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Abstract 

 
 

 
 
Nowadays the topic of damage identification in structures is of primary 

interest in the field of civil, aerospace, mechanical engineering research. Indeed, 
due to the increasing use of advanced structural systems (e.g. airplanes, space 
shuttles, wind turbines, etc.) and to the aging of old structures (e.g. buildings, 
towers, bridges, etc.), the safety and reliability of structures have to be 
guaranteed to avoid catastrophic events and loss of human lives. 

The present thesis is focused on vibration-based damage identification in 
beam structures through wavelet analysis. The dissertation is arranged in six 
chapters. Chapter 1 introduces the topic of the thesis through a broad presentation 
of the state of the art of damage identification methods for structural health 
monitoring and control, with particular attention to vibration-based structural 
damage identification methods. In Chapter 2, the time-frequency technique, 
named wavelet analysis, is firstly theoretically presented and its application, 
available in the literature particularly for beam-like structures, as a damage 
detection tool both in time and in space domains is discussed. In Chapter 3, the 
mechanical models of homogeneous and fiber-reinforced cracked beams are 
presented. The models are used to simulate the real static and dynamic responses 
of beam structures for successive damage detection through wavelet analysis. 
The last three chapters of the thesis are devoted to the original findings of the 
present research. Chapter 4 focuses on the issue of border distortions in damage 
detection by continuous wavelet transform. To tackle the problem, a new 
polynomial padding method is proposed and compared with the most effective 
padding methods commonly used in the literature. In Chapter 5 the effect of 
spatial sampling in damage detection of cracked beams by continuous wavelet 
transform is thoroughly investigated through a parametric study. From the 
outcomes, some general indications on the optimal number of sampling intervals 
for an effective damage detection are obtained. Finally in Chapter 6, a new health 
structural monitoring method based on time-spatial wavelet analysis is presented 
to control the static and dynamic, elastic-plastic behaviour of a cracked fiber-
reinforced beam. The capability of the method is discussed particularly with 
respect to scale of the analysing wavelet, the noise level and the spatial sampling 
interval, considering a small crack. 

 
 





 

Chapter 1 

 

State of the Art of Vibration-based  

1 Structural Damage Identification 

 

1.1 Structural monitoring and damage assessement 

Nowadays, wherein the products cost-effectiveness conjoined to the life-
safety is one of the main production goal, reliable systems of monitoring and 
damage assessment in structures are widely required by private and government 
subjects (Worden & Dulieu-Barton, 2004; Farrar & Worden, 2007). 

Today several engineering structures are approaching or exceeding their 
initial design life. Nevertheless, for economic issues, they are still in use despite 
their aging and associated damage accumulation. For such structures, the 
assessment of their healthy becomes fundamental. Moreover, reliable Structural 
Health Monitoring (SHM) systems are of primary need at the occurrence of 
extraordinary strong events (earthquakes, explosions, hurricane, etc.) to assess, 
for example, if a building is safe for reoccupation. These systems can therefore 
significantly mitigate economic losses. 

In the past, engineers used to design ideal ‘free-damage’ structures 
withstanding given operational loading by implementing very conservative 
factors of safety, but with the result of heavy and costly structures. Together with 
the need to reduce the material costs by building lightweight systems, the 
designers assumed a ‘damage tolerant’ based approach operating at the margin of 
safety. Particularly in such cases, reliable intelligent monitoring systems become 
essential in identifying the arise of damage and in avoiding collapses. 

It is a current practice to apply time-based maintenance to several structural 
systems. For instance, missiles are retired after a given amount of captive-carry 
hours on the wing of an aircraft. A great breakthrough would be to replace the 
current time-based maintenance philosophy with the more cost-effective 
condition-based maintenance philosophy; that is, to monitor the structure state 
through a sensing system (constituted by a sophisticated monitoring hardware 
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and an effective measured data analysis procedure), so as to detect the damage 
occurrence at the earliest possible time and to intervene before the failure. 

Worden and Dulieu-Barton (2004) identify four key multidisciplinary areas 
for which structural monitoring and damage assessment are of principal concern: 

• Structural Health Monitoring (SHM); 
• Condition Monitoring (CM); 
• Non-Destructive Evaluation (NDE); 
• Statistical Process Control (SPC). 
Structural Health Monitoring (Farrar & Worden, 2007) pertains to aerospace, 

civil and mechanical engineering structures and implies a sensor network (e.g. 
optical fibres, strain gauges or acoustic devices) that monitors the on-line 
behaviour of the structure. Condition Monitoring (Bentley & Hatch, 2003) is 
analogous to SHM but is addressed to rotating and reciprocating machinery, such 
as used in manufacturing and power generation. Non-Destructive Evaluation (see 
Section 1.3.1) (Shull, 2002) is usually applied off-line to characterize and 
calibrate the severity of the damage after it has been located using on-line 
sensors. An exception to this rule is the use of NDE as a monitoring tool, for 
example for pressure vessels and rails. Statistical Process Control (Montgomery, 
2001) is process-based rather than structure-based and uses a variety of sensors to 
monitor the process output. This monitoring tool is based on verifying if the 
process changes are due to its natural inherent variability (‘process in statistical 
control’) or to a specific cause, such as a structural damage (‘process out of 
control’). 

The aforementioned areas of SHM, CM, NDE and SPC differ mainly for 
their application branches, but they exhibit common features. As an example, 
they all make use of a sensor system to acquire features of the structural 
response. Therefore, a general intelligent damage identification system for SHM, 
CM, NDE and SPC has to be designed. 

1.2 Intelligent damage identification systems 

As Worden and Dulieu-Barton (2004) highlight, a holistic approach has to 
be assumed for an intelligent damage identification: the structure and sensor 
network must be treated as one unique system at the design stage. Indeed, not 
only the structure should be monitored but also sensor failures have to be 
accounted for in such way that the whole system ‘structure-sensors’ will work 
correctly and safely. Some issues related to the design of intelligent damage 
identification systems are presented and discussed in the following. 
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1.2.1 Types of structural damage 

Firstly, let us define three main typologies of structural damage: defect, 
damage and fault. 

Due to the variability of composition and manufacturing process, all the 
materials have statistically different microstructures and varying numbers or 
shapes of inclusions, voids and other defects. These defects are inherent to the 
material and therefore are not considered as damage: the structure works in its 
design condition. 

For in-service operational and environmental loadings (fatigue, creep, 
corrosion, temperature variations, extraordinary events, etc.), the defects of the 
microstructure grow and coalesce evolving in damage. When damage develops 
into a system its behavior is adversely modified. Note that damage is in this way 
defined on the basis of the comparison between two different states of the 
system, where the initial one is often the undamaged state.  

In structural systems, damage is associated to changes of the material (crack, 
local plasticity, delamination or debonding in composite materials, etc.) and/or 
geometrical properties (e.g. changes to the boundary conditions). The structure 
operates no longer in its optimal manner but can still work satisfactorily in a sub-
optimal manner. As the damage continues to grow, the system reaches a limit 
state when it is no longer acceptable to the user. In this state damage is called 
fault. 

1.2.2 Damage identification 

The monitoring system has the objective to detect the damage that will, if not 
corrected, lead to a fault. It needs to store the necessary information in order to 
take remedial actions to restore the system to high-quality operation or at least to 
ensure safety. 

Damage identification can be regarded as a hierarchical process composed by 
five levels (Rytter, 1993; Worden and Dulieu-Barton, 2004): 

1) Detection: verify the presence of damage in the structure; 
2) Localisation: identify the position of damage; 
3) Classification: characterize the type of damage; 
4) Assessment: quantify the severity of the damage; 
5) Prediction: evaluate the residual life of the structure. 
Damage identification presents a pyramidal structure composed of different 

levels, so that each level requires the information related to the lower ones. 
There are basically two complementary approaches for structural damage 

identification: 
• damage identification is treated as an inverse problem; 
• damage identification is treated as a pattern recognition problem. 
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The first approach usually adopts a model of the structure and tries to relate 
changes in measured data from the structure to changes in the model (Friswell, 
2007). To simplify the analysis, sometimes locally linearised models are used. 
The correlation between the behavior of the real structure and that of the 
corresponding model is calculated through algorithms based on linear algebra or 
optimization theory (e.g. see model updating based methods in Section 1.3.2.7) 

The second approach is based on the idea of Pattern Recognition (PR) 
problem (Schalkoff, 1992). In the following, the PR approach to design 
intelligent damage identification systems is discussed in details. 

1.2.3 Pattern recognition approach 
Patterns represent different damage conditions, damage type (e.g. crack, 

delamination, plastic deformation), damage location and severity, etc. The major 
task in PR problem is to distinguish between different classes of patterns 
representing these conditions. Therefore, data representing different normal or no 
damage conditions have to be acquired over a period of time to form a template 
and new sets of data are compared with the template to detect damage or to 
obtain information about damage advancement.  

To detect and locate damage and to indicate the severity of damage, PR 
supervised learning scheme can be employed. From a large set of data pertaining 
to any conceivable damage condition, the algorithm defines correctly the pattern. 
However serious demands are associated with these data accessibility. Basically 
the two possible sources of such data are modelling and experiment. Modelling is 
problematic for structures geometrically or materially complex. For instance, 
Finite Element (FE) analysis of structures requiring a fine mesh can be extremely 
time-consuming; constitutive models of composite-cohesive or viscoelastic 
materials are hardly accurate; damage itself may be difficult to model, especially 
for nonlinear dynamics of structures (e.g. see an opening-closing fatigue crack). 
On the other hand, even from an experiment viewpoint the situation is not easier; 
in order to accumulate enough training data, it would be necessary to make 
copies of the system of interest and damage it in all the ways that might occur 
naturally (for high value structures like aircraft, this would simply not possible). 

An alternative to supervised learning is the unsupervised learning. The 
drawback of this approach is that it can only be used for detecting the presence of 
damage. The techniques related to the unsupervised learning are often referred to 
as novelty detection or anomaly detection methods (Worden, 1997; Worden et al., 
2000). The idea of novelty detection is that only training data from the normal 
operating condition of the structure is used for the diagnostics. A model in 
normal condition is created and data acquired during monitoring are compared 
with those of the model. If the system departs from normal condition (i.e. damage 
is develops), the algorithm detects significant deviations in the acquired data and 
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indicates novelty. Note that, from both modelling and experimental viewpoint, 
this approach is advantageous because only the training data related to the 
undamaged condition are required. However, since novelty detection method is 
only suitable for damage detection, it is applicable to safety critical systems, 
where any occurrence of damage would require to take the system out of service. 

In line with the PR problem approach, an intelligent damage identification 
system, function of the case-situation, should be designed to: measure the 
appropriate data (operational evaluation and sensor network design), pre-process 
the data with the opportune algorithms (data pre-processing), magnify damage 
features eliminating redundancy-worthless data (feature extraction and data 
reduction) and operate on the extracted feature vectors to quantify the damage 
state of the structure (pattern recognition) (e.g. see Fig. 1.1). In the following 
sections, these steps are analysed in details. 

 

 
 

Fig. 1.1 – Schematic of a multi-sensor intelligent damage identification system (after 
Staszewski, 2002). 

1.2.3.1 Operational evaluation 
The first aim of an intelligent damage detection system for SHM is to 

measure the appropriate data. In general, the design of the monitoring system 
should deal with queries such as following pointed out by Worden and Dulieu-
Barton (2004) and Farrar and Wonder (2007): 

(i) What are the life-safety and/or economic justification for performing the 
monitoring? 
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(ii) How is damage defined for the investigated system and, in case of 

multiple damage types, which type is of the most concern? 
(iii) What are the conditions, both operational and environmental, under 

which the system should be monitored? 
(iv) What are the limitations on acquiring data in the operational condition? 
(v) Which is the appropriate level of monitoring as a function of the context-

specific features? 
Each of the abovementioned requirements needs to substantially support the 

design process. According to point (ii) for applying a supervised learning scheme 
for the diagnostics, training data are required. Hence, in order to build a model or 
design an experimental programme to generate training data, firstly the expected 
damage features (type, severity, location, etc.) has to be specified. Then, knowing 
the likely damage locations (the so-called ‘hot spots’), one can choose whether to 
design a local or a global monitoring system or a hybrid one. For example, the 
supposed ‘hot spots’ can be inspected using a high-resolution local method, while 
the rest of the structure can be monitored using a less sensitive but global 
vibration-based method. 

As highlighted in Section 1.2.2, care should be taken to point (iii) when 
designing a monitoring system. If the data used to characterize the normal 
operating condition does not span the whole range of conditions, the system will 
erroneously diagnose damage instead of an operational or environmental change. 
Some examples of systems where this occurs are: offshore structures changing 
their mass because of oil storage and/or marine fouling, aircrafts before and after 
dropping a load, bridges in desert areas undergoing substantial temperature 
changes from day to night. 

1.2.3.2 Sensor network design 
The decision of the appropriate sensor system for the structure is one of the 

most critical issue in the specifications of a monitoring system. Indeed there can 
be no monitoring without the appropriate sensor system. The choice of the 
optimal type and location of the sensors is a primary matter. The knowledge of 
the expected damage types and structure ‘hot spots’ can drive this choice. Also, 
the decision between local and global monitoring must be taken at this stage.  

Given the so-called holistic approach to health monitoring, even the sensor 
network is deemed to be monitored. Indeed a fault in the sensor network will 
have undesirable consequences: a sensor failure that causes an unnecessary alarm 
may cause the system to be needlessly taken out of service; a sensor failure that 
causes a structural damage to go unnoticed may have severe costs or safety 
implications.  

There are essentially two approaches in monitoring the sensors. The first 
approach consist of individual sensors that can be self-monitoring (e.g. Henry & 
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Clarke, 1993). This kind of sensors is capable of self-diagnostics and also returns 
the on-line uncertainty of the measurements. The alternative approach is to allow 
the sensors to monitor each other as shown by Kramers (1991 and 1992). This 
approach is suitable for sensors which cannot accommodate substantial 
electronics (e.g. accelerometers). Since the sensor outputs are correlated, there is 
a redundancy in the sensor network, so that, not only the identification of 
defective sensors is allowed, but also approximate values of what the defective 
sensors should read are generated. 

Note that the redundancy feature for an intelligent monitoring system is 
crucial. If a sensor is diagnosed as defective, the information that would have 
been delivered by the sensor should be available elsewhere. During the design 
stage, the issue of sensor optimization is to be dealt with. The simplest approach 
is to collocate sensors at critical points, but to keep only one active at a given 
time: redundant sensors are switched in when damage occurs to an active sensor. 
Another approach is to overdesign the sensor network in such a way that damage 
to a single sensor still leaves a network which is optimised for monitoring in the 
desired manner (the fail-safe sensor optimization approach is discussed in 
Staszewski et al. (2000)). 

The new technology of piezoelectric sensors, like piezoceramic or 
piezopolymer sensors, given their ability to act as both sensors and actuators, 
allows the possibility of active validation for monitoring. In turn, each sensor can 
act as a signal generator and the response of the other sensors can be compared 
with a template to verify their health accuracy. 

Once the operational evaluation stage is fulfilled and the sensor network has 
been designed, system response data can be delivered. The choice and 
implementation of algorithms to process the data and carry out the identification 
is a most crucial ingredient of an intelligent damage identification strategy. All 
the actions, between the data acquisition by sensors and the ultimate decision 
about the system health, are collected in the Data to Decision (D2D) process 
(Lowe, 2000) which is based on the idea of data fusion. The concept of data 
fusion is to integrate multiple data and knowledge representing the same object 
into a consistent, accurate and useful representation. As an example, sensor 
fusion, also known as multi-sensor data fusion, is a subset of information fusion 
in which all the relevant information generated by the sensor network with 
different types of sensors are fused together. In general, information can be 
combined at any stage of the process. The objective is basically to reach the final 
decision with higher confidence than the on which could be reached using any of 
the information sources alone. 
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1.2.3.3 Data pre-processing  
The data pre-processing has the purpose to elaborate the raw data acquired 

by the sensors and to prepare these for the feature extraction. The pre-processing 
stage encompass three tasks: data normalization, data cleansing and data 
reduction.  

