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Introduction 

Let me state from the beginning that this thesis is not a neuroscience thesis. 

Nor it is, in a strict-sense, an electronic design thesis. It is not even a signal-

processing thesis. And, probably, it is not many other different things. This 

work is rather an attempt to synthesize, with engineering principles, all these 

different, but somehow related aspects, into a unique, convergent 

framework based on Brain Computer Interface (BCI) technology [1],[2]. As 

a matter of fact, BCI is a highly-multidisciplinary field, a human brain 

acting as an integral part of it being a tangible clue of such an argument. 

A BCI (Figure 0.1) is an alternative, augmentative communication/control 

system that a person can use to directly communicate his/her intent to the 

external environment just by interpreting the brain activity, or, at least, 

specific patterns in it. In this sense, BCIs can also be regarded as Assistive 

Technologies (AT), i.e. tools conceived to assist and promote the person’s 

autonomy; ATs are, in fact, focused on providing personal solutions, as 

much comfortable as possible, to overcome limitations in the possibility of 

interacting with the external environment and with other people.  

 

Figure 0.1  A BCI is an alternative/augmentative communication mean based on direct 

interpretation of the user’s brain activity: user and computer can interact and form a closed 

loop, in which the user is both the source and the target of the processing. 
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2  Introduction 

The notion of “assistive device” is, indeed, a very old one: what today seems 

a simple, everyday object such as a pair of spectacles, in the past was 

considered as a special aid for people affected by visual impairments. Such 

“aids” were then realized to improve their quality of life, autonomy and 

independence. With time, then, more and more sophisticated assistive 

devices have been developed, and the quest for improving the quality and 

usability of services has also defined, in recent times, a methodology  called 

Design for all (or Universal Design) [3]. Although initially referred to 

architectural contexts, to promote universal accessibility to public spaces, 

the theme of universal design is now being transposed to modern 

Information and Communication Technologies (ICT), such as, for example, 

in the design of accessible User Interfaces (UI). In this context, BCI could 

represent the technological bridge, for certain classes of users, to access e-

services. 

Nonetheless, the range of applications of BCI well extends beyond UI tasks 

(e.g. for spelling [4]). For instance, BCI-enabled orthoses were developed 

[5]-[7]; BCI was also successfully exploited, in conjunction with Functional 

Electrical Stimulation (FES), in studies on motor recovery after stroke [8]-

[10]; finally, BCI technology was used to enable the control of electrical 

wheelchairs [11] and mobile robots [12],[13]. A complete list of all possible 

applications of BCI, though, would be too long to fit into the scope of an 

introductory chapter, and such a list, by the way, is growing as we write and 

read. For this reason we limit ourselves to just a few key points, to give an 

idea of the practical implications, even though the BCI approach is general. 

Furthermore, in order to demonstrate the proposed BCI device, we will use 

and focus on a real-world problem, namely the control of a home 

automation system or, to better state the context, an Ambient Assisted Living 

(AAL) system.  

AAL systems are very heterogeneous both in terms of implementation and 

functionalities; in general, the goal of AAL systems is to make the home 

environment more intelligent and cooperative in accomplishing daily living 

activities. The key concept is to provide the technical and technological 

means to support, for as long as possible, people’s independence and self-
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reliance in the home environment they are accustomed to. With increasing 

and rapidly growing research activity in AAL, many innovative solutions 

have been developed, built on top of “traditional” home automation tasks 

(i.e. ambient light control, door and window automation, security, etc.). It is 

now possible, thanks to more and more “smart objects” in our homes, to 

provide “higher level” functionalities and feedbacks, as it is the case of 

behavioural analysis [14] (i.e. extracting a sort of “user digital footprint” 

through the ambient, analyzing his trends and behaviour, and highlighting 

relevant variations in such routines). Many other examples are possible, but 

the main point here is to underline the increasing importance that the AAL 

theme is acquiring, being an active research field, supported by the 

European Union within the AAL Joint Programme and Horizon 2020 

frameworks. 

In our view, BCI technology can easily fit into such contexts, providing new 

and alternative ways of interfacing with a smart ambient, opening services 

and the entire ecosystem to a wider general public, including persons for 

whom interacting with the external environment may be troublesome, and 

sometimes even not possible (due to, for example, neurodegenerative 

diseases or severe motor impairments). Nonetheless, the module should be 

integrated into the already established system without impacting on its 

architecture. In other words, the BCI should act as a self-contained module, 

and interact with the system as a traditional and conventional user interface 

would do (be it a remote controller or a GUI on a smartphone). A pictorial 

representation of the application we want to target is shown in Figure 0.2, 

where the LAN-based AAL system, CARDEA [15],[16], is represented. 

CARDEA will be our gateway to home automation control, as it exposes a 

generic API for remote controllers to interact with. 

Having AAL as “application target” in mind, however, calls for quite 

peculiar specifications with respect to most BCI designs. 

In the first place, BCI technology must be considered no longer as a 

powerful lab research tool, but as a daily living device. In recent years, an 

increasing amount of work and efforts were put into turning BCI to “outside 

the lab” realities [17]-[19]. In fact, lab operating conditions are usually more 
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controlled and predictable than those of the target environment, and this 

may lead to significant performance degradation when BCI are deployed in 

real scenarios. Just to give a few examples, background ambient luminosity 

could pose potential problems if the application makes use of visual stimuli, 

just as motion artifacts could hinder or compromise the BCI performance in 

mobility scenarios. Moreover, one should consider that the entire device 

setup and preparation should be performed by non-BCI experts, thus errors 

and non-optimal initial conditions could potentially arise. As a consequence, 

BCI hardware and software development for “out of the lab” scenarios 

should be carried out having practicality and robustness as primary goals. 

Another general consideration for promoting BCI as daily living devices is 

related to its cost. In the commercial and consumer electronics realm a great 

deal of engineering work is absorbed by optimizing production costs, in 

order to offer competitive and lower prices (or the same prices with 

increased functionalities). Trying to lower the high costs of commercial-

grade BCI setups (especially for the hardware equipment) does not merely 

means saving money, but rather broadening the spectrum of possible 

 

Figure 0.2  Application example for demonstrating the effectiveness of the proposed BCI 

platform. We will use BCI technology to control an Ambient Assisted Living system (CARDEA): 

for the system, the platform will be perceived just as a simple, conventional input interface. 
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applications for BCI-enabled devices, generating new concepts and ideas. 

The growth of mobile, low-cost platforms and the related applications and 

innovations are just examples supporting this argument. Close to this 

concept of costs optimization is the adoption of scalable, compact 

technological solutions; future BCI embedded implementations could 

potentially allow to discover new methods and applications, just as wearable 

devices are re-inventing the way we intend sensors. 

Then, in order to further define the specifications, let us dive, in more depth, 

into the final target, i.e. AAL systems, which will allow us to demonstrate 

the effectiveness of our approach [20]-[24]. First of all, let us try to figure 

out the requirements for the interface; a typical home/environmental control 

case would require to control several appliances (e.g. lights, windows, 

shutters etc.), possibly organized in a menu that we would like to navigate 

through. However, we should also take into account the dynamics of such 

an interaction: this application, in particular, does not require a very high 

data throughput capability (low communication bandwidth), since the 

typical interaction paradigm consists only in issuing a few high-level 

commands. Moreover, user interactions are quite sparse in time. This last 

characteristic also unravels two other key aspects worth keeping in mind for 

practical BCI-enabled AAL control: (i) false positives minimization, and (ii) 

a “Plug&Play” approach. 

The former key point, in particular, states that, given the reduced interaction 

periods (in the following we will call them Intentional Control periods, or 

IC, as opposed to Non-IC periods or NIC), it would be impractical to have a 

control device continuously triggering non intended commands; this could 

also raise security issues. Meanwhile, the ideal device should also exhibit a 

high sensitivity, making the control task easier and more prompt, from the 

user’s point of view. However, usually these two “desiderata” (i.e. false 

positives minimization and high sensitivity) are not independent and cannot 

be addressed individually; thus a trade-off must be made, tailored to the 

specific application at hand. 

The latter concept, the Plug&Play approach, is more related to the user 

experience side. With the interaction dynamics described as above, the user 



6  Introduction 

could perceive undergoing an initial training period or periodic calibration 

phases as an excessive burden, given the final control purpose. It then 

becomes important to devise methods which do not rely on any calibration 

at all. Moreover, a closely related issue of such an approach is its 

generalizability to other users (subject-independence). In accordance with 

the calibration-free principle, we should develop methods which are highly 

interoperable between users; in addition, minor performance tuning should 

be controllable just by a few high-level parameters, directly accessible and 

editable by the user. 

Another aspect which directly impacts on the user’s experience and the 

device acceptability is the way the BCI allows interactions. Assuming the 

need to work online (i.e. continually and in Real-Time, RT), there basically 

exist two possibilities:  (i) cue-based [25], i.e. when the BCI prompts the 

user each and every time it is ready to receive and interpret commands, and  

(ii) self-paced [26]-[29], where the BCI continuously scans the user’s brain 

features and autonomously detect when the user is actually trying to control 

it (IC vs NIC periods); if this is the case, the BCI decodes which command 

he/she is issuing. It goes without saying that the latter method is more 

difficult and makes it harder to find a good trade-off between sensitivity and 

false positives minimization. On the other hand, though, the user-machine 

interaction would be perceived as more natural and acceptable. Thus, in 

order to develop “real-world” solutions, the self-paced operating principle 

must be assumed. 

At the end of this brief discussion, a few points stand out and help us define 

the specifications for the system we intend to demonstrate: 

 minimal, compact, easy experimental setup;  

 at the same time the system should be flexible enough to allow 

studies of other bio-potentials (e.g. ElectroMyoGraphy, EMG, to be 

integrated as an additional channel in hybrid BCI, hBCI [30]-[32]); 

 contained costs (e.g. < 1000 €); 

 robust design, operation outside controlled lab environments; 
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 online, self-paced operation; 

 calibration-free approach; 

 subject-independence. 

However, even though commercial, complete BCI solutions already exist, to 

the best of our knowledge no one could optimally meet the aforementioned 

criteria. In particular, with respect to the available hardware, either it 

exceeded the target price range, or no well-established, reliable or open 

solutions (i.e. with access to raw signals or even with the possibility to 

acquire other bio-potentials than EEG) exist.  

Thus, our development flow started from the ground, electrical level with 

the realization of a suitable bio-potential acquisition platform. Then, we 

built our entire platform on top of it, addressing all the related aspects of 

storing the data, processing it in real-time, and delivering meaningful 

output. Such pervasive customization allowed us to fine-tune each step of 

this design, allowing us to craft each time the optimal solution for the 

specific needs, from the hardware level up to the software/processing one. 

(the term “optimal” is here used with reference to the whole aimed 

application; nonetheless, most of the used principles are, indeed, general). 

The outline of this thesis work develops horizontally, encompassing all the 

sustained BCI design phases, from hardware and firmware, up to software 

and application. In Chapter 1, the state of the art and the general aspects of 

BCI technology will be covered, with a broad-band approach. Firstly, the 

principal brain activity monitoring and measurement techniques will be 

discussed. Then, focusing on ElectroEncephaloGraphy (EEG), the most 

commonly exploited brain signals will be presented. A brief survey of 

general BCI-related signal processing will follow, in order to complete the 

basic BCI building blocks. Finally, the architecture of the whole platform 

will be outlined. In Chapter 2, the realization of two custom EEG 

acquisition modules will be discussed, ranging from the electronic design 

specifications up to the implementation and production details. Both 

modules will be validated, and the newest one will also be compared against 

a commercial, high-end EEG device for BCI (g.tec USBamp), yielding very 
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good results. Also, the cap and materials choice will be briefly discussed. 

Chapter 3 will present the offline signal processing research carried out for 

Steady State Visual Evoked Potentials (SSVEP) classification, reviewing 

state-of-the art methods, as well as introducing two novel algorithms. All 

these methods will be then compared; as it will be shown, the presented 

methods well behave in this offline classification context, improving over 

computational complexity, thus lending themselves better for future 

embedded implementations. Chapter 4 will, instead, discuss how to adapt 

such methods to work more reliably in online, self-paced BCI sessions. A 

novel method for improving accuracy and minimizing False Positives will 

be presented, introducing a “prediction confidence indicator”, which will 

also allow to discriminate between user’s active, intentional control periods 

and inactive, non-intentional ones. A technique for dynamically choosing 

the EEG window length during the epoch-based signal processing will also 

be covered. In addition, the results achieved in lab experiments and in live 

demo sessions in the (“non-controlled”, “harsh”) context of the 

Handimatica 2014 exhibition will be presented, highlighting the good 

performance in sensitivity and the improvement over the state of the art in 

terms of False Positive Rate. Finally, the Conclusions and future 

developments chapter, will review the main achieved results and explore the 

open questions and possibilities for the present work. 

 

 



 

 

Chapter 1 

 BCI from multiple angles 

This Chapter focuses on introducing the BCI context in more depth. In 

particular, all the principal, relevant concepts for the development of our 

system will be covered, namely: the techniques for measuring and 

monitoring the brain activity, the typical brain signals used in the BCI 

realm, and the signal processing techniques used for extracting information 

from such signals. This chapter is thought to provide a high-level, 

introductory view of such topics (far from being exhaustive); the interest 

reader can gain deeper information, for example, by looking at the 

references provided. Nonetheless, all these topics will allow us to place the 

whole presented work into a nicer context. 

1.1 Various brain monitoring techniques in BCI 

Brain Computer Interfaces directly interpret the brain’s activity to extract 

meaningful information. However, many different brain parameters can be 

monitored, carrying different information. In the following, we address the 

principal techniques employed to gather data and information about the 

brain status. At the end, we will motivate our choice of relying on an EEG 

based approach. 
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1.1.1 ElectroEncephalography (EEG) 

ElectroEncephaloGraphy (EEG) is the most widely used brain monitoring 

technique in non-invasive BCI. EEG measures neuronal electrical activity in 

terms of scalp potentials. It is worth remarking, though, that the electric 

potential generated by an individual neuron is far too small to be picked up 

by EEG; the recorded scalp potentials, therefore, always reflect the 

summation of the synchronous activity of thousands or millions of neurons 

that have similar spatial orientation. In fact, pyramidal neurons of the cortex 

are thought to produce most of EEG signal because they are well-aligned 

and fire together. However, with EEG it is not possible to acquire precise 

3D information on neuronal activation, as opposed to other methods (e.g. 

fMRI), nor the spatial resolution is the best among all.  

Nonetheless, the temporal resolution is very fine ( ms), and EEG read-out 

circuitry is relatively inexpensive, when compared to other brain activity 

monitoring methods.  

The typical EEG signals used in BCI lie in the [0-50] Hz band and have 

amplitudes in the range of a few μV; this poses quite tight constraints on the 

acquisition hardware, as it will be discussed in §2.1. In fact, SNR is not one 

of the key strengths of electroencephalography.  

Still, as it will also be stressed later, EEG is currently recognized as the 

most versatile tool in BCI research, given its overall best tradeoff between 

spatio-temporal resolution, costs and setup complexity. 

EEG electrodes are, usually, positioned over the scalp according to the 

International 10/20 system, or more dense variations of it (see Figure 1.1); 

the electrodes positions and names are standardized to facilitate 

comparisons and reproducibility of setups.  

Commonly used materials for physical electrode realization are tin (Sn), 

gold (Au), silver (Ag) and silver/silver chloride (Ag/AgCl, also sintered). A 

thorough description of the physical properties of such different materials 

goes beyond the scope of this introduction; the interested reader could refer, 

for example, to [33]. Overall, sintered Ag/AgCl electrodes offer superior 
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performance in terms of reduced low-frequency noise and more contained 

offsets. 

 

 
Figure 1.1  Electrode positioning and naming according to the International 10/20 system: (A) 

lateral view, (B) top view. More dense mountings are also possible, as shown in (C). Reference 

and ground electrodes are usually placed on earlobes or mastoids, sometimes even in frontal or 

central locations. 
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Electrodes can then be further divided into passive and active, the latter 

featuring a pre-amplification stage on top of the electrode (in order to 

reduce the artifacts and noise pickup along the cables). 

Finally, electrodes can be used in conjunction with electroconductive gel, to 

reduce the signal source impedance, or in a dry-setup fashion (in this case 

exhibiting a higher impedance, thus being more susceptible to noise pickup, 

unless active electrodes are used). 

1.1.2 MagnetoEncephaloGraphy (MEG) 

Active bioelectric sources in the brain produce both electric and magnetic 

fields: MagnetoEncephaloGraphy (MEG) measures this latter quantity. 

