaluated

within the URDFIL. The strain energy release rate is computed through the (3.16) along
a rectangular path extracting stresses and displacement of cohesive elements at the end
of the current increment. After that, the routine searches for the minimum value among
the calculated ∆N j

i within the cohesive zone. This value, ∆N j
min, is assumed to be

the number of cycles of the increment, ∆N j . Finally, the number of cycle is updated
(N j+1), and using Eq. (3.14) this time to calculate the ∆Dj

i corresponding to ∆N j

the new damage distribution ∆Dj+1
i is determined for all the elements belonging to the

process zone. It is worth to underline that the procedure is fully automated, i.e. the
simulation is performed in a unique run without stops.
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3.2.2 FE modelling

For simulating the crack propagation in a bonded joint with the model just described
in details, the FE model must contain the adherends and the interface layer where the
crack has to increase its length. In Figure 3.6 a typical specimen geometry is shown;
depending on how loads and boundary conditions are set, different loading condition
can be obtained.

Adherends
initial crack

Adhesive

Layer

(a) Schematic representation

Cohesive 

Element

Plane Stress/strain 

Element

(b) Magnification of rectangular window of Figure 3.6 (b)

Figure 3.6: FE Model of an adhesively bonded joint

For this type of simulation in two-dimension, plane stress elements are used for the
adherends while 2D cohesive elements are used to model the adhesive layer. Plane stress
elements can be used when the thickness of a body or domain is small relative to its
lateral (in-plane) dimensions. The stresses are functions of planar coordinates alone,
and the out-of-plane normal and shear stresses are equal to zero. Plane stress elements
must be defined in the X–Y plane, and all loading and deformation are also restricted
to this plane. Instead plane strain elements can be used when it can be assumed that
the strains in a loaded body or domain are functions of planar coordinates alone and
the out-of-plane normal and shear strains are equal to zero. Plane strain elements must
be defined in the X–Y plane, and all loading and deformation are also restricted to this
plane. This modeling method is generally used for bodies that are very thick relative to
their lateral dimensions.

The cohesive zone must be discretized with a single layer of cohesive elements through
the thickness. Since the cohesive zone represents an adhesive material with a finite
thickness, the continuum macroscopic properties of this material are used directly for
modeling the constitutive response of the cohesive zone. For debonding/delamination
problem cohesive elements have to be connected with adjacent components; if the two
neighboring parts do not have matched meshes, such as when the discretization level
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in the cohesive layer is finer than the discretization level in the surrounding structures,
the top and/or bottom surfaces of the cohesive layer can be tied to the surrounding
structures using a tie constraint (see Figure 3.7).

Figure 3.7: Independent meshes with tie constraints [71]

Generally for describing the constitutive behavior of the cohesive elements, the fol-
lowing features are needed:

• the initial stiffness (E c) that relates the nominal stresses to the nominal strains
across the interface. For taking into account the traction separation law that
relates stress and displacements, the stiffness of the interface must be considered
(Kc = Ec/ta with ta the initial thickness of the layer);

• damage initiation condition that refers to the beginning of degradation of the
response of a material point. The process of degradation begins when the stresses
and/or strains satisfy certain damage initiation criteria that one specifies. Several
damage initiation criteria are available in Abaqus®;

• damage evolution law that describes the rate at which the material stiffness is
degraded once the corresponding initiation criterion is reached. Normally damage
evolution can be defined based on the energy that is dissipated as a result of
the damage process, also called the fracture energy. The user specifies the fracture
energy as a material property and choose either a linear or an exponential softening
behavior. Abaqus® ensures that the area under the linear or the exponential
damaged response is equal to the fracture energy. The dependence of the fracture
energy on the mode mix can be specified either directly in tabular form or by using
analytical forms provided in Abaqus®.

In the model described in this thesis, damage initiation and its evolution are directly
implemented in USDFLD and URDFIL subroutines. The damage values (Dj

i ) evaluated
at the end of increment j, are used in the following increment as field variable in USDFLD
routine to reduce the stiffness of the cohesive elements lying in the process zone. The
dependance of the stiffness on damage is defined in tabular form (see Figure 3.8).



40 CHAPTER 3. CZM FOR 2-D FATIGUE DEBONDING

Figure 3.8: Abaqus windows to define the dependance of element stiffness (E ) on the
Damage (Field 1 )

3.3 Mixed mode loading

With the aim to extend the model to mixed-mode I/II conditions, a mixed mode cohesive
law has to be defined.This is done according to the scheme shown in Figure 3.6 from the
knowledge of the pure mode I and pure mode II cohesive laws (the index 22, refers to
opening or mode I direction, index 12 refers to sliding or mode II direction).

First of all the mixed mode equivalent opening has to be defined. This is done using
the relationship

δeq =

√(
δ22+ | δ22 |

2

)2

+ (δ12)
2 (3.20)

In case of pure mode I this equation gives as δeq, the value of δ22 in case of positive
δ22, while it gives 0 in case of negative δ22. This is done since it is supposed that com-
pression stresses do not lead to the damage of the adhesive layer. Of course δ22assumes
only positive values if crack surface compenetration is properly prevented in the model.
Moreover the mixed mode cohesive law is defined in terms of the initial stiffness (K0

eq),
damage initiation equivalent opening (δ0

m) and critical equivalent opening (δcm).
The equivalent initial stiffness is obtained by equating the equivalent strain energy

(UEQ) to the total strain energy (UTOT ), which in turn is equal to the sum of the strain
energy in mode I (U22) and in mode II (U12)
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UEQ = UTOT = U22 + U12 =
1

2
(δ22+ | δ22 |) 2 ·K0

22 +
1

2
δ2
12 ·K0

12 (3.21)

whereK0
22 andK0

12 represent the initial stiffnesses of the mode I and mode II cohesive
laws, respectively.

A further relationship is needed to define damage initiation: this is done using a the
quadratic failure criterion (Ungsuwarungsru and Knauss, [69])(

σ22

σ0
22max

)2

+

(
σ12

σ0
12max

)2

= 1 (3.22)

The last relationship needed, regards the definition of the critical equivalent opening.
Since the area underlying the cohesive law is representative of the critical strain energy
release rate, using the Kenane and Benzeggagh (KB) theory [70] the area underlying the
mixed mode equivalent cohesive law (Γeq) can be computed as

Γeq = ΓI + (ΓII − ΓI) ·MMη (3.23)

where ΓI and ΓII are the areas underling the mode I and mode II cohesive laws,
respectively, η is a mixed mode coefficient depending on the adhesive and MM is the
mixed mode ratio defined as a function of the mode I and mode II strain energy release
rates as follows:

MM =
GII

GI +GII
(3.24)

The KB mixed mode fatigue crack propagation model [70] is the first considered,
since it is the most general law that can be found in the literature. The fatigue crack
growth rate is given by Eq. (2.3) where this time C and n are functions of the mixed
mode ratio MM:

n = nI + (nII − nI) ·MMnn (3.25)

lnC = lnCII + (lnCI − lnCII) (1−MM)
nC (3.26)

and nI, CI and nII, CII are, respectively, the parameters of the Paris law in mode I
and mode II and nn, nC are material parameters.