Data normalization helps to generalize amplitude levels for different types of 
data. It often identifies relationships between measurements and features. As it 
applies to SHM, data normalization process aids to separate changes in sensor 
reading caused by damage from those caused by varying operational and 
environmental conditions (Sohn, 2007). If measured inputs are available, the 
most common procedure is to normalize the measured responses with respect to 
them. On the other hand, when environmental or operational variability is an 
issue, it is opportune to normalize the data in some temporal manner to facilitate 
the comparison of data measured at similar times of an environmental or 
operational cycle. 

Data cleansing is the process of selectively choosing data to pass on or to 
reject for the feature extraction process. Examples of cleansing processes are: 
noise and spike removal, reduction of outliers and treatment of missing data 
values. A large variety of signal processing procedures in smoothing and 
denoising is available, including mean averaging techniques, many low-pass 
filters, such as the Wiener filter and the Savitzky-Golay filter (Hamming, 1989) 
and wavelet-based denoising techniques (usually composed of three steps: 
orthogonal wavelet transform, thresholding of wavelet coefficients and inverse 
wavelet transform; Mallat, 2001). Data fitting is a further smoothing process 
which identifies unwanted, temporal relationships in the data. Outliers, on the 
other hand, are signals which are statistically far from the normal selection of 
observed signals. They can be eliminated using standard statistical analysis based 
on probability density or distribution estimation. 

Another possible pre-processing process is the reduction of the dimensions of 
the data vectors with signal denoising. The aim would be to reduce the dimension 
of the data set from possibly many thousands to perhaps a hundred. For example, 
given a random time-series with many points, it is often useful to represent the 
data in frequency-domain by Fourier transform. If the signal is divided into 
contiguous blocks before transformation and the resulting spectra are averaged, 
the number of points in the spectrum can be much lower than in the original 
time-history and noise is averaged away. By treating the time signal in this way, 
another advantage is that the data vector obtained should be independent of time, 
and if, the original time-series is random, it makes little sense to compare 
measurements at different starting times. 

Data pre-processing stage is a very delicate and case-dependent task and has 
to be carried out on the basis of engineering judgement and experience. Finally, 
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note that the pre-processing process should not be static: from the feature 
selection and the pattern recognition process insight can arise to improve the 
process. 

1.2.3.4 Feature extraction and data reduction 
Feature extraction process is fundamental in the damage identification 

problem and have received a great attention in the technical literature. Its task is 
to emphasize the characteristics of the various damage features and to suppress 
background effects. Once damage dominant features are isolated in the data, the 
problem of damage identification can be easily solved. However, in general, the 
components of the signal concerning the various damage features are hidden by 
those related to the normal operating conditions of the structure, particularly 
when the damage is not severe.  

There exists a number of different types of procedures used for feature 
extraction. Simple methods are based on data reduction procedures in order to 
obtain scalar features, e.g. maximum amplitude. Advanced procedures leads to 
vectorial or pattern representations such as power spectrum.  

Hereafter some common feature extraction methods are presented. As an 
example, suppose to have measured time-series data that has been pre-processed 
and converted into an averaged spectrum. In such a situation, the isolation of the 
harmonics sensitive to damage could be a strategy of feature extraction. More in 
general, a common method is based on correlating measured response quantities 
(e.g. vibration amplitudes or frequencies) with the first measurements of the 
degrading system. Another method is to apply engineered flaws, similar to ones 
expected in the actual operating conditions, to the system in order to understand 
the response to the expected damage. The flawed system can also be used to 
check if the diagnostic measurements are sensitive enough to distinguish features 
of damage. Furthermore, numerical tools, such as experimentally validated FE 
models with or without damage, can be used to perform numerical experiments 
in order to characterize the damage features in signals. Damage accumulation 
testing, (e.g. fatigue testing, corrosion growth, temperature cycling, etc.), during 
which structural components of the system are degraded by submitted them to 
real operational and environmental conditions, can also be used to identify 
appropriate damage features. 

A data dimensionality reduction process can be advantageous and necessary 
for an effective pattern recognition when many feature sets, e.g. obtained over an 
extend period of measurements on the structure, must be compared. In order to 
achieve reduction of dimensionality, one can reduce a number of features, 
combine existing features into new features or select a subset of features. There 
exist two major categories of feature reduction procedures. The first one involves 
the process of reducing redundancies in the feature space. The second includes 
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linear (e.g. the principal component analysis) and nonlinear transforms, and 
mapping techniques. However, the data dimension reduction has to be carried out 
carefully in order not to discard information relevant for diagnosing the damage. 

1.2.3.5 Pattern recognition 
Once features related to damage are extracted into continuous, discrete or 

discrete-binary variables and arranged in vectors or matrices, damage detection 
can be regarded as a problem of pattern recognition. It needs to operate on the 
extracted features in order to quantify the damage state of the structure. 

Three different methods, namely syntactic, neural and statistical, are mainly 
used in PR (Schalkoff, 1992). All these methods can applied to either the 
supervised or the unsupervised learning: it depends on which level of damage 
identification is required (see Section 1.2.1). Syntactic pattern recognition 
classifies data according to its structural description (Bunke & Sanfeliu, 1990). 
Neural networks have been established in recent years as a powerful tool for 
pattern recognition (Ripley, 2007). Artificial neural networks map the input data 
into selected output categories using artificial neurons and learning processes that 
simulate the biological nervous system. For satisfactory results a significant level 
of network training is required. Statistical methods use probabilistic models to 
form and estimation/decision theory to classify patterns (Jain et al., 2000). These 
algorithms can be divided mainly into three categories: novelty detection, group 
classification and regression analysis. Statistical PR approach is appropriate for 
SHM since it can distinguish among statistical fluctuations in the data and real 
deviations due to changes of operating and environmental conditions or to 
anomalies (Worden & Dulieu-Barton, 2004 and Farrar & Worden, 2007). 

The statistical and neural  models are also used to minimize false indications 
of damage, such as: (i) false-positive damage indication, i.e. indication of 
damage when none is present, and (ii) false-negative damage indication, i.e. no 
indication of damage when damage is present. The first type of errors are 
undesirable, as they will cause unnecessary downtime and loss of profit and of 
confidence in the monitoring system. Instead, safety issues can be clearly 
provoked by the second type of false indication. 

The presence of noise in signal limits strongly the damage identification 
system in all its stages. A trade-off between the diagnosis resolution and the de-
noising capability of the algorithm is needed. As noise-free data present very 
little fluctuations in the measurements from normal operating condition, small 
damages cause detectable signal deviations. On the other hand, when some noise 
is present on the training data, it is difficult to distinguish between fluctuations 
due to noise and deviations due to damage unless the damage is severe. 
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1.3 Damage identification methods 

Many damage identification methods have been developed to highlight, from 
the data obtained by the sensors, the damage characteristics (presence, location, 
extent, etc.) in comparison to those of the healthy structure in its operational 
conditions. Focusing on the non-destructive damage identification methods, these 
can be distinct primarily in classical nondestructive evaluation methods and 
vibration-based damage identification methods. 

1.3.1 Classical nondestructive evaluation methods  

Nondestructive evaluation (NDE) methods, sometimes referred to as 
nondestructive inspection (NDI), nondestructive testing (NDT) or nondestructive 
examination (NDEx), are the historically first damage identification methods 
developed by researchers. The most widely used techniques (American Society 
for Metals, 1989; Doherty, 1991; Malhotra, & Carino, 2004) are: 

- visual inspection; 
- liquid penetrant method; 
- acoustic emission method; 
- ultrasonic method;  
- magnetic particle or field methods;  
- radiography methods;  
- electric or eddy current methods;  
- thermal field methods.  
These damage detection methods do not need any benchmark data or 

theoretical models of the undamaged structure and assess directly the damaged 
structure. Their application requires to know a priori the damaged portion of the 
structure to be inspected and to be readily accessible. The damage is analysed 
mainly on or near the surface of the structure and, consequently, the damage 
investigation is essentially local. The damage diagnostic turns out to be very 
effective for small and regular structures, such as pressure vessels, or some 
special components of a structure, whilst it is difficult to be applied for large and 
complex structures. The need to investigate the global behavior of these 
structures, such as multi-store buildings, bridges, or aerospace systems, has led to 
the development of methods that examine changes in the vibration characteristics 
of the structure. 

1.3.2 Vibration-based damage detection methods 

The basic idea of vibration-based damage detection is that damage alters the 
physical properties of the structural system (stiffness, damping and mass) and 
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consequently, its measured dynamic and static response. Often, damage detection 
methods investigate the change of the modal properties of the system (notably 
natural frequencies, damping ratios, modal shapes). However, despite its 
intuitively simple basic concept, several technical aspects make difficult the 
actual application of vibration-based damage detection technology, which is still 
nowadays an open research topic in many engineering fields.  

Yan et al. (2007) highlight that a significant development has occurred in 
vibration-based structural damage detection techniques, so that they can be 
divided into traditional-type damage detection methods and modern-type damage 
detection methods, also called intelligent damage diagnosis.  

The traditional-type vibration-based damage detection methods are mainly 
based on the structural natural vibration characteristics, such as natural 
frequencies, modal shapes, modal damping (Sections 1.3.2.2 – 1.3.2.7). The 
damage location and severity can be determined through finding the difference of 
dynamic characteristics between the intact and damaged structural conditions. 
Generally the dynamic characteristics related to the undamaged state of the 
system are gathered from baseline data or from a baseline analytical/numerical 
model: the damaged state of the system is found out from the measured data of 
the natural frequencies or mode shapes. However, as it will be exposed in-depth 
in Sections 1.3.2.2 – 1.3.2.7, these kinds of methods, due to some disadvantages, 
have lost research interest in the past decade. Experimental modal analysis or 
transfer function measures are required, which are expensive, time-consuming 
and very unsuitable for online in service detection of structures because of their 
instruments and manual operations. Moreover, it is difficult to model accurately 
the undamaged state of the structure and to establish a universal methodology for 
various structures. Finally, in general these methods are not sensitive to initial 
tiny damage. 

The modern-type methods (Sections 1.3.2.8 - 1.3.2.11) refer to structural 
damage detection methods based on online measured response signal of 
structures in service. These methods mainly use modern signal-processing 
techniques and artificial intelligence to analyze the structural response and to 
extract useful characteristic information of the structural damaged status. 
Advantages of these techniques are to be less dependent on experiments and on 
the structural shape, more economical and feasible online, and to be able to 
detect small structural damage. Some of the open problems to be solved are as 
follows. Measured signals are usually contaminated by noise so information from 
tiny damage in structures may be masked; these methods have to rely on the 
environment excitation to the structures (output-only damage identification); the 
selection and construction of the sensitive feature index of structural damage are 
very flexible and variable. Representative methods among them are the time-
frequency techniques (e.g. wavelet analysis, Hilbert-Huang transform), genetic 
algorithms and artificial neural networks. 
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The effects of damage on the structure can be classified as linear or 
nonlinear. Indeed, in consequence of a damage, the initially linear-elastic 
behavior of the structure can remain linear or can turn into nonlinear. A typical 
example of nonlinear damage is the formation of a mode I crack that, under 
operating dynamic loadings, opens and closes. Initially, researchers tackled this 
damage identification problem by assuming the damaged system behaves in a 
linear manner. Only in the past few years vibration-based damage identification 
has been tackled considering the nonlinear behavior of the system (Farrar et al., 
2007). Traditional-type methods focus primarily on linear damage detection, 
while the modern-type methods consider both linear and nonlinear ones. 

Before presenting traditional-type and modern-type vibration based damage 
identification methods, a brief summary of the first research applications of these 
techniques in various engineering braches is illustrated. An extended review of 
vibration based damage identification methods can be found in Doebling et al. 
(1996), Sohn et al. (2003), Carden and Fanning (2004) and Yan et al. (2007). 

1.3.2.1 Brief historical background 
As explained by Farrar et al. (2001), the development of vibration-based 

damage detection methods occurred concurrently with the evolution, 
miniaturization and cost reductions of Fast Fourier Transform (FFT) analyser 
hardware and computing hardware.  

Until now, the monitoring of rotating machinery is the most successful 
application of vibration-based damage identification (Heng et al., 2009; Randall, 
2004a,b). The damage detection is based almost exclusively on non-model based 
approach, which consists in analyzing the time histories or spectra generally 
measured on the housing of the machinery during its normal operating 
conditions. Thanks to wide databases, specific types of damage (as for example, 
loose or damaged bearings, misaligned shafts or chipped gear teeth) can be 
identified from particular features of the vibration signal. Moreover, for these 
systems, the approximate location of the damage is generally known through 
FFT. In the past decades, the application of CM has moved from a research topic 
to industrial practice, so that commercial software integrated with measurement 
hardware is marketed to help the user to apply systematically this technology to 
operating equipment. During the 1970s and 1980s, the oil industry made 
considerable efforts to apply vibration-based damage detection for offshore 
platforms. Since, in this case, the damage location is unknown and the majority 
of the structure is not readily accessible for measurement, a methodology 
attempted to correlate the changes in the resonant frequencies found in numerical 
models simulating various damage scenarios with those measured on the 
platform. After extended efforts, this technology was abandoned in the early 
1980s since the hostile environmental context, the platform machine noise, the 
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changing mass caused by marine growth and varying fluid storage levels, and 
other causes were sources of many practical measurements problems. 

During the late 1970s and early 1980s, in conjunction with the development 
of the space shuttle, even the aerospace community began to study the use of 
vibration-based damage identification. Hereafter the research continued for the 
National Aeronautics and Space Administration’s space station and reusable 
launch vehicle. The Shuttle Modal Inspection System (SMIS) was developed to 
identify fatigue damage in components such as control surfaces, fuselage panels 
and lifting surfaces. The traditional local NDE methods could not be applied 
since the inaccessibility of those portions of the shuttle, covered with a thermal 
protection system. The SMIS resulted to be successful and since 1987 it has been 
used to test periodically all orbiter vehicles. Space station applications primarily 
consisted of damage-detection methods based on correlating analytical models of 
the undamaged structure with measured modal properties from both the 
undamaged and damaged structure. To locate and quantify the damage are used 
the changes in stiffness indices, as assessed from two model updates. The 
development of a composite fuel tank for a reusable launch vehicle at the mid-
1990s motivated the study of damage identification methods for composite  
materials. For this kind of materials and their failure mechanisms, such as 
delamination, a SHM based on fibre optic sensing systems was considered more 
effective. Boller & Buderath (2007) discuss and emphasize the impact of SHM as 
a mean of possibly revolutionizing the current aircraft design and maintenance 
processes.  

Since the early 1980s, the civil engineering community has studied vibration-
based damage assessment of bridge structures and has observed that significant 
challenges are related to the environmental and operating condition variability 
and the physical size of these structures. Modal properties and quantities derived 
from these properties, such as mode-shape curvature and dynamic flexibility 
matrix indices, have been the main features used to identify damage in bridge 
structures. For instance, regulatory guidelines in  Eastern Asia countries, which 
require the companies to periodically certify the structural health of the 
constructed bridges, have encouraged research and development of vibration-
based bridge monitoring systems. To further examine the applications of SHM to 
civil engineering infrastructure one might refer to Brownjohn (2007) and Lynch 
(2007) are suggested. 

1.3.2.2 Natural frequency based methods 
The observation that changes in structural stiffness and mass properties cause 

changes in vibration frequencies prompted the use of modal methods for damage 
identification and health monitoring. The damage identification methods based 
on natural frequency changes are one of the first modal based methods 
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developed, given the ease to measure the natural frequencies (only a single 
sensor is required in many applications). A wide review of these damage 
detection techniques is found in Salawu (1997). 

As shown by many researchers, natural frequency shifts for damage 
identification can successfully be used in small simple laboratory structures with 
only a single damage location. Adams et al. (1978) and Cawley and Adams 
(1979) analyse several laboratory bars and, through the ratio of the axial 
resonance frequency changes related to two modes, evaluate successfully the 
location of moderate damage levels. The authors demonstrate that the 
measurement of one pair of frequencies yields a locus of possible damage sites. 
By evaluating the loci of several pairs of modes, the actual damage site can be 
determined by the intersection of the curves. Narkis (1994) develops a closed-
form solution for the inverse problem of determining in a simply supported beam 
the location of a single crack from the first two, either bending or axial, 
frequency shifts. The proposed method is confirmed by means of FE analysis and 
it results independent of crack size, shape and configuration. Lee and Chung 
(2000) present a method using the first four natural frequencies to locate and 
calibrate the size of a single crack in cantilever beams. The application and 
accuracy of the procedure is demonstrated through an experimental test. 
Nikolakopoulos et al. (1997) experimentally identify a single crack in a single 
storey frame from shifts in the first three natural frequencies. The location and 
depth of the crack is determined from the intersection of the contour plots for all 
variations of location and depth against change in the natural frequencies. 