However, typical neuro-magnetic fields in the brain are estimated to be in 

the order of 50-500 fT, about 10
8
-10

9
 times weaker than the earth’s 

magnetic field. In order to measure such extremely small quantities, 

advanced technologies, based on Superconductive QUantum Interference 

Devices (SQUID), are used, which require sensor cooling by means of 

liquid helium circuits. Moreover, a large number of sensing elements is 

required, typically between 100 and 300, and measurements are usually 

taken in magnetically shielded environments. 

These setups are, thus, incredibly sophisticated and bulky (and with high 

costs as well), limiting the application of MEG only to laboratory and 

clinical settings. However, the main advantages offered by MEG, with 

respect to, for example, EEG, are:  (i) a much better spatial resolution, with 

3D information, allowing to localize more precisely cortical activations 

related to task or sensory stimulations, and  (ii) better Signal to Noise Ratio 

(SNR), especially at higher frequencies of interest like the gamma band 

(> 32 Hz) [34]. 

MEG is used for various BCI and rehabilitation tasks, including, for 

example, motor imagery [35],[36]. 
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1.1.3 functional Magnetic Resonance Imaging (fMRI) 

Lately, functional Magnetic Resonance Imaging (fMRI) has been used in 

BCI [37]-[38]; in this case, the input signal is the Blood Oxygen Level 

Dependent Response (BOLD), i.e. changes in the local concentration of 

deoxygenated hemoglobin in brain tissues, as a result of neuronal activity 

and metabolism. 

Compared to EEG, fMRI yields a better space resolution (in the range of 

millimeters), and the analysis can also extend to deeper, subcortical areas, 

allowing 3D localization of neuronal activity . Advancements in technology 

and signal processing also allowed to reduce the delay of feedback down to 

below 2 s [39], thus enabling fMRI methods to be used in near real-time 

scenarios. 

Once again, though, such technologies are bulky and expensive, thus better 

suited for laboratories and clinics, while their use in daily life is still 

impractical. 

1.1.4 Near InfraRed Spectroscopy (NIRS) 

Similarly to fMRI, Near InfraRed Spectroscopy (NIRS) can offer 3D brain 

imaging, even though at a shallower depth (typically, 1 to 3 cm). However, 

the whole signal acquisition system is much more compact (to the extent 

that it is even portable) and cheap, thus being more suitable to “outside the 

lab” contexts. NIRS, in fact, just uses pairs of light sources (lasers or LEDs, 

operating on two or more discrete wavelengths) and detectors. The 

measured physiological quantity is the ratio between oxygenated and 

deoxygenated hemoglobin, which cause different light absorption levels; 

such ratio varies between different brain areas, depending on their level of 

activation. Since NIRS is based on hemodynamic responses, though, 

changes in the brain activity are typically detected with delays of a few 

seconds [40]. 
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The possibility of easily, simultaneously recording EEG and NIRS, makes it 

an attractive choice for hybrid BCI (hBCI): in [41] a NIRS-based “brain 

switch” is described, to switch on and off the EEG part of the hBCI. 

Authors report fewer false positives using this hybrid approach rather than 

one purely based on specific EEG features. NIRS BCI are quite often 

exploited also in mental state recognition [42] and motor imagery tasks [43]. 

1.1.5 ElectroCorticoGraphy (ECoG) 

This method, reported for completeness, differs from the previous ones in 

that it is invasive. In fact, for ElectroCorticoGraphy (ECoG), the electrodes 

are placed directly over the cortical surface. Spatial resolution is very good 

(tenths of millimeters), and signal have broader bandwidth ([0-500] Hz), as 

well as larger amplitudes (50-100 μV), thus exhibiting higher SNR, with 

respect to EEG.  

ECoG, traditionally used in clinical applications such as localizing the 

source of epileptic seizures, also finds multiple applications in BCI, from 

studies of the sensorimotor cortex [44] to direct speech recognition [45]-

[47]. 

1.1.6 A final word about our choice for EEG-based BCI 

We briefly reviewed several brain activity monitoring techniques and the 

related measurement instrumentation. From the discussion about the 

requirements for our project in the introductory chapter, we conclude that 

the technology which could better suit our needs is EEG. In fact, EEG can 

be acquired noninvasively from surface electrodes, and offers a good 

tradeoff between performance and cost/compactness. Moreover, 

experimental setup is relatively easy and compatible with home deployment. 
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From the sensors point of view, we decided to rely on passive Ag/AgCl 

electrode technology (making use of electro-conductive gel, in order to 

lower the source impedance and partially counter the increased noise and 

motion artifacts problems). Given our analysis we find that, overall, passive 

electrodes are the most compact and accessible solution for our custom BCI. 

In fact, active electrodes are not, usually, sold as standalone devices (nor 

they come at a low price), and their development would impact quite 

severely on budget (not the electronics per se, but rather the whole product 

engineering and manufacturing). 

The complete EEG module electrical specifications and a discussion about 

possible sources of interference and non-idealities will be discussed in §2.1. 

1.2 Typical BCI brain signals from EEG 

During a BCI session, the user is typically required to perform different 

mental tasks, or he/she could be presented with some stimuli. In response to 

those actions, some characteristic patterns arise in the EEG, and such 

features are used to decode the user’s intent. In this brief paragraph we 

review some of the most commonly encountered “patterns” (at least in 

“traditional” BCI-enabled control/spell applications), explaining how these 

potentials are typically elicited/regulated and what their most distinctive 

features are. As in the previous paragraph, at the end we will motivate our 

final choice of relying on a SSVEP-based paradigm for operating our BCI. 
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1.2.1 Slow Cortical Potentials (SCP) 

 
Slow Cortical Potentials (SCP) [48],[49] are slow voltage changes 

generated in cortex that users can learn to self-regulate. With training, user 

can either produce cortical positivity or negativity, according to the task 

requirement; negative SCPs are typically associated with movement and 

other functions involving cortical activation, while positive SCPs are 

usually associated with reduced cortical activation. 

A typical paradigm presented to SCP-BCI users is the so-called “S1-S2” 

paradigm: a high-pitched tone (S1) signals the user that two seconds later, 

simultaneously with a low-pitched tone (S2), feedback of SCP will start. 

Such feedback could be, for example, a cursor movement on a monitor, and 

two different tasks control the upward or downward direction of such 

movement. To perform the task, users have to produce either positive or 

negative SCPs. The amplitude of such SCP is required to exceed a 

predefined threshold before being ruled as a positive or negative SCP, and 

feedback is intended to help the user produce larger amplitude shifts. This 

S1-S2 paradigm is reported in Figure 1.2, where the amplitude of the SCP is 

measured relatively to a short baseline period preceding the S2 tone. 

SCP-BCI were also successfully controlled by users affected by severe 

paralysis [50],[51]. 

 
Figure 1.2  Examples of regulation of SCP to accomplish a binary task. At the beginning of a 

trial, the task is presented, accompanied by a high-pitch warning tone (S1), signaling that, after 

2 s, the active phase will begin, providing SCP feedback; such active phase is introduced by a 

low-pitched tone (S2). 
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1.2.2 SensoriMotor Rhythms (SMR) 

 
The act of performing actual movements, manifesting motor intention or 

even imagining a movement is able to modulate the neurophysiological 

rhythmic activities recorded over the sensorimotor cortex. Such modulation 

appears as amplitude decrease in the [8-13] Hz band (also known as mu 

band) and in the [14-26] Hz one (beta band). Meanwhile, such decrease is 

accompanied by an increase in gamma frequency band (f > 32 Hz), as 

studies on ECoG and brain implants confirm. 

 
Figure 1.3  (A,B) Topographical scalp distribution of the difference between actual (A) or 

imagined (B) right-hand movements vs the rest case (r2 score) in a [10.5-13.5] Hz band;  

(C) spectra relative to motor imagery (solid line) and rest (dashed line) acquired from the 

sensorimotor cortex;  (D) r2 score of picture (C). 
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All these rhythms are collectively referred to as SensoriMotor Rhythms 

(SMR). In particular, the amplitude decrease in the lower frequency bands 

(mu and beta) due to task-related modulation is called Event-Related 

Desynchronization (ERD) [52]. After motor completion, mu and beta band 

experience a positive amplitude rebound, a phenomenon referred to as 

Event-Related Synchronization (ERS) [52]. Figure 1.3 shows an example of 

the ERD phenomenon. The uppermost figures depict topographical 

distribution of the difference between rest and right-hand motor task (actual 

movement, (A), and imagined movement (B), for the [10.5-13.5] Hz band); 

such difference is plotted in terms of r
2
 score, i.e. the proportion of the 

single-trial variance that is due to the motor task. In picture (C), instead, the 

spectra of rest (dashed line) and motor imagery task (solid line) are 

compared, and picture (D) plots the difference between such tasks in terms 

of r
2
 score, highlighting that mu, beta and gamma are the most affected 

frequency bands for motor imaging tasks. 

Thus, motor intention or motor imagery induce SMR modulation, and this 

feature can be exploited by the user to encode his intent and, consequently, 

for operating a BCI [53]-[55]. Example applications include the control of a 

virtual pointer with as much as 3 Degrees of Freedom (DOF) [54]. 

1.2.3 P300 

 

The P300 response is an evoked potential which is elicited when the user 

recognizes an event he/she considers important; in this sense, P300 is an 

Event-Related Potential (ERP). For example, in the case of a visual evoked 

P300, the user can be asked to attend and silently count each presentation of 

a rare, target stimulus between a stream of frequent, non-target stimuli (this 

is the so-called oddball paradigm) [56]. The P300 response can be then 

observed in the EEG as a positive deflection, time-locked to the attended 

stimuli (typically delayed by 300 ms), as exemplified in Figure 1.4 (B, C). 

The amplitude of such pattern is largest at the parietal site, and gets 
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Figure 1.4  (A) Topographical distribution of the P300 potential at the peak time instant (r2 score 

calculated between target and non-target stimuli);  (B) time series of EEG recorded from 

electrode Pz (International 10/20 System), for target (solid line) vs. non-target (dashed line) 

stimuli;  (C) r2 score plot of (B). 

attenuated as it spreads towards central and frontal locations (Figure 

1.4 (A)). 

Studies demonstrated that it is possible to modulate the P300 amplitude with 

visual attention: this was successfully exploited to design covert attention 

paradigms [57],[58] (as opposed to the classical overt approach, in which 

the user is still able to shift attention by means of gaze direction). Some 

research also focused on visual stimuli optimization in order to obtain larger 

ERPs, and it was shown that, beyond the classic matrix-arranged flashing 

characters [56], stimuli can also be presented in forms of emotional faces 

[59],[60]. 

P300 has received a lot of attention as a BCI control signal, as it is a “highly 

parallel” paradigm, in which a high number of choices is available to the 

user. The high variability of such temporal features, though, requires 

periodic recalibration of the system in order to achieve better performance 

[61]. Nonetheless, a large number of studies report successful P300-based 

control by users affected by severe pathologies, such as ALS (Amyotrophic 

Lateral Sclerosis), e.g. [62]. 
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1.2.4 Steady State Visual Evoked Potentials (SSVEP) 

 
A Steady State Visual Evoked Potential (SSVEP) is a periodic brain 

response elicited by a visual stimulus, flickering at a constant frequency: a 

peak in the brain power spectrum, synchronous with such frequency (Figure 

1.5 B), can be produced just by looking at the visual stimulus. SSVEPs are 

mainly elicited in the occipital and parieto-occipital area, although some 

activity can also be detected in the parieto-temporal and frontal areas (as 

shown in Figure 1.5 A). Moreover, analysis on the temporal evolution of the 

response ([63] extract this information using a modified Quadrature 

Amplitude Demodulation – QAD – scheme, as in communication 

engineering) highlight a non-stationary behaviour, as depicted in Figure 

1.5 C: the SSVEP onset is typically delayed (from 700 ms up to 1.3 s, 

 
Figure 1.5  (A) Topographical distribution of a SSVEP response;  (B) an example power 

spectrum of a 15 Hz SSVEP recorded over the occipital area: the fundamental frequency and its 

second and third harmonic are clearly visible;  (C) temporal evolution of a 14 Hz SSVEP (its 

normalized Quadrature Amplitude Modulation envelope): onset is about 700 ms delayed, first 

peak is after 1.52 s of stimulation, and the response is suppressed after 15 s. 
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depending on the frequency) from stimulus application, and the first peaks 

in SSVEP intensity typically requires a couple of seconds to build up. Then, 

about after 15 s of continuous visual stimulation, the SSVEP response is 

completely suppressed. 

Practical SSVEP stimulation frequencies can be divided into three sub-

bands [64]: Low-Frequency (LF, [5-13] Hz), Medium-Frequency (MF, [13-

30] Hz), High-Frequency (HF, [30-60] Hz). Highest SSVEP amplitudes are 

usually achieved in the LF range, since, typically, the brain power spectrum 

exhibit a 1/f behaviour; however, even in the MF range it is possible to 

achieve good detectability. In [63], the most discriminative frequencies were 

found to be 5.6 Hz, 8 Hz, 12 Hz (best one) for the LF range, 15.3 Hz for the 

MF, and, to a minor extent, 28 Hz in the HF one. 

Traditionally, different commands are mapped to different stimuli 

frequency, in SSVEP-based BCIs. Nonetheless, many studies pointed out 

that it is also possible to code the commands as phases of SSVEP responses 

[65]-[67], or to have a hybrid frequency-phase coding [68]. 

Stimulus size and type also impacts on the SSVEP amplitude: for a review, 

[69] provides a good starting point. Here we just point out three main 

protocols: light (e.g. flashing LEDs [70]), pattern reversal (e.g. 

checkerboards on LCD screens [71]) and graphical objects. As far as the 

latter technique is concerned, presentation of emotional faces resulted in an 

improvement in SSVEP classification [72]. Finally, SSVEP amplitude is 

also modulated by visual attention; as in the P300 case, covert attention 

SSVEP-based BCI can be developed [73]-[75]. 

1.2.5 Error Related Potentials (ErrPs) 

Error Related Potentials (ErrPs) are not a BCI paradigm per se, but are 

useful brain features that can be used, in conjunction with other paradigms, 

to improve the BCI performance. Moreover, such potentials are generated 

naturally by the user, and no training is thus required to produce them. 
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Various kinds of ErrPs exist, depending on the context/protocols which 

generates them. ErrPs were observed in [77] by pressuring users to perform 

fast decisions: recognized errors would manifest as negative potential 

deflections in the fronto-central area (Event-Related Negativity, ERN) about 

50-100 ms after wrong decisions, followed by a centro-parietal positive 

deflection. Similar patterns were observed in [78], when users were 

presented with feedback (in the form of a delayed result of their choice), 

with a 200-300 ms temporal delay. In addition, ErrPs were generated also 

by observing errors committed by another person/agent [79].  

 
Figure 1.6  Error related potentials by interaction (cursor controlled by user with a 2 task MI-

BCI, left column) and monitoring (cursor moves automatically and induces ErrPs in wrong 

movements)[76].  (A, B) Event-related spectral perturbation;  (C, D) Grand-average ERP at 

electrode FCz (difference is defined between correct and error).  (E, F) Corresponding 

topographical distribution. 
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An important result for BCI application was achieved when ErrPs were 

observed in the EEG as a response to a BCI wrongly-interpreted command 

[80]. Figure 1.6 depicts this scenario: the difference between correct 

responses and errors manifests as an initial positive peak delayed, 

approximately, by 200 ms, followed by a large negative deflection at about 

250 ms, and a third, positive, peak at about 320 ms. 

ErrPs represent a great potential for BCI: they can be used, for example, to 

prevent the execution of an incorrectly classified command (e.g. [81]), or 

they can be even exploited as real-time feedback for online, adaptive 

calibration of the classifier (e.g. [82]). Finally, a very nice property of ErrPs 

was shown in [79]: a classifier trained for recognizing such potential 

maintained the same performance even months after initial calibration. 

1.2.6 Our paradigm choice 

Having reviewed the most commonly encountered BCI signals, and 

considering the preliminary requirements, as indicated in the introduction, 

we chose to rely on SSVEP as our BCI operating paradigm. In fact, SSVEP 

has the following key characteristics, which meets our desiderata: 

 it allows, in principle, to avoid training and calibration phases: 

responses are elicited naturally, and the characteristics are quite 

repeatable and predictable. This also holds true across different 

users, thus allowing to adopt a subject-independent approach and 

move closer to a Plug&Play behaviour; 

 SSVEP are regarded as reliable features for BCI [83], given their 

inherently higher SNR, when compared to other paradigms. This 

means that it is possible to achieve higher accuracies and, typically, 

fewer false positives; 

 it allows for multiple, parallel commands; 

 the protocol used to elicit and detect SSVEP does not require, in 

general, any synchronization between the stimuli unit and the EEG 
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acquisition one (unless phase features are being used). This allows to 

simplify the overall setup. 