3.4 FCG simulations

The fatigue delamination model, above described, has been tested on various joint ge-
ometries characterized by varying mixed mode ratios, in order to verify accuracy, ro-
bustness and performance in terms of computational time. In particular, pure on mode
I, mode II and mixed-mode loaded cracks in composite assemblies have been simulated.
The results obtained have been compared VCCT fatigue simulations provided by An-
drea Bernasconi and Azhar Jamil from the “Politecnico di Milano”, Milano, Italy. These
results were jointly published in [73].
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3.4.1 VCCT for FCG simulation in Abaqus®

VCCT (see Section 1.4.1) is well implemented in Abaqus® for both two and three di-
mensions. In a two dimensional problem, the crack is represented as a one-dimensional
discontinuity formed by a line of nodes with the bulk material located on both sides of
the discontinuity, as seen in Figure 3.9. The bulk material is modelled in the form of
two distinct parts joined together by means of a contact pair all along the discontinu-
ity, having either of the coinciding edges to be a master surface and the other to be a
slave surface. The nodes on the discontinuity share the same coordinates and play an
important role in the definition of pre-cracked region, the crack front and the crack path.

One Dimensional discontinuity

Bonded Nodes

(a) Undeformed shape with initial crack

(b) Deformed shape with initial crack

Top Surface

Bottom Surface

(c) Deformed shape with crack length increased

Figure 3.9: VCCT implementation in Abaqus®

The nodes on the discontinuity, which are not bonded and free to move away from
each other, represent the pre-crack region, whereas, the nodes which are bonded and
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stick to each other, referred as bonded nodes, define the crack propagation path and
the point of transition of bonded and unbounded nodes forms the crack front. It is
possible to define a completely bonded interface; however at least single node has to be
kept unbounded for the identification of the crack front. Normal surface behaviour is
specified for the contact pair with pressure-overclosure=HARD and the initial conditions
of the contact pair are set to bonded, over the bonded nodes by means of the following
lines inserted in the input file before the definition of the step

*INITIAL CONDITIONS, TYPE =CONTACT
<Slave Surface>, <Master Surface>, <Bonded Node Set>

A structured mesh with an aspect ratio of 1 is preferred in the meshing of the region
forming the crack path and is done in such a way that the nodes on the contact edge
of one side of the bulk material are exactly having the same coordinates to the nodes
on the contact edge of the other side of the bulk material along the crack path. The
loading cycle is represented by means of *AMPLITUDE term, which may be periodic,
tabular etc. depending on loading history, R ratio etc. In the present study a sinusoidal
loading history was implemented and the corresponding parameters were defined. In the
definition of the step, at the end of every increment, the strain energy release rates are
calculated using the *DEBOND command which is used to specify that crack propaga-
tion may occur between two surfaces that are initially partially bonded. This is done by
inserting the following lines in the Step module

*DEBOND, SLAVE=<Slave Surface>, MASTER=<Master Surface>

This is followed by the definition of the criterion, using *FRACTURE CRITERION
command, which governs the fracture of the bonded region by releasing the bonded
nodes and letting the crack propagate along the crack path. For the case of static crack
propagation this criterion is set to TYPE = VCCT by inserting the following lines

*FRACTURE CRITERION, TYPE=VCCT
<GIc>, <GIIc>, <GIIIc>, <eta>

in which the second line denotes the material parameters.
For the case of fatigue crack propagation Eq. (2.3) is followed by setting this criterion

to TYPE = FATIGUE, in the direct cyclic step, and the following lines are inserted in
the input file

*FRACTURE CRITERION, TYPE=FATIGUE
<c1>, <c2>, <c3>, <c4>, <r1>, <r2>,
<GIc>, <GIIc>, <GIIIc>, <eta>

in which <c1>, <c2>, represents the fatigue crack onset parameters, <c3>, <c4>
represent the Paris parameters of the fatigue crack propagation, <r1>, represents the
definitions of the threshold regions of the Paris curve which is given by (r1 = Gthresh/Gc),
<r2> represents the definition of the unstable region of the Paris curve and is given
by (r2 = Gpl/Gc) , and rest of the parameters signify the material parameters. The
advancement of the crack is determined by applying the Paris Law, which is based of
the total strain energy release rate GTOT in a direct cyclic analysis.

Direct cyclic analysis, as implemented in Abaqus®, is a quasi-static analysis which
utilizes a combination of Fourier series and time integration of the nonlinear material
by iteratively utilizing the modified Newton method, with the elastic stiffness matrix at
the beginning of the analysis step serving as the Jacobian, for obtaining the stabilized
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response of an elastic-plastic structure subjected to constant amplitude cyclic loading.
It effectively provides the cyclic response of the structure directly by neglecting the pre-
stability loading cycles of a transient analysis which are numerically quite expensive.
The workflow of the procedure is described in Figure 3.10. The method is based on the

Coefficients are 

within Tolerance ?

Solution

F(t), I(t), R(t)

R(t)= F(t) - I(t) 

[K]Ck   = Rk 

(i-1) (i)
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R0, Rk, Rk
s c

U0, Uk, Uk
s c
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Corrected  Disp. Coeff.

U0    = U0  + c0
(i)(i+1) (i+1)

Uk     = Uk  + ck
c(i)c(i+1) c(i+1)

Uk     = Uk  + ck
s(i)s(i+1) s(i+1)

Ck 

(i-1)

Yes

No

Figure 3.10: Direct Cyclic Algorithm

development of a displacement function F(t) which describes the structural response at
all moments of time t, in a loading cycle, within a given time period T. This function is
represented in the following way

U (t) = U0 + Σnk=1 [Usk sin kωt+ U ck cos kωt] (3.27)
where, n represents the number of terms in the Fourier series, ω is the angular
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frequency, and U0, Usk , U
c
k are the coefficients of displacement corresponding to each

degree of freedom.
The residual vectors are of the same form as the displacement function and are

represented by

R (t) = R0 + Σnk=1 [Rsk sin kωt+Rck cos kωt] (3.28)

Where R0, Rsk and Rck have the same correspondence with the displacement coeffi-
cients U0, Usk and U ck respectively and this vector R(t) is tracked for each instance of
time in the loading cycle by using element to element calculations. The integration of
this function R(t) over the entire cycle yield the following Fourier coefficients.