The use of frequency shifts appears not to be effective in identifying multiple 
damage scenarios, even for simple laboratory structures. As an example, Messina 
et al. (1996) propose a Multiple Damage Location Assurance Criterion 
(MDLAC), later extended in (Messina et al., 1998), by introducing a linearised 
sensitivity and statistically based method able to locate and size single or 
multiple damages. The method requires only the measurements of the changes in 
a few of the structural natural frequencies between the undamaged and damaged 
states. Its effectiveness is verified numerically on two truss structures and 
experimentally on a three-beam test structure with up to two damage locations.  

In the light of the above, despite the large amount of research work related to 
this class of damage identification methods, successful algorithms are limited to 
the identification of a single or few damage locations in small simple laboratory 
structures. Since modal frequencies are a global property of the structure, 
generally frequency shift can be used only to detect the presence/absence of 
damage, while limitations arise for example to uniquely identify the damage 
position or distinguish its typology (Kessler et al., 2002). An exception to these 
limitations occurs at higher modal frequencies, where the modes are associated 
with local responses, but the excitation and the extraction of these local modes 
turn out to be difficult in practice. The rather low sensitivity of frequency shifts 
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to damage requires either very precise measurements or significant levels of 
damage to locate and quantify it (Farrar et al., 1994; Chen et al., 1995; Palacz & 
Krawczuk, 2002).   

1.3.2.3 Mode shape based methods 
Many modal analysis techniques are available for the extraction of mode shapes 
from the data measured in the time domain (Heylen et al., 1997; Ewins, 2000). 
Damage detection methods are developed for the identification of damage based 
directly on measured mode shapes or mode shape curvatures.  

Two commonly used methods to compare two sets of mode shapes are the 
Modal Assurance Criterion, MAC (Allemang & Brown, 1982) and the 
Coordinate Modal Assurance Criterion, COMAC (Lieven & Ewins, 1988).The 
MAC value can be considered as a measure of the similarity of two mode shapes. 
A MAC value of 1 is a perfect match and a value of 0 means they are completely 
dissimilar. Therefore, the reduction of a MAC value may be an indication of 
damage. Salawu and Williams (1995) test a reinforced concrete bridge before and 
after repair and observed that the modeshape based MAC method is a more 
robust technique for damage detection than shifts in natural frequencies.  

The COMAC is a parameter pointwise measuring of the difference between 
two sets of mode shapes and takes a value between 1 and 0. A low COMAC 
value would indicate discordance at a point and thus can be used as damage 
location indicator. Frýba & Pirner (2001) apply the COMAC method to check the 
quality of a repair to a prestressed concrete segment bridge. The analysis 
confirms that the repaired segment responses tend to be consistent with that of a 
undamaged segment. 

A drawback of many mode shape based methods is the necessity of having 
measurements from a large number of locations. Khan et al. (2000) use a 
scanning Laser Doppler Vibrometer (LDV), allowing for a dense grid of 
measurements, to measure mode shapes in a steel cantilever beam, a steel 
cantilever plate and concrete beams, containing cracks. Since in thick metal 
structures defects are detectable only when their depths are more than half of the 
structure thickness, it may be concluded that, despite the potentiality of the 
scanning LDV, improvements in reducing the noise interference would be 
necessary for a successful application to actual field structures. 

Araújo dos Santos et al. (2000) describe a damage identification algorithm 
based on the orthogonality conditions of the mode shape sensitivities. The 
algorithm is applied to a plate with reduced stiffness to simulate damage. The 
results are compared with those obtained by using the mode shape sensitivities 
and are found to be more accurate. The same orthogonality based technique is 
applied by Ren & De Roeck (2002a; 2002b) to a laboratory scale concrete beam. 
They conclude that, although mode shape based methods are effective with 
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simulated data, there are significant difficulties in the application to real 
structures, due to noise and measurement errors, mode shape expansion of 
incomplete measurements and accurate modelling of test structures. 

Pandey et al. (1991) are the first through analytical and FEM beam models, 
to show that the curvature modeshape can be a successful parameter for 
identifying and locating damage. The curvature modeshapes are calculated using 
a central difference approximation from the simulated displacement modeshapes. 
Furthermore, the authors underline that the changes in the curvature mode shapes 
increase with increasing size of damage and this increase, more pronounced than 
that related to the changes in the displacements of the mode shapes, can be used 
to calibrate damage severity.  

Modal curvature based methods are applied also on measured data to identify 
damage. Rathcliffe & Bagaria (1998) use a gapped smoothing method to 
successfully locate a delamination in an experimental composite beam. The 
curvature shape is calculated using Laplace’s difference equations from the 
displacement mode shape and is then locally smoothed using a gapped 
polynomial at each point. Through the difference between the curvature and the 
polynomial at each point, the damage index is defined: the largest index indicates 
the location of the delamination. Wahab and De Roeck (1999) apply successfully 
a curvature-based method to the Z24 Bridge in Switzerland. They introduce a 
damage indicator named the curvature damage factor, equal to the difference in 
curvature before and after damage averaged over a number of modes. They 
conclude that the use of modal curvature to locate damage in civil engineering 
structures seems promising.  

The number of modal curvatures useable in damage identification routines is, 
naturally, limited to the available number of displacement mode shapes. In an 
effort to increase the amount of data available for input into damage 
identification routines, Sampaio et al. (1999) extend the curvature approach to all 
frequencies in the measurement range by using FRF data. This method is tested 
with data related to an intentionally damaged bridge and it is found to have 
higher performance than the curvature method. 

In conclusion, despite the weak points of measuring mode shapes (mode 
shapes measurement accuracy is lower than that of the natural frequencies, see 
Farrar et al., 1997 and Doebling et al., 1997, and measured vibration modes are 
often incomplete so that they have to be expanded with a consequent increase of 
measurements errors) mode shape based methods, since they contain more 
damage information, are more robust than natural frequency based methods to 
detect, locate and calibrate damage. 

Researchers have investigated other methods, such as that using operational 
deflection shapes (Schwarz & Richardson, 1999; Pai & Young, 2001; Waldron et 
al., 2002), which are very similar to mode shapes, and other methods based on 
more complex formulations involving the use of natural frequencies and mode 
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shapes (modal strain energy based methods, see section 1.3.2.4, dynamically 
measured flexibility based methods, see section 1.3.2.5, and model updating 
based methods, see section 1.3.2.7). 

1.3.2.4 Modal strain energy based methods 
When a given vibration mode stores a large amount of strain energy for a 

particular structural load path, the frequency and shape of that mode are highly 
sensitive to changes in the load path. Consequently, changes in modal strain 
energy can be considered as indicator of the damage location. The strain energy, 

iU , in a Euler-Bernoulli beam of length l associated with a particular mode 
shape, iφ , may be calculated from: 
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where EI = bending stiffness, x = axial coordinate. The curvature required for this 
calculation is commonly extracted from the measured displacement mode shapes 
using a central difference approximation. 

Kim and Stubbs (1995) apply a damage identification algorithm to locate and 
calibrate a single crack in an experimental plate girder. The method locates up to 
two damage sites in a simulated plate girder and quantifies the damage on the 
basis of the ratio of the modal strain energy of elements before and after the 
damage. Cubic spline functions are used to interpolate the incomplete mode 
shapes and produce a curvature function to calculate the modal strain energy. It is 
found that false-positive and false-negative damage indications are strongly 
influenced by the quality and amount of available modal information. Later, Kim 
and Stubbs (2002) derive a new damage index in a simulated two span beam, 
enhancing the accuracy of damage localization in comparison with the method 
proposed in their previous work (Kim & Stubbs, 1995). 

Law et al. (1998) introduce the Elemental Energy Quotient (EEQ), defined as 
the ratio of the modal strain energy of an element to its kinetic energy. The 
difference in the EEQ before and after damage is normalised and averaged over 
several modes and used as a damage location indicator. The method is first 
demonstrated on a simulated space frame and is shown to be successful when 
10% random noise is added. The method is also successfully applied to an 
experimental two-storey plane frame with up to two joints loosened to simulate 
damage. Based on the intuitive concept that mode shapes are more sensitive to 
local changes in stiffness in the damaged ports than in the undamaged ones , Shi 
et al. (2000) present an algorithm focused on the largest changes in modal strain 
energy in the damaged area. The change in modal strain energy before and after 
damage is used successfully to locate the damage in an experimental steel frame. 
The quantification of damage is based on the calculated sensitivities of the modal 
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strain energy. In an effort to compare methods, Kim et al. (2003) apply both a 
frequency based and a modal strain energy based method to identify a single 
damage location and size in a simulated beam using two modes. It is found that 
the modal strain energy method gives a more accurate prediction of damage 
location than the frequency based method. 

1.3.2.5 Dynamically measured flexibility based methods 
The flexibility matrix is defined as the inverse of the stiffness matrix and, 

therefore, relates the applied static forces to the resulting structural 
displacements. Each column of the flexibility matrix represents the displacements 
associated with a unit force applied to a given Degree Of Freedom (DOF). 

The dynamically measured flexibility matrix, F , is generally estimated from 
TΦΦΛF 1−=  1.2 

where Φ  is the matrix of measured mode shapes and Λ  is the associated  
diagonal matrix of squared measured modal frequencies.  

As shown by Pandey and Biswas (1994), the flexibility matrix can easily and 
accurately be estimated from a few lower frequency modes of vibration of the 
structure, which are the easiest to be measured. Indeed the effect of high-
frequency components in the flexibility matrix rapidly decrease with the increase 
of natural frequency. Using both simple analytical beam models and 
experimental data related to a wide-flange steel beam, the authors demonstrate 
the effectiveness of the changes in the flexibility matrix in detecting the presence 
of damage and in localising it. 

Yan and Golinval (2005) present a damage diagnosis technique based on 
changes in both dynamically measured flexibility and stiffness of structures. A 
subspace identification technique is applied for the identification of modal 
parameters, from which the measured flexibility matrix can be constructed. The 
corresponding stiffness matrix is obtained by a pseudo-inversion of the flexibility 
matrix. Damage localisation is achieved by analyzing the changes in these two 
measured matrices in moving from the reference state to the damaged state. Note 
that the combined consideration of both the two matrices provides more reliable 
information on damage location. Furthermore, since the location of damage is 
connected directly with the position of sensors, no geometrical measurements 
and FE models are needed. Simple numerical and experimental applications are 
presented to show the efficiency the limitations of the method. Simple numerical 
and experimental applications of the method show that its efficiency requires a 
sufficient number of well distributed sensors but, if the damage is too small, it 
may be masked by numerical errors. 

In a review study of modal parameter based methods, Zhao and DeWolf 
(1999) examine the sensitivity to damage of the modal flexibility based method 
with respect to the natural frequency and the mode shape based methods. By 
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applying the methods to a simulated five DOFs spring-mass system, the modal 
flexibility method results to be the most sensible to damage. On the other hand, 
Farrar and Doebling (1999) compare the strain energy, the mode shape curvature 
and the changes in flexibility based methods in locating damage on an I-40 
bridge over the Rio Grande in America. Four controlled damage states are 
investigated and the strain energy based method, followed by the mode shape 
curvature based method, is found to be the most successful one.  

In conclusion, at the occurrence of damage in a structure, changes in the 
stiffness matrix generally provide more information than those in the mass 
matrix. However, if the damage is small, this method is not effective. 

1.3.2.6 Frequency response function based methods 
Some authors investigate the use of Frequency Response Function (FRF) 

measurements, as an alternative to the modal data extracted from the FRF 
measurements. According to Lee and Shin (2002) there are two main advantages 
of using FRF data. Firstly, modal data are derived data and hence can be 
contaminated by modal extraction errors in addition to measurement errors. 
Secondly, a complete set of modal data can be measured only in simple 
structures. In addition, FRF data can provide much more information on damage 
in a desired frequency range in comparison  to modal data that are extracted from 
a very limited range around resonances. The drawback of FRF methods is that 
the accuracy of structural damage detection is strongly dependent on the amount 
and position of measurement points.  

Wang et al. (1997), considering an original analytical model and FRF data 
measured before and after damage, formulate an algorithm based on nonlinear 
perturbation equations of FRF data, to locate and quantify the structural damage. 
The proposed algorithm is also extended to cases of incomplete measurement in 
terms of coordinates by means of an iterative procedure. The validity and 
applicability of the method is demonstrated through numerical and experimental 
studies on a 3-bay plane framed structure. 

Fanning and Carden (2003) propose a damage detection methodology which 
requires a single measured FRF of the damaged system sampled at several 
frequencies and a correlated numerical model of the structure in its initial state. 
The method is successful in detecting stiffness changes in a numerically 
simulated 2-D frame structure and is shown experimentally to be able to detect 
additional lumped masses in a lattice steel tower (Fanning & Carden, 2004). Park 
and Park (2005), using only measured frequency-response functions without a 
baseline model, develop a method which reduces the experimental load by 
detecting damage within a substructure.  

Since measurements are always contaminated by noise and sufficient 
measurement data are often difficult to obtain, Furukawa et al. (2006) present a 
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damage identification method for uncertain FRFs. The structural damage is 
detected according to the changes in FRFs from the original intact state. The 
method iteratively zooms into the damaged elements by excluding the elements 
which are labelled as undamaged from the damage candidates. 

1.3.2.7 Model updating based methods 
Many damage identification methods are based on updating the physical 

parameters (e.g. mass, damping and stiffness matrices) of the numerical model of 
the structure (generally a finite element model) in order to reproduce as closely 
as possible the measured static or dynamic response data. This technique is 
essentially an optimization problem based usually on the structural equations of 
motion, a baseline model of the undamaged configuration of the structure and the 
measured data (e.g. natural frequencies, mode shapes, FRFs). Once the updated 
numerical model reproduces the measured data to a sufficient degree of accuracy, 
the identification of the damage location and extent is achieved by comparing the 
model updated parameters to the corresponding parameters of the baseline 
model. Reviews of model updating based damage identification methods can be 
found in Mottershead and Friswell (1993), Hemez (1993), Friswell  and 
Mottershead (1995) and Marwala (2010). 

Primarily, these methods are based on the equations of motion and differ 
basically in the objective function to be minimized, in the imposed constraints 
and in the numerical scheme used to implement the optimization. The main 
developed methods are: the matrix-update methods, the optimal matrix methods, 
the sensitivity based methods, the eigenstructure assignment methods and the 
more recent computational intelligence methods (Marwala, 2010).  

Consider the eigenvalue equations of the ith mode of a damaged n-DOFs 
system: 

0)( 2 =++−
iii dddddd φKCM ωω , 1.3 

where 
idω  and 

idφ  are, respectively, the measured natural frequency and mode 

shape of the ith mode and dM , dC  and dK  the mass, damping and stiffness 
matrices of the damaged model. Assuming that these matrices can be defines as 
following, 
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being uM , uC  and uK  the matrices related to the undamaged model and M∆ , 
C∆  and K∆  the ‘perturbation’ matrices representative of the occurred damage. 

Substituting Eq. 1.4 into Eq. 1.3, yields to the identity: 
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iiiiii dddduudud φKCMφKCM )()( 22 ∆∆∆ ++−=++− ωωωω . 1.5 
With the availability of the measured mode shapes and natural frequencies 

and the undamaged baseline model of the faulty structure, the left side of Eq. 1.5 
consists of known quantities and can be regarded as equivalent to a Residual 
Force Vector (RFV), ir , related to the ith mode: 

iii dddi φKCMr )( 2 ∆∆∆ ++−= ωω . 1.6 
The RFV may physically be interpreted as the harmonic excitation that if it is 

applied at the frequency 
idω  to the undamaged structure, expressed by uK , uC

and uM , it would produce a structural response described by the mode shape 

idφ .  
Equation 1.6 is fundamental in the model updating based methods and it is 

often used as both objective function and constraint. Other constraints used in 
several methods are the preservation for each matrix of symmetry,  
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where x  is an arbitrary vector. 
The matrix-update techniques are based on the modification of structural 

model matrices, for example the mass, stiffness and damping matrices, to identify 
damage in structures (Baruch, 1978). The method aims in minimizing the norm 
of the RFV by updating physical parameters 

uM , 
uC  and 

uK  of the model 
appearing in Eq. 1.6. The difference between updated matrices and original 
matrices identifies the damage. These techniques are classified as iterative since 
they are employed by iteratively changing the relevant parameters until the error 
function (RFV) is minimized.  