However, SSVEP also comes with several restrictions/drawbacks, such as:  

(i) user must focus on the visual stimuli in order to elicit the response: thus, 

while controlling the BCI, the user cannot be engaged in other tasks;  (ii) in 

overt operation, user still must be capable of small eye movements;  

(iii) long stimulation periods can induce visual fatigue, especially at lower 

flickering frequencies;  (iv) given the temporal evolution of a SSVEP, 

delays between 1-3 s are to be expected. 

Nonetheless, considering the target application we intend to pursue, those 

points are well compensated by the advantages. In particular, with respect to 

(i) and (iv) we can state that, given the limited and sparse interaction with 

the BCI, having to focus on the visual stimuli for a short amount of time and 

experiencing contained delays do not impact significantly on the usability of 

the device, for its purposes. Moreover, in order to counter point (iii) we will 

attempt to user MF flickering frequencies, namely, 16, 18, 20, 22 Hz: this 

particular choice will be guaranteed by exploiting LEDs as stimuli. While, 

on the one hand, larger SSVEP responses are typically obtained in the LF 

band, on the other hand such frequency range overlaps, for example, with 

the alpha rhythms; this, in turn, can cause a higher false positive rate, thus 

limiting the effectiveness of the control. We will then try to contrast weaker 

SSVEP response with dedicated signal processing, as it will be shown in 

Chapter 3 and 4. 

1.3 BCI signal processing 

Signal processing in BCI can be viewed as a multi-stage process, which we 

can conveniently break up as composed of: 

 pre-processing and signal cleaning; 

 feature extraction; 

 classification or regression; 
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 post-processing, output, feedback. 

Not always this distinction is rigidly respected. For example, Common 

Spatial Patterns (CSP) filters collapse the pre-processing stage and the 

feature extraction into one step. Nonetheless, the processing flow is quite 

always performed in those steps.  

Pre-processing is typically performed to clean data from artifacts and 

useless information. Feature extraction, then, takes the whole (multivariate) 

input signal and computes just a few relevant, representative characteristics 

(feature vector), which will then be used in the following 

classification/regression step. These, in turn, can be performed by exploiting 

general machine learning algorithms or just by ad-hoc procedures. Finally, 

post-processing can be used to improve/further process 

classification/regression results and, then, to display the output/feedback to 

the user.  

A thorough review of signal processing methods goes beyond the scope of 

this paragraph, since particular solutions and implementations strongly 

depend on the type of paradigm used and many more other variables; we 

will briefly review the most common processing steps/techniques 

encountered in BCI contexts. Also, a detailed description of calibration-less, 

SSVEP processing techniques will be reviewed in Chapter 3. 

1.3.1 Pre-processing 

(a) Temporal/Spectral filtering 

Depending on the EEG signals of interest (e.g. SMR, SCP etc.) and on the 

analysis one wishes to carry out, it can be useful to restrict, for example, the 

bandwidth of such signals (e.g. low-pass, band-pass, high-pass). This can be 

easily accomplished by designing FIR (Finite Impulse Response) or IIR 

(Infinite Impulse Response) filters, or even by transforming via FFT (Fast 

Fourier Transform) in the frequency domain, apply some filtering functions, 

and then transforming back to time domain via IFFT (Inverse FFT).  
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Moreover, sometimes it is useful to downsample the signals, just to reduce 

their dimensionality and speed up further processing. 

Other encountered filtering methods for cleaning/smoothing data are, for 

example, moving averaging or de-noising via Wavelet Transform (WT). 

WTs were also used as techniques to extract features for classification (e.g. 

[84],[85] used wavelet features for ERP classification). 

(b) Spatial filtering 

While temporal/spectral filters are typically performed on a per-channel 

basis (i.e. each input channel is considered and treated separately), spatial 

filtering combines the information from multiple sources. Signals are mixed, 

i.e. a weight is assigned to them, and a spatial filter maps the input space 

(called sensor space) to a new space, called signal space, in which the 

desired features are more easily or meaningfully extracted. 

One of the simplest spatial filters is the bipolar filter: the potential reading 

of one electrode site is simply subtracted from another one. Such a simple 

procedure allows to put more focus on local activity, as it cancels out the 

common mode (defined as the average potential between the two 

electrodes). 

A variation, yet very simple to implement, is the Common Average 

Reference (CAR) filter. It consists in subtracting the average potential of all 

electrodes to each one of them. CAR filtering has the effect of getting rid of 

common mode activity; however, it can also introduce spatial smearing in 

the channels. 

Similar to CAR is the Laplacian filter, in which the average of surrounding 

electrodes is subtracted from the one of interest. The Laplacian filter tends 

to cancel-out common mode activity as the CAR, yet it retains more local 

information since this averaging is limited only to neighboring electrodes. 

Spatial filters can also be used to decompose multivariate signals into 

components and to reduce data dimensionality. For example, Principal 

Component Analysis (PCA) decomposes the signals into uncorrelated 
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components which are ordered according to decreasing variance. It does so 

by finding an orthonormal basis in which each uncorrelated component 

explains a certain percentage of the total input variance, with decreasing 

explanatory power. 

Mathematically, if X  R
nxm

 is an EEG record of m time points from n 

channels, with zero mean, PCA will find a projection matrix 

W=[w1,…,wn]  R
nxn

 to transform the data into uncorrelated components by 

performing a generalized eigenvalue decomposition of the sample 

covariance matrix R=XX
T
. The vectors [w1,…,wn] are the n normalized 

orthogonal eigenvectors of R, corresponding to the eigenvalues 1,…, n, 

sorted in descending order. The components are then found applying the 

transformation to the input data: 

 𝐘 = 𝐖𝑇𝐗 , (1.1)  

where the rows of Y (i.e. the components), are uncorrelated. If every 

component is considered, then perfect reconstruction of the original signal X 

is possible; otherwise, one finds an approximation Ỹ, in a lower dimension 

(i.e. considering only the first p components, called principal components), 

which accounts for as much data variance as needed. 

When we apply PCA, we must keep in mind the main underlying 

assumptions, namely:  (i) linearity,  (ii) mean and variance are sufficient 

statistics,  (iii) large variances have important dynamics (outliers could 

compromise this assumption). In order to account for non-linearity, and 

achieve more meaningful capturing of non-linear process, kernelization 

methods can be applied [86]. More on kernels and the kernel trick will be 

presented in §1.3.3. 

Independent Component Analysis (ICA) is another spatial filtering 

technique which aims at separating the original input signal into 

components which are maximally statistically independent: it is, in this 

sense, a solution for Blind Source Separation (BSS) problems. 

ICA works as follows: given n observed signals X=[x1,…,xn]
T
, we assume 

that they originated from n unknown source signals S=[s1,…,sn]
T
, which are 

linearly superimposed: 
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 𝐗 = 𝐀𝐒 , (1.2)  

where A, the mixing matrix (assumed full-rank, with n linearly independent 

columns, therefore invertible), is a nxn time-invariant matrix whose 

elements are estimated from the data. Both A and S are unknown, and 

further assumptions are needed in order to solve the de-mixing problem. 

ICA, in particular, assumes that the source signals [s1,…,sn]
T
 are mutually 

independent. Then, the de-mixing matrix W is computed: it allows to 

separate the observed signals X into maximally statistically independent 

components Y: 

 𝐘 = 𝐖𝐗 . (1.3)  

Having decomposed the input signal, one can choose which components are 

not relevant to the study or contain noise/artifacts, and usually discards them 

(Ỹ). Then an approximation of the input signal X̃, cleaned of the unwanted 

components, can be reconstructed back-projecting into the original electrode 

space: 

 �̃� = 𝐖−𝟏�̃� . (1.4)  

Many algorithms exist to compute the de-mixing matrix [87], such as 

Infomax, Second Order Blind Identification (SOBI), Joint Approximation 

Diagonalization of Eigen matrices (JADE). In general, ICA is used in BCI 

as a pre-processing step for getting rid of artifacts and unwanted signal 

components. 

Common Spatial Patterns (CSP) [88]-[90] is a supervised technique which 

allows to maximize the variance-to-variance ratio of two conditions or 

classes: i.e., CSP will attempt to maximize the variance of the samples 

relative to one condition, while simultaneously minimizing the variance of 

the samples of the other condition. Being a supervised method, CSP requires 

class labels in order to learn the optimal spatial filter weights. 

If changes in variance encode the actual difference between classes, this pre-

processing technique also extracts the features for the subsequent 

classification stage. For its properties, CSP is often used in Motor Imagery 

(MI)-based BCIs [91],[92].  
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In order to better understand CSP, let us consider the transformation matrix 

W  M
nxn

. As in equation (1.3), the transformed data are obtained by matrix 

multiplication WXi, i  {1,2}, where Xi  R
nxm

 represents the input signal 

matrix, in both condition 1 and 2, in which each row is an electrode reading. 

With CSP, the first row will contain most of the variance of, say, the class 1 

(and the least variance of class 2), while the last row will explain most of 

the variance of class 2 (and the least of class 1). W is calculated as the result 

of a simultaneous diagonalization of the two sample covariance matrices R1 

and R2, with the additional constraint that diagonalization of R1+ R2 must 

yield the identity matrix, I (to guarantee that maximization of variance for 

class 1 results in minimization of variance in class 2) 

 𝐖𝐑𝟏𝐖𝑻 = 𝐃 and 𝐖𝐑𝟐𝐖𝑻 = 𝐈 − 𝐃 , (1.5)  

where D is a diagonal matrix. 

The columns of W
-1

 are called common spatial patterns (an example of 

CSPs extracted for a two-class, left vs. right motor imagery task is shown in 

Figure 1.7). 

Various extension of the basic CSP technique have been proposed, such as, 

for example, Common Spatio-Spectral Patterns (CSSP) [93], which 

attempts to optimize spatial features, as CSP, in conjunction with spectral 

 
 

Figure 1.7  Example of common spatial patterns extracted from a two-class, left vs. right motor 

imagery task. 
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ones (by additionally feeding the algorithm with time-lagged copies of the 

original signals). Also, multi-class extensions have been proposed [94]. 

1.3.2 Feature extraction and selection 

Feature extraction involves finding characteristic quantities and attributes 

which help in defining the object of a classification/regression problem: 

they are the input to the learning/prediction stage. Of course, which feature 

best describe the problem heavily depends on the nature of it.  

For example, in MI tasks, the input features could be the power of a 

specific/several specific frequency sub-bands; maybe this power can be 

extracted after the application of a CSP filter. Another possibility is to 

estimate power spectra with AutoRegressive (AR) models, and use the 

coefficients of such model as input features [95]. 

For a P300 setup, time domain features can be exploited. The signals can be 

cleaned of artifacts with ICA, band-pass filtered and downsampled (to 

reduce dimensionality); then, the samples in an interval around the expected 

P300 response can be selected as features. We will discuss in Chapter 3 and 

4 the features we used for SSVEP detection and classification. 

Other than extracting features, it is also important to select the most 

relevant/discriminative ones. It is a known issue that classification and 

regression problems may suffer the so-called curse of dimensionality, i.e. 

when the problem we intend to solve is too high-dimensional (in the number 

of features) for the too-few examples we have in order to learn an effective 

and generalized representation of the data. In these cases, selecting just a 

subset of features which contain the most discriminative power can 

significantly improve the performance of the subsequent stage. 

We can think, for example, of a procedure to select the best channels based 

on the optimization of statistical measures such as Fisher score, r
2
 score or 

Student’s t-statistics. It is also possible to implement genetic algorithms for 

automatic feature selection [96], or to adopt information-theoretic 
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approaches (e.g. based on Mutual Information) in feature evaluation 

[97],[98]. 

1.3.3 Classification and regression 

A classification problem entails predicting the membership of an item given 

its descriptive features; a regression problem, instead, will try to predict a 

quantity, relative to an item, given the input features.  

Although unsupervised methods (i.e. methods that learn on examples 

without the need of any labeling) exist, here we just pick a few, 

representative supervised learning algorithms, which are commonly used in 

BCI experiments. 

In general, those methods will learn, from the given examples, the weights 

to be assigned to each feature in order to minimize a loss function (which 

quantifies the model fitness to solve the given problem). For a binary 

classification problem, the loss function J(w) is, generally, composed of two 

terms, i.e. a loss term L(w), and a regularization term R(w): 

 𝐽(𝑤) = ∑ 𝐿 (𝑦(𝑖)𝑓𝑤(𝑥(𝑖))) + 𝑅(𝑤) ,

𝑖

 (1.6)  

 𝑓𝑤(𝑥(𝑖)) = 𝑤𝑇𝑥(𝑖) (1.7) 

Where y
(i)

  {-1,1} is the class label, x
(i)

 a sample, w the feature weights,  

an hyper-parameter which controls the relative strength of the regularization 

term.  

As far as the loss term L(w) is concerned, many functions exist, depending 

on the learning algorithm. Examples are: 

 Squared loss 

 𝐿𝑠𝑞𝑢𝑎𝑟𝑒 =
1

2
(𝑓𝑤(𝑥(𝑖)) − 𝑦(𝑖))2 . (1.8)  
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 Log loss 

 
𝐿𝑙𝑜𝑔 = 𝑦(𝑖) log (𝑔𝑤(𝑥(𝑖)))

+ (1 − 𝑦(𝑖)) log (1 − 𝑔𝑤(𝑥(𝑖))) , 
(1.9)  

 𝑔𝑤(𝑥(𝑖)) =
1

1 + 𝑒−𝑓𝑤(𝑥(𝑖))
 . (1.10)  

 Hinge loss 

 𝐿ℎ𝑖𝑛𝑔𝑒 = max (0, 1 − 𝑦(𝑖)𝑓𝑤(𝑥(𝑖)))  . (1.11)  

The first one is the most used in regression problems, while log loss is used 

for classification problems, e.g. in Logistic Regression. Hinge Loss, on the 

other hand, is used in Support Vector Machines (SVM), which have 

application in both regression and classification tasks. 

As previously stated, loss functions J(w) usually include a regularization 

term, R(w), which is particularly important to contrast an effect called 

overfitting. Overfitting happens when a model is excessively complex, such 

as having too many parameters relative to the number of observations 

available. By introducing a penalty term for excessively complex solutions, 

the model may perform better in terms of generalization.  

Examples of penalty terms are:  

 L2 norm (Tichonov) 

 𝑅2 =
1

2
‖𝑤‖2

2 . (1.12)  

 L1 norm (Lasso) 

 𝑅1 = ‖𝑤‖1 . (1.13)  

 Elastic net 

 𝑅𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = 1‖𝑤‖2
2 + 2‖𝑤‖1 . (1.14)  

Moreover, the choice of the regularization parameter(s) is critical: too high 

parameters will lead to excessively simple model, with low prediction 
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power; on the other hand, too few regularization may not effectively counter 

the overfitting effect.  

Usually, in order to choose the best value, data are split into train, 

validation and test set: model is trained on the first split, and cross-

validation is used to find the best hyper-parameter; finally, the test set is 

used to assess the performance on unseen data [2]. When data is not very 

large, k-fold cross-validation can optimize data usage, as explained in [2]. 

Examples of machine learning algorithms commonly found in BCI are: 

 Linear Discriminant Analysis (LDA) 

In a binary problem, assuming normally distributed data, with equal 

covariance matrices Σ1= Σ-1= Σ (homoscedasticity assumption), the 

optimal separating function is given by 

 

𝑓(x) = ((
1

− 
−1

)
𝑇

Σ−1𝑥

−
1

2
(

1
− 

−1
)

𝑇
Σ−1(

1
− 

−1
)

+ log 
𝑃(𝑌 = 1)

𝑃(𝑌 = −1)
)  , 

(1.15)  

where i is the mean for the two class clusters. LDA can be made 

more robust in many ways. First we can drop the homoscedasticity 

assumption by assuming different covariance matrices Σ1, Σ-1; then 

we correct the covariance matrix estimation as follows: 

 Σ̂𝑖 = (1 − )Σ𝑖 + Σ , (1.16)  

where i{-1,1}, Σ=( Σ1+ Σ-1)/2. For =0 we have a Quadratic 

Discriminant Analysis (QDA).  