R0 = 2
T

´ T
0
R (t) dt

Rsk = 2
T

´ T
0
R (t) sin kωt dt

Rck = 2
T

´ T
0
R (t) cos kωt dt

(3.29)

These coefficients correspond to the displacement coefficients and are then compared
with the tolerances defined in the step to achieve convergence. If the tolerance is met
convergence is achieved and the solution is obtained for that loading cycle. However,
when these residuals are larger than the tolerance parameters then correction parameter
ck is evaluated in which corrections to the displacement coefficients c0, csk and cck are
made in the following way

U
(i+1)
0 = U

(i)
0 + c

(i+1)
0

U
s(i+1)
k = U

s(i)
k + c

s(i+1)
k

U
c(i+1)
k = U

c(i)
k + c

c(i+1)
k

(3.30)

The updated displacement coefficients are used in the next iteration to obtain dis-
placements at each instant in time. This process is repeated until convergence is ob-
tained. Each pass through the complete load cycle can therefore be thought of as a
single iteration of the solution to the nonlinear problem. The general syntax of the
direct cyclic analysis pertaining to fatigue may be represented as

*DIRECT CYCLIC, FATIGUE
I0, TS, Fi, Fmax, ΔF, imax,
Nmin, Nmax, NTOT

where, I0 represents the initial time increment size and if unspecified a default value
equal to 0.1 times the single loading cycle period is assumed, TS is the time of single
loading cycle, the next two blank value are respectively minimum and maximum time
increment allowed which are generally kept unspecified and a default of 10-5 times TS
for the first parameter (Minimum time increment allowed) and a default of 0.1 times
TS, for the second parameter (Maximum time increment allowed) unless the CETOL
or DELTMAX parameter is specified. Fi represents the initial number of terms in the
Fourier series with a default of 11; Fmax represents the maximum number of terms in the
Fourier series having a default value of 25; ΔF represents the increment in the number of
terms in Fourier series with a default of 5 and imax represents the maximum number of
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iterations having 200 as the default value. The second line comprises of minimum Nmin
and maximum increment Nmax in number of cycles over which damage is extrapolated
forward. The default value of Nmin and NTOT are 100 and 1000 respectively. NTOT
represents the total number of cycles allowed in a step, which if skipped is assigned by
default a value of (1+Nmax/2).

3.4.2 Comparison of cohesive zone and VCCT on fatigue debond-
ing

The CZ model has been validated by means of the well-established Virtual Crack Clo-
sure Technique. In particular the following geometries have been simulated with both
method:

• Double Cantilever Beam (DCB) geometry to test pure mode I loading

• End Loaded Split (ELS) geometry to test pure mode II loading

• Mixed Mode End Loaded Split (MMELS) geometry to test mixed mode I/II load-
ing

Additionally, a Single-Lap Joint (SLJ) has been modelled as a representative case of
real joint geometry. The propagation of the crack in the SLJ was allowed only on one
side to simplify the comparison of the models results. All the specimen geometries
are schematically described in Figure 3.11, while in Table 3.1 the applied load and the
specimens dimensions are summarized.

The elastic properties of composite laminate are taken from Bernasconi et al. [22]
(see Table 3.2) while the cohesive law and FCG behaviour is taken from Turon et al.
[61] (see Table 3.3). In all the simulation a load ratio R = 0.05 is assumed.

The element type and mesh size are reported in Table 3.4, which represent a good
balance between convergence on strain release rate and computational cost. Other pa-
rameters to be set, specific of each FCG model, are:

• a maximum damage increment, ΔDmax = 0.2 has been used for CZ [65]

• a number of Fourier series terms 49 and a time increment 0.001 have been set for
VCCT except for SLJ where the time increment was set to 0.01 due to finer mesh.

The choice of a very small time increment in the VCCT solution has followed from a
convergence study. Indeed, a strong influence of time integration points was observed
on the results obtained by VCCT and different values of SERR were obtained when the
time integration points were varied from 10 to 1000. As a result of these variations in
SERR, there were significant differences in the estimation in the number of cycles due
to the presence of high values of the exponent in the Paris Law. Therefore, 1000 time
integration points with an initial time increment of 0.001 were used to evaluate accurate
results which however, increased the computational time drastically.
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Figure 3.11: Specimen geometries

DCB ELS MMELS SLJ
P [N/mm] 10 20 15 200
a0 [mm] 20 20 20 /
h [mm] 5 5 5 10.56
L [mm] 175 175 175 285.8
L0 [mm] / / / 110.8

Table 3.1: Specimens dimension and applied load

Parameter Value
E11 [MPa] 54000
E22 [MPa] 8000

ν12 0.25
G12 [MPa] 2750

Table 3.2: Engineering constants of the woven plies
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Parameter Mode I Mode II
Γ0 [N/mm] 0.266 1.002
σmax [MPa] 30 30
δ0 [mm] 0.003 0.003
δc [mm] 0.0173 0.066
C 0.0616 4.23
n 5.4 4.5
Parameter Value
η 2.6
nn 1.85
nC 0.35

Table 3.3: Cohesive zone parameters and FCG behavior for Mode I, Mode II, and
Mixed-Mode

Composite laminate Cohesive Zone
Element type Size Element type Size

DCB
4-node bilinear plane
stress quadrilateral,
reduced integration

0.5 mm
4-node

two-dimensional
cohesive element

0.2 mm

ELS
4-node bilinear plane
stress quadrilateral,
reduced integration

0.5 mm
4-node

two-dimensional
cohesive element

0.5 mm

MMELS
4-node bilinear plane
stress quadrilateral,
reduced integration

0.5 mm
4-node

two-dimensional
cohesive element

0.2 mm

SLJ 4-node bilinear plane
stress quadrilateral

0.1 mm
(next to
cohesive
elements)

4-node
two-dimensional
cohesive element

0.1 mm

Table 3.4: Element types and mesh sizes

An initial crack length of 0.1 mm (1 element) has been specified for the SLJ when
simulated using VCCT, while no initial crack length was needed in the case of CZM. The
increment in crack length is fixed in the case of VCCT, i.e. equal to element size along
the delamination/debonding interface (0.1mm for the SLJ, 0.5mm elsewhere), while in
the case of CZ it comes as a result of in the increment in damage ΔD, therefore it is
not generally constant as ΔD may vary from increment to increment according to Eq.
(3.19). However, the average increment in crack length in the case of CZ model ranged
from 0.1 to 0.5mm in the various cases simulated in this work.

The two methods are compared with respect to:

1. agreement with each other;
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2. agreement with numerical integration of Equation (2.2);

3. calculation time

Concerning the second point, the numerical integration was done using ΔG as a function
of crack length coming from the FE simulations. As ΔG is known by FE analysis, the
trapezoidal rule (i.e. using the mean ΔG over the increment) was used. In this way,
a closer estimate of the number of cycles at failure should be obtained with respect to
both the CZ and VCCT, where for numerical reasons the ΔG at the beginning of the
increment is used. As Equation (2.2) represents the best fit of experimental data, the
level of agreement between the number of cycles output by the models and the numerical
integration of Eq. (2.2) represents also the level of agreement between experimental data
and the simulations. Regarding the third point, it is the time the analyst has to wait
for the crack to reach the knee of the a-N diagram, that is close to fracture. In the
cases studied here this means a crack length of 40 mm for all the geometries except SLJ,
for which the analyses have stopped at 40mm of crack length even though still far from
fracture. Only the outputs strictly necessary for each model were required, in order to
minimize time spent in storing data. The PC used for calculations is an Athlon X2 Dual
Core 2GHz CPU, with 2Gb RAM and 200Gb HD (7200rpm, 8Mb cache).

3.5 Results

3.5.1 Mode I loading

The crack growth in a cracked DCB specimen is simulated with cohesive zone model.
Every increment correspond to a ∆N jas described in 3.2.1. The joint deformed shape
and damage distribution of cohesive elements near the crack tip is reported in Figure
3.12 and 3.13 for two different crack length.

Figure 3.14.a shows the values of GI obtained by CZ, VCCT and J-integral (station-
ary crack). The three sets show a very good correspondence with each other as expected,
with only some small oscillation in the strain energy release rate calculated using the
subroutine in the case of CZ.