D’Ambrogio and Zobel (1994) developed a matrix-update method by 
minimizing the Euclidean norm of the RFV in the frequency domain. This 
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methodology is computationally expensive and in addition, it is difficult to find a 
global minimum through the optimization technique, due to the presence of 
multiple stationary points (Janter & Sas, 1990). Techniques such as the use of 
genetic algorithms and multiple starting design variables have been applied to 
increase the probability of finding the global minimum (Larson and Zimmerman, 
1993; Mares and Surace 1996; Levin and Lieven, 1998; Dunn, 1998). 

The optimal matrix methods use a closed-form, direct solution to compute the 
damaged model matrices or the perturbation matrices. The problem is generally 
formulated as a Lagrange multiplier or penalty-based optimization, which can 
formally be written as 

)},,(),,({min
,,

KCMKCM
KCM

∆∆∆∆∆∆
∆∆∆

RJ λ+ , 1.10 
where J is the objective function, R is the constraint functions and λ is the 
Lagrange multiplier or penalty constant. 

Chen and Garba (1988) present a method for minimizing the norm of the 
property perturbations with a constraint on the RFV. The updates are obtained at 
the element parameter level rather than at the matrix one. This method is applied 
to a truss structure. Brock (1968) and Kammer (1988) propose the minimization 
of the RFV with a property matrix symmetry constraint which preserves the 
reciprocity condition in the updated structural model. Smith and Beattie (1991) 
formulate the problem imposing the minimization of both the perturbation matrix 
norm and the RFV norm subject to the symmetry and sparsity constraints. Liu 
(1995) apply the minimization of the square of the RFV to locate and quantify 
the damage in a simulated plane truss structure. In the presence of noise, multiple 
modes are needed to be considered for a proper identification. 

Another approach to the optimal matrix problem involves the minimization 
of the rank of the perturbation matrix, rather than its norm. The idea behind this 
approach is that the perturbation matrices tend to be of small rank since damage 
is generally concentrated in a few structural members. Zimmerman and Kaouk 
first present this approach (1994) and later develop the Minimum Rank 
Perturbation Theory (MRPT) algorithm (Kaouk & Zimmerman, 1995; Kaouk & 
Zimmerman, 1994; Zimmerman, 1995). For example, in (Kaouk & Zimmerman, 
1994), the MRPT algorithm is extended to estimate mass, stiffness and damping 
perturbation matrices simultaneously. The computation is accomplished by 
exploiting the cross-orthogonality conditions of the measured mode shapes with 
respect to the damaged property matrices. Doebling (1996) presents a method to 
compute a minimum-rank update for the element parameter vector rather than for 
global or element stiffness matrices. The method uses the same basic formulation 
as that of MRPT, but it constrains the global stiffness matrix perturbation to be a 
function of the diagonal element stiffness parameter perturbation matrix. The 
author shows that this method performs better than a minimum-norm parameter 
update technique on the experimental data related to a truss damaged structure. A 
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limitation of this method, similarly to that of all minimum-rank procedures, is 
that the rank of the perturbation is always equal to the number of modes used in 
the computation of RFV. Considering incomplete measured modal data, 
Carvalho et al. (2007) successfully apply a direct technique for model updating. 
However, one limitation of this technique is that the updated model is not always 
physically realistic. 

The sensitivity based methods exploit refined techniques which are based on 
the assumption that experimental data are perturbations of design data about the 
baseline numerical model. These methods aim at evaluating a modified 
parameter vector, 

)1()()1( ++ += nnn ppp δ , 1.11 

where the perturbation parameter vector )1( +npδ  is computed by minimizing the 
objective function through a Newton-Raphson iteration, 

( ) ( ) 0=⊗







∂
∂

+≈+ ++ 1)(n(n)(n)1)(n(n) pp
p

ppp δJJδJ , 1.12 

where ( )pJ is the objective function. Typically this function is selected to be the 
RFV, as defined in Eq. 1.5. 

The various sensitivity-based update methods differ in the scheme used to 
estimate the sensitivity matrix. Basically, either the experimental or the analytical 
modal properties or frequency-response functions are used in the differentiation. 
Some relevant sensitivity-based update methods are presented in the following. 

Ricles and Kosmatka (1992) present a methodology using RFVs to 
potentially locate the damaged regions and a weighted sensitivity analysis to 
assess the mass and/or stiffness variations. Measured modal test data and a 
correlated analytical structural model are used. A wide variety of numerical 
examples are analysed to show that the current method works successfully even 
if reduced models are considered. Farhat and Hemez (1993) minimize the norm 
of the RFV by updating both stiffness and mass matrices in a sensitivity based 
procedure. The minimization of the RFV is used also to expand the incomplete 
mode shapes. The effectiveness of the method is applied to a simulated cantilever 
and plane truss structures. Modes storing sufficient strain energy in the damaged 
elements are found to be critical for the identification.  

Ben-Haim and Prells (1993) propose selective frequency-response function 
sensitivity to uncouple the finite-element-updating problem, while Lin et al. 
(1995) improve the modal sensitivity technique by ensuring that it can be 
applicable to large magnitude damages. 

Kosmatka and Ricles (1999) use measured modes and frequencies in 
conjunction with vibratory residual forces and a weighted sensitivity analysis to 
locate and calibrate single damage events (stiffness loss, connection loosening, 
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lumped mass addition) in a laboratory space truss structure. RFVs are estimated 
by means of analytical models differently correlated to the undamaged 
configuration of the truss structure. As expected, as the correlation between the 
analytical model and the baseline test data increases, the prediction improves. 
However, reasonable results can also be obtained using an uncorrelated analytical 
model.  

In the study of Yang and Liu (2007) the RFV based method is developed in 
order to successfully detect structural damages when the measured modal 
parameters are incomplete and have noises. To expand the incomplete measured 
mode shapes the best technique presented by Lim and Kashangaki (1994) is 
applied, where three techniques for damage quantification are studied: the 
algebraic solution of the residual force equation (Chen & Garba, 1988), the 
minimum-rank element update technique (Zimmerman & Kaouk, 1994) and the 
natural frequency sensitivity method (Lin et al., 1993). These damage detection 
methods are compared for a numerical plane truss structure with measurement 
noise and the authors recommend the third one as the most appropriate in the 
actual engineering practices.  

Eigenstructure assignment methods are based on control-system theory. The 
structure under investigation is forced to respond in a predetermined manner. 
During damage detection, the desired eigenstructure is the one that is measured 
in the test. Lim (1995) illustrates clearly the eigenstructure assignment technique 
and applies a constrained eigenstructure technique experimentally to a twenty-
bay plane truss structure. His approach identifies element-level damage directly, 
rather than finding perturbations to the stiffness matrix. The technique is shown 
to work well even with limited instrumentation. Zimmerman and Kaouk (1992) 
apply an eigenstructure assignment technique to the identification of the elastic 
modulus of a cantilevered beam. They include algorithms to improve the 
assignability of the mode shapes and preserve sparsity in the updated model. 
Schultz et al. (1996) improve this approach through using measured frequency-
response functions. Lim and Kashangaki (1994) introduce the use of the best 
achievable eigenvectors for the location of damage and apply the technique to the 
detection of damage in an cantilevered truss structure.  

Computational intelligence methods (Marwala, 2010) use modern 
optimization methods in order to minimize the distance between the finite-
element predicted data and the measured data. Some of these methods are the 
Nelder–Mead simplex methods, a nongradient-based technique (Bürmen et al., 
2006; Jung & Kim, 2009), the artificial neural networks (see Section 1.3.2.10), 
the genetic algorithms (see Section 1.3.2.11), the particle-swarm optimization 
methods, inspired by algorithms that model the “flocking behavior” seen in birds 
(Kennedy, 2010; Marwala, 2005) and the simulated annealing methods (Paya-
Zaforteza, 2009).  
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In the literature many damage identification methods concerned with model 
updating have been proposed. However, several issues arise when creating a 
well-correlated numerical model of undamaged structure (Carden & Fanning, 
2004): 

- accuracy of the initial model; 
- size and complexity of the model; 
- non-uniqueness of resultant model in matching the measured data; 
- number of updating parameters; 
- measured data chosen to be matched by the model. 
As found by Fritzen et al. (1998), the accuracy of the initial model of the 

structure is essential. The authors use a sensitivity based algorithm to locate and 
detect damage but, even using a Euler-Bernoulli beam model instead of a 
Timoshenko beam model, no reasonable results are obtainable in relation to the 
change of the higher eigenfrequencies. 

Despite the constantly increasing of the available computing power which 
allows us to deal with larger and more complex models than before, the size and 
the complexity of the model to be updated is of concern and can be 
computationally infeasible. Möller and Friberg (1998) propose a computational 
time saving method that projects the problem onto a subspace spanned by a few 
eigenvectors of the initial model. Law et al. (2001), to reduce the number of 
DOFs, formulate super-elements while the modal sensitivities to small physical 
changes are maintained in a sensitivity based updating algorithm.  

The non-uniqueness of updated models is an important concern in damage 
identification as well as model updating. Berman (1979), argues that as a real 
structure has an infinite number of DOFs, there exist an infinite number of 
physically reasonable models with finite DOFs, which adequately predict the 
behaviour of the structure over an adequate frequency range. Therefore there can 
be no uniquely corrected dynamic model of the structure. He concludes that the 
identification of the true changes in the physical characteristics due to the 
damage is far more demanding than the prediction of model. Baruch (1997) 
shows that damage affecting both mass and stiffness properties is not uniquely 
identified when using modal measurements alone. He notices that methods using 
mode shapes as a reference basis may identify matrices quite different from the 
actual stiffness and mass matrices. Engineering judgement is hence fundamental 
in the success of any model updating technique. 

The issue of the number of parameters identifiable in sensitivity based 
updating methods is tackled by Gola et al. (2001). The theoretical number of 
parameters achieved by the matching of eigenvalues is equal to the number of 
measured resonant frequencies. When mode shapes are used, the number of 
parameters has an upper limit depending on the number of measured degrees of 
freedom. This limit is further reduced as a function of the mode derivatives. 
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In the study of Casas and Aparicio (1994), a model updating technique is 
used for damage identification in laboratory concrete beams and the effect of 
damping is investigated. It is found that damping does not vary significantly in 
the cracked beams compared to the uncracked ones and further there is no clear 
relation between crack growth and increase in damping. The authors conclude 
that damping can be neglected as a model updating parameter. Indeed, generally, 
the damping matrix is neglected in model updating methods also due to the 
difficulty in modelling it accurately. 

Some authors propose damage detection with a model updating technique 
using only measured natural frequencies (e.g. Morassi & Rovere, 1997; Messina 
et al., 1998; Yang & Liu, 2007). However, even though the measurement of 
natural frequencies alone is faster and more economical than measurement of 
mode shapes, using only natural frequencies reduces the number of possible 
updating parameters and therefore the type, number and location of damage that 
may be identified. For this reason, most of the model updating methods uses 
measured natural frequencies together with measured mode shapes to be matched 
by the model (e.g. Farhat & Hemez, 1993; Kaouk & Zimmerman, 1994; 
Kosmatka & Ricles, 1999). Model updating using FRF measurements directly 
instead of  modal data has the obvious advantage that it avoids the need to 
identify the modal parameters from measurements. A further advantage is that 
FRF data can provide much more information in a desired frequency range than 
modal data (Lin & Ewins, 1990). In his PhD dissertation, Grafe (1998) points out 
that by using FRFs much more data points are available. Systems of updating 
equations can easily be turned into over-determined sets of equations taking care 
of avoiding ill-conditioned matrices.  

In summary, in damage identification many techniques have been developed 
for model updating. Despite their intrinsic limitations exposed above, the recent 
methods based on computational intelligence seem to be promising. The main 
drawback is that these methods are strongly structure-dependent.  

1.3.2.8 Nonlinear damage identification methods 
An initially linear structural system, consequently to damage occurrence, can 

respond to its operational and environmental loads in a nonlinear manner. 
Typical examples are cracks that open and close under operational loading, 
yielded structural components that, due to cyclic stresses, have hysteretic 
behaviour and delamination in composite materials (introduced for example by 
impact loading). In all these cases, damage identification methods for SHM, 
based on the hypothesis of linear behaviour of the system (e.g. the modal 
parameters-based methods, the model updating-based methods and the FRF-
based methods; Doebling et al., 1996), are poor and therefore not suitable for 
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most real-world applications. Therefore nonlinear damage identification methods 
are developed (Worden et al., 2008). 

Numerical analyses and experimental investigations on the forced vibrations 
of beams with a breathing crack show the appearance of sub- and super-harmonic 
resonances and demonstrate that their nonlinearity features of the beam 
vibrations are much more affected by the presence of a crack than the changes of 
natural frequencies and modeshapes. Some authors (Tsyfansky & Beresnevich, 
2000; Andreaus & Baragatti, 2011-2012; Giannini et al., 2013) propose these 
nonlinear vibration features as indicators of the presence of a crack at a very 
early stage of its nucleation and to quantify damage parameters (type, size and 
location). As far as practical applications are concerned, Bovsunovsky and 
Surace (2005) highlight three essential obstacles to be considered. Firstly, the 
aforementioned nonlinear features may arise in the presence of any type of 
nonlinearity of a vibrating system (e.g. material nonlinearity, geometrical 
nonlinearity, nonlinear contact. Then, it is difficult to ensure the application of 
precise harmonic excitations, and the manifestation of nonlinear features depends 
not only on the crack parameters but also on the level of damping in the vibrating 
system.  

The recent concept introduced by Lang and Billings (1996, 2005), named 
Nonlinear Output Frequency Response Functions (NOFRFs), which allows the 
analysis of nonlinear systems to be handle in a manner similar to that of linear 
systems, appears to be a good approach in structural defect diagnosis. Peng et al. 
(2008) use the NOFRF concept to analyze the nonlinear response of a beam with 
a closing crack. The high order NOFRFs result to be extremely sensitive to the 
appearance of a crack in the beam, and hence they seem to be useful as crack 
damage indicator in terms of crack existence and size. Later, Peng et al. (2011) 
demonstrate through experimental test in a damaged aluminium plate the 
potential and effectiveness of a new damage detection technique based on the 
well-known Nonlinear Auto-Regressive Moving Average with eXogenous Inputs 
(NARMAX) modelling method and the NOFRFs-based analyses. Firstly, the 
NARMAX modelling method is applied to establish a NARX model from a 
testing input and output data of an inspected structural system. The NOFRFs and 
the associated index for the inspected structure are determined from the 
established NARX model. Finally, structural damage detection is conducted by 
comparing the values of the NOFRF index of the inspected structure and the 
values of the index for a damage-free structure. Lang et al. (2011) introduce the 
concept of transmissibility related to the NOFRFs and develop a technique aimed 
to detect and locate both linear and non-linear damage in MDOF structural 
systems. Numerical simulation results and experimental studies on a three-storey 
building structure verify the effectiveness of the new technique.  

The output only vibration-based damage detection methods (Yan et al., 
2007), which consider only operational structural response conveniently recorded 
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in one or more points are strongly investigated in the last decade. These methods 
do not require analytical or numerical models and the knowledge of the 
undamaged structure response. Moreover, these methods are made attractive by 
the nowadays availability of measurement techniques which may capture with 
high precision the dynamic deflection shapes of large areas (plates and shells) or 
lengths (beams) in a point-by-point spatial field at high time frequency. Wang et 
al. (2006) utilize the auto-correlation and the cross-correlation functions of the 
output data recorded in different zones of the structure to define a Local Damage 
Factor (LDF) which is capable of determining the presence, severity, and 
location of structural damage at the same time. Analysing the dynamic 
characteristics of the intact structure, the influence of structural nonlinearity, 
imperfections, and system noise are efficaciously taken in account by the LDF 
method. A Modified LDF (MLDF) method is also proposed in order to detect 
damage without requiring benchmark data for the intact structure. The 
effectiveness of the proposed LDF and MLDF methods are verified 
experimentally by detecting the damage in a 3D steel framed structure with a 
cracked pillar. Finally it should be recalled that Time-Frequency Techniques 
(TFT), such as the Short Time Fourier Transform (STFT), the Empirical Mode 
Decomposition (EMD), the Hilbert Transform (HT) and the Wavelet Analysis 
(WA), are widely used to deal with the damage detection in nonlinear system 
(see Section 1.3.2.9). 