Furthermore, we can regularize the improved LDA via 

regularization; in particular, spectral regularization can be achieved 

by shrinking the covariance matrix’s eigenvalues as follows: 

 Σ̅𝑖 = (1 − 𝛾)Σ̂𝑖 +
𝛾

𝑚
tr(Σ̂𝑖)I , (1.17)  

where tr(∙) is the trace operator, m the dimensionality of the data, and 

γ the shrinkage parameter, which controls spectral regularization. 
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 Fisher Discriminant Analysis (FDA) 

FDA attempts to project high-dimensional features into a lower 

dimensional space in which the two classes are more easily 

separable. It does so by maximizing the ratio of between-class scatter 

(SB) to within class scatter (SW): 

 𝐽(𝑤) =
𝑤𝑇𝑆𝐵𝑤

𝑤𝑇𝑆𝑊𝑤
 , (1.18)  

 𝑆𝐵 = (
1

− 
−1

)
𝑇

(
1

− 
−1

) , (1.19)  

 𝑆𝑊 = 𝑆1 + 𝑆2 , (1.20) 

 𝑆𝑖 = ∑ (𝑥𝑗 − 
𝑗
)𝑇(𝑥𝑗 − 

𝑗
)

𝑗∈{𝐶𝑙𝑎𝑠𝑠 𝑖}

 . (1.21) 

 Gaussian Mixture Model (GMM) 

A GMM is a probabilistic model that assumes all the data points are 

generated from a mixture of a finite number of Gaussian 

distributions (prototypes) with unknown parameters (={wk, k, Σk}). 

The data is then modeled as a Probability Density Function (PDF): 

 𝑃(𝑥|) = ∑ 𝑤𝑘𝑁(𝑥|
𝑘

, Σ𝑘)

𝑁𝑔

𝑘=1

 , (1.22)  

Such parameters can be estimated in many different modes, e.g. with 

the Expectation-Maximization (EM) algorithm [99] or Maximum A 

Posteriori (MAP) [100].  

In [101], a two-step procedure is used for fitting the model 

parameters, assuming equal diagonal covariance matrices for each 

class: at first, the centroids of the prototypes are estimated with a 

clustering algorithm, such as Self-Organizing Maps (SOM) [102]. 

Then, diagonal covariance matrices are initialized in their elements 

as follows: 
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 (Σ𝐶)𝑚𝑚 =
1

𝑁𝐶
 ∑(𝑥(𝑛) − 

𝑘
𝑛𝑒𝑎𝑟𝑒𝑠𝑡(𝑛))

𝑚

2

𝑛𝜖𝐶

 , (1.23)  

where μk 
nearest(n)

 represents the nearest prototype centroid to point 

x
(n)

, NC is the number of elements in class C, m is the vector element 

and mm the matrix diagonal element. Then, estimates of k and Σk 

are further refined by performing Stochastic Gradient Descent 

(SGD) [103] to minimize the mean square error between the output 

of the classifier (the posterior class probability distribution), and the 

target vector. 

 Support Vector Machine (SVM) 

An SVM [104] constructs a hyper-plane, in a high-dimensional 

space, which can be used for classification, regression, or other tasks 

(such as novelty detection [105]). Intuitively, a good separation is 

achieved by the hyper-plane that has the largest distance to the 

nearest training data point of any class. In practice, there are 

situations in which data cannot be linearly separated by means of an 

hyper-plane. In this case, it is possible to allow for non-optimal 

separation by introducing slack variables ξ1,…,ξn and solve the 

following optimization problem: 

 𝐽(𝑤, 𝜉) =
1

2
‖𝑤‖2 + 𝐶 ∑ 𝜉𝑖

𝑛

𝑖=1

 , (1.24)  

 subject to: 𝑦(𝑖)(𝑤𝑇𝑥(𝑖) + 𝑏) ≥ 1 − 𝜉𝑖,  𝜉𝑖 ≥ 0 , (1.25)  

where C is the regularization parameter that controls the trade-off 

between the complexity and the number of non-separable data 

points, w are the feature weights and b is the bias. 

Methods like LDA, FDA, and SVM are linear in the implementation, and 

therefore cannot capture potential nonlinear structures in the data. However, 

it is possible to modify such behaviour by mapping features into a higher-

dimensional space in which they are more separable. A simple example of 

such situation is shown in Figure 1.8. 
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However, explicit feature mapping Φ(∙) to higher dimensional spaces can 

quickly turn the considered problem into a non-manageable one, in terms of 

data dimension. Nonetheless, things can be greatly simplified by observing 

that feature mapping can be formulated just in terms of dot products. 

The so-called kernel trick consists in replacing these dot products with an 

equivalent kernel function 

 𝑘(x, x′) = Φ(x)𝑇 Φ(x′). (1.26)  

Thus, one can calculate dot products of higher-dimensional (potentially 

infinite) spaces without explicitly transforming x and x’ to the higher-

dimensional space. This allows to scale to higher-dimensional spaces using 

no extra memory, and with a minimal impact on computation time, thus 

allowing to scale this procedure to high-dimensional data. Popular kernel 

choices are: 

 Polynomial kernel 

 𝑘(𝑥, 𝑥′) = (𝑥𝑇𝑥′ + 𝑐)𝑑 , (1.27)  

where c and d are parameters. 

 
Figure 1.8  Example of a non-linearly-separable dataset (left). The introduction of nonlinear 

mapping into a higher dimensional space can make the data separable by a hyper-plane (right). 
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 Gaussian RBF (Radial Basis Function) kernel 

 𝑘(𝑥, 𝑥′) = exp (−
‖𝑥 − 𝑥′‖2

2𝜎2
) , (1.28)  

where σ is the bandwidth parameter. 

 Sigmoid kernel 

 𝑘(𝑥, 𝑥′) = tanh(𝑥𝑇𝑥′ + 𝑟) . (1.29)  

where r is a parameter. 

All the kernel parameters above impact on the performance of the classifier. 

Therefore, accurate parameter selection is important: such choice is usually 

performed via cross-validation optimizations. 

1.4 Proposed platform architecture 

So far, we reviewed BCIs under different lenses: from the physical signal 

acquisition side, through several commonly exploited brain signals, to the 

processing methods which are commonly used to extract information from 

such signals. Now, we collect the ideas and lay down the basic architecture 

of our platform. Once again, even though we will demonstrate, in practice, 

the effectiveness of the system with a SSVEP operating protocol, the 

approach is general and scalable: different protocols can be investigated just 

by adding plugins and functions to the signal processing block. 

Referring to Figure 1.9, our platform will be coordinating and integrating 

three major blocks: 

 the Analog Front End (AFE), which will be designed ad-hoc to meet 

the main requirements discussed in the introductory chapter;  

 the real-time signal processing block, which will also take care of 

storing the whole EEG data to disk during an experiment; 
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 the output/feedback unit, in charge of data display and interaction 

with the external environment; 

Communication between the AFE and the platform will be based on a 

wired, high-speed connection, in order to minimize RF interference with the 

sensible analog section: this link will be established via USB 2.0, operating 

at full-speed (12 Mbps).  

The AFE will be equipped with a control unit (based on an ARM
®

 

Cortex
®
-M4

1
 microcontroller), which will manage both the data streaming 

and the proper control and initialization of the AFE. In this sense, this logic 

will provide a first level of Hardware Abstraction Layer (HAL), and 

provide a more abstract interface to the upper layers. This interface will be 

maintained even in case of hardware upgrades, in order to ensure 

compatibility with the software. 

As of now, the platform is based on MATLAB
®2

, a powerful computing 

environment optimized for numerical and statistical analysis. MATLAB 

offers a large number of modules and plugins, which makes it highly 

interoperable, as well as a useful tool for rapid prototyping. The signal 

processing module, in this state of the research, will be thus based on this 

environment, running on a commercial laptop, aiming at developing 

                                                 
1
 http://www.arm.com/products/processors/cortex-m/cortex-m4-processor.php 

2
 www.mathworks.com 

 
Figure 1.9  System architecture for the proposed BCI platform. 
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efficient methods and algorithm for future implementation in more compact 

hardware, such as on embedded computers (e.g. Raspberry Pi
3
, 

BeagleBone
4
).  

The module will be in charge of the full-chain, real-time signal processing 

(exploiting calibration-less methods, as per our requirements), as well as the 

data storing. It is, in fact, very important to collect data also from online 

experiments, in order to further process it offline and test/develop new 

algorithms. In addition, a plugin will make the platform compatible with the 

TOBI [106] input interface, in order to access all the functionalities offered 

by such platform. Interfacing will be possible via TCP/IP sockets 

exchanging data with the TOBI acquisition client. 

Finally, the output/feedback module will handle two main task:  

(i) providing a GUI for the experimenter/user, displaying input waveforms, 

the result of classification and possible feedbacks;  (ii) issuing high-level 

commands to the CARDEA system. This latter interaction will be based on 

TCP/IP protocol as well. 

                                                 
3
 http://www.raspberrypi.org 

4
 http://beagleboard.org 

http://www.raspberrypi.org/
http://beagleboard.org/


 

 

 



 

 

Chapter 2 

 Building the BCI: the EEG module 

Acquiring EEG signals, whose amplitude can be as low as a few μV, poses 

tight constraints on the electrical specifications of the acquisition system. 

However, high-end, clinical grade EEG equipment making use of a large 

number of electrodes are scarcely suitable for the aimed application: lower 

costs, smaller size devices are to be designed, suitable for extracting basic 

information on brain activity. This section deals with the physical 

realization of two EEG modules, covering analog signal conditioning 

aspects, signal digitalization, and the dedicated control and communication 

electronics. Both modules will be validated, and the newest one will be 

compared against a commercial, high-end EEG device for BCI. In the 

Appendix, complete schematics and layout files of the newest EEG module 

will be reported. Also, the cap and materials choice will be briefly 

discussed. Finally, a possible future development with active electrodes will 

also be sketched. 

2.1 A closer look to the electrical specifications for 

the EEG module 

As previously stated, typical EEG signals of interest in BCI applications 

have amplitudes as low as a couple of μV, in a bandwidth that, most 

commonly, lies within [0-50] Hz. SNR is typically low in EEG, and it is not 

uncommon to find, in measurement devices, Referred To Input (RTI) noise 
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specifications in the range of 1 μVrms
5
 (≈ 6.6 μVpp if we apply the 6.6 

standard deviation rule, also known as 99.9% rule), over the full bandwidth. 

Most of the commercial Analog to Digital Converters (ADC) chips are not 

able either to achieve a sufficiently low Least Significant Bit (LSB), i.e. 

sufficient resolution, or the RTI noise level may degrade the performance at 

lower scales. This is commonly dealt with by means of low-noise pre-

amplification stages. 

However, instrumentation noise is not the only contribution to the total 

measurement noise. In fact, we can identify several other factors, including: 

 Mains (50 or 60 Hz, depending on the country) and Radio-

Frequency Interference (RFI). The latter one cannot be, in general, 

directly observed at carrier frequency (due to the limited bandwidth 

of the acquisition hardware). It can, however, leak into the signal 

bandwidth due to radio-frequency rectification [107] inside the input 

INstrumentation Amplifier (INA). A strong RF signal may become 

rectified and appear as a DC offset error. Once rectified, no amount 

of low-pass filtering at the in-amp output will remove the error. If 

the RF interference is of an intermittent nature, this can lead to 

measurement errors that go undetected. As far as mains interference 

is concerned, [33] and [108] show a technique, based on a feedback 

loop (Right Leg Driver, RLD), which actively biases the user and 

attempts to minimize the error introduced by common mode noise. 

Battery-operated devices, in turn, exhibit lower mains interference, 

which would otherwise leak through the mains-supplied power 

converter (safety isolation does not imply optimal noise 

suppression). 

 Electrode impedance. High-impedance voltage readings are known 

to be sensible to capacitively-coupled interference. In fact, current 

injected capacitively flows across the source impedance 

(electrode + cable), resulting in voltage noise. Usually, two 

                                                 
5
 E.g.  http://www.biosemi.com/activetwo_full_specs.htm 

http://www.biosemi.com/activetwo_full_specs.htm
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strategies are exploited to counter this problem:  (i) shielding, either 

passively or actively, or  (ii) by lowering the source impedance with 

the use of active electrodes. In the latter case, if pre- amplification 

occurs near the surface electrode, noise pickup will see, as source 

impedance, the output impedance of the amplifier, which is typically 

low. Moreover, noise would corrupt a stronger signal, with respect to 

a passive electrode. In any case, the use of electroconductive gels 

and careful skin preparation (i.e. degreasing and scrubbing) lowers 

the electrode-skin impedance. 

 Electrode material. While, for example, tin electrodes have the 

advantage of being cheap, they introduce a large amount of low-

frequency noise, below 1 Hz. For low-frequency recordings, 

Ag/AgCl electrodes are typically used, and sintered Ag/AgCl offer 

the best solution in terms of noise and stability of characteristics. 

 Artifacts form the motion of cables and electrodes. For the latter, the 

use of electro-conductive gel in mechanically improves the skin-

electrode contact. For cable motion artifacts, the use of active 

electrodes improves the immunity, since higher level signals are 

transmitted through such cables. 

 Artifacts from other bio-potentials, such as EMG (originating from 

the muscles of the face, neck and years), EOG (from eye blinks or 

eye movements), or ECG. Depending on the kind of protocol being 

used, if left unhandled, those artifact may hinder subsequent 

classification performance. 

From the discussion above we draw the following conclusions regarding the 

implementation of the AFE module and its specifications: 

 At least 6 EEG channels are desired for a SSVEP-based BCI. More 

channels can be useful in terms of flexibility towards other 

protocols. 

 Signal bandwidth should extend, on the high-frequency side, at least 

to 60 Hz, while low-frequency corner should, at least, capture 
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frequencies as low as 0.1 Hz. DC-handling capability should be 

considered in, e.g., SCP studies. 

 Noise level contributed by the electronics should be kept below 

0.3 μVrms RTI (i.e. less than 2 μVpp). In case the ADC chip itself is 

not able to meet this requirement, a low-noise pre-amplification 

stage will be necessary. Noise level must, in any case, account for all 

possible EM noise sources over the whole PCB (Printed Circuit 

Board); i.e., in the noise measurement, the input short-circuiting will 

occur at the board connector level, using jumper cables. 

 Although active electrodes may improve the performance of an EEG 

module (depending, of course, on the good design of this stage), the 

increased costs and complexity (in terms of driving circuits) made us 

opt, at least in this stage, for the worst-case scenario, i.e. passive 

electrodes. Furthermore, no shielding will be implemented. Of 

course, form the BCI point of view, signals are more likely to be 

affected by noise and artifacts in this way; nonetheless, we aim at 

recovering additional information with signal processing and we rely 

on the robustness of the SSVEP protocol. On the other hand, should 

artifacts overwhelm the recorded signals, realization of such active 

devices will be taken into consideration; a concept schematic for that 

stage will be explained in §2.6. 

 The EEG module should be battery operated, mainly for two 

reasons:  (i) improved electrical safety, and  (ii) better rejection of 

mains noise. 

 Communication with the platform will be implemented as wired, 

namely via USB 2.0. This is to reduce EM interference on the analog 

section and to guarantee higher bandwidth. Anyway, all the inputs 

will be RFI protected. 
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2.2 EEG module: release 1 

In this paragraph, the first prototype EEG module [21] is presented. Some of 

the features include: 

 6 dedicated (pre-amplified EEG channels) plus 2 spare, fully-

differential channels to be used as auxiliary inputs or for other bio-

potential recordings. All the channels are simultaneously sampled, in 

order to maintain alignment between records. PCB dimensions are 

21x16 cm. 

 Pre- amplification stage. In fact, at the time of the prototype 

production (early 2012), no commercially-available ADC chips 

exhibited sufficient noise performance, thus a pre-amplifier was 

added to contain the contributed noise. Our ADC choice was the 

Texas Instruments ADS1298
6
, which features, at maximum input 

gain (G = 12), an RTI noise of 0.4 μVrms, which is larger than we 

said we should tolerate (namely, 0.3 μVrms). With the addition of the 

custom pre-amplifier, noise performance was kept within the 

specifications ( 1.8 μVpp). 

 The module is battery operated (2xAA alkaline batteries for each 

analog supply, 3xAA alkaline batteries for the digital supply), with 

two different supply option:  (i) symmetrical (±2.5 V), as in most 

devices (even though lower voltages are used, in this case), or  

(ii) unipolar (0-5 V). Consequently, in both modalities, the 

RLD/GND electrode will deliver the appropriate bias voltage, 

namely, 0 V in the first case, 2.5 V in the second one. 

 Power consumption (including efficiency of the LDO-regulated 

power section): 134 mW. 

                                                 
6
 http://www.ti.com/product/ads1298 

http://www.ti.com/product/ads1298


46  Chapter 2. Building the BCI: the EEG module 

 Board control and interfacing is handled by a very compact ARM 

Cortex-M4 based development board (Teensy
7
 3.x), which can 

handle full speed USB 2.0 communication as a CDC 

(Communication Device Class). 

Figure 2.1 shows a high-level schematic of the EEG module, while Figure 

2.2 shows photographs of the analog module and the interface/control 

board. 

 

                                                 
7
 https://www.pjrc.com/teensy 

 
Figure 2.1  High-level schematic of the EEG module – release 1. 
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Figure 2.2  Photos of the EEG module – release 1: amplifier and ADC (top), isolated 

microcontroller unit (bottom). 
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2.2.1 Schematic of a dedicated EEG channel 

 
Figure 2.3 shows the schematic of a single, dedicated EEG channel, along 

with the Right Leg Driver (RLD) circuitry. 