The main result in terms of crack length versus number of cycles is shown in Figure
3.14.b, where a very little difference, of about 2.5%, is evident. Another very little
difference is the gradient in a-N trend while approaching GIc, which is much steeper
(almost discontinous) in the case of VCCT. In the automated model presented, it is
considered that locally some element could be in a critical stress condition with respect
to the cohesive law; so in addition to the fatigue damage, eventually a static damage is
determined using expression (3.4). To about a crack length of 30 mm (at knee of the
diagram in Figure 3.14.b).

Both CZ and VCCT yielded a higher number of cycles with respect to the numerical
integration of Eq. (2.3), with a difference 2.3% in the case of CZ and 1.8% in the case
of VCCT which is acceptable in engineering terms.

3.5.2 Mode II loading

Figure 3.15.a shows the values of GII obtained by CZ, VCCT and J-integral (stationary
crack). The three sets show a very good correspondence with each other especially
until 80 mm of crack length, while for longer cracks the CZ - GII is slightly lower than
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(a) Deformed shape of DCB joint

Direction of crack

 propagation

Cohesive Element 

with D =1Process Zone with damaged 

cohesive element (0 <D<1)  

(b) Damage distribution near the crack tip

Figure 3.12: Fatigue simulation at increment 25

the VCCT one and the J-integral lies in between. The main result in terms of crack
length vs. number of cycles is shown in 3.15.b, where a difference of about 11% comes
out. The number of cycles at failure was obtained also by integrating Eq. (2.3) using
the trapezoidal rule and the ΔG as a function of crack length coming from the FE
simulations. Both CZ and VCCT yielded a higher number of cycles with respect to the
numerical integration of Eq. (2.3), with a negligible difference both in the case of CZ
and VCCT.

3.5.3 Mixed-Mode I/II loading
Figure 3.16.a shows the values of GI and GII obtained by CZ and VCCT. The values
obtained with the two methods show a very good correspondence with each other in the
case of the Mode I component, as for the DCB geometry. Under Mode II the agreement
is good especially until 50 mm of crack length alike the ELS, while for longer cracks
the CZ- GII is lower than the VCCT one. The main result in terms of crack length vs.
number of cycles is shown in Figure 3.16.b, where a very little difference of about 4%
comes out. The number of cycles at failure was obtained also by integrating Eq. (2.3)
using the trapezoidal rule and the ΔG as a function of crack length coming from the FE
simulations. Both in the case of CZ and VCCT the numerical integration of Eq. (2.3)
yielded a lower number of cycles, with a difference 5.5% in the case of CZ and 8.3% in
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(a) Deformed shape of DCB joint
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(b) Damage distribution near the crack tip

Figure 3.13: Fatigue simulation at increment 88

the case of VCCT which may be still acceptable in engineering terms.

3.5.4 Single-lap joint
Figure 3.17.a shows the values of GI and GII obtained by CZ and VCCT. The values
obtained with the two methods show a good correspondence with each other in the case
of both mode components in the first millimeters of propagation, while at longer cracks
the CZ values are lower than the VCCT ones. A higher difference is noticed in the case
of the Mode II component, someway similarly to Mode II and Mixed-Mode I/II loading.
However, in those cases the difference in the number of cycles between the two models to
failure was affected to a limited extent, while in the case of SLJ the discrepancy is much
higher (see Figure 3.17.b). This discrepancy however, is due especially to the fact that
VCCT at present does not allow to modify the coefficient (C ) and exponent (n) of Eq.
(2.3) according to the mixed-mode ratio MM (see Equations. (3.24)-(3.26), Kenane and
Benzeggagh, [70]) as CZ instead does. In the case of SLJ, the MM ratio increases steeply
in the first 5mm of propagation and then becomes almost stationary (ranges between
0.55 and 0.56, Figure 3.20), and the VCCT simulation has been performed in this case
using the stationary MM value. If the mixed-mode ratio MM versus the crack length is
plotted for both approaches, a similar trend is obtained (see Figure 3.18). In VCCT case
the actual mixed-mode ratio is evaluated considering the strain energy release rates in
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Mode I and Mode II obtained from the simulations. Both in the case of CZ and VCCT
the numerical integration of Eq. (2.3) yielded a lower number of cycles, with a difference
(after 48mm of crack propagation) of 2.6% in the case of CZ and 1.1% in the case of
VCCT which is absolutely acceptable in engineering terms.

3.6 Calculation time

The calculation times are reported in Table 3.5. The CZ results on average two-order of
magnitude quicker than VCCT, with calculation times of the order of minutes instead of
hours. In the case of SLJ, the increase in calculation time is related to the finer mesh, but
the time required by VCCT is becoming so important that high performance computing
may be needed if the model complexity would increase further. The origin of this large
difference in performance between the in-house CZ subroutine and the built-in VCCT,
both run using the Abaqus solver, can be at least partly found in the Direct Cyclic
procedure that is associated with VCCT in Abaqus. Indeed, this procedure requires
quite a large number of iterations to satisfy convergence on ΔG value. On the other
hand, relaxing the convergence on ΔG may affect the number of cycles to failure in a
hardly predictable way.

DCB ELS MMELS SLJ
CZ 9.1 4.6 4.5 21.4

VCCT 676.2 688.6 727.5 2796.8

Table 3.5: Computational time for both method (time is reported in minutes)

3.7 Conclusions

The comparison of the performances of the cohesive zone model and the Virtual Crack
Closure Technique (VCCT) embedded in the software Abaqus on mode I, mode II and
mixed-mode I/II loaded cracks in composite assemblies yielded the following results:

• the two models agree on each other to within 4% except in the case of SLJ, where
VCCT at present does not allow to modify the coefficient (C ) and exponent (n)
of Eq. (2.3) according to the mixed-mode ratio MM as CZ instead does. There-
fore, the rapid increase of MM in the first millimeters of propagation generates a
large discrepancy between the two models. In this sense the CZ model offers an
additional feature with respect to Abaqus VCCT.

• while the modeling effort is a bit higher (need of introducing a layer of cohesive
elements), the CZ model results of easier use (no need to identify the proper
number of Fourier terms and time increment to represent cyclic loading). At the
same time, it results more efficient as the computation is lower of about two orders
of magnitude, even though the origin of this large difference in performance can be
at least partly found in the Direct Cyclic procedure that is associated with VCCT
in Abaqus.
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It is interesting to plot the behavior of a cohesive element during the fatigue simulation
in terms of stress and opening (see Figures 3.19.a - 3.19.b). The approach described
and its implementation allow cohesive elements to have stresses and opening within the
traction separation law defined as input; but sometimes, during the fatigue simulation,
the cohesive elements can be in stress-opening condition that does not respect the co-
hesive law. This is due to the fact that static and fatigue damage were assigned within
the subroutine at the beginning of an increment. But at the end of the increment, the
stresses coming out from the convergence of the whole structure can be a little higher
than softening part of cohesive law.
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Figure 3.14: CZM 2D results compared with VCCT 2D ones
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Figure 3.15: CZM 2D results compared with VCCT 2D
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Figure 3.16: CZM 2D results compared with VCCT 2D
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Figure 3.17: CZM 2D results compared with VCCT 2D ones
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Figure 3.18: Comparison of MM ratio obtained by CZM and VCCT in the case of SLJ
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Figure 3.19: Stress-Opening values during the fatigue simulation for two different Inte-
gration Point



60 CHAPTER 3. CZM FOR 2-D FATIGUE DEBONDING



Chapter 4

Development of CZM for
three-dimensional fatigue
debonding of adhesive joints with
planar cracks

4.1 Model implementation in 3D problems

The approach presented has been easily implemented for a two-dimensional problem,
since there is only one possible path. In the case of three dimensional problems, the
implementation is more difficult since several paths can be identified along the crack
width, and moreover their definition is rather troublesome, especially when dealing with
irregular meshes. A three-dimensional version has been implemented for the case of
planar crack geometries and regular cohesive mesh, for which Eq. 3.16 is evaluated on
several parallel contours in order to obtain J-integral along the crack front.