1.3.2.9 Time-frequency techniques 
Time-frequency techniques have been shown to be great analysis tools for 

damage identification due to their multitasking capability in data pre-processing, 
feature extraction and selection, pattern recognition and data/information fusion. 
Among these techniques wavelet analysis and Hilbert-Huang Transform (HHT) 
are the most powerful in damage detection. In comparison with the Fast Fourier 
Transform (FFT), which analyses globally a signal as it would be stationary and 
find out its frequency components from an average over its whole length, these 
techniques can deal with non-stationary signals (e.g. impulse responses, 
structural vibrations due to earthquake or to wind storms, etc.) and uncover their 
local contents (Staszewski & Robertson, 2007; Nagarajaiah, & Basu, 2009). 

STFT is used by Fitzgerald et al. (2010) to monitor the stiffness reduction in 
time due to cumulative fatigue damage of a general wind turbine blade. The time 
history of the blade displacement is analyzed by STFT and the decreasing of the 
local dominant frequency due to the system stiffness change is evaluated.  

Wavelet analysis (Mallat, 2001), thanks to its multi-resolution properties, 
works as a signal microscope identifying the details of non-stationary signals 
conversely to the traditional analysis tools, such as FFT. A depth exposition of 
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wavelet analysis theory and its application in vibration based damage 
identification is presented in Sections 2.3.  

The Hilbert-Huang transform (Huang & Shen, 2005) is a recent time-
frequency technique obtained by the combination of the Empirical Mode 
Decomposition (EMD) (Huang et al., 1998) and the Hilbert Transform (HT) 
(King, 2009). The key part of the method is the decomposition of the original 
signal into the ‘Intrinsic Mode Functions’ (IMFs) through the EMD. These 
functions, as explained below, are ideal for to be used with the HT and, therefore, 
to obtain a full energy-frequency-time distribution of the data (i.e. the Hilbert 
spectrum and the instantaneous frequency for each IMFs). Since the HHT is 
adaptive and based on the local characteristic time scale of the data, it is highly 
efficient to analyse nonlinear and non-stationary processes. In the following, the 
theory of the HT and of the EMD are introduced. Then some relevant structural 
damage identification methods based on the HHT are presented.  

The Hilbert transform is an integral transform that, thanks to its properties,  
has been applied for more than 25 years to analysis non-stationary vibration 
signal. During the last decade, HT has shown a growing use, often in conjunction 
with EMD, in nonlinear mechanical system identification and structural damage 
identification (Feldman, 2011). HT is strictly related to the “analytic” signal sa(t) 
of a general non-stationary signal s(t) and, as shown below, its application to a 
general signal provides some additional information about amplitude, 
instantaneous phase and frequency of vibrations.  

The HT of the function s(t) is defined by an integral transform (King, 2009): 
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where t is the fixed time variable and τ is the running time variable. 
Signals in nature are real valued but for analysis, but it is often more 

convenient to treat them as complex variables. A complex signal sa(t) can be 
written as sum of the real part s(t) and the imaginary part )(ts , that is sa(t) 
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where 1-j = . By knowing the real part s(t), the complex signal sa(t) can be 
determined by taking the positive part of the spectrum of the real signal, s(ω), 
multiplying it by a factor of 2 and then performing Fourier inversion, namely 
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Therefore, substituting the definition of s(ω) in Eq. 1.15, we have 
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By considering that,  
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where τ−= tx  and )(xδ  is Dirac function , Eq. 1.16 becomes,  
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Comparing Eq. 1.13 with Eq. 1.18, finally, the imaginary part )(ts  turns out 
to be the Hilbert transform of s(t): 
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Note that, by definition, complex signals sa(t), called “analytic” signals, are 
signals whose spectrum consist only of positive frequencies. 

The analytic signal sa(t) can also be expressed as 
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where )(tA  and )(tϕ  are, respectively, the instantaneous amplitude (or 

envelope), equal to )()()( 22 tststA += , and phase, equal to 
( ))(/)(arctan)( tstst =ϕ , of the analytic signal.  

The Instantaneous Frequency (IF) )(tiω  is given by  
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Through the derivative properties, )(tiω  is obtained by  
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Figure 1.2 shows the representation in a complex plain of a general analytic 
signal and its parts: the real signal, the imaginary part, obtained by the Hibert 
transform of the real component and the phase. 
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Fig. 1.2 - Representation of a general analytic signal (3) and its components: the 
real signal (2), the imaginary part (1) and the phase (4) (after Feldman, 2011). 

 
The empirical mode decomposition allows any complicated data set to be 

decomposed into a finite and, often small number of ‘Intrinsic Mode Functions' 
(IMFs) through a particular ‘sifting process’. The name ‘intrinsic mode 
functions’ is adopted because they represent the oscillation modes embedded in 
the data. The IMFs are ‘monocomponent’ functions satisfying the following two 
conditions: (1) in the whole data set, the number of extrema and the number of 
zero crossings must either equal or differ at most by one; (2) at any point, the 
mean value of the envelope defined by the local maxima and of that defined by 
the local minima, is zero. The first condition is similar to the narrow-band 
requirement for a stationary Gaussian process. The second condition modifies a 
global requirement to a local one, and it is necessary to ensure meaningful 
instantaneous frequency without unwanted fluctuations as induced by 
asymmetric waveforms (Cohen, 1995; Huang et al., 1998).  

A general signal s(t) can be decomposed as follows, 
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where imfi(t) are the IMFs and rn(t) is the residue of the decomposition. In Fig. 
1.3 an example of empirical mode decomposition of a general signal, s(t), is 
shown.  

The intrinsic mode functions of s(t) are obtained iteratively (Huang et al., 
1998) using the following algorithm: 
1. inizialize r0(t) = s(t) and  i = 1;  
2. extract the imfi(t) as follows: 
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    (a) initialize: h0(t) = ri-1(t) and  j = 1; 
    (b) identify all the local maxima and minima of hj-1(t); 
    (c) interpolate the local maxima by a spline to form the upper envelope emax(t)  

and execute the same with the local minima to form the lower envelope 
emin(t); 

    (d) calculate the mean mj-1(t) = (emin(t) + emax(t)) / 2; 
    (e) compute hj(t) = hj-1(t) − mj-1 (t); 
    (f) if the stopping criterion (expose below in Eq. 1.24) is satisfied then set 
imfi(t) = hj(t); else return to (b) with j = j + 1; 
3.  ri(t) = ri-1(t) - imfi(t); 
4. if ri(t) still has at least 2 extrema then go to 2 with i = i + 1; else the 
decomposition is finished and ri(t) = rn(t) is the residue. 

A satisfactory stopping criterion for the sifting process is defined to ensure 
that the IMFs retain the amplitude and frequency modulations of the actual 
signal. Huang et al. (1998) propose to accomplish the stopping criterion by 
limiting the Standard Deviation (SD) of h(t) obtained from consecutive sifting, 
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where N = T / dt and T is the total time and dt is the time sampling interval. A 
typical value for SD is set between 0.2 and 0.3.    
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Fig. 1.3 - Example of empirical mode decomposition of a general signal, s(t) in 
its 8 intrinsic mode functions and the residual function, r(t) (after Huang et al., 
1998). 
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Rilling et al. (2003) present an improvement of this criterion based on two 
thresholds, θ1 and θ2, aimed at reducing globally small fluctuations and  in the 
mean while attacking into account locally large excursions. The mode amplitude 

2/))()(()( minmax teteta −=  and an evaluation function )(/)()( tatmt =σ are 
computed and the sifting process is iterated until 1)( θσ <t  for a fraction of the 
total duration while 2)( θσ <t  for the remaining fraction. Usually, 05.01 ≈θ  and 

12 10θθ ≈ .Once extracted the IMFs are extracted from s(t), the analytic signal 
sa(t) and the instantaneous frequencies ωi(t), associated with each imfi(t) 
component, can be obtained using Eqs 1.13-1.22 by letting s(t) = imfi(t) for each 
IMFs. 

In the following, some essential works regarding the application of the HHT 
technique for structural damage identification are presented.  

Yang et al. (2003) introduce two methods to detect the structural damage 
analyzing measured acceleration data. The first method, based on the EMD, 
performs the detection of the damage time instants and damage locations if the 
noise level is very small and only if the change of the system stiffness is abrupt 
and not gradual. On the other hand, the second method, based on the EMD, the 
Random Decrement Technique (RDT) and the HT, is capable of accurately 
determining the time instant of the damage occurrence regardless of the noise 
level and identifying the natural frequencies and damping ratios of the structure 
before and after damage quite accurately even if the system stiffness variation is 
gradual. 

Douka and Hadjileontiadis (2005) analyze theoretically and experimentally 
through the EMD and the HT the free vibration response of a beam with a 
breathing crack. The authors show that IF oscillates between frequencies 
corresponding to the open and closed states, revealing the breathing behavior of 
the crack the  mean variation of  it increases with crack depth following a second 
order polynomial law: IF demonstrates to be an efficient tool for the description 
of the nonlinearities caused by the presence of a closing crack. However, the 
calculation of the mean variation of IF using experimental data from free 
vibration tests appears to be difficult since relatively high vibration amplitudes 
are needed to ensure proper opening and closing of the crack. Later, Loutridis et 
al. (2005) theoretically and experimentally investigate a cantilever beam with a 
breathing crack under harmonic excitation. In this case, it is shown that the mean 
variation range of IF and even the mean harmonic distortion obtained by the 
IMFs are efficient indicators of crack size and descriptors of system nonlinearity. 

Tang et al. (2011) propose a damage detection index, called the ratio of the 
equivalent damping (RED), estimated from the smoothed HHT spectra, for 
detecting structural damage in steel structures due to strong earthquakes. Shaking 
table test data obtained for benchmark models based upon the Kobe and El 



38 Lorenzo Montanari 
“Vibration-based damage identification in beam structures through wavelet analysis” 

 
 
Centro earthquakes are analysed. Since the RED continuously increases with 
increasing PGA values as the structure experiences nonlinear behaviour, the 
authors conclude that RED is an effective and sensitive index for damage 
detection and can be used in on-line structural health monitoring of steel 
structures experiencing intense ground motions. In the work of Hsu et al. (2013), 
another damage detection index evaluated from the HHT acceleration spectra, 
called the ratio of bandwidth (RB), is adopted to detect initial damage in steel 
structures subjected to ground motion. Both numerical and experimental data 
highlight the index effectiveness: the change in RB is sensitive to stiffness 
reduction of the system, even when only a 10% decrement occurs. 

1.3.2.10 Artificial neural network methods 
The brain is capable of high performance in natural information processing 

tasks, such as perception, language understanding, motor control, etc., given the 
suitability of the neuronal system, consisting of billions of neurons that are 
interconnected with a fan-in and fan-out, to elaborate simultaneously a large 
number of pieces of information and constraints (Rumelhart et al., 1986). The 
Artificial Neural Networks (ANNs) algorithm has been inspired exactly by the 
neuronal architecture and the operation of brain (Anderson & Davis, 1995; Adeli 
& Park, 1998; Haykin, 1999). 

The basic model of an individual neuron was developed in 1943, by Warren 
McCulloch and Walter Pitts and it is still considered the heart of most neural 
networks (McCulloch & Pitts, 1943). Later, Rosenblatt (1962) extended their 
model providing to networks the capability of self-organization and learning. His 
models, characterized by only two-layered networks so unsuitable of learning 
certain types of functions, paved the way to modern multilayer networks, such as 
the Back Propagation Neural Networks (BP NNs). 

ANNs are a modern and powerful artificial intelligence technique which 
operates as blackbox, model-free and adaptive tool to capture and learn 
significant structures in data. They are suitable particularly for problems too 
complex to be modeled and solved by classical mathematics and traditional 
procedures. Their computing abilities have been proven in many fields, such as 
prediction, estimation, pattern recognition and optimization (Zhang et al., 1998; 
Bishop, 1995; Cochocki & Unbehauen, 1993; Adeli, 2001). The development of 
the error Back Propagation (BP) training algorithm (Rumelhart et al., 1986; 
Hecht-Nielsen, 1989), which is based on a gradient-descent optimization 
technique, launches the use of the neural networks. The BP NN is usually 
constructed by three layers, an input layer, a hidden layer and an output layer and 
due to its strong non-linear mapping ability and simplicity it is the most 
commonly used NNs algorithm (Werbos, 1990; Hegazy et al., 1994; Paola & 
Schowengerdt, 1995). 
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The basic strategy for developing a NN-based approach to damage 
identification of a structural system is to train a BP NN algorithm to recognize 
the structural damage conditions from the measured response of the structure 
(Wu et al. 1992). The first step is to provide a data set to train an appropriate NN. 
Ideally, this data set should contain the response of the undamaged structure as 
well as the responses of the structure in various damaged states. This data can be 
generated through measurements of structural response, model test results, 
numerical simulations or a combination of them. Therefore, once a network 
architecture is defined and a training algorithm is selected, the NN is trained with 
the training data set. The trained network is then tested to verify its performance 
and its generalization capability. In this step, different data with respect to those 
used to train the network have to be used for testing. Note that how well a trained 
network is able to work is strongly dependent on the adequacy of the selected 
network architecture and the richness of the training data set. Often, changes in 
the network architecture and/or additions to training data set are needed. Such 
changes are followed by the repetition of the whole training and testing process. 
This quasi iterative fine tuning is repeated until satisfactory performance of the 
NN is obtained. Finally, the experimentally measured real structural damage data 
are inserted into the trained NN and the output of the NN will be able to provide 
the effective location and severity of the structural damage. 

Numerous research papers on structural damage detection using NN 
techniques are available in the literature; in the following the most important 
works are reviewed. Pandey and Barai (1995) apply the multilayer perceptron in 
the damage detection of truss steel bridge structures. The training patterns are 
generated for multiple damaged zones in the structure and the performance of the 
NNs with one and two hidden layers are examined. The network architecture 
with two hidden layers appears to be better than that with a single layer. 
Furthermore, the authors underline the fact that measured input at only a few 
locations in the structure is needed in the identification process using ANNs. In 
the work of Yun and Bahng (2000) a BP NN-based substructural identification 
for estimating the stiffness parameters of a complex structural system, in the case 
of noisy and incomplete measurement of the modal data, is presented. The 
substructural technique and the concept of the submatrix scaling factor are 
employed to reduce the relevant number of unknown stiffness parameters to be 
estimated. The natural frequencies and mode shapes are used as input patterns to 
the NN, and the Latin hypercube sampling and the component mode synthesis 
methods are used to efficiently generate such training data. Two numerical 
examples on truss and frame structures demonstrate the satisfactory performance 
of the method. Chen et al. (2003) study by a NN-based approach the problem of 
damage identification in engineering structures when excitation signals are 
unavailable or inaccessible. BP NNs are trained by output only response data and 
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transmissibility functions, which demonstrate to be effective features in training 
NN for structural damage identification.  

Some authors realize online damage detection and health monitoring 
combining wavelet-based damage feature extraction and ANN-based 
identification. Yam et al. (2003) apply a combined technique to identify 
effectively crack damage in PVC sandwich plates, both through numerical and 
experimental analysis. Piezoelectric smart structure technology is used for the 
generation of excitation and structural response measurement. In the work of 
Paya et al. (1997), single and multiple faults in rotating machinery are 
successfully detected and classified using multilayer ANNs on the sets of 
preprocessed data by wavelet transforms.  

1.3.2.11 Genetic algorithm methods 
Genetic Algorithm (GA) is a powerful universal optimization method based 

on Darwin’s theory of evolution and survival of the fittest. Analogous to genes in 
genetics, GA represents the parameters in a given problem by encoding them in a 
string. Differently from the conventional optimization methods which finds the 
optimum from a single point, the GA uses a set of points, i.e. a population of 
coded strings, to search for the optimum solution.  