A common approach for bio-potential measurements exploits DC-coupled 

Instrumentation Amplifiers (INA) or equivalent circuits; operating such 

devices at a high gain would maximize the Common Mode Rejection Ratio 

(CMRR), while minimizing the equivalent input referred noise. However, 

due to electrode offset voltages, the overall gain in this configuration is 

limited to moderate values. This situation is more critical for low-voltage, 

battery powered applications. Therefore, in order to obtain high gain from 

the first stage of the bio-potential amplifier, AC-coupling is needed. 

In [109], a simple, passive AC-coupling network is presented (the RC input 

network shown in Figure 2.3, before the Analog Devices AD8221
8
 INA), 

which provides input differential signals with AC-coupling, while 

maintaining a DC path for bias currents (draining to ground through the 

amplifier’s common electrode). Since the coupling network is ungrounded, 

if a common mode input voltage is applied, no current flows through the 

                                                 
8
 http://www.analog.com/en/specialty-amplifiers/instrumentation-

amplifiers/ad8221/products/product.html 

 

Figure 2.3  Schematic of a dedicated EEG channel. 
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network (there is no common-mode current path), keeping all nodes at the 

same potential and thus ideally yielding an infinite CMRR. In practice, 

however, several factors actually limit the total CMRR, such as grounded 

impedances (e.g. the INA’s input capacitance), or unbalanced electrode 

impedances. Considering the differential mode, and assuming τ1=RC, the 

transfer function of the network is: 

 𝐺𝐷(s) =
𝑠𝜏1

1 + 𝑠𝜏1
 . (2.1)  

As discussed in [110], the noise contributed by the circuit, integrated over 

the EEG band is, approximately: 

 𝑒𝑛0
2(s) =

4𝑘𝑇

𝜋𝐶
 [V2]. (2.2)  

From equation (2.2), in which k is the Boltzmann constant and T is the 

temperature (in Kelvin), it follows that minimizing the noise implies 

maximizing C, compatibly with practical implementation constraints. 

While such input coupling network effectively gets rid of differential DC 

voltages, originating from the electrodes, the op-amps (or INA’s) input 

common mode voltages are still present, and can significantly reduce the 

output dynamic range. Moreover, the thermal noise of input resistors (from 

DC up to the corner frequency fc1=1/(2 τ1)) and the INA’s input voltage 

noise are amplified as well. Since the input network itself exhibits a high-

pass behaviour, excluding any information below fc1, it is thus convenient to 

suppress the INA’s low frequency gain; this can be easily accomplished by 

putting an integrator in the INA’s feedback loop, driving the reference pin 

(REF) [111]. The resulting transfer function, accounting for the input 

coupling network and the AC-coupled INA, becomes: 

 𝐻𝐼𝑁𝐴(s) = 𝐴𝑉0  
𝑠𝜏1

1 + 𝑠𝜏1
 

𝑠𝜏2

1 + 𝑠𝜏2
 , (2.3)  

where AV0 is the amplifier’s gain, set by resistors RG1, RG2, as specified in 

[111], τ2=RINTCINT is the time constant introduced by the feedback 

integrator. In our design, the INA’s gain, AV0, was set to 800.  
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Also, not shown in Figure 2.3, for image clarity purposes, a passive RFI 

protection filter is placed at the INA’s inputs, as in [111].  

After amplification by the INA, the signal is low-pass filtered by a second-

order, unit-gain Sallen-Key filter [112] with a cutoff frequency of 250 Hz: 

this value was chosen in order to keep the board suitable for a wider range 

of bio-potentials, including, for instance, ECG. A Bessel response was 

selected, maximizing phase response linearity, in order to better preserve the 

wave shape. 

The RLD circuit is introduced to improve common mode noise rejection 

[33],[108],[113]. The input common mode voltage is sensed at node VCM 

connecting gain-setting resistors RG1 and RG2, it is buffered and then fed to 

an integrator, which gains and invert the signal, feeding it back to the 

patient’s body as a reference voltage. This feedback, which attempts to 

minimize the error between a reference, fixed voltage, and the measured, 

noise-corrupted common mode voltage, is also exploited to generate a 

virtual ground for single supply operating mode (in this case the reference 

voltage is set at mid supply). Otherwise, reference voltage is set to ground. 

Digitalization is performed at the end of the analog signal chain by a 24-bit 

ADC (the aforementioned TI ADS1298). Without any of the pre-

amplification stage, the noise contributed by the sole ADC (0.4 μVrms) 

would have violated the specifications we set; with the implemented 

solution, noise measured at board level (i.e. with contributes of active 

components and layout non-idealities) was found to be less than 1.8 μVpp, 

which falls within the desired specifications.  

Examples of acquired waveforms (FFT of alpha rhythms with eyes 

open/closed comparison and PSD estimate of a SSVEP response) are 

reported in Figure 2.4. 
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2.2.2 Layout and general considerations 

When designing low-noise PCBs, careful layout planning is essential for 

guaranteeing optimal performance. For this reason, digital and analog 

domains were partitioned, thus avoiding mutual interference between return 

 

 

Figure 2.4  (top) PSD comparison of EEG acquired from location Fp1 with eyes open (blue) and 

closed (red): the alpha band has significantly more power in the latter case (due to alpha 

rhythms); (bottom) example of a PSD estimate of an 18 Hz SSVEP 
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currents. Split planes are tied and referenced to the same potential in a 

single point, near the ADC, by means of a ferrite filter.  

The board was manufactured with a standard 4-layer PCB process, and solid 

ground/power planes were used to ensure the lowest possible impedance 

and voltage uniformity. A similar technique was used for the reference 

voltage. 

A stable supply and reference voltage is capital in high-precision, low-noise 

analog circuitry; therefore careful supply and reference filtering and 

bypassing techniques were applied. Noise and transients coupled on these 

voltages can, in fact, leak from the supply into the active components. Even 

though attenuated by the device’s Power Supply Rejection Ratio (PSRR), 

noise in supply can still affect the performance of analog circuitry for high-

precision and high-resolution sensing. For this reason, power from the 

batteries is filtered through a series, low-noise, Low DropOut (LDO) 

regulator. Moreover, in order to improve filtering and stability of the supply 

and reference voltage across the whole PCB, careful bypassing techniques 

were implemented [114], both at the local level, as well as at the global one. 

 

2.3 Digital domain 

2.3.1 Hardware control and interfacing 

As mentioned in the introductory chapter, digital signal processing is 

currently carried out by a MATLAB-based platform, running on a personal 

computer, thus allowing faster design and tuning of algorithms, suitable for 

subsequent embedded implementation. To complete the test environment, 

we hence needed to connect the AFE and the PC. A Teensy 3.x 

development board, based on an ARM Cortex-M4 micro-controller, is 
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exploited for managing and supervising communication. Main tasks of such 

board include: 

 Communication: data coming from the ADS1298 are acquired 

through a SPI (Serial Peripheral Interface) port and routed to the PC 

through a high speed (12 Mbps) virtual COM port, emulated over 

USB. Furthermore, USB is isolated via an external dedicated 

module, in order to effectively untie the user from the PC ground. 

 Power-Up sequencing of the converter, needed to guarantee proper 

initialization. 

 Conversion stream management: data must be read from the 

ADS1298 after each conversion is completed. Conversion results are 

then encapsulated into structured data packets (containing a given 

number of conversions, in order to maximally exploit the 

communication bandwidth), allowing some sort of flow-control on 

the MATLAB side. 

 On-the-fly AFE parameter management: the user can specify several 

AFE parameter directly from MATLAB, such as, for example, 

ADC’s gain or data rate, initial state and many others. 

 Management of GPIO (General Purpose I/O) pins; 8 digital pins are 

exposed to the user, in order to capture asynchronous triggers and 

events, allowing for synchronization of EEG waveforms and user 

markers. 

The microcontroller was programmed with the C++ programming language, 

using the Object-Oriented Programming paradigm. The code is broken into 

elementary blocks, implemented as classes, in order to allow maximal 

interoperability and scalability. 

In particular, one class provides the abstraction of the physical ADC chip 

(e.g. the ADS 1298 or, as in the second hardware release, the dual ADS1299 

solution), implementing methods for proper device setup and handling. A 

generic ADC class provides the abstract interface to which the underlying 

ADC class should comply; this class is, in turn, controlled by another one, 
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called scheduler, which constantly waits for user commands and calls the 

data streaming class whenever data are ready to be transmitted. This last 

class implements the data transmission; in order to guarantee high-

bandwidth, a double-buffering scheme is implemented, and conversion 

results are transmitted in groups to maximize efficiency. 

2.3.2 Handling and displaying the data stream in Matlab 

Data from the USB comes into a twos complement, 24-bit format (the ADC 

native one); as soon as a data block transfer is completed, it is converted to a 

voltage reading via the following formula: 

 𝑣𝑠𝑎𝑚𝑝𝑙𝑒 =  
𝐴𝐷𝐶𝑐𝑜𝑑𝑒

2(𝐴𝐷𝐶𝑟𝑒𝑠−1) − 1
𝐴𝐷𝐶𝑟𝑒𝑓 [V], (2.4)  

where ADCres is the resolution of the ADC (24-bit), and ADCref is the 

reference voltage. During this phase, data are vectorized and organized into 

matrices, in order to speed up further processing. From now on, columns 

will represent electrodes and rows their temporal evolution. 

After vectorization, data can be processed in real-time and, in parallel, 

stored. In order to maximize the efficiency of disk access, data are dumped 

in larger blocks, and the flexible HDF5 data format is used. Double 

buffering is implemented in this case as well. 

Without going into the details of the signal processing, which will be 

covered in Chapter 3 and 4, data are pre-processed and fed to the GUI, 

where they are displayed as real-time temporal waveforms, as well as PSD 

estimates, as shown in Figure 2.5. Here, the output of the classification is 

also displayed, and several interface buttons allow the user to manually 

trigger software markers, as well as to stop the ongoing signal acquisition. 
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2.4 Cap and materials choice 

Various commercial, pre-cabled caps exist, which can be purchased 

independently of the EEG hardware. However, the cost of such solutions, 

even in minimal 21 lead setups, is quite high (typically greater than 350 $), 

especially if compared to the targeted hardware costs. 

We thus decided to build an elastic electrode support, as shown in Figure 

2.6. Disposable Ag/AgCl disk electrodes (approximate price: 0.10 $, each) 

are held in place by this cap (a plastic ring cup surrounds the electrode, for 

gel containment), and they are attached to cables by means of snap clips. 

The cap is modeled, as far as the transverse bands are concerned, on a 

standard 10/20 electrode montage. 

 

Figure 2.5  Snapshot of the Matlab-based GUI. 
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Electrode cables (approximate price: 10 $, each) depart from the cable, 

grouped together, and bring the signal to the EEG module. Male (cable) and 

female (board) connectors are based on standard DIN 42802 (1.5 mm) 

safety connectors, a format commonly encountered in EEG hardware. 

 

2.5 Improving the EEG module: release 2 

2.5.1 What needed to change… and how it changed 

The first release of the EEG module was used, as we will see, to collect 

most of the data for the offline analysis. However, experience suggested 

some improvements could be made, such as: 

 More EEG input channels, in order to pursue a more general purpose 

approach. 

 

Figure 2.6  Photo of the elastic cap, along with the snap leads. 
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 Dimension shrinking. This could mean opening to portable and 

mobility scenarios, where bulky equipment could represent an 

obstacle to practical use of BCI. 

 Technological improvement. Texas Instruments released a newer 

high-precision ADC (ADS1299
9
) in late 2012: this chip dramatically 

improves RTI noise, to the extent that it can, in principle, be used 

without any external pre-amplification stage (using just the low-gain, 

built-in one), thus saving space on the PCB and allowing to design 

more compact AFEs. 

 More reliability. High-gain stage could quickly saturate in case of 

artifacts or deteriorating contacts. Using a lower gain could improve 

this situation, since a wider dynamic range would be possible. This 

is possible via the ADS1299 technological improvement introduced 

above. 

Considering all these aspects, a new release of the EEG module was 

realized, with the following results: 

 16 input channels, achieved by paralleling of two ADS1299 ADCs (a 

master, who sets the sampling clock, and a slave). This channel 

number (or multiples of it) is commonly encountered in commercial 

EEG devices. Having 16 channels available, with respect to just 6, 

allows to study and exploit a wider spectrum of possible BCI 

protocols. 

 Reduced dimensions: 13x10 cm. This was possible thanks to two 

main factors:  (i) elimination of the pre-amplification stage, thanks to 

the new ADS1299 chip;  (ii) adoption of a unipolar supply scheme 

(0-5 V). This latter point allowed to remove the negative power 

section, saving space and improving energy efficiency. It also 

greatly simplified the power bypassing scheme, cutting the required 

capacitor number by half. Moreover, power for the analog and 

digital (3.3 V) part is now drawn from a single battery pack (4x AA 

                                                 
9
 http://www.ti.com/product/ads1299 

http://www.ti.com/product/ads1299
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alkaline batteries), thus allowing a more compact module, also in 

terms of enclosing package. 

 Production costs, in large scale, are in the range of 300 €. 

 Power consumption (including efficiency of the power section): 

162 mW. With respect to the previous release, this results in 

approximately 45% less power per EEG channel. 

 Superior noise performance (< 1.3 μVpp), as it will be shown next.  

 Improved input dynamic range. With a maximum applied gain of 24, 

the input range is now wider, allowing to record more consistently 

the EEG in the presence of artifacts. In particular, the full-scale 

differential input range is given by: 

 𝑣𝑑,𝑚𝑎𝑥 =  
±𝑉𝑅𝐸𝐹

𝐺
 [V], (2.1)  

where VREF is the ADC reference voltage (4.5 V, in our case), and G 

is the applied input PGA (Programmable Gain Amplifier) gain 

(typically, 24 or 12). Setting G = 24, for example, yields, 

approximately, a ±188 mV input dynamic range. 

As far as layout is involved, the general considerations about power supply 

bypassing in §2.2.2 still apply. However, this time a different technique was 

exploited for internal planes design. Since, in this case, there is more than 

one mixed-signal device (i.e., the two parallel ADCs), it would not be 

possible to adopt the split ground planes approach, as it would not be 

possible to place the common reference point close to both devices. This 

problem is even more evident with a higher number of devices. In these 

cases, following the approach in [115], a solid, continuous ground plane is 

kept below such devices, shared with the analog section. The important 

factor is to try to keep digital and analog return currents well separated by 

avoiding crossings over different planes, and by carefully designing the 

bypass scheme to reduce the return current loop areas (and consequent 

overlaps). For the supply planes, instead, the same internal layer was used, 

splitting between digital and analog supply isles. 
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A high-level scheme of the new module is reported in Figure 2.7, while 

Figure 2.8 shows a picture of the realized PCB. Complete schematics and 

production files are reported in the Appendix. 

 

 
Figure 2.7  High-level schematic of the EEG module – release 2. 

 

 
Figure 2.8  Photo of the EEG module – release 2, along with DIN 42802 input connectors. 
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2.5.2 Validation and comparison with a high-end EEG unit 

for BCI 

In order to validate the new EEG module, and assess its performance, 

several tests were performed. At first, “static” performance was checked, 

characterizing input noise, and observing signals from a deterministic 

source. Then, “dynamic” tests were performed, checking for biological 

artifacts and reproducing a simple P300 experiment. Such results were 

compared with a commercial, high-end device (g.tec
10

 USBamp
11

). 

(a) “Static” performance 

The first test consisted in, simply, reading a known, deterministic signal, 

namely, a 10 Hz sinusoidal waveform, generated with a g.tec test signal 

generator. However, this was more of a qualitative test, since a precise 

characterization of the generator was not available. We could think of this 

test as a sanity-check for the device; nonetheless, signals were recorded with 

the USBamp as well. The experiment parameters are the following, where 

DUT (Device Under Test) indicates the realized EEG module: 

 20μVpp, 10  Hz sinusoid (actually, 10.1 Hz from measurements with 

both devices). 

 At least 120 s records. 

 PSD resolution: 0.1 Hz. 

 g.tec: 512 SPS, analog 50 Hz notch. 

 DUT: 250 SPS, no filtering applied. 