Precisely the model is separated in slices (Figure 4.1), where every slice corresponds
to a row of cohesive elements in the direction of crack propagation. The COH3D8
element, used to mesh the cohesive zone, has eight nodes and four integration point as
shown in Figure 4.2. So the routine, for each cohesive element lying on the same path,
extracts stresses and openings in all integration point; but for evaluating the J-integral,
the routine uses averaged value (stresses and displacements) in the centroid.

The flow diagram, shown in Figure 3.5, is still representative of the model approach;
the routine calculates for each integration point the number of cycles ∆N j

i to produce
∆Dj

i integrating Eq. (3.14) and searches for the minimum value among the calculated
∆N j

i within all the path of the cohesive zone. This value, ∆N j
min, is assumed to be the

number of cycles of the increment, ∆N j . The updated damage distribution is determined
similarly to the procedure described in the previous chapter.

61
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Figure 4.1: Contour evaluation (“path”) in a 3D specimen

Figure 4.2: COH3D8 element

4.2 Finite elements model
The CZM fatigue debonding model was tested on various joint geometries characterized
by different mixed mode ratios, in order to verify accuracy, robustness and performance
in terms of computational time. In particular, pure mode I loading was simulated with
a Double Cantilever Beam (DCB) geometry, pure mode II loading with an End Loaded
Split (ELS) geometry and mixed mode I/II loading with a Mixed Mode End Loaded
Split (MMELS) geometry and a Single Lap Joint (see Figure 3.11). The applied force
and the specimens dimensions are given in Table 4.1.

In order to investigate the model sensitivity to material behavior, two kind of mate-
rials were simulated, one representing an elastic, isotropic aluminum alloy (E = 70GPa;
ν = 0.3) and another one an elastic, orthotropic composite laminate (see. Table 3.2).
In all the simulations a load ratio R = 0 is assumed. The adherend were meshed with
3D Continuum Shell elements. From a modeling point of view continuum shell elements
look like three-dimensional continuum solids, but their kinematic and constitutive behav-
ior is similar to conventional shell elements. For example, conventional shell elements
have displacement and rotational degrees of freedom, while continuum solid elements
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Aluminum Joints Composite Joints
DCB ELS MMELS DCB ELS MMELS

P [N/mm] 10 25 20 10 20 15
a0 [mm] 20 20 20 20 20 20
h [mm] 5 5 5 5 5 5
L [mm] 175 175 175 175 175 175
b∗ [mm] 20 20 20 20 20 20

* b: specimens width

Table 4.1: Specimens dimension and applied load

and continuum shell elements have only displacement degrees of freedom. Continuum
shell elements allow for: thickness tapering, a more accurate contact modeling than con-
ventional shells (they take into account two-sided contact and thickness changes) and
stacking (they capture more accurately the through-thickness response for composite
laminate structures). All specimen geometries have been modelled as a cmbination of
two bonded cantilever beams in the “Assembly Module”. In order to achieve this, a single
cantilever beam was modelled in the “Part Module” and was partitioned for the defi-
nition of the loading point. Further the material properties were defined and this part
was assigned a composite stack by using the Composite Layup option for Continuum
Shell elements in the “Property Module”. In this option local coordinate systems are also
defined for assigning the shell normal and the ply orientations. The final composite can
be viewed by “Ply-stack plot” sub-option in the “Query information” “Property Module”
(see Figure 4.3).

Viewport: 1     Model: Model−1     Part: Beam
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3 Layup: "CompositeLayup−1"

Plot of plies 1 to 8, of 8.

Figure 4.3: Composite Layup definition

A structured sweep mesh of continuum shell elements SC8R with an element size of 1
mm was introduced with single element in thickness. During the definition of the sweep
mesh the element normal should be carefully selected in such a way that the direction of
the element normal coincides with the direction of the element normal declared in the
Composite Layup section in the “Property Module”. Therefore, the normals, for both
the parts forming a joint, are directed away from each other from the interface.
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The cohesive elements were kinematically tied to the two delaminating halves. The
cohesive element size was 0.5 mm (CZM). The continuum shell and cohesive element
dimensions have been chosen in order to keep computational time within a reasonable
value. The maximum damage increment was taken ∆Dmax = 0.2, based on the sensi-
tivity analysis done in [65].

4.3 Results

The 3D model performance is compared with the 2D version concerning the value of G
as a function of crack length. Due to crack front bowing (Figure 4.4), the average G
(or GI, GII) and crack length along the crack front were considered for the comparison
with the 2D model. In the case of elastic, isotropic material parts, analytical solutions
for G (Mode I [16], Mode II [74] and Mixed/Mode I/II [75]) were also introduced in the
comparison; while in the case of the elastic, orthotropic composite only the value of G
obtained by VCCT simulations, made by our colleagues from Politecnico di Milano (see
section 3.4), were considered. Additionally, Eq. (2.3) is integrated numerically using the
G versus crack length coming from the analysis instead of taking directly the output
number of cycles. The reason is that, as the CZM process zone needs some time to get to
a steady state while VCCT does not, the G calculated by CZM may be rather different
in the first millimeters of propagation yielding a different number of cycles. For this
reason, a comparison with experiments is foreseen as a further validation step, while at
the moment the paper focuses on the comparison of numerical results of the two model
after the transient phase of process zone formation.

In Figure 4.4, the crack front, at a generic increment of a fatigue simulation in the
case of Mode I Loading, is depicted. It can be noticed both fully damaged element
(D = 1) and damaged element (0 < D < 1) that forms the process zone, ACZ. In the
Figure 4.4 one of the two adherends is hidden to see the damage distribution of the
cohesive zone.

Process Zone (ACZ)

Fully Damaged 

Elment

Figure 4.4: Crack front during a fatigue simulation

Regarding the calculation time, the time the analyst has to wait for the crack to
reach the knee of the a–N diagram, that is close to fracture, was monitored. In the
cases examined, this means a crack length of 30mm for all the geometries except SLJ,
for which the analyzes were stopped at 10mm of crack length even though still far from
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fracture. Only the outputs strictly necessary for each model were required, in order to
minimize time spent in storing data. The PC used for calculations for CZM was an
Intel1 CoreTM I, 2630QM 2 GHz CPU, with 6GB RAM and 579 Gb HD (7200 rpm,
6MB cache), while for VCCT it was an Intel1 XeonTM E5645 (Nehalem, 1 core) 2.4
GHz CPU, with 48GB RAM and 900 Gb HD (10 k rpm, 12.3MB cache).