Simple GA (Goldberg, 1989) consists of three basic operators: reproduction, 
crossover and mutation. In genetics, genes, which consist of alleles, constitute a 
chromosome. Similarly, in simple GA, encoded strings are composed of bits. In 
damage identification problems, the parameters of structural elements to be 
encoded are the ratios of the damaged value to the undamaged value of one or 
more specified variables (e.g. Young’s modulus, cross-sectional area, etc.). 
Hence, the values of the specified variables pertaining to the structure elements 
to be identified are equal to the above ratio times their baseline values from the 
original undamaged structure. The values of the variables calculated from the 
above procedure are to be used in FE analysis to compute the structural response, 
which has to  be compared with the corresponding measured response in 
identifying structural damage.  

Some benchmark papers based on the application of  GA in damage 
identification are presented. Mares and Surace (1996) use GA to adjust the 
structural parameters to minimizing the RFV, to locate and identify structural 
damage from measured natural frequencies and mode shapes. The initial 
population is not random but defined heuristically to represent the undamaged 
structure. The robustness of the GA method towards the noise influence on 
measured data is also shown in comparison with the conventional application of 
RFV method. Chou and Ghaboussi (2001) compare two GA-based methods of 
structural damage detection assuming different string representation schemes: the 
first scheme is the usual string representation used in simple GA; the second one 
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is that proposed by Raich and Ghaboussi (1997), called the Implicit Redundant 
Representation (IRR). A small number of simulated  static displacements of a 
truss structure are considered and it has been demonstrated that the IRR GA 
works more successfully than the simple GA in detecting the location and 
magnitude of the most severe damage scenario. Furthermore, from the analysis of 
an additional structure, it has been shown that IRR GA, for its ability of active 
search, can find the optimum solution for both the material properties and the 
unmeasured displacements simultaneously, without the availability of complete 
FE analysis or other numerical simulations. In the work of Hao and Xia (2002) a 
genetic algorithm with real number encoding is applied to identify the structural 
damage by minimizing the objective function, which directly compares the 
changes in the measurements before and after damage. Three different criteria are 
considered: the frequency changes, the mode shape changes and a combination of 
the two. A laboratory tested cantilever beam and a frame are used to demonstrate 
the proposed technique. Numerical results show that the damaged elements can 
be detected by genetic algorithm, even when the analytical model is not effective. 

 





 

Chapter 2 

 

Wavelet Analysis and  

2 Damage Identification Methods 

 

2.1 Introduction 

Due to the lack of time-frequency techniques to properly analyse non-
stationary signals, in the past decades the modern wavelet theory has been 
developed. The Continuous Wavelet Transform (CWT), the Discrete Wavelet 
Transform (DWT), the Stationary Wavelet Transform (SWT) and the discrete 
wavelet packet transform are the most well-known wavelet analysis tools, used 
nowadays in very diverse application fields, as image compression, speech 
processing, chemistry, neurophysiology, nondestructive evaluation, fractals and 
economics. 

This chapter starts with an historical overview (Polikar, 1999) and introduces 
the theoretical basics of wavelet analysis, focusing on the CWT used throughout 
this study. Then, an in depth review of the state of the art of the wavelet-based 
methods for structural damage identification is exposed.  

2.2 Wavelet analysis 

2.2.1 Brief historical overview 

To introduce wavelet functions and wavelet transform, we can start from the 
original idea of Fourier, where a complex function is approximated by weighted 
sum of simpler functions, which themselves are obtained from one simple basis 
function. The basis function can then be thought as a building block, and the 
original function can be approximated, or under certain conditions be fully 
represented, by using similar building blocks. There are significant advantages by 
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means of such an approximation as complicated functions can be described by a 
few of these building blocks with a good approximation. 

Fourier used sinusoids of varying frequencies as building blocks, and this 
representation provides the frequency content of the original function (Bracewell, 
1968). Fourier transform is used in a variety of fields, but it has one major 
drawback: sinusoids have perfect compact support in frequency domain, but not 
in time domain. In other words, sinusoids stretch out to infinity in time and, 
therefore, they cannot be used to approximate non-stationary signals, whose 
spectral content change in time. Since Fourier representation provides only 
spectral content with no indication about the time localization of the spectral 
components, Time-Frequency Representations (TFR) are required to analyse 
non-stationary signals.  

The Short Time Fourier Transform (STFT) was the first modification to the 
Fourier transform in order to analyse non-stationary signals (Cohen, 1995). The 
idea behind the STFT was to segment the signal by using a time-localized 
window (e.g. Hanning, Hamming, cosine, Kaiser or Gaussian) and performing 
the analysis for each segment. Since the Fourier transform was computed for 
every windowed time localized segment of the signal, STFT provides a real time-
frequency representation. In 1946 was Gabor the first one who modified the 
Fourier transform into STFT using a Gaussian window. Shortly after, in 1947, 
Jean Ville developed a similar TFR, named the Wigner-Ville transform, for 
representing the energy of a signal in the time-frequency plane. Between late 
1940s and early 1970s, many other TFRs have been proposed each of which 
differed from the other ones only by the selected windowing function. A 
fundamental drawback limit of these TFRs is that, since the entire signal is 
analysed by means of a windowing function of fixed length, the time-frequency 
resolution of these TFRs is fixed (Fig. 2.1a). Therefore broad window results in 
better frequency resolution but poor time resolution and narrow window results 
in good time resolution but poor frequency resolution, due to the time-bandwidth 
relation (uncertainty principle; see Cohen, 1995). 

At the end of 1970s, Morlet, a geophysical engineer, faced the problem of 
analyzing signals which had very high frequency components with short time 
lengths and low frequency components with long time lengths. Noticing that the 
STFT is inappropriate to analyze both high frequency components and low 
frequency components using the same window, he had the ingenious idea of 
using a different window function for analyzing different frequency bands. He 
generated window functions by dilation or compression of a prototype Gaussian 
which had compact support (its meaning is explained below) both in time and in 
frequency. Due to the ‘small and oscillatory’ feature of these window functions, 
Morlet named his basis functions as wavelets of constant shape. 

Facing strong criticisms from his colleagues, at the beginning of the 1980s 
Morlet, helped by the theoretical physicist Grossman, arrived to formalize 
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mathematically what now is known as the continuous wavelet transform and its 
inverse transformation. Since both the STFT and the CWT are convolutions of 
the signal with a function that varies in both time and frequency, both transforms 
are confined by the uncertainty principle, which limits the area of a time-
frequency atom in the overall time-frequency map (see Fig. 2.1). However, while 
the STFT atoms are of constant shape, the CWT atoms vary. The fatter atoms in 
the lower frequencies provide a better resolution in frequency and worse 
resolution in time, whereas the taller atoms in the upper frequencies provide 
better time resolution and worse frequency resolution (Fig. 2.1b). This variable 
resolution in general result advantageous in the analysis of non-stationary signals 
than a fixed one. 

 

 
 

 
(a) (b) 

Fig. 2.1 – Comparing STFT and wavelet transform resolution in time and frequency 
domain: (a) STFT fixed resolution; (b) CWT multi-resolution.  

 
The French mathematician Meyer, who in 1984 noticed the similarity 

between Morlet’s and Calderón’s 1964 work, was fascinated by the elegant non-
stationary function analysis scheme and continued to study wavelets. Noticing 
the great deal of redundancy in Morlet’s choice of basis functions, he worked on 
developing wavelets with better localization properties. In 1985, he constructed 
orthogonal wavelet basis functions with very good time and frequency 
localization. However, it turned out that another harmonic analyst, Strömberg, 
had already discovered the very same wavelets about five years before. 
Nevertheless, it should be underlined that the honor of the discovery of 
orthonormal wavelet basis functions goes to the German mathematician Haar 
(1909). Haar wavelets, the first and simplest orthonormal wavelets, are of little 
practical use due to their poor frequency localization. In 1930s Levey, studying 
random signals of Brownian motion, and independently Littlewood and Paley, 
working on localizing the contributing energies of a function, expanded Haar’s 
work on developing orthonormal basis functions.  

0 time
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0 time
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Meanwhile, a former graduate student of Grossman, developed wavelet 
frames to discretize time and scale parameters of the wavelet transform, allowing 
a broad choice of basis functions. Along with Mallat, Daubechies is considered 
the developer of the transition from continuous to discrete signal analysis. In 
1986 Mallat with Meyer developed the idea of MultiResolution Analysis (MRA) 
for discrete wavelet transform, which later in 1988 became his Ph.D. dissertation. 
The idea was to decompose a discrete signal into its dyadic frequency bands by a 
series of lowpass and highpass filters to compute its DWT from the 
approximations at these various scales. However, Mallat’s work constituted a 
natural extension of time localization to the well-established frequency 
localization idea of quadrature mirror filters and subband filtering, which were 
developed by Croisier, Esteban and Galand around 1976. In 1988, with the 
development of Daubechies’ orthonormal bases of compactly supported 
wavelets, the foundations of the modern wavelet theory were laid.  

In the following years until nowadays, researchers focused on developing 
other wavelet basis functions with different properties and modifications of the 
MRA algorithms. For instance, Cohen, Feauveau and Daubechies constructed the 
compactly supported biorthogonal wavelets, whereas Coifman, Meyer and 
Wickerhauser developed wavelet packets, a natural extension of MRA. 

2.2.2 Wavelet functions 
A wavelet function ψ(x) is a zero mean local wave-like function which 

decays rapidly and must satisfy the following mathematical conditions (Mallat, 
2001): 

(i) have finite energy, i.e. 
∞<= ∫

+∞

∞−
dxxE 2)(ψψ , 2.1 

where usually the wavelet function is normalized in order to have 1=ψE ; 
(ii) satisfy the weak admissibility condition (see the Calderon-Grossman 

Morlet theorem; Mallat, 2001) to ensure the completeness of the wavelet 
transform and to maintain energy balance, i.e. 

∞<= ∫
∞+

ω
ω
ωψ

dCg 0

2)(ˆ
, 2.2 

where )(ˆ ωψ is the Fourier transform of ψ(x) and Cg is called admissibility 
constant, function of the chosen wavelet. This condition is necessary for executing 
the inverse continuous wavelet transform; 

(iii) the Fourier transform of a complex wavelet must be real and null for 
negative frequencies. 
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Many wavelet functions have been developed during the years (Daubechies, 
1992). Figure 2.2 shows the mother wavelets of some common wavelet families:  

- Haar wavelet or (the 1st order Daubechies wavelet) (Fig. 2.2a) and the 15th 
order Daubechies wavelet (Fig. 2.2b), which are orthogonal and 
biorthogonal wavelets characterized by compact support (i.e. the region 
where the mother wavelet is not equal to zero is finite);  

- the 2nd and the 8th order Symlet wavelets (Figs 2.2 (c-d)), and the 1st and 
the 4th order Coiflet wavelets (Figs 2.2(e-f)), which are nearly symmetric, 
orthogonal and biorthogonal wavelets with compact support;  

- the 2nd order Gaussian wavelet (or Mexican hat wavelet) (Fig. 2.2g), the 
4th order Gaussian wavelet (Fig. 2.2h) and the real Morlet wavelet (Fig. 
2.2i), which are symmetric wavelets with infinite support, but not 
orthogonal and biorthogonal;  

- Meyer wavelet (Fig. 2.2j), which is regular (i.e. indefinitely derivable ), 
symmetric, orthogonal and biorthogonal wavelet with infinite support.  
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Fig. 2.2 – Example of wavelet functions: (a) Haar wavelet (or 1st order Daubechies 
wavelet); (b) 15th order Daubechies wavelet; (c) 2nd order Symlet wavelet; (d) 8th order 
Symlet wavelet; (e) 1st order Coiflet wavelet; (f) 4th order Coiflet wavelet; (g) 2nd order 
Gaussian wavelet (Mexican hat wavelet); (h) 4th order Gaussian wavelet; (i) real Morlet 
wavelet (or Gabor wavelet); (j) Meyer wavelet.   

 
In this study the 4th order Coiflets wavelet (‘Coif4’), the 2nd order Daubechies 
wavelet (‘Db2’), the 4th order Gaussian wavelet (‘Gaus4’) and the real Morlet 
wavelet (‘Morl’) are used in the wavelet transform. 

A wavelet family of functions is obtained by scaling and translating the 
mother wavelet: 
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where s and t are, respectively, the scale and the translation parameters. As an 
example, Fig. 2.3 displays in blue Mexican hat mother wavelet (s = 1, t = 0) and 
in green and in red the wavelet, respectively, scaled by 2 (s = 2) and centred at x 
= 2 (t = 2), and scaled by 3 (s = 3) and centred at x = 5 (t = 5). 
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Fig. 2.3 – In blue Mexican hat mother wavelet (s = 1, t = 0); in green and in red the 
wavelet, respectively, scaled by 2 (s = 2) and centred at x = 2 (t = 2), and scaled by 3 (s 
= 3) and centred at x = 5 (t = 5). 
 

Figure 2.4 shows the frequency contents, obtained through Fourier transform, 
of Mexican hat mother wavelet and of its scaled wavelets (s = 2, 3). Since the 
scaled wavelet functions are simply stretched mother wavelets, their spectral 
energy is located in narrower bands centered at lower frequencies with respect to 
that of the mother wavelet. 

The center frequency fc is defined as the frequency maximizing the Fourier 
transform of the mother wavelet modulus. Thus, the center frequency associates a 
given mother wavelet with a periodic signal of frequency fc, as shown in Fig. 2.5 
for ‘Coif4’(fc = 0.6957), ‘Db2’ (fc = 0.6667), ‘Gaus4’ (fc = 0.3180) and ‘Morl’ (fc 
= 0.8125).  

 

 
 

Fig. 2.4 – Fourier transform of Mexican hat mother wavelet (s = 1) and its scaled 
wavelets (s = 2, 3). The center frequency of Mexican hat mother wavelet is fc = 0.2251.  
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By stretching to the scale s the mother wavelet, the center frequency of the 
scaled wavelet results to be inversely proportional to the scale s (Fig. 2.4). Thus, 
at any scale, a wavelet can be associated to a periodic signal containing a single 
frequency fa, known as pseudo-frequency: 

sdx
ff c

a =  2.4 

where dx is the sampling interval of the wavelet function. Therefore, the pseudo-
frequency fa of a generic wavelet function captures its main oscillations and can 
be regarded as the dominant frequency analysing the signal in the wavelet 
transform. 

 

  
(a)  (b) 

  
(c) 

 
(d) 

Fig. 2.5 – Some mother wavelets plotted with the periodic signals of frequency equal to 
their center frequency fc: (a) ‘Coif4’, fc = 0.6957; (b) ‘Db2’, fc = 0.6667; (c)  ‘Gaus4’, fc = 
0.3180; (d) ‘Morl’, fc = 0.8125. 

 
Another fundamental property of wavelets is to have vanishing moments αµ , 

where 
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and m depends on the mother wavelet. For instance, Daubechies and Symlet 
wavelets of order N have m = N vanishing moments; Coiflets wavelet of order N 
has m = 2N vanishing moments (Daubechies, 1992). Hence, ‘Db2’ and  ‘Coif4’ 
have, respectively, 2 and 8 vanishing moments. ‘Gaus4’ has 4 vanishing 
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moments, whilst ‘Morl’ has vanishing moments for even values of α (i.e. 

K,4,2,0=α ).   
Since ψ(x) is a zero mean function, a wavelet function has at least one 

vanishing moment, i.e.  

( ) 00 == ∫
+∞

∞−
dxxψµ . 2.6 

In general, the greater is the vanishing moment order, the higher is the 
frequency contents of the mother wavelet, and the more powerful is the related 
wavelet transform to process the high frequency components of a signal. As 
highlighted in the following, this property is fundamental in damage detection 
through CWT, as damage is represented by high frequencies in the signal.  

2.2.3 The Continuous Wavelet Transform 

This study exploits the continuous wavelet transform as basic analysis tool to 
deal with the problems of localization (Chapters 4-5) and characterization 
(Chapter 6) of damage in beam deflections.  