As it can be seen in Figure 2.9, both devices effectively capture the 10  Hz 

tone. The USBamp exhibits a sharp tone at 150  Hz, almost 14 dBm lower 

than the carrier. On the other hand, DUT is affected by 50 Hz noise 

(approximately -32 dBm lower than the carrier), as well as 10 Hz harmonic 

                                                 
10

 http://www.gtec.at/ 
11

 http://www.gtec.at/Products/Hardware-and-Accessories/g.USBamp-Specs-Features 

http://www.gtec.at/
http://www.gtec.at/Products/Hardware-and-Accessories/g.USBamp-Specs-Features
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noise (≈-31 dBm below the carrier), which is probably due to noise 

generated by USB data packet bursts. In future implementations, to correct 

this effect, the digital isolation stage will be inserted between the ADC and 

the microcontroller, instead of only on the USB side. Nonetheless, signal 

quality appears good, as shown next with the noise test. 

 

The second test which was performed in “static” condition is a noise test. In 

order to account for all sources of noise within the PCB (e.g. ADC, layout 

non-idealities), the measurement is taken as follows: 

 Input terminals (the exposed board connectors for the electrode 

cables) are short-circuited with jumper cables. 

 
Figure 2.9  PSD comparison of g.tec USBamp (top) and the EEG module (DUT, bottom) when a 

10 μVpp, 10 Hz is applied. 
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 Input waveforms are acquired for at least 120 s, with the same 

device settings in the previous test.  

 Once the mean is removed (offset), any non-zero value is due to 

noise. 

Characterization of such noise can then be performed, e.g. by extracting a 

PSD estimate (Figure 2.10), or by comparing RTI peak-to-peak/rms values. 

In addition, in order to make a fair comparison, noise integrated over the 

[0-40] Hz was extracted for both devices, from their PSD. Such 

comparisons are summarized in Table 2.1. 

 

 
Figure 2.10  PSD comparison of noise acquired with a g.tec USBamp (top) and the EEG module 

(DUT, bottom). 

10
-1

10
0

10
1

10
2

-170

-160

-150

-140

-130

-120

P
o

w
e

r 
[d

B
m

]

PSD - gtec USBamp

10
-1

10
0

10
1

10
2

-170

-160

-150

-140

-130

-120

P
o

w
e

r 
[d

B
m

]

f [Hz]

PSD - DUT



2.5 Improving the EEG module: release 2 63 

 

As it can be seen, the DUT performs very well in terms of electrical noise 

specification, meeting all the requirements. In particular, referring to Figure 

2.10, the trends found in the 10 Hz test are confirmed. Noise performance of 

the DUT is remarkable, even better, to some extent, than the reference 

device. The new EEG module also improves over the previous release, 

achieving a maximum 1.27 μVpp vs. 1.8 μVpp RTI noise. Overall, the DUT 

proves to be a valuable tool for low-level signal studies. 

(b) “Dynamic” performance 

All previous tests were done with a very controlled procedure: no user was, 

in fact, connected to the EEG, thus all noise sources other than electrical 

were not being considered. The following tests are aimed at assessing the 

usability of the EEG module as a tool for physiological investigation. 

The first “dynamic” test we performed (only on the DUT) is, again, 

comparable to a sanity-check: 6 electrodes were connected in FP1, FP2, P3, 

P4, O1, O2 locations. Standard artifact-checking tasks were accomplished 

by asking the users to blink or to grind (for generating EMG artifacts); 

example waveforms are reported in Figure 2.11. Also, alpha burst rhythms 

were generated by asking the users to close their eyes: oscillations start to 

build up in the [8-13] Hz band, and are clearly visible, for example, in 

Figure 2.12. These sanity-checks allow to confirm that the DUT is actually 

recording physiological data. 

Table 2.1  Summary of noise test comparisons (all values are RTI) 

 rms [μVrms] peak-to-peak [μVpp] [0-40] Hz [μVrms] 

USBamp 0.87 7.16 0.42 

DUT 0.17 1.27 0.09 
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Figure 2.11  EEG waveforms acquired from FP1 and FP2 locations in presence of eye-blinking 

artifacts (top) and EMG artifacts generated by grinding (bottom). Manual markers very coarsely 

indicate when the user was instructed to perform those actions. 

 

 
Figure 2.12  EEG waveforms acquired from FP1, FP2, P3, P4, O1 locations in presence alpha 

burst ([8-13] Hz band-pass filtered). Manual markers very coarsely indicate when the user was 

instructed to perform those actions. 

Eye Blinks

23 24 25 26 27 28 29 30

-1

0

1

x 10
-4

F
P

1

23 24 25 26 27 28 29 30

-1

0

1

x 10
-4

F
P

2

23 24 25 26 27 28 29 30

-1

0

1

x 10
-4

P
3

23 24 25 26 27 28 29 30

-1

0

1

x 10
-4

P
4

23 24 25 26 27 28 29 30

-1

0

1

x 10
-4

O
1

37 38 39 40 41 42 43 44 45
-1

0

1

x 10
-4

F
P

1

37 38 39 40 41 42 43 44 45
-1

0

1

x 10
-4

F
P

2

37 38 39 40 41 42 43 44 45
-1

0

1

x 10
-4

P
3

37 38 39 40 41 42 43 44 45
-1

0

1

x 10
-4

P
4

37 38 39 40 41 42 43 44 45
-1

0

1

x 10
-4

O
1

EMG (chew) Manual markers (coarse synch.)

98 99 100 101 102 103 104 105 106 107 108
-1

0

1

x 10
-4

98 99 100 101 102 103 104 105 106 107 108
-1

0

1

x 10
-4

98 99 100 101 102 103 104 105 106 107 108
-1

0

1

x 10
-4

98 99 100 101 102 103 104 105 106 107 108
-1

0

1

x 10
-4

98 99 100 101 102 103 104 105 106 107 108
-1

0

1

x 10
-4

EEG - alpha time domain

Manual markers (very coarse synch.)

F
P

1
F

P
2

P
3

P
4

O
1



2.5 Improving the EEG module: release 2 65 

 

A more quantitative test, comparing the DUT and the USBamp was 

performed using a P300-based protocol. The procedure aims at assessing if 

the waveforms acquired with the DUT and the USBamp are consistent one-

another. In particular, it was devised as follows: 

 Two subjects participated to this test, totaling 12 runs 

 P300 responses are elicited by asking the users to silently count how 

many green squares (target) appeared within a stream of red squares 

(non-target). 

 Each run consisted of 10 series of 23 flashes of target (ptarget≈0.13) 

and non-target stimuli.  

 In order to make a comparison, EEG was recorded using the same 

electrode set and cap, alternating the recordings by simply switching 

the connectors in an interleaved scheme (e.g.: run1 USBamp, run2 

DUT, etc.). Direct, parallel acquisition was not possible due to 

different device bias, which would have interfered.  

 Acquisition parameters are similar to the previous “static” tests.  

 EEG data are pre-processed by band-pass filtering in the [1-16] Hz 

band and by applying a CAR filter. 

 Analysis of the waveforms, assessing the statistical significance of 

the difference between target vs. non target waveforms, was carried 

out for both the USBamp and the DUT. 

An example of such comparison, representative of the many others, is 

shown in Figure 2.13. As it can be seen, both devices are consistent, 

predicting good separability between P300 and null response in similar time 

intervals.  

This allowed us to conclude that the realized AFE does not introduce 

significant noise or bias, when compared with a high-end, reference device, 

and can, therefore, be equivalently used in BCI experiments. 
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2.6 Future development: active electrodes 

It is possible to introduce an improvement in our design, should the passive 

electrode technology not fit a particular application (e.g. where noise pickup 

or mechanical artifacts are expected to be higher). This can be achieved via 

an active electrode pre-amplification. A possible scheme for this purpose is 

shown in Figure 2.14. 

This circuit is designed to yield a differential output ,achieved with a second 

INA as a feedback driver for the first INA’s reference pin; this differential 

output can be directly fed to the EEG module. The advantage of such a 

mechanism is that differential signaling is more robust to noise. However, 

we still need to bring the negative input voltage to each active electrode: any 

imbalance or differentially coupled noise would not be rejected by such 

differential mechanism. Nonetheless, this consideration still applies to 

 

Figure 2.13  P300 test comparison: USBamp (left) and DUT (right). In the top figures, mean time 

domain waveforms are displayed (solid line), along with their standard deviations (bars). P300 

responses are drawn in red, non-target responses in blue. In the bottom figures, the logarithms of 

p-values (extracted with a two-sample t-test) relative to difference between target and non-target 

distributions are reported; the green line represent the 5% significance level 
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unipolar leads: in the end, all measurements are differential, and 

differentially coupled noise poses equal problems. 

Also shown in the picture are the input RFI filter (resistors RRFI and the 

“X2Y capacitor” CRFI), and a compensation network for the stability of the 

feedback loop (RF and CF). This design requires that a supply, ground, 

reference and a common mode voltage (these last two can coincide) be 

brought to the active electrode. 

Many other examples of active electrode circuits are found in literature. In 

particular, in [116], a two-wire active electrode is presented. A constant 

supply-current feedback is established for signaling, and the resulting 

differential voltage for keeping such constant supply is read by an INA in 

the ADC module. 

 

Figure 2.14  Possible schematic of an active electrode (just the pre-amplifier; boundary, passive 

components are not shown for image clarity purpose). 
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Chapter 3 

 Building the BCI: offline signal 

processing 

In Chapter 2 we covered the realization of the hardware infrastructure for 

the BCI. Now, the signal processing will be analyzed. In particular, in this 

chapter, the initial offline studies will be presented, which will serve as a 

starting base for the development of the online part, presented in Chapter 4. 

At first, a naïve approach for SSVEP classification, based on PSD analysis, 

is presented. Then, in order to improve performance, methods from the 

literature are presented, namely: MEC (Minimum Energy Combination), 

AMCC (Average Maximum Contrast Combination) and CCA (Canonical 

Correlation Analysis). In addition, two methods we developed will be 

presented, aiming at improving the computational efficiency. Finally, the 

performance of each method will be compared. 

One thing, indeed, is in common to all these methods: the calibration-free 

operation. As a consequence, such methods must adapt to all users; their 

performance will be, thus, evaluated on the whole sample population basis 

rather than on a per-user basis. 

3.1 A naïve approach based on PSD analysis 

The very first approach towards a calibration-less SSVEP classification 

algorithm was based on a simple PSD analysis, adding ad hoc heuristics to 

improve accuracy. 



70  Chapter 3. Building the BCI: offline signal processing 

As a first step, a preliminary screening session was conducted to determine 

the most detectable frequencies on average, by analyzing the PSD estimated 

of the EEG raw channels (O1, O2, P3, P4, P5, P6). Volunteers were shown 

one stimulus frequency at a time, selected in the range [16-30] Hz in steps 

of 2 Hz. By visual inspection of the waveforms and by subsequent 

automated classification, based on the algorithm introduced above, the best 

frequency range was selected [16-22] Hz. Actually, even larger SSVEP 

peak amplitudes were observed at lower frequencies, in the alpha band 

region. However, if other frequencies were to be considered, the alpha 

rhythm could mislead the classification algorithm and produce high false 

positives occurrences, due to its relatively large amplitudes. Moreover, 

exploiting higher frequency flickering stimuli turned out to be more 

comfortable for the user, resulting in less visual fatigue. At the high end of 

the inspected range, [26-28] Hz stimuli were not clearly discriminable in 

every subject, resulting in generally lower amplitudes. 

Subsequently, a four-choice classifier was set up as follows. Data are pre-

processed by a [14-24] Hz band-pass filter. Then, PSD features are extracted 

for each channel. Before classification, such features undergo a further 

transformation, aimed at improving the classification algorithm’s robustness 

with respect to inter-channel variations, for instance due to impedance 

imbalance. To this purpose, the estimated channel power spectrum is 

integrated over a given frequency interval, depending on the actual 

frequency range of the SSVEP stimuli (for example, 1 Hz below and above 

the considered SSVEP frequency range) and the channel powers are then 

equalized over this bandwidth. Such normalization improves the 

classification robustness by somehow self-adapting to variable scenarios. 

The classification algorithm, then, exploits the a priori knowledge of the 

actual set of stimulation frequencies, checking the conditions only on such 

set: the channel powers are summed at each target frequency. Candidate 

targets are selected whenever a given fraction (e.g., at least 50%) of the 

channels exhibit a local maximum in the PSD at the target frequency. Then, 

candidates are compared; a two-step procedure has been devised: if a single 

candidate exists, the power of which exceeds all the remaining ones by a 



3.1 A naïve approach based on PSD analysis 71 

 

given threshold, the decision is made. Otherwise, a more selective 

comparison is carried out, considering all the target frequencies as 

candidates and raising the threshold. The described algorithm is summarized 

in Figure 3.1. 

The aforementioned algorithm was tested in a 4-class choice scenario: 4 

simultaneously flickering LEDs were shown, each one at a different 

frequency in the {16, 18, 20, 22} Hz set. EEG was acquired for 6 s; the 

algorithm was then run on each epoch, to classify the attended frequency. 

The observed EEG window was varied between 3 s, up to the whole 6 s, and 

the Welch’s window for PSD estimation was set to 2 s, with a 50% overlap 

factor. Accuracy and theoretical ITR (Information Transfer Rate) were then 

calculated, the latter according to the definition in [1]: 

 

ITR =  

=  𝑀 [log2 𝑁 + 𝑃 log2 𝑃 + (1 − 𝑃) log2 (
1 − 𝑃

𝑁 − 1
)] [bit

/min], 

(3.1)  

where M is the number of trials per minute, N the number of possible 

choices, and P the classification accuracy. Table 3.1 lists the average 

accuracy and ITR that were achieved over the 4 users. As it can be seen, 

 

Figure 3.1  Workflow of the PSD-based classification algorithm. 
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accuracy improves with increasing observed windows; on the other hand, 

spending more time in taking a decision implies less choices per minute, i.e. 

lower M, thus lower ITR. Nonetheless, accuracy is high, which is very 

important, considering the targeted application 

3.2 Improving signal processing: methods from 

literature 

The aforementioned method works fine in terms of accuracy; still, some 

improvements can be made, especially in terms of responsiveness. This 

could improve the user’s comfort: less time in making a decision means less 

time spent observing a flickering stimulus, thus lowering eye fatigue. 

We started from studying popular SSVEP processing methods from 

literature, all calibration-less, namely: MEC (Minimum Energy 

Combination), AMCC (Average Maximum Contrast Combination) and 

CCA (Canonical Correlation Analysis). 

Minimum Energy Combination [117] attempts to find an optimal spatial 

filter from minimizing an estimate of the noise. In particular, the voltage 

time series of a single electrode yi(t), can be modeled as: 

 𝑦𝑖(𝑡) =  ∑(𝑎𝑖,𝑘 sin 2𝜋𝑘𝑓𝑡 + 𝑏𝑖,𝑘 cos 2𝜋𝑘𝑓𝑡) + 𝐸𝑖(𝑡)

𝑁ℎ

𝑘=1

 , (3.2)  

Table 3.1  Average accuracy and ITR for the naïve PSD-based algorithm. 

 3 s 4 s 5 s 6 s 

Accuracy 90.8 91.0 93.3 94.7 

ITR 28.35 21.59 18.91 16.49 
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where the first term is the model of a SSVEP response corresponding to a 

stimulus frequency f (considering up to Nh harmonics), and Ei(t) is a noise 

and nuisance signal. Given an EEG epoch of Nt samples, the input signals 

from the Ny electrodes can be represented as a matrix Y of size Nt × Ny, 

whose columns are the potential readings from each electrode site. In the 

same way, we can represent the SSVEP term in equation (3.2) as a 

multiplication between a SSVEP information matrix X having size 

Nt × 2 Nh, containing Nh (sin, cos) column pairs, and a weight matrix G of 

size 2 Nh × Ny, containing all the ai,k, bi,k coefficients. Equation (3.2) then 

becomes: 

 𝑌 =  𝑋𝐺 + 𝐸 . (3.3)  

To extract discriminant information, signals from the electrodes are 

combined with appropriate weight vectors w=[w1, … ,wNy ]
T
. New channel 

vectors s of length Nt are then obtained as: 

 𝑠 = ∑ 𝑤𝑖

𝑁𝑦

𝑖=1

𝑦𝑖 = 𝑌𝑤 , (3.4)  

which generalizes to Ns channels as follows: 

 𝑆 = 𝑌𝑊 , (3.5)  

where S=[s1, … , sNs] represents the set of channels and W=[w1, … , wNs] is 

the corresponding weight matrix.  