4.3.1 Mode I loading
In the case of aluminum joints, the four models show the same overall trend and an
overall good correspondence with each other of the SERR plot (see Figure 4.5.a); in
general the VCCT yields slightly lower values than the two CZM and analytical model.
Moreover both the CZMs show a quite different trend in the first millimeter, where the
process zone is under development. The average difference between the VCCT and the
CZMs is about 5% on the 21-29 mm crack length span, while the difference is in the
order of 2% whit respect to the analytic solution. As a consequence, the crack growth
predictions given by the CZMs are rather similar to that given by the analytical model
(Figure 4.5.b). Due to the differences shown in the SERR plot, the VCCT model gives a
slight under-prediction of the crack growth rate with respect to the CZMs and analytical
model. It is believed that further mesh refinement can get the two models closer to each
other.

Moving to the analysis of composite joints, the presence of an anisotropic behavior of
the adherends increases the difference between the three models. In particular, for the
strain energy release rate evaluation, the trends of the CZMs are more scattered (Figure
4.6.a): this in due to the combination of adherends anisotropy and stepwise element
deletion.

However a good agreement can be noticed for the three plots, although the CZM - 3D
curve is slightly lower that the other (differences in the order of 12%). These differences
produce a significant under prediction of the crack growth rate in the case of CZM - 3D
with respect to the CZM - 2D and VCCT (Figure 4.6.b).

4.3.2 Mode II loading
Figure 4.7.a shows the values of GII obtained by CZMs, VCCT and the analytical mode
in the case of aluminum substrates. Again as in the case of DCB, the four sets show a
good overall correspondence with each other.

Some differences concern the CZM - 2D, that gives a trend slightly lower than the
other models, and the VCCT, whose trend is rather jagged: probably this is related to
a non-uniform (one row of elements per time of increment) crack front propagation that
has been recorded in the simulation.

The main result in terms of crack length vs. number of cycles is shown instead in Fig.
4.7.b, where a difference comes out lower than mode I (18% at 39-mm crack length),
and also in this case a further mesh refinement can get the two models closer to each
other.

In Figure 4.8 the crack front during a ELS fatigue simulation is shown. It can be
seen how the front appears stighter than the one of a DCB fatigue simulation.

In the case of composite adherend the three modes analyzed are again in good agree-
ment between each other. Concerning the strain energy release rate plot (Figure 4.9.a),
the CZM - 3D trend is quite lower than the other; however the differences are, in the
average, lower than 7%. In terms of crack length vs. number of cycles prediction (Figure



66 CHAPTER 4. CZM FOR 3-D FATIGUE DEBONDING

4.9.b), this produce similar results for CZM - 2D and VCCT, while the CZM - 3D yields
a higher fatigue life with respect to the others (about 55 % for a propagation from 22
to 36 mm). The strain energy release rate plot of mode II composite joints appear less
scattered with respect to the mode I composite joints: this is due to the lower stress
concentration in the ELS joints (respect to the DCB), which produce smaller changes of
the stress fields when one or more elements change from “undamaged” to “damaged”.

4.3.3 Mixed-Mode I/II loading
Fig. 4.10.a shows the values of GTOT (GTOT = GI + GII) obtained again by CZMs,
VCCT and analytical model for the aluminum joint. The values obtained with the four
methods in this case highlight a little bit the differences found for the single modes: the
CZM - 3D trend is almost superimposed to the VCCT trend (1 % average difference from
21 to 30 mm crack length), while the analytical solution gives a slight overestimation
and CZM - 2D a slight underestimation with respect to the previous ones. The mode
separation (GI and GII ) is shown in Figure 4.10.b only for CZM - 3D and VCCT -
3D. The values obtained with the two methods in this case highlight a little bit the
differences found for the single modes (see previous paragraphs).

These differences become larger in the crack length vs. number of cycles plot (Figure
4.11.a), where again CZM - 3D and VCCT give similar results, while analytical solution
and the CZM - 2D give respectively higher and lower crack growth rate. Figure 4.11.b
shows the variation of the mixed mode ratio(MM) during the propagation.

In the case of composite joints the three models give quite different results: although
the trends of the total strain energy release rate (GTOT = GI +GII) are similar (Figure
4.12.a), the mode separation produces differences of the mixed mode ratio in order of
30 % (Figure 4.13.b), and this, in turn, produces significant differences in terms of crack
length vs. number of cycles prediction (Figure 4.13.a). This phenomenon, still under
investigation, is thought to be produced by the material anisotropy.

4.3.4 Mixed-Mode I/II loading
Figures 4.14.a - 4.14.b show the values of GI and GII obtained by CZM and VCCT.
Concerning the comparison of the single modes, the values are closer to each other
than in the case of MMELS, except the first 3 mm, necessary to establish a steady state
process zone in CZM. After this, the total G is the same and so also the mixed-mode ratio
(2.5% average difference from 3- to 10 mm crack length). With these premises, the crack
length vs. number of cycles in Fig. 4.15.a, skipping the first millimeter of propagation,
the values are practically coincident (4.5% difference at 10 mm crack length).

Regarding the composite assemblies Fig. 4.16 shows the distribution of GI, GII and
GIII along crack front. It is clear that values are unevenly distributed probably due
to the development of an asymmetrical crack front. It is also evident that where GI,
GII values drop, a comparable GIII shows up. Since Mode III should be concentrated
in correspondence of the surfaces, the occurrence of non-negligible GIII at some points
in the interior is peculiar. Regarding the crack front in the CZM simulation, it appears
symmetric at any increment; since SERR is an output unavailable in CZM model, in
Figure 4.17 the damage distribution and stress condition along the front are shown.

Keeping in mind that this results may affect the comparison with CZM, the values
of GI and GII obtained by CZM and VCCT are reported in Fig. 4.18.b. The two sets
show quite a good correspondence anyway with each other concerning GII, being CZM in
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this case higher than VCCT after about 5mm of crack growth. The Mode I component
instead, results lower than VCCTmore markedly than in the case of DCB, and differently
from the case of MMELS, which is probably related to the uneven distribution shown in
Fig. 4.16. The very low values in the case of CZM at the beginning are related instead
to the absence of an initial crack and, therefore, the necessity of some millimeters of
crack growth for the process zone to develop. Oscillations visible afterwards are instead
related to the relatively coarse mesh used to keep calculation time within affordable
limits. As already said in the case of MMELS, a general statement whether CZM under-
or overpredict the strain energy release rate outcoming from VCCT cannot be drawn,
unless further investigations, especially concerning mesh size effects, are done. Skipping
the first five millimeters where the cohesive process zone develops, the crack length vs.
number of cycles is shown in Fig. 4.19.b. Given the differences shown in Fig. 4.18 in
the values of GI and GII between the two models, a sensible difference in the elapsed
number of cycles for a given crack growth obviously turns out.

4.4 Calculation time
The calculation times are reported in Tab. 4.2. The CZM results on average two-order
of magnitude quicker than VCCT, with calculation times of the order of minutes instead
of hours. In the case of SLJ, the increase in calculation time is related to the finer
mesh, but the time required by VCCT is becoming so important that high performance
computing may be needed if the model complexity would increase further.