The CWT, in the square integrable space, can be defined by the convolution 
of the input signal η(x) with a wavelet function generated from the mother 
wavelet ψ(x) by scaling and translating it: 

∫
+∞

∞−
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s

xstW *1)(),( ψη , 2.7 

where ψ* is the complex conjugate of ψ.  
Considering a wavelet function ψ(x) with m vanishing moments, it can be 

demonstrated that, for very small values of the scale s in the domain of interest, 
the CWT of a signal η(x) can be related to its mth derivative, that is 

m

m

ms dx
xdK

s
skW )(),(lim 2/10

η
=+→

, 2.8 

where K is a non-zero parameter equal to 

( )dxxK ∫
+∞

∞−
= ζ  2.9 

and ζ(x) is fast decaying function satisfying 

m

m
m

dx
xdx )()1()( ζψ −= . 2.10 

In the light of Eq. 2.8, it is possible for a wavelet transform to detect 
singularities in a signal or its derivatives by choosing an appropriate wavelet 
function ψ(x) (Mallat & Hwang, 1992). 

A remarkable property of the wavelet transform is its ability to characterize 
the local regularity of functions. In mathematics, the measure of the local 
regularity of a function in the neighbourhood of a point can be related to the local 
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Lipschitz exponent around that point. According to Mallat & Hwang (1992), a 
function η(x) in the square integrable space presents a Lipschitz exponent 0≥κ  
at a point ν, if there exists a 0>K

(
 and a polynomial pv of degree m(  such that 

κνη −≤− xKxpx v

(
)()( , R∈∀x  2.11 

The term κ provides the degree of singularity in the neighbourhood of the 
point x. If the function η(x) presents a uniform Lipschitz condition of order 
κ over an interval [ ]ba
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The magnitude of the wavelet coefficients of a function around a point can be 
related to the local Lipschitz exponent, and hence to the pointwise degree of the 
function. This in turn indicates that the magnitude of a local extremum of the 
CWT coefficients formed at the location of damage can be a descriptor of the 
extent of damage present at that point (Hong et al., 2002). 

Considering a beam with a crack which may introduce discontinuities or 
singularities in the derivatives of the deflection shape, wavelet transform is 
deemed to be a powerful tool to locate the damage. Due to the presence of the 
singularity, a transformed deflection shape yields a local variation or extremum 
of the wavelet coefficient at the damage location throughout the different scales, 
and hence it allows damage detection. As an example, in Fig. 2.6 the absolute 
value of the CWT coefficients of a generic noisy deflection shape sampled at 
dx/L = 0.001 and with crack at x/L = 0.4 is shown. The CWT is executed using 
‘Coif4’ wavelet at the scales 24, 36 and 52 and the polynomial padding method 
(see Section 4.3). At each scale the wavelet coefficients allow the proper 
localization of the crack, as their maximum value is at the crack position. 

 

 
 

Fig. 2.6 – Absolute value of the CWT coefficients of a generic noisy deflection shape 
sampled at dx/L = 0.001 and with crack at x/L = 0.4. The CWT is executed using ‘Coif4’ 
wavelet at the scales 24, 36 and 52 and the polynomial padding method. 
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Figure 2.7a presents the contour plot of the absolute values of the CWT 
(from scale 1 to scale 60) of the same cracked beam deflection analysed to obtain 
in Fig. 2.6. In the contour plot, the lighter colors represent high coefficient 
values, whilst darker colors correspond to low coefficient values (see the color 
bar on the right of Fig. 2.7a). Since a wavelet with more than one vanishing 
moment (in this case ‘Coif4’) associates high coefficient values to the signal 
discontinuities and since high wavelet scales are able to detect a discontinuity 
even if the wavelet is not centered on it, the contour plot displays a pattern 
characterized by a central bright cone and a number of adjacent less bright cones, 
all pointing to the singularity location. In Fig. 2.7a the bright cones point 
correctly towards the crack location. Moreover, since the wavelet window at 
higher scales is larger and consequently bigger values of the CWT coefficients 
are attained, the cone color blends moving to smaller scales, respectively, from 
lighter to darker tones.  

Figure 2.7b presents the same results in Fig. 2.7a, but as a function of the 
pseudo-frequencies fa. Since fa is inversely proportional to s, in Fig. 2.7b the 
contour plot of the CWT coefficients is characterized by bright cones pointing to 
the top. 

 

(a) 

 
 

(b) 

 
 

Fig. 2.7 – Contour plots of the absolute values of the CWT (‘Coif4’ is used) of the same 
cracked beam deflection analysed in Fig. 2.6. In (a) the contour plot is displayed as a 
function of the scales, while in (b) as a function of the corresponding pseudo-
frequencies. 
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2.2.3.1 CWT implementation  

A MATLAB routine to perform the CWT has been implemented to improve 
the accuracy of the existing built-in one. While the original routine approximates 
the signal roughly through a piecewise constant function, the implemented one 
considers a piecewise linear trend.  

Assume η(x) as the discrete original signal defined in the domain 
xNxxx ∆∆∆= ,,2,,0 K , being Δx and N, respectively, the sampling interval and 

number of sampling points of η(x). In order to properly execute the CWT by 
avoiding edge effects (for more details see Chapter 4), η(x) is extended at the 
beginning and at the end by means of the padding functions f1(x) and f2(x). 
Defining the padded signal as )()()()( 21 xfxxfx ∪∪= ηη  (Fig. 2.8), Eq. 2.7 
can be rewritten as follows 
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Fig. 2.8 – Sketch of padded signal )(xη  constituted by the original signal η(x) extended 
by the padding functions f1(x) and f2(x). 

 
Considering the integer number Λ  as the distance from the center of the 

mother wavelet to the position where the wavelet attains negligible values (e.g. 
for ‘Coif4’ 11=Λ ), Eq. 2.13 may be simplified in     
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Treating )(xη  as a piecewise linear function of values iη  with 
1,,,1,,0,1,, 21 −+−−−= NNNNNi KKK , being 1)( −=∆−= ηη xx , 

0)0( ηη ==x , 1)( ηη =∆= xx , etc., and 1N  and 2N , respectively, the number of 
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sampling points of f1(x) and f2(x) (note that Λ≥= sNN 21 ), the integral of Eq. 
2.14 can discretized as 
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where 1,,2,1,0 −= Nj K  and the dimensionless variable x′ , upon which the 
mother wavelet is defined, is equal to xx ∆/ . Note that in Eq. 2.15 the index j 
is used as translation parameter since xjt ∆= . 

Note that, knowing the of the mother wavelet complex function *ψ  
analytically (e.g. Gaussian wavelets) or pointwise through an iterative procedure 
(e.g. Coiflet wavelets), for each scale s the values of the two integrals in Eq. 2.15 
can numerically be calculated (for example by means of composite Simpson’s 
rule until convergence; Atkinson, 1989) as follows  
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with 1,, −ΛΛ−= ssi K . 
Once the values of the integrals of Eq. 2.16 and Eq. 2.17 are calculated and 

stored for the wavelet function of interest and for every s, the CWT can easily be 
calculated every time with low computational cost by summation 
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Moreover, since ψ(x) is a zero mean function, for every scale s the following 
relation has to be satisfied 
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To reduce as much as possible the absolute value of the summation in Eq. 
2.19 a numerical trick is used in order to perform accurately the CWT. Assuming 
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=  and considering, if 0<sQ , ss QQ = , in case of symmetric 

wavelets (for example ‘Morl’ and ‘Gaus4’) it can be imposed that  
2/)()( 11 sQsQsQ −= −−   and  2/)()( 00 sQsQsQ −= ,  2.20 

On the other hand, for non symmetric wavelet functions (for example ‘Coif4’ 
or ‘Db2’) it can be imposed that 

sQsQsQ −= )()( 00 .  2.21 
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2.3 Wavelet-based Damage Identification Methods 

Among the modern vibration-based damage identification methods (Yan et 
al., 2007), thanks to its ability to process non-stationary signals, wavelet analysis 
is well known to be a strong technique. Hereafter an in depth review of the state 
of the art of wavelet-based damage identification methods in time and in space 
domains is presented.   

2.3.1 Wavelet-based damage identification methods in time domain 

In processing time histories of structural response data, wavelet analysis is 
widely recognised to be an efficacious tool to identify the sudden or gradual 
system stiffness degradation and to localize temporally and spatially the damage 
occurrence. The work of Surace and Ruotolo (1994) is one of the first study in 
which wavelet analysis is applied in detecting damage in beam structures. The 
authors consider a FE model to simulate the dynamic response of a cantilever 
with a single crack subjected to sinusoidal or impulsive loadings. The crack 
opening-closing behaviour is taken into account, yielding a nonlinear beam 
response. By analysing through CWT the time-history of the displacement at the 
free-end, the presence of the crack and the variation of the dynamic behaviour 
which occurs when the crack changes state are identified. 

Hou et al. (2000) present a wavelet-based approach for SHM on a simple 
structural model with breakage springs and on actual recorded data of the 
building response during an earthquake event. They show that the time instant of 
the damage occurrence or of the change in system stiffness is detected by spikes 
in the details of the discrete wavelet transform decomposition of the response 
data. Melhem and Kim (2003) analysis the response of two full-scale concrete 
structures, a pavement slab on foundation and a simply supported prestressed 
beam. The effectiveness of using wavelet transform as a tool for damage 
detection and health monitoring over traditional Fourier transform is highlighted 
both in identifying the  frequency components which exist in the signal and in 
detecting the variation between the initial and damaged states. In order to identify 
the time more sharply and effectively at which structural damage occurs than by 
using the wavelet transform method alone, Li et al. (2007), firstly adopt the EMD 
technique to decompose the response signal of structure vibration into several 
mono-component signals (IMFs) and then, via wavelet transform, they detect the 
exact time location and severity of damage. The numerical simulation and the 
analysis of the response signal data from a shear building show the accuracy of 
the method. 

In the work of Hera and Hou (2004) the discrete wavelet analysis is applied 
to process the simulated acceleration response data at some representative points 
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of a four-story building when one or more sudden damages occur. Depending on 
the noise level and the damage severity, the spikes of the wavelet details and 
their distribution in the structure are used to detect the instant of damage 
occurrence and the damage location. Moreover, the authors highlight that the 
analysis of acceleration response data is more efficacious than that of 
displacement data and that this online SHM method is in general not suitable for 
cumulative damages over relatively long period such as those caused by fatigue 
and corrosion.  

Basu et al. (2008) propose a technique based on wavelet analysis for online 
identification of variation of stiffness in structural systems. Using the modified 
Littlewood–Paley wavelet (Basu & Gupta, 1998), characterized by non-
overlapping frequency bands for different scale parameter values, the online 
variation in natural frequency of a SDOF system and in natural frequencies and 
mode shapes of a MDOF system, arising out of change in stiffness, is tracked 
accurately. The method is versatile as it has the ability to detect abrupt changes 
over a short time scale (due to a sudden event/failure) in addition to track 
changes due to long-term phenomena. 

Sun and Chang (2004) propose a SHM method based on the Wavelet Packet 
Transform (WPT) technique and the statistical process control concept. First the 
recorded acceleration time-histories of the structural response are decomposed 
into wavelet packet components, then only dominant wavelet packet components 
of dominant energy are retained and two damage indicators, quantifying the 
change of these components (without the requirement of baseline data), are 
calculated. To monitor the change of these damage indicators, control charts are 
constructed based on the statistical properties of the damage indicators. 
Experimental tests demonstrate the effectiveness of both the two damage 
indicators for monitoring structural health condition, since they are sensitive to 
damage and yet insensitive to measurement noise. Han et al. (2005) propose a 
WPT-based energy rate index for identification of structural damage location. 
Although the proposed methodology shows great potential in simulated and 
laboratory tested beams, its application has two important limitations: a reliable 
reference structural model for undamaged conditions is required and the 
algorithm can detect damage only when a sensor is placed at a damaged location. 
A wavelet entropy-based structural damage identification method is presented 
and demonstrated by Ren and Sun (2008). Wavelet entropy, relative wavelet 
entropy and wavelet-time entropy are investigated and compared in terms of 
numerically simulated results and laboratory test results. Wavelet-time entropy is 
found to be powerful in detecting abnormal features in vibration signals collected 
from an on-line structural health monitoring system. Relative wavelet entropy, 
instead, is a sensitive damage feature to locate damage, with the advantage that if 
the undamaged location of the structure is known and simultaneously measured, 
an additional intact structure is not required. 
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Finally, as witnessed by the review paper of Peng and Chu (2004) and by the 
works of Kim and Melhem (2004) and Peng et al. (2007), wavelet analysis is a 
strong technique even in machine condition monitoring and fault diagnostics, due 
to its abilities in fault feature extraction, singularity detection, denoising and 
compression of vibration signals and system identification.  

2.3.2 Wavelet-based damage identification methods in space domain 

Liew and Wang (1998) and Wang and Deng (1999) use for the first time 
wavelet transform to analyse numerical and experimental, static and dynamic, 
space domain structural responses of simple cracked beams, and to identify 
damage. They highlight that WA is capable of identifying the abrupt variation in 
beam deflection due to damage through a local abnormality of the wavelet 
coefficients at that position. Subsequently many authors studied and showed the 
effectiveness and versatility of wavelet analysis as tool to detect, localize and 
quantify damage in generic structural deflections. Hereafter some of the most 
interesting works in terms of methodology, results and applications are presented. 

Focusing on the Gaussian wavelets, Gentile and Messina (2003) discuss in a 
numerical-theoretical way the CWT features of derivation, convolution and 
smoothing of noisy data. Due to CWT limitation in the presence of noise (in fact 
CWT behaves as a high-pass filter at the fine scales and looses details at the large 
scales), they highlight the need of a trade-off for the scales in detecting damage. 
Moreover, due to CWT redundancy regarding the free choice of scales, the 
authors recommend the use of continuous WT rather than discrete WT. By 
analysing different cracked beam modeshapes, the authors notice that the 
sensitivity in damage detection with respect to crack location depends on the 
modeshape local curvature in the damaged area. Furthermore, Messina (2004), 
dealing with transversal beam vibrations in both the non-transformed and Fourier 
transformed domains, discuss the ability of CWT in conjunction with differential 
operators to act as frequency filter and therefore to reduce undesired high 
frequency noise. 

Loutridis et al. (2004) analyse through CWT both the analytical and the 
experimental fundamental vibration mode of a double-cracked cantilever beam 
by using the 4th order Symlet wavelet. In addition to the task of locating the 
crack positions, they propose an intensity factor as indicator of crack size. 
Through a numerical and an experimental study, Wang and Wu (2011) detect the 
location of a delamination in a beam structure under static loading with a spatial 
wavelet transform using Gabor wavelet. A barely invisible perturbation in the 
deflection profile of the delaminated beam at the two delamination edges owing 
to the curvature discontinuity is discerned through the WA. 

Pakrashi et al. (2007) present a detailed numerical and experimental study 
regarding the issue of efficient and robust calibration of position and extent of 
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damage in structures. It is observed that wavelet analysis on the mode or the 
static deflected shape of a structure can successfully identify the presence and the 
location of the damage even at significant noise levels using the 4th order Coiflet 
wavelet. Partial windowing of the deflected shapes and consequent wavelet 
analysis of the segments is found to improve the localization. As far as the 
damage quantification is concerned, while a wavelet based calibration of damage 
is found to be inconsistent and unstable due to noise, the authors propose a 
wavelet-kurtosis based calibration technique which is more robust and consistent. 
Montanari et al. (2013) consider a FE model of a cracked fiber-reinforced beam 
in order to analyse its static deflection. The fiber effect in the crack opening 
response is taken into account through a bridged crack model. Damage detection 
and calibration are studied in the presence of synthetic noise by varying the crack 
depth and the fiber yielding condition. When a large proportion of the fibers have 
yielded, even with constant crack depth, the damage location becomes easier 
through wavelet analysis. The kurtosis and wavelet-kurtosis techniques for 
damage severity calibration, exposed in (Pakrashi et al., 2007), are compared. 
While the kurtosis index seems to well describe damage severity when most of 
the fibers are yielded, the wavelet-kurtosis technique is seen to be insensitive to 
damage severity both when few fibers have yielded and when most of them have 
yielded. Again Pakrashi et al. (2009) statistically deal with the identification of 
the existence, location, and extent of an open crack from the first fundamental 
modeshape of a simply supported beam by using CWT with the 4th order Coiflet 
wavelet. The problem of false alarm and its significant reduction by the use of 
multiple measurements are illustrated.  