Then, MEC proceeds as follows: at first, an orthogonal projection is used to 

remove any potential SSVEP activity from the recorded signal: 

 �̃� = 𝑌 − 𝑋(𝑋𝑇𝑋)−1𝑋𝑇𝑌 . (3.6)  

Ỹ then approximately contains only noise, artifacts and background brain 

activity. An optimal set of Ns weight vectors ŵ must be then chosen such 

that the energy of the signal Ỹ is minimized: 
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 min
�̂�

‖�̃��̂�‖
2

= min
�̂�

�̂�𝑇�̃�𝑇�̃� �̂� . (3.7)  

As shown in [117], the optimal solution is the eigenvector v1 that 

corresponds to the smallest eigenvalue λ1 of the matrix [Ỹ
T
Ỹ]. The weight 

matrix is then composed using the eigenvectors, corresponding to the Ns 

smallest eigenvalues, sorted in ascending order: 

 𝑊 = [
𝑣1

√𝜆1

 ⋯ 
𝑣𝑁𝑠

√𝜆𝑁𝑠

] . (3.8)  

Ns is selected by finding the smallest number k which makes the sum of the 

k smallest eigenvalues greater than 10% of the sum of all the eigenvalues. 

This can be interpreted as selecting the number of channels in such a way as 

to discard as close to 90% of the nuisance signal energy as possible. 

Finally, features are extracted according to the following equation: 

 �̂� =
1

𝑁𝑠𝑁ℎ
∑ ∑‖𝑋𝑘

𝑇𝑠𝑙‖
2

𝑁ℎ

𝑘=1

𝑁𝑠

𝑙=1

 . (3.9)  

The process described so far is repeated for each stimulus frequency f, and a 

classifier picks the attended stimulus frequency. 

Average Maximum Contrast Combination [118] is similar to MEC up to 

equation (3.6). It then attempts to maximize the SNR by optimizing the 

following equation: 

 min
�̂�

�̂�𝑇𝐶𝑌�̂�

�̂�𝑇𝐶�̃��̂�
  , (3.10)  

where CY and CỸ are the covariance matrices of signals Y and Ỹ, 

respectively. Again, minimization of the generalized Rayleigh quotient in 

(3.10) yields optimal weight vectors which can be used to construct the 

weight matrix W accordingly. 

Canonical Correlation Analysis [119] is a statistical method, generally used 

for finding the correlations between two sets of multi-dimensional variables. 

It seeks a pair of linear combinations (canonical variables, characterized by 
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weight vectors wx, wy) for the two sets, such that the correlation between the 

two linear combinations xL=wx
T
X and yL=wy

T
Y is maximized. 

 

max
𝑤𝑥 ,𝑤𝑦

𝜌 =
E[𝑥𝐿𝑦𝐿

𝑇]

√E[𝑥𝐿𝑥𝐿
𝑇] E[𝑦𝐿𝑦𝐿

𝑇]

=
𝑤𝑥

𝑇𝑋𝑌𝑇𝑤𝑦

√𝑤𝑥
𝑇𝑋𝑋𝑇𝑤𝑥 𝑤𝑦

𝑇𝑌𝑌𝑇𝑤𝑦

 , 

(3.11)  

Then it finds a second pair, uncorrelated with the first one, that has the 

second highest correlation. The process continues until the number of pairs 

of canonical variables equals the number of variables in the smallest set. 

CCA can be applied to SSVEP detection by attempting to maximize the 

correlation between the input signals Y and the SSVEP information matrix 

X, for each stimulus frequency: As features for classification, the maximum 

CCA score of each stimulus frequency are used. 

3.3 Two novel algorithms for SSVEP processing 

Having reviewed the most popular algorithms in literature, on which several 

variants are developed, we now introduce two specific SSVEP processing 

methods we developed for our platform. Both are calibration-free. 

(a) fCCA 

The first method, called fCCA (frequency-domain CCA, to distinguish it 

from the CCA introduced above, which will be referred to as tCCA from 

here on), shares the same principle of tCCA, except that here we attempt to 

maximize correlations in the frequency domain. 

It can be viewed as a merge of the PSDA and CCA methods. The main 

objective, as it will be explained later, is to improve the efficiency of the 

algorithm, while retaining the high accuracy featured by the tCCA method. 
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The algorithm works as follows. At first, the PSD of each EEG channel is 

estimated via Welch’s method, as in a conventional PSDA; then, we attempt 

to maximize the correlation between the estimated PSDs and reference 

spectra via CCA. Such reference spectra are designed as sets of Kronecker 

delta functions, exhibiting a peak at either the stimulus frequency ( (fstim) ) 

or its harmonics ( (kfstim), k = 2 … n, n being the number of considered 

harmonics). 

This also fosters the sparsity in the first canonical variable obtained from the 

input channels. The first, highest canonical correlation is taken as feature. 

Such procedure is carried out for all possible stimulus frequencies, and the 

one with the highest correlation coefficient is classified as the one eliciting 

the SSVEP. 

It is important to remark that fCCA is performed on a fixed number of 

samples, defined by the frequency resolution of the PSD estimator. The 

preliminary PSD evaluation thus reduces the complexity of the CCA 

calculation, also helping in improving processing speed, since DFT 

(Discrete Fourier Transform) can be calculated in a very efficient way. 

Since the classification is based on relative comparisons only, it is virtually 

independent of training and calibration procedures. 

(b) maxDeltaVar 

The second method, called maxDeltaVar [20],[22],[23], [120] is a simplified 

approach, aiming at efficiency, in terms of speed and memory usage. The 

basic idea is quite simple and stems from the first part of MEC and AMCC 

methods; first, a SSVEP information matrix X of size Nt × 2Nh is built for 

each stimulus frequency 

 

𝑋 = 

= [

sin 2𝜋𝑓𝑡1     cos 2𝜋𝑓𝑡1 ⋯ sin 2𝜋𝑁ℎ𝑓𝑡1         cos 2𝜋𝑁ℎ𝑓𝑡1

⋮                     ⋮ ⋱ ⋮                              ⋮
 sin 2𝜋𝑓𝑡𝑁𝑡

    cos 2𝜋𝑓𝑡𝑁𝑡
⋯ sin 2𝜋𝑁ℎ𝑓𝑡𝑁𝑡

      cos 2𝜋𝑁ℎ𝑓𝑡𝑁𝑡

] , 
(3.1)  
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Then, input channels are normalized, in order to have the same variance. 

Projection on the space spanned by the sinusoidal components of X is 

performed to remove any potential SSVEP activity from the recorded signal, 

as in equation (3.6). The differences in variance before and after each 

projection, summed along all channels, are taken as features. 

Such simplified feature extraction procedure involves fewer steps than 

previously mentioned methods; thus, it better suits future implementation on 

small embedded devices.  

Classification identifies the stimulus frequency by looking for the X matrix 

which induces the larger decrease in the overall variance. As in the previous 

algorithms, the method uses relative comparisons, and no calibration phase 

is required. 

3.4 Results: comparison of methods 

In the following, the presented algorithms are compared. Comparison is, 

again, oriented to the specific aimed application, and based on offline 

classification accuracy (much relevant for control applications) and 

computational demand (in view of future embedded implementations). 

Computational performance is estimated, in the following, by looking at the 

mean algorithm execution times. 

All the EEG waveforms were acquired in the context of a 4 class SSVEP 

experiment as follows: four healthy volunteers (age 22-27, with normal or 

corrected to normal vision) were asked to stare at one of the four 

simultaneous flickering LED while resting on an armchair at approximately 

1 m from the visual stimulus. Each trial lasted for 6 seconds, and each LED 

presented a different stimulation frequency (16, 18, 20, 22 Hz); EEG was 

acquired at 250 SPS with our custom hardware unit (as per release 1, [21]) 

from 6 scalp locations (namely, position O1, O2, P3, P4, P5, P6 of the 

International 10-20 system), using standard 10 mm Ag/AgCl disk electrodes 
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with conductive paste (no particular skin preparation was performed, 

though). 

All the algorithms were tested on the same EEG epochs. It is worth 

remarking that, since no user-specific calibration procedure is required, all 

of the EEG waveforms from different users were considered as a whole, 

seeking for a method suitable for general use, regardless of specific user’s 

waveform features. This view is consistent with the goal of developing 

“Plug&Play” devices, suitable for basic AAL control purposes, and 

featuring ease of use and simple setup procedures. 

Table 3.2 reports the average accuracies (and standard deviations) obtained 

with the presented methods. Results show that both our methods perform 

close to (or better than) reference methods. In particular, with respect to 

fCCA, maxDeltaVar seems to achieve higher accuracy over shorter EEG 

epochs (p<0.02), while fCCA needs longer time segments but is able to 

achieve better accuracy performance. In fact, fCCA performs better than all 

the other methods at the longest EEG windows (p<0.05), and behaves 

comparably with the best at 3 s segments (no statistically significant 

difference with respect to AMCC and tCCA). This is related to the fact that 

fCCA relies on PSD estimation via Welch’s method, and the more sub-

windows are averaged, the better the estimate is. The method maxDeltaVar, 

on the other hand, exhibits a more constant behaviour over varying window 

lengths, and performs very close to tCCA (no statistically significant 

difference in performance is noticeable up to the 4 s window length), or 

AMCC (no statistical significance up to 3 s windows, but better on the 4 s 

case, p<0.01). 

It is also worth noting, though, that neither tCCA, fCCA, nor maxDeltaVar 

do perform any dimensionality reduction as MEC or AMCC do; however, in 

our scenario, where the number of electrodes is intentionally low for cost 

and comfort constraints, such step in processing does not appear as a large 

gain. 

An indirect estimate of computational performance is given in Table 3.3 

which reports the average execution time of the algorithms, when running 
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Table 3.2  Average accuracy (and std. deviation) vs. EEG window length for each algorithm. 

 1.5 s 2 s 3 s 4 s 

MEC 
75.94 % 

(1.24 %) 

78.02 % 

(2.63 %) 

77.23 % 

(2.91 %) 

73.76 % 

(2.92 %) 

AMCC 
88.02 % 

(1.89 %) 

88.51 % 

(1.63 %) 

91.09 % 

(1.04 %) 

85.15 % 

(1.75 %) 

tCCA 
88.71 % 

(2.56 %) 

90.30 % 

(1.86 %) 

90.69 % 

(1.49 %) 

90.20 % 

(2.11 %) 

fCCA 
81.39 % 

(2.18 %) 

86.53 % 

(2.43 %) 

89.50  

(2.56 %) 

91.49 % 

(1.56 %) 

maxDeltaVar 
87.33 % 

(3.02 %) 

89.31% 

(1.53 %) 

88.22 % 

(2.82 %) 

87.72 % 

(1.42 %) 

 

Table 3.3  Average (and std. deviation) execution time [ms] vs. EEG window length for each 

algorithm. 

 1.5 s 2 s 3 s 4 s 

MEC 
3.18 

(0.32) 

4.72 

(0.86) 

11.00 

(0.81) 

23.09 

(0.89) 

AMCC 
3.24 

(0.28) 

4.82 

(0.79) 

11.28 

(0.85) 

23.26 

(0.81) 

tCCA 
2.37 

(0.20) 

2.54 

(0.21) 

2.68 

(0.29) 

2.85 

(0.26) 

fCCA 
2.21 

(0.27) 

2.30 

(0.28) 

2.24 

(0.27) 

2.26 

(0.29) 

maxDeltaVar 
0.62 

(0.08) 

1.64 

(0.08) 

2.90 

(0.24) 

4.38 

(0.37) 

 

Table 3.4  Cost/Performance index [ms] vs. EEG window length for each algorithm. 

 1.5 s 2 s 3 s 4 s 

MEC  4.19   6.05   14.24   31.30  

AMCC  3.68   5.45   12.38   27.32  

tCCA  2.67   2.81   2.96   3.16  

fCCA  2.72   2.66   2.50   2.47  

maxDeltaVar  0.71   1.84   3.29   4.99  
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on a commercial laptop (Intel® Core™ i7 @ 2.20 GHz, 6 GB RAM). As it 

can be observed, both proposed methods always execute faster than MEC or 

AMCC. In particular, maxDeltaVar is the fastest algorithm on shorter EEG 

segments (up to 2 s), while tCCA and fCCA show a much slower increase in 

execution time over the whole window length span. Also, fCCA always 

executes faster than tCCA, and is the fastest algorithm from 2 s windows up. 

It is to be stressed again that the main goal here was low computational 

demand: both proposed algorithm well behave with this respect, still 

providing comparable accuracy with respect to reference methods. 

Table 3.4 gives illustrates such statement at a glance, by introducing a 

simple cost/performance index, i.e., the ratio between computational effort 

and attained accuracy for all mentioned cases, showing that proposed 

methods, in the cases at hand, always provide better indexes than other 

methods. 

 



 

 

Chapter 4 

 Building the BCI: online, self-paced 

operation 

In the last chapter, the focus was on presenting SSVEP classification 

algorithms, and two novel signal processing methods were proposed. All 

these algorithms were then tested and compared in an offline fashion. 

In this chapter, we take a step further and adapt those concepts to online, 

self-paced operation. A key concept which will allow such an improvement 

is the addition of another classification problem: i.e., recognizing 

uncertain/non informative (for SSVEP-based BCI purposes) EEG periods. 

This will allow to continuously analyze the EEG, rejecting epochs in which 

the user does not appear to be controlling the device (Non-Intentional 

Control, or NIC, periods). On the other hand, when an Intentional Control 

(IC) period is recognized, classification can be attempted as explained in the 

previous chapter. 

First, a strategy for improving accuracy is presented, based on the notion of 

a “prediction confidence index”. This will allow us to distinguish between 

NIC and IC periods, performing classification in the latter case. Building on 

top of this, an adaptive method for choosing EEG window length will be 

presented, for improving performance. 

Finally, results of an online, self-paced operating scenario will be discussed, 

pointing out the generality of the method, to the extent that many users can 

operate the BCI with the same parametric setup, thus avoiding initial 

calibrations. 
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4.1 Re-thinking previous algorithms 

4.1.1 A strategy for improving accuracy  

In order to increase the accuracy of the classification stage, one can decide 

not to make a decision whenever the level of confidence in it is not high 

enough [101],[121]. We call this “no-reliable-decision” state a neutral state, 

not to be confused with idle conditions, in which the user does not intend to 

make any choice. 

Such a “confidence indicator” can be defined in many different ways. A 

possible solution is to check for the difference in scores between the 

selected stimulus frequency and the second best. For instance, in the case of 

CCA-based methods, the difference between the correlation coefficients 

could be assumed as indicator; maxDeltaVar method could instead take the 

relative ratio between the maximum variance drop and the second largest 

drop; finally, MEC and AMCC could exploit relative ratios between 

estimated powers. We will call this indicator d. Distribution of both correct 

and mistaken SSVEP classifications with respect to d value is illustrated in 

Figure 4.1, by means of a histogram approximation. 

In order to assume d as a confidence qualifier, ideal behavior should 

associate all errors (red bars) to low values of d, with correct classification 

(blue bars) associated to largest values instead. Then, one could choose a 

suitable threshold value for d* to allow for decision: whenever d ≤ d* we 

assume a neutral condition, otherwise a decision is made.  

Again, it is desirable that the threshold does not vary with subjects, so we 

characterized the method on the whole population of the test, instead of 

relying on a per-user basis analysis. 

Histograms in Figure 4.1 show that actual distributions (although far from 

matching the ideal case) exhibit, indeed, a qualitatively sound dependence 

on parameter d. 



4.1 Re-thinking previous algorithms 83 

 

 

 

 

Figure 4.1  Distribution of wrongly (red) and correctly (blue) classified epochs (normalized to the 

sample size) as a function of the parameter d. The distributions are also plotted for different 

EEG window lengths, and for different algorithms. 

 

Figure 4.2  Error occurrence as a function of neutralization rate, at different values of threshold 

d*. In red, the original, “raw” error level, without neutralization (i.e., d* = 0). The graphs are 

plotted for different EEG window lengths. 
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Figure 4.3  Information Transfer Rate (ITR) as a function of the parameter d. The distributions 

are plotted for different EEG window lengths. 
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Figure 4.4  Accuracy as a function of neutralization rate, at different values of threshold d*. The 

red dashed line represents the original, “raw” accuracy level, without  neutralization (i.e., 

d* = 0). The graphs are plotted for different EEG window lengths. 
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A more quantitative assessment of algorithms behavior upon introduction of 

neutral condition is given in Figure 4.2, Figure 4.3, and Figure 4.4: here 

errors, ITR and accuracy are correlated to the actual fraction of neutralized 

epochs. To this purpose, for a given value of the threshold d*, a subset of 

epochs is selected, fulfilling the condition d ≥ d*; then wrong and correct 

classification are counted within the subset. 

The error number monotonically decreases with neutralization rate, as 

shown in Fig. 3: the red dashed lines there refer to the error count, when no 

neutralization is accounted for; ideal behavior here should consist of a sharp 

error reduction in the leftmost part of the graph (i.e., at low neutralization 

rates, thus rejecting the smallest fraction of epochs). As shown, tCCA and 

maxDeltaVar exhibit the best behavior with this approach, especially at 

shorter EEG time segments. 