DCB ELS MMELS SLJ
CZM 186 54 90 57
VCCT 1012 86 229 1015

Table 4.2: Calculation time of VCCT and CZM (time is reported in minutes)

4.5 Conclusions
The comparison of the performances of the cohesive zone model presented in [76] and
the Virtual Crack Closure Technique (VCCT) embedded in the software Abaqus on
mode I, mode II and mixed-mode I/II loaded cracks in composite assemblies yielded the
following results:

• the two models are in good agreement concerning Mode I and Mode II conditions
and also under Mixed-Mode I/II loading concerning the total GTOT = GI +GII .
However, as the crack growth rate (Eq. 2.3) is strongly dependent on ΔG, even
a limited difference causes a sensible difference in the elapsed number of cycles
for a given crack growth. Since the element size is a compromise between the
computation time and a simulation with sufficient detail, by just decreasing it
a better agreement would be found. Hence, a general statement whether CZM
under- or overpredict the strain energy release rate outcoming from VCCT cannot
be drawn, unless further investigations, especially concerning mesh size effects, are
done.
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• while the modeling effort is a bit higher (need of introducing a layer of cohesive ele-
ments), CZM results of easier use (no need to identify the proper number of Fourier
terms and time increment to represent cyclic loading). At the same time, it results
more efficient as the computation is 1-2 order of magnitude faster, even though
run on a less powerful PC. As mentioned in the previous chapter, Direct Cyclic
procedure is computationally more expensive than the in-house CZ subroutine.
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(b) Comparison of a - N values

Figure 4.5: CZM 3D results compared with CZM 2D, VCCT 3D and analyitic ones
(DCB, isotropic material)
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(b) Comparison of a - N values

Figure 4.6: CZM 3D results compared with CZM 2D, VCCT 3D and analyitic ones
(DCB, orthotropic material)
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(b) Comparison of a - N values

Figure 4.7: CZM 3D results compared with CZM 2D, VCCT 3D and analytic ones (ELS,
isotropic material)
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Figure 4.8: Crack front during an ELS fatigue simulation
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(b) Comparison of a - N values

Figure 4.9: CZM 3D results compared with CZM 2D, VCCT 3D and analyitic ones
(ELS, orthotropic material)
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(b) Comparison of a – GI /GII values

Figure 4.10: Comparison of GI , GII and GTOT trends (MMELS, isotropic material)
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Figure 4.11: Comparison of N and MM trends (MMELS, isotropic material)
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(b) Comparison of a – GI /GII values

Figure 4.12: Comparison of GI , GII and GTOT trends (MMELS, orthotropic material)
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Figure 4.13: Comparison of N and MM trends (MMELS, orthotropic material)
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(b) Comparison of a – GI /GII values

Figure 4.14: Comparison of GI , GII and GTOT trends (SLJ, isotropic material)
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Figure 4.15: Comparison of N and MM ratio trends (SLJ, isotropic material)
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(a) GI distribution

(b) GII distribution

(c) GIII distribution

Figure 4.16: Example of GI, GII and GIII distribution along the crack front in thr VCCT
simulations [77]
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(a) Damage distribution in Cohesive Zone

(b) Opening stress (s33) distribution in Cohesive Zone

(c) In-plane shear stress (s13) distribution in Cohesive Zone

Figure 4.17: Crack front in CZM - 3D fatigue simulations
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(b) Comparison of a – GI /GII values

Figure 4.18: Comparison of GI , GII and GTOT trends (SLJ, orthotropic material)
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Figure 4.19: Comparison of N and MM ratio trends (SLJ, orthotropic material)
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Chapter 5

Development of CZM for
three-dimensional fatigue
debonding of adhesive joints with
general shape cracks

5.1 Crack front identification

In Chapter 3 a model of the cohesive zone able to correctly simulate the propagation
of fatigue defects in two dimensional geometry was described. The procedure has been
implemented in the finite element solver (Abaqus) by programming the appropriate
software-embedded subroutines. Part of the procedure targets the calculation of the
strain energy release rate, G, which is necessary to calculate the growth of the defect.
The procedure has been also extended to 3D geometries, where G could be evaluated by
the contour-integral on parallel slices along the crack front.

However the two models described are able to simulate and predict the joint life only
in case the crack is almost straight during all the fatigue simulation. For that reason it
was possible to validate the CZM - 3D using averaged SERR value along the front. In
fact if the initial crack front is not straight, the CZ models are not able to simulate the
propagation. Therefore a new CZM approach capable of managing crack propagation
without caring of the front form or its evolution was needed. In the 3D model presented
in the previous chapter, it has been assumed that each slice presents a straight local crack
front during the fatigue simulation. Consequently the path perpendicular to the crack
front, along which the J-integral must be computed, corresponds to a row of cohesive
elements. In order to generalize the model, it is necessary that the routine at each
increment identifies the correct shape of the crack (see Figure 5.1) and the direction
perpendicular to the delamination front in each node. The flow diagram (shown in
Figure 3.5) to evaluate the damage distribution at each increment was still implemented
in the new model, but integrated to find the crack shape.

Inspired by Xie and Biggers [78] who proposed a procedure to allow the determination
of the actual shape of the delamination front within the VCCT, the routine looks for
integration points having at the same time:

85
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• D < 1;

• at least one surrounding point with D = 1

The segments that separate the points with D < 1 from the points with D = 1define
the crack front (see Figure 5.2). Through the perpendicular lines n1 and n2 respectively
to the segments, 1 and 2, the direction of the local crack propagation is identified (the
vector n in Figure 5.2). Once the front is defined, at each point the strain energy release
rate is evaluated through the J-integral (where also Mode III can be taken into account)
along the direction of propagation. However, further clarifications will be given in the
reminder.

Figure 5.1: Crack front of generic shape

IP

(D<1)

IP1 (D<1)IP2 (D<1)IP3 (D<1)

IP4 

(D<1)

IP5 (D=1) IP6 (D=1) IP7 (D<1)

IP8 

(D<1)

1

2

n1 

n2 

n 

Figure 5.2: Identification of local crack front at integration point IP

In the 3D CZ model presented in the previous chapter the J-integral was evaluated
using stress and strain extracted at integration point; this was possible because the path
perpendicular to the front that was assumed straight at each incrment. In this model
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Figure 5.3: Path for evaluating the J-integral (left) and the bi-linear interpolation

a condition as the one described in picture at right of Figure 5.3 can now be managed.
In fact the J-integral was evaluated using stresses and opening probed in P rpath; in turn
their stress conditions depend on their surrounding integration points.

Therefore, using the bi-linear interpolation, for any variable in P rpath, q, it can be
written:

q = (1− v) · (1− u) · qj,k + v · (1− u) · qj+1,k + v · u · qj+1,k+1 + (1− v) · u · qj,k+1 (5.1)

where v = a/aT , u = b/bT , j and k are subscripts referred to four surrounding
integration points (see Figure 5.3).