Rucka and Wilde (2006b) analyse numerically and experimentally the first 
modeshape of a plexiglass cracked cantilever by the one-dimensional CWT and 
the first modeshape of a clamped steel plate with a central defect by the two-
dimensional CWT. The 4th order Gaussian wavelet and the reverse biorthogonal 
5.5 wavelet, having both four vanishing moments, are used to analyse the beam 
and the plate, respectively. The problem of damage detection in plates is tackle 
also by Huang et al. (2009) which develop a 2D CWT algorithm for SHM. The 
feasible and accuracy of the method in locating the damage positions and in 
qualitatively assessing the damage severity for both dense and sparse sensor 
networks is numerically demonstrated. 

Zhong and Oyadiji (2011a) compare Stationary Wavelet Transform (SWT) 
and the Discrete Wavelet Transform (DWT) as tools for small crack detection in 
beam-like structures. The first four mode shapes of damaged simply supported 
beams, obtained numerically and experimentally, are analysed. Although crack 
information can be obtained from the detail coefficients of the SWT or of the 
DWT of mode shapes, due to the fact that DWT is a down-sampling algorithm 
whereas SWT is an up-sampling one, the SWT provides better crack 
identification than DWT, especially when the crack is relatively small and noise 
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is relevant. Cao and Qiao (2008) propose and validate numerically and 
experimentally, under relatively high noise environment, a novel methodology, 
so-called Integrated Wavelet Transform (IWT), for damage detection in 
structural vibration mode shapes. The IWT algorithm has the merit of integrating 
the SWT, to extract pure damage information by eliminating random noise and 
regular interferences, and the CWT to reveal abnormality from the extracted 
damage. Moreover, a guideline for rationally choosing the optimal mother 
wavelet for effective damage identification is provided. Reverse biorthogonal 2.2 
wavelet is chosen as the optimal mother wavelet for both the wavelet transforms. 
Gökdağ and Kopmaz (2009) develop a new wavelet-based damage detection 
approach based on the assumption that a damaged mode shape of a beam is 
approximately composed of an undamaged mode and other contributors such as 
variations induced by measurement and local damage. Through DWT, assuming 
a suitable wavelet function and decomposition level, a proper  approximation 
function to be used as undamaged mode is extracted from the damaged one. In 
this way, a reliable damage index is defined taking the difference of the CWT 
coefficients of the damaged mode and those of the approximation function. The 
method is tested and validate numerically and experimentally.  

Rucka (2011) investigates both experimentally and numerically the behavior 
of the CWT damage detection technique in analyzing the first eight mode shapes 
of a cantilever beam with damage in the form of notch of depth 20%, 10% and 
5% of the beam height. The analysis is performed using the Gaussian wavelets of 
4th, 6th and 8th order, having respectively 4, 6 and 8 vanishing moments. The 
experimental results highlight that damage detection by the wavelet analysis is 
more effective on higher measured mode shapes and using wavelets with smaller 
numbers of vanishing moments. Since higher modes contain more regions in 
which the curvature is null and consequently there is less sensitivity to damage, a 
reliable damage localization needs at least two modes. In the work of 
Gianniccaro et al. (2009), based on Gaussian continuous wavelet transforms 
which behave as differentiator filters with easily controlled lowpass cutting 
frequencies, a new global index, aimed at identifying damaged places through 
wavelet analysis of dynamical shapes, is introduced. The appeal of the new 
damage index is to overcome the need of the undamaged condition of the 
structure and to bring in an unique formulation the information related to several 
dynamical shapes. In this way the method makes the analyst free from choosing a 
specific mode, thus allowing a straightforward multimodal analysis. Moreover, 
the global index also provides the possibility of reducing the long wave signals 
which, to a certain extent, can hide damaged places. 

Umesha et al. (2009) present a method for crack detection and quantification 
in beams based on Symlet wavelet analysis. The static deflection is measured at a 
particular point for various locations of a point load along the beam. This 
deflection profile is used as the input signal for wavelet analysis. Due to variation 
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in deflection at some points, compared to their adjacent points, peaks in the 
wavelet coefficients are observed. Since these peak points can be related to 
damage, sensor points or supports, to locate the real damage position, the false 
indicators of damage are eliminated by performing wavelet analysis of the 
deflection profile measured at another point. A generalized curve, considering the 
variations of damage size and location, intensity of load, flexural rigidity and 
beam length, is proposed to quantify the damage. 
 





 

3 Chapter 3 

 

Damage modelling 

 

3.1 Introduction 

In the present thesis numerical and analytical models of damaged beam-
structures are developed to perform damage identification through wavelet 
analysis. More specifically, the damage identification is related to the 
identification of discontinuities due to damage in the beam deflection. Two 
different beam types with constant cross-section are considered: a linear type 
constituted by a homogeneous isotropic elastic material and a nonlinear one 
constituted by Fiber-Reinforced (FR) composite material. In the beams a 
through-thickness edge crack of Mode I (‘opening mode’) is present: the linear 
beam has an open edge crack, while the nonlinear beam presents a breathing 
crack bridged by fiber reinforcements. In the following, sectional crack models 
and the analytical and numerical beam models are presented. 

3.2 Sectional crack models 

3.2.1 Open crack model 

In presence of cracked linear elastic, Linear Elastic Fracture Mechanics 
(LEFM) theory (e.g. Broek, 1986) allows the quantification of the effects of the 
cracks (e.g. in terms of Stress Intensity Factor (SIF), local stiffness, 
displacements, etc.), depending on the geometry and loading configuration, 
through analytical or numerical solutions (Tada et al., 2000).  

In this work, a homogeneous isotropic linear elastic beam contains a through-
thickness open edge crack of Mode I (Fig. 3.1a). The cracked beam element is 
modelled by connecting the two uncracked beam portions through a rotational 
spring which represents the local stiffness kc of the cracked cross-section of the 
beam (Fig. 3.1b). Considering a rectangular cross-section of height h and width b 
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(a the crack depth and E Young’s modulus of the material), according to the 
LEFM concepts, the local stiffness kc can be evaluated through the following 
polynomial expression (Tada et al., 2000): 

( ) )12.1384.3514.3769.1993.5()1/(24 4322

2

δδδδδδ +−+−−
=

Ebhkc , 3.1 

where ha /=δ  is the relative crack depth.  
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(b) 
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Fig. 3.1 – (a) Beam element with a through-thickness open edge crack; (b) 
corresponding model where the rotational spring represents the bending behaviour due 
to the crack. 

3.2.2 Breathing bridged crack model 
A nonlinear mechanical model is adopted to describe the behaviour of an 

edge crack in a beam portion constituted by a fiber reinforced material. In fact, 
fibrous composites in general are characterized by a bridging or reinforcing 
action exerted by the fibers. This action affects the global structural response of 
the composite material mainly in the post-cracking phase, enhancing mechanical 
properties, such as strength, stiffness, toughness, ductility and fatigue strength. 
Two fracture mechanics-based approaches are commonly used for modeling the 
behavior of cracked fibrous composites: the bridged crack model and the 
cohesive crack model (Carpinteri Al. &  Massabò, 1996). Here the sectional 
bridged crack model proposed in (Carpinteri An. et al., 2004; Spagnoli et al., 
2014) is adopted. 

Conversely to the linear assumption of the model of Section 3.2.1, where the 
crack is fully open, in general, cracks open and close during vibrations and, 
consequently, it exhibits a nonlinear behaviour because of the variation in the 
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rotational stiffness. Are Carlson (1974) and Gudmunston (1983), among the 
firsts, who study experimentally and numerically the effects of closing cracks on 
the dynamical characteristics. Later on, several researchers propose models of 
beam with one or more breathing cracks in order to take properly into account the 
nonlinear behavior and to allow vibration-based identification methods to 
correctly detect the features of the damaged system (e.g. sub- and super-
harmonics in the forced dynamic response of the beam; Andreaus & Baragatti, 
2012).  

The most simple model of a breathing crack is a bilinear one wherein the 
crack opens or closes instantaneously, i.e. it is either completely open or 
completely closed (e.g. Zastrau, 1985; Qian et al., 1990; Friswell & Penny, 1992; 
Ruotolo et al., 1996). However, as demonstrated experimentally (e.g. Clark et al., 
1987), the transition from closed to open crack and vice versa happens in a 
smooth way. Accordingly Krawczuk and Ostachowicz (1994), Abraham and 
Brandon (1995), Cheng et al. (1999), Pugno et al. (2000), Kisa and Brandon 
(2000) develop breathing crack models which consider the varying stiffness of 
the crack in its partially open and closed situations. 

In the present thesis the smooth opening-closure behaviour of the crack is 
considered into the bridged crack model by imposing that the relative crack 
rotation and the crack opening displacements at the fiber levels cannot be 
negative so as, when either the rotation or all the displacements are null, the 
beam section is assumed to be intact. 

Consider the through-thickness edge crack in the fiber-reinforced composite 
beam element with a rectangular cross-section. The crack is located in the tensile 
part of the element and is subjected to Mode I loading due to the cross-section 
bending moment Mc(t), in equilibrium with the applied forces, and to the fiber 
bridging forces (Fig. 3.2). Note that the time t represents the ordering variable of 
the events in a static problem.  

Unidirectional fibers are discretely distributed across the crack and oriented 
parallel to the longitudinal axis of the element. The position of the i-th fiber 

),,1( ni K=  is described by the distance ci with respect to the bottom of the beam 
cross-section. Further, the relative crack depth ha /=δ  and the normalized 
coordinate hcii /=ζ  are defined (Fig. 3.2). 
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Fig. 3.2 - Schematic of the bridged crack model. 

 
The matrix of the beam is assumed to present a linear elastic behaviour, 

whereas the fibers act as rigid-perfectly plastic bridging elements which connect 
together the two surfaces of the crack. Hence, the plastic bridging law for the 
generic i-th fiber is characterized by an ultimate force FP,i (and -FP,i in 
compression). Note that during the general loading process, brittle catastrophic 
fracture or compressive crushing of the matrix are disregarded. Further, no edge 
crack is assumed to develop in the upper part of the beam. Similarly, fatigue 
propagation of the initial crack due to loading is also beyond the scope of the 
present investigation. 

The successive cross-sectional configurations during the loading process 
must satisfy equilibrium and compatibility conditions (Carpinteri An. et al., 
2004). Since the problem being examined is statically indeterminate, the 
unknown fiber reactions Fi, positive if the fiber is under tensile loading, on the 
matrix can be deduced from n kinematic conditions related to the crack opening 
displacements  ui at the different fiber levels. If | Fi | is equal to FP,i, the force of 
the i-th fiber becomes known, and the crack opening displacements are hereafter 
shown to depend on such a value. Since the matrix is assumed to behave in a 
linear elastic manner, the crack opening displacement ui at the i-th fiber level is 
computed through the superposition principle (Einstein’s summation rule for 
repeated indices holds): 

jijciMi FMu λλ −=     with    ni ,...,1= , 3.2 
where λiM and λij are the crack opening compliances induced by the bending 
moment and the crack bridging forces, respectively. Equation 3.2 can be written 
in matrix form as follows: 

Fλλu M += cM , 3.3 
where { }T

nuu ,...,1=u  is the vector of the crack opening displacements at the 

different fiber levels, and { }T
nFF ,...,1=F  is the vector of the crack bridging 

forces. Further, { }T
nMM w,...,1λ=Mλ  is the vector of the compliances related to 

the bending moment Mc, whereas λ  is a symmetric square matrix of order n, 
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whose generic element ij represents the compliance λij related to the i-th crack 
opening displacement and the j-th fiber force. 

The relative rotation cϑ∆  due to the crack only (i.e. excluding the elastic 
deformation of the matrix) of the two extreme cross-sections of the beam portion 
in Fig. 3.2 is given by:  

FλM
T

cMMc M −=∆ λϑ , 3.4 
where MMλ  is the rotational compliance due to the bending moment. 

Within the framework of LEFM, the compliances can be determined from 
energy balance considerations as follows (Carpinteri Al. & Massabò, 1997): 
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3.5 

where Em is the Young modulus of the matrix. 
The dimensionless functions YM and YF are based on the analytical 

expressions of the SIFs for, respectively, bending moment and point load acting 
on the crack surfaces (Tada et al., 2000): 
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The unknown crack bridging forces F  can be determined from compatibility 
conditions.  In other words, because of the rigid-plastic crack bridging law for the 
fibers, compatibility requires that 
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Au = , 3.8 
where the vector A  contains the (plastic) crack opening displacements.  Since 
the vector A  is a function of the load history, no one-to-one relationship can be 
constructed between the load and the opening displacements. Therefore, Eq. 3.8 
must be solved according to an incremental procedure of the complete loading 
process which accounts for the loading-unloading alternative corresponding to 
elastic-to-plastic transitions and to plastic-to-elastic returns. The governing Eq. 
3.2 can be solved in the following incremental form: 

jijciMi FMu &&& λλ −=     with    ni ,...,1= , 3.9 
where dot symbol indicates time derivatives, being time the ordering variable, 
and dtFF ii ∫= &  and dtuu ii ∫= & . If the general i-th fiber is in the elastic domain, 

the corresponding increment iu&  of crack opening displacement is null, namely if 
0, =⇒< iiPi uFF & . On the other hand, if the general i-th fiber is yielded, i.e. 

iPi FF ,= , the following two alternatives are possible: 00 >⇒= iii uFF &&  or 

00 =⇒< iii uFF &&  (plastic-to-elastic return).  In other words, we have: 
0>ii uF &   if iPi FF ,=  and 0=iF& ;        0=iu&  otherwise. 3.10 

Instead of time derivatives of crack opening displacements and fiber forces, 
one could use iud  and iFd , i.e. their incremental values, and the above 
incremental procedure could be implemented using finite length holonomic steps. 

Once the incremental crack bridging forces are evaluated, the incremental 
relative rotation cϑ&∆  of the cracked section is given by: 

iiMcMMc FM &&& λλϑ −=∆ . 3.11 
Moreover, since during dynamic vibrations the crack opens and closes, as 

previously explained, the breathing bridged crack model assumes no material 
compenetration along the crack surfaces and consequently 0≥iu  and 0≥∆ cϑ  is 
imposed. When the crack is closing and the crack surfaces at the i-th fiber level 
touch each other ( 0=iu ), the force iF  is not any more related to the rigid-
perfectly plastic i-th fiber but to a pointwise contact of the linear-elastic matrix 
along the crack surface. Therefore, the solution of the Eq. 3.9 is obtained 
assuming that, at every i-th fiber level where 0=iu , dtFF ii ∫= &  can be inferior 

than iPF ,− .When, the closed crack stars opening again, Eq. 3.9 is solved 
considering the rigid-perfectly plastic law of the fibers where for every i-th fiber 
with 0=iu , dtFF ii ∫= &  is evaluated assuming that at the beginning of its crack 

opening time step iPi FF ,−= . 
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3.3 Cracked beam models 

The open crack model and the breathing bridged crack model are included, 
respectively, in a cracked Euler-Bernoulli beam model and in a FE beam model 
to simulated damage identification under static and dynamic responses. 

3.3.1 Analytical linear cracked beam model 

3.3.1.1 Static equilibrium 

The static equilibrium equation of a beam portion, neglecting shear 
deformation, is given by: 

EI
xM

dx
xd )()(

2

2

=
η , 3.12 

where x represents the longitudinal x-axis of beam, η(x) the transversal deflection 
of the beam, M(x) the bending moment along the beam and I the inertia moment 
of the beam cross-section. 

Consider that V cracks of rotational stiffness kcv are present in the beam, 
located at cvx , where Vv ,,2,1 K= , and other Z sources of deflection 
discontinuities (e.g. internal constrains or point load) are positioned along the 
beam length. Therefore, J ( ZV += ) total sources of deflection discontinuity are 
present along the beam length. The counting parameter j is used to number the 
beam elements ( 1,,2,1 ++= ZVj K ).  

By integrating Eq. 3.12 twice, the static deflection rη  of the generic j-th 
element of the beam is as follows: 

jj

x

x

x

xj CxCxdEIxMx
j j

21
2

1 1

/)()( ++= ∫ ∫
− −

η       jj xxx <≤−1  3.13 

where C(.) terms are the integration constants and xj−1 and xj are, respectively, the 
initial and final points of the j-th beam element. Note that if 1=j , 01 =−jx  and 
if 1++= ZVj , Lx j = , where L is the total length of the beam.  

By imposing the boundary conditions for every j-th element of the beam (e.g. 