Also, neutralization is more effective on fCCA too, with respect to AMCC 

and MEC. I.e., given a fixed budget of epochs we can afford to reject, better 

error rejection is attained. 

Overall, we observed that a threshold value of d* = 0.3 for the maxDeltaVar 

algorithm, and d* = 0.1 for all the other ones, leads to a good trade-off 

between error rejection and percentage of neutralized epochs. 

ITR can be calculated as well [12]: 

 

𝐼𝑇𝑅 = (1 − 𝑝𝑛) [log2 𝑁 + (1 − 𝑝𝑒) log2(1 − 𝑝𝑒) +

+ 𝑝𝑒 log2 (
𝑝𝑒

𝑁 − 1
)]  ∙

60

𝑇𝑤
  [bit/min], 

(3.1)  

where N is the number of classes (4 in this case), pn is the probability of the 

neutralization state, pe the probability of error, Tw the EEG segment length; 

ITR dependency on the threshold d* is illustrated by curves in Figure 4.3. 

Albeit ITR accounts for both accuracy and selection speed in a unique 

indicator, it is worth remarking again how, for the targeted application, 

selection accuracy is actually rather more relevant than speed itself, given 

the limited amount of user interactions involved. 
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Hence, in Figure 4.4, accuracy as a function of d* is also explicitly 

illustrated. Unlike the error plot, this function can also show a non-

monotonic trend, since the relative weight of errors located in the high-d tail 

increases while reducing the “valid” epoch subset. In this case, given a 

target accuracy, the best algorithm is the one which guarantees a lower 

percentage of epochs rejected from classification. As we can observe, tCCA 

and maxDeltaVar are good candidates, especially for shorter EEG windows. 

Also fCCA shows a good performance, and achieves high accuracies 

rejecting less epochs with respect to AMCC and MEC. 

On the whole, Figure 4.2, Figure 4.3, and Figure 4.4 make it evident that a 

practical range of d* exists: at lower neutralization rates, appreciable 

accuracy improvements are obtained, without implying too relevant data 

loss and thus not jeopardizing speed performance. 

4.1.2 An adaptive EEG window length choice 

The neutralization strategy described above provides a quality metric than 

can be exploited also to introduce some adaptivity in the SSVEP 

classification stage. In particular, as shown above, using shorter timeframes 

allows for reducing latency, to the potential detriment of informative 

content. We can check the quality of the current classification at runtime by 

looking at the indicator d again; we start with a short time window length, to 

be increased whenever d does not exceed a given threshold. Such 

mechanism should also improve the BCI flexibility and, in particular, its 

responsiveness towards the user. 

A simple proof-of-concept test has been carried out: just a couple of 

window lengths were exploited here, switching from 2 s to 3 s whenever the 

d threshold test fails. Of course, a more flexible scheme can be 

implemented, accounting for parametrized window lengths and increments. 

The accuracy we obtained with such an adaptive method with tCCA, fCCA 

and maxDeltaVar are reported in Table 4.1. 
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Even though the gathered data do not allow to draw a statistically significant 

conclusion, mainly due to the limited available data (due to time 

constraints), still, some promising signals that the adaptive mechanism 

could reduce the neutralization rate while retaining comparable accuracy 

were noticed. Lower neutralization rate, in turn, implies better efficiency in 

data exploitation and allows to improve the overall responsiveness of the 

system. In the future, more data will be collected to allow a more thorough 

analysis. Nonetheless, the major factor for a smooth online, self-paced 

operation is still represented by the neutralization mechanism described in 

§4.1.1. 

4.2 Going online 

Having discussed the core adaptation to the online, self-paced case (i.e. the 

neutralization mechanism), we are ready to describe this operating scenario. 

Table 4.1  Performance of the adaptive window mechanism: average (std. dev.) accuracy and 

neutralization rate. 

 Accuracy Neutralization rate 

tCCA (2 s) 96.0 % (1.5) 16.6 % (5.4) 

tCCA (3 s) 95.6 % (0.6) 19.6 % (6.3) 

tCCA (adapt.) 95.3 % (0.7) 11.8 % (4.0) 

fCCA (2 s) 94.5 % (0.9) 23.9 % (6.7) 

fCCA (3 s) 94.3 % (1.5) 14.7 % (4.8) 

fCCA (adapt.) 93.8 % (1.0) 10.0 % (3.2) 

maxDeltaVar (2 s) 95.9 % (2.5) 16.0 % (6.0) 

maxDeltaVar (3 s) 93.6 % (1.7) 13.2 % (4.3) 

maxDeltaVar (adapt.) 94.7 % (1.9) 7.0 % (3.1) 
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We will use, as an example, the tCCA algorithm; the signal acquisition and 

processing chain is the following: 

 By default, the EEG module sends a new data packet every 200 ms, 

which is the main refresh cycle. 

 After conversion and vectorization, data enter the main processing 

buffer, in the last position.  

 The length of the processing buffer is such that it can accommodate 

the largest window length of interest (typically, 4 s), plus a couple of 

seconds of older entries, left for initializing the temporal filters.  

 Data is pre-processed by applying a low-pass filter (fcut=46 Hz, with 

a 60 dB attenuation at 50 Hz), and the average is then removed.  

 The last 5 s of EEG waveforms are displayed in real-time in the 

GUI. 

 The last 3 s of EEG waveforms are used to calculate a PSD using 

Welch’s method (resolution = 1 Hz, 50% overlap between sub-

windows), and the result is displayed in real-time in a GUI sub-plot. 

 The EEG signal is standardized and fed to the classification 

algorithm. 

 The classification algorithm (e.g. tCCA) attempts classification with 

the minimum window length. If the confidence indicator meets a 

minimum threshold requirement (as it was shown earlier in §4.1.1), 

classification is validated and passed on. Otherwise, the EEG 

window is dynamically expanded until a maximum value is reached. 

If none of the attempted classification yielded a valid result, the 

epoch is neutralized. 

 Before issuing a command, classification is further processed and 

smoothed. In particular, a post-smoother averages the last 5 

classification outputs for each class (the 4 targets plus the neutral 

state): if the average for a class exceeds a given threshold, the choice 
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is validated, otherwise a null output is assumed. This further step 

contributes in lowering false positive events. 

4.3 Results 

As previously stated, in order to provide smoother operation in BCI-enabled 

control applications, we are primarily concerned with maximizing the 

accuracy (i.e. correctly classifying the command when the user is trying to 

issue one) and, at the same time, minimizing the false positives, which 

requires to be able to discern when the user is actively controlling the 

device, or is just resting or performing other tasks. 

Furthermore, we would like to adopt a general approach, in which the BCI 

is robust against changes in the user’s features, as well as against user 

changes (i.e. subject independence). 

 

Figure 4.5  Photo of the experimental setup in the online, self-paced SSVEP-BCI experiment. 
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The experimental setup is similar to that in §3.4 (4 targets blinking at 16, 18, 

20 22 Hz, 6 passive Ag/AgCl electrodes, now located over Pz, P3, P4, POz, 

O1, O2 positions); this time, though, the subject autonomously decides 

when to attend to visual stimuli and when to rest. A photograph of the 

experimental setup is shown in Figure 4.5. 

In order to assess the stability in terms of low false positive events, long, 

inactive NIC periods are introduced on purpose in each run, during which 

the subject could also talk and move.  

A total of 6 healthy volunteers (age 24-61) participated in this study. 

Table 4.2 reports the online experiment results (mean and standard 

deviation), in terms of true positive, false negative and false positive rates. 

A very good performance is achieved, both in terms of true positive and 

false positive rates. In Table 4.2, influence of the optional post-smoothing 

step is also accounted for: when no smoothing is accounted for, the “raw” 

performance of the neutralization mechanism can be assessed. In this case, 

false positives are kept to a very small amount (0.74 min
-1

 on average), in 

line with literature data [122],[123]. Such performance is further boosted by 

switching on the smoother stage: a 0.26 min
-1

 false positive rate is achieved, 

significantly improving over the state of the art (0.8 min
-1

). Inserting a 

smoothing stage comes at the expense of an increase in latency time (due to 

the summing stages of the smoother, which introduce an additional 1 s 

delay) and of an almost negligible decrease in the true positive rate 

(-1.82%); however, this does not jeopardize the user ability to effectively 

control the BCI. 

Table 4.2  Online, self-paced performance of the 4 class SSVEP-BCI: mean (std. deviation) of 

True Positive Rate (TPR), False Negative Rate (FNR), False Positive Rate (FPR). 

 TPR FNR FPR [min
-1

] 

No smoother 96.44% (0.77) 3.56% (0.77) 0.74 (0.08) 

With smoother 94.62% (0.83) 5.38% (0.83) 0.26 (0.03) 
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In evaluating such results, it is worth remarking that the parameters for the 

neutralization mechanism and the post-smoother are kept constant across all 

users and that no user-specific setup adjustment was made. Results therefore 

show that the signal processing chain is quite stable with respect to user 

variations, supporting the aimed “plug & play” vision. 

The BCI was also displayed during the Handimatica 2014 exhibition, held 

in Bologna from November 27
th

 to November 29
th

. A colleague performed 

two interactive demo sessions per day, approximately 30 min. each. The 

experimental setup was the same as above, in terms of EEG acquisition. 

Four commands allowed to switch on and off a desk lamp, as well as to 

open or close a motorized rolling shutter.  

Environmental conditions were far from the usual, lab-controlled ones; 

examples of non-idealities are: very high ambient luminosity (high-power 

spotlights), EM interference (air-conditioning motors, WiFi access points 

nearby, mobile phones), loud acoustic noise, necessity to move (partially) 

and interact with the audience. A picture from the exhibition is shown in 

Figure 4.6. 

Even though results apply to just one user (for organizational and insurance 

reasons), a remarkably low false positive rate was recorded, approximately 

0.15 min
-1

. This is an encouraging signal of possible applications outside lab 

environments for the realized device. 
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Figure 4.6  Photo of the experimental setup at the Handimatica 2014 exhibition. 



 

 

Conclusions and future developments 

The aim of this work was to develop a compact, yet flexible BCI platform, 

which, when compared to most commercially-available solutions, can offer 

an optimal tradeoff within the following boundary conditions: 

 minimal, compact, and easy experimental setup;  

 flexibility, allowing simultaneous studies of other bio-potentials (e.g. 

EMG); 

 contained costs (e.g. < 1000 €); 

 robust design, operation outside controlled lab environments; 

We then identified and discussed a possible application target for the 

realized BCI, i.e. Ambient Assisted Living system control. However, the 

adopted design methodologies, actually, make our approach more general. 

Nonetheless, considering a practical problem, such as the one indicated, 

allows us to better visualize and focus on other additional requirements. In 

particular, given the nature and dynamics of system interaction of our 

application (limited and sparse in time), the following characteristics are 

highly desirable: 

 online, self-paced BCI operation (i.e., the BCI monitors the EEG in 

real-time and must discern between intentional control periods, and 

non-intentional, rest ones, interpreting the user’s intent only in the 

first case); 

 calibration-free approach (“ready-to-use”, “Plug&Play”); 

 subject-independent (general approach). 

Given these requirements, the choice for the operating protocol fell on 

Steady State Visual Evoked Potentials (SSVEP). 
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The development flow of the present work started from the ground, 

electrical level with the realization of a suitable bio-potential acquisition 

platform. Then, we built our entire platform on top of it, addressing all the 

related aspects of storing the data, processing it in real-time, and delivering 

meaningful output. Such pervasive customization allowed us to fine-tune 

each step of this design, allowing us to craft each time the optimal solution 

for the specific needs, from the hardware level up to the software/processing 

one. 

From the hardware point of view, two hardware platforms for bio-potentials 

acquisitions were realized. Both designs achieve good results in terms of 

noise performance and costs. In particular, with reference on the latest 

release, the following results were achieved: 

 Possibility of simultaneously acquiring 16 channels with a small 

10x13 cm form factor. The module can be powered via 4xAA 

alkaline batteries, thanks to its reduced power consumption 

(≈162 mW). Price range in large scale is within 300 €. 

 Wide input dynamic range (±188 mV min.), allowing to acquire 

different bio-potentials at high resolution (24 bit, with the LSB being 

as low as, approximately, 22 nV) 

 Superior noise performance (< 1.3 μVpp over the whole signal 

bandwidth).  

 Static and dynamic performance were positively compared against a 

commercial g.tec USBamp device (§2.5.2 for the details). 

 The module was also successfully integrated within the standard 

TOBI platform. 

In this state of the research, the platform is based on MATLAB (for faster 

research and prototyping purposes) and is able to run on commercial 

laptops. It can acquire, store and process data in real-time; moreover, it 

features a GUI which can continuously display the temporal and time-

frequency evolution of the EEG signals. Update frequency was tested up to 

10 Hz, successfully, and it is usually set for 5 Hz operation. 
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From the signal processing point of view, the following results were 

achieved: 

 popular calibration-less SSVEP processing from the literature were 

studied and re-implemented inside our platform.  

 Two novel methods for offline SSVEP classification were proposed 

and favorably compared to the state of the art. 

 A methodology for improving SSVEP classification accuracy was 

presented. It is suitable for online, self-paced operation, as, it allows 

to discern between active, intentional control periods and inactive 

ones, where the user rests or is engaged in other tasks. Classification 

is attempted only in the former case, when the estimated prediction 

confidence exceeds a given value. 

 A method for dynamically scaling the observed EEG window was 

devised, allowing to improve BCI responsiveness with respect to 

fixed-length designs. 

 Performance of the 4 class, SSVEP-based BCI was tested in an 

online, self-paced experiment. The achieved sensitivity results are in 

line with the state of the art (> 95%). 

 Even more remarkably, significant improvements over the state of 

the art were achieved in False Positive Rate minimization: an 

average 0.26 min
-1

 (σ = 0.03) rate was achieved, with respect to the 

0.8 min
-1

 best value found in literature. 

 In addition, such results were achieved without any parameter fitting 

on each user: they were shared among all. This is a major step in 

looking towards “Plug&Play” approaches. 

 System performed consistently even in a relatively “harsh” scenario 

as in the Handimatica 2014 exhibition (§4.3). 

Open questions and room for improvements still remain, for example: 

 How does the system perform in mobility scenarios?  
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 Should the system include active electrodes (partially covered in 

§2.6) for reducing the impact of motion artifacts or is the signal 

processing able to compensate for that? From our experience in 

SSVEP-based BCI, where the subject somehow free to move, 

within certain limits, the latter point seems more likely. 

Nonetheless, this is not the general case: other factors, such as the 

particular BCI paradigm choice, could also call for technological 

improvements. 

 How can current SSVEP-based signal processing be improved, in 

terms of further false positives minimization and speed-up? 

 Which signals (even from other bio-potentials) could be aggregated 

to improve the BCI performance, realizing a hybrid-BCI? We are 

currently studying the integration of EMG signals to allow for a 

hybrid control, e.g. by providing an on/off switch.  

 Other BCI operating paradigms (e.g. motor imagery) could be 

integrated in our current platform as well, in the form of signal 

processing module plugins. 

 Also, it is possible to realize plugins and drivers for integrating our 

platform/hardware module into existing BCI software, such as 

BCI2000
12

, BCILAB
13

 or OpenVibe
14

. 

 

 

                                                 
12

 http://www.schalklab.org/research/bci2000 
13

 http://sccn.ucsd.edu/wiki/BCILAB 
14

 http://openvibe.inria.fr/ 

http://www.schalklab.org/research/bci2000
http://sccn.ucsd.edu/wiki/BCILAB
http://openvibe.inria.fr/


 

 

Appendix 

EEG module (rel. 2): schematics and gerber files 

In the following pages, the schematics and Gerber (PCB production) files 

for the EEG module – release 2 are presented. Some notes: 

 Gerber files for PCB production were exported in RS-274X format. 

 The PCB was produced by EuroCircuits GmbH
15

 using a standard 

pool process  

 Technological parameters: 4 layer buildup, 1.55 mm thickness, 

0.15/0.15 mm track/clearance, 0.25 mm minimum via diameter, 

HAL lead-free surface finishing. 

 Final board dimensions: 10x13 cm. 

 Components are mounted mainly on the top layer; for space 

constraints, some passive components are mounted on the bottom 

layer as well. 

 Due to the presence of fine-pitch components (pin-to-pin distance 

less than 0.65 mm), PCB mounting was performed by Elit Snc
16

 

using a standard reflow process. 

 M3-compatible screw holes allow PCB mounting in plastic 

enclosures. 

 

                                                 
15

 http://www.eurocircuits.com/ 
16

 http://www.elitparma.it/ 

http://www.eurocircuits.com/
http://www.elitparma.it/
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Figure i: Top layer Gerber files 
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Figure ii: Ground plane Gerber file 
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Figure iii: Supply plane Gerber file 
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Figure iv: Bottom layer Gerber files 
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