With regard to the J-integral computation, the Eq. (3.16) should be modified to
consider the Mode III loading [79]:

J =

ˆ
Π

(
−σ12

∂u1

∂x1
− σ22

∂u2

∂x1
− σ32

∂u3

∂x1

)
ds (5.2)

x1

x2

x3

Crack Front

Figure 5.4: Definition of the local coordinate systems for a crack front point

Figure 5.4 can help explaining that the Eq. (5.2) must be evaluated in a local
coordinate system for each crack front point. For this reason the output from Abaqus,
that are referred in a global coordinate systems, must be converted to local ones.
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After doing that for each crack, the strain energy release rate will be known. Further
it will be possible to calculate ∆Dj

i and ∆N j
min following the same algorithm described

in Figure 3.5. The minimum number of cycles can this time be used to update the
damage distribution of the crack front point only.

5.2 Mixed-Mode loading (I/II/III)

In order to obtain a comprehensive generalization of the new approach, also Mode III
loading needs to considered. Therefore, a general formulation for decohesion elements
dealing with mixed-mode delamination onset and propagation is required. As men-
tioned before, under pure Mode I, II or III loading, the onset of damage at the interface
can be determined simply by comparing the traction components with their respective
allowables. However, under mixed-mode loading damage onset and the corresponding
softening behavior may occur before any of the traction components involved reaches
their respective allowable. That is usually neglected in the formulation of decohesion ele-
ments. Instead it is assumed that the initiation of the softening process can be predicted
using the quadratic failure criterion [81]:(

σ22

σ0
22max

)2

+

(
σ12

σ0
12max

)2

+

(
σ23

σ0
23max

)2

= 1 (5.3)

The total mixed-mode relative displacement δeq is defined as:

δeq =

√(
δ22+ | δ22 |

2

)2

+ (δshear)
2 (5.4)

where δshear =
√
δ2
12 + δ2

23 represents the norm of the vector defining the tangential
relative displacements of the element. Assuming σ0

12max = σ0
23max, it follows δ0

12 = δ0
23

where the superscripts, 0, indicate the onset of softening process. The mixed-mode
relative displacement corresponding to the onset of softening, δ0

m, becomes:

δ0
m = δ0

22δ
0
12

√
1 + β2

(δ0
12) 2 + (βδ0

22) 2
(5.5)

where β = δshear/δ22.
The criteria used to predict delamination propagation under mixed-mode loading

conditions are usually established in terms of energy release rates and fracture toughness.
As said in the previous chapter, there are established test methods to obtain the Mode
I and II interlaminar fracture toughness: the DCB is used for Mode I, the ENF or the
ELS specimens are used for Mode II and for mixed-mode I/ II the Mixed-Mode Bending
(MMB) test specimen is normally used. However, further research is required to assess
the Mode III interlaminar fracture toughness, GIIIC. Furthermore, a reliable mixed-
mode delamination failure criterion incorporating Mode III is not yet available because
there is no mixed-mode test method which incorporates Mode III loading. Therefore,
most of the failure criteria proposed for delamination growth were established for mixed-
mode I and II loading only. For the reason explained above, the concept of energy release
rate related with shear loading, Gshear = GII +GIII , will be used in the current work.
An equivalent strain energy release rate can then be obtained modifying the Eq. (3.23):
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GeqC = GIC + (GIIC −GIC)

(
Gshear
GT

)η
(5.6)

with GT = GI +Gshear. The last parameter used to predict completely the delami-
nation propagation is the mixed-mode displacements corresponding to total decohesion,
δcm:

δcm =
2

Kδ0
m

[
GIC + (GIIC −GIC)

(
β2

1 + β2

)η]
(5.7)

The parameter C and n (see Eq. (2.3)) can be obtained using (3.25) and (3.26)
where this time the mixed mode ratio MM is:

MM =
GII +GIII

GI +GII +GIII
(5.8)

5.3 Results

The procedure described in this chapter has been validated so far only for aluminum joint
in Mode I, Mode II and Mixed-Mode I-II. The specimens dimensions and the applied
loads are the same of Tab. 4.1. The cohesive law parameters and Paris law equation
coefficients are given in Table 3.3. A structured sweep mesh of continuum shell elements
SC8R with an element size of 1 mm was introduced with single element in thickness,
while the cohesive zone was modelled with COH3D8 element of the size 0.2 mm.

The first ten millimeters of crack propagation in a DCB test have been simulated.
In order to verify the accuracy of this approach, the strain energy release rate has been
compared with the analytical solution (Krenk, 1992). The values of GI obtained by 3D
VCCT and planar cracks 3D CZM are plotted on the same diagram. As the 3D crack
front is slightly bowed, the GIand crack length are average values. All the sets show
quite a good match (see Figure 5.5).

The crack front during the propagation is shown in Fig. 5.6. Figure 5.7 shows as
the crack front appears if fully damaged element, colored in red, are deleted . Since the
fatigue damage is assigned only to the crack front points, the cohesive elements behind
the front can be damaged because their stress conditions are outside the cohesive law.

For what concerns the Mode II, ELS test is simulated with the generalized approach.
Figure 5.8 shows results in terms of GII against the VCCT and the planar cracks 3D
CZM. Also in this case all sets show a good match.

Lastly in Figure 5.9 the comparison between the new approach results and the VCCT
and CZM 3D are shown. The values obtained with the new approach in this case
highlight the differences found for the single modes. Both GIand GIItrends are lower
than the other one.

Figure 5.10 shows the stress-opening values in various integration points, located
at different crack length, during all the fatigue simulation. As one can note, the area
underling the stress-opening values grows with increasing distance of Integration point
from the initial crack tip. Obviously this depends on the fact that strain energy release
rate increases with the length of the crack.
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Figure 5.5: Comparison of a – GI values
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Figure 5.6: Crack front during the fatigue simulation
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Figure 5.7: Crack front during the fatigue simulation (fully damaged element are deleted)
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Figure 5.8: Comparison of a – GII values

5.4 Conclusions
A new procedure for simulating fatigue debonding/delamination with cohesive zone is
presented. Unlike the previous approach, propagation of arbitrarily shaped cracks can
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Figure 5.9: Comparison of a – GI /GI I values

be simulated. Regular hexehedral meshes in cohesive zone are needed. So far this ap-
proach has been tested on simple geometries (DCB, ELS and MMELS) for adhesively
bonded joints with adherends made by isotropic material. The results have shown a
good agreement with previous FEA analysis (VCCT and CZM), but this approach re-
quires further valdiations with proper technique, computational or experimental. Also
the VCCT, implemented in commercial codes, cannot be attractive for this kind of de-
lamination problems. The mesh can highly influence the results due to the fact that
the nodes that must be released during the simulation. Also orthogonal mesh patterns
becomes problematic due to the changing position and shape of the delamination front;
the associated non-linear iterations, could make the analysis prohibitively large in most
cases.

The next figures show a qualitative example of a fatigue simulation in a DCB test
where the initial defect shaped like one quarter of ellipse.

Calculation time is increased in the worst case of about 2%, compared to the CZM
3D for planar cracks.
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Figure 5.10: Fatigue Degradation of IP at half thickness for a DCB simulation (∆Dmax =
0.2)
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Figure 5.11: Initial crack front
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Figure 5.12: Crack front during the simulation (increment 120)
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Figure 5.13: Crack front during the simulation (increment 450)
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Figure 5.14: Crack front during the simulation (increment 1045)
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Figure 5.15: Crack front during the simulation (increment 1400)
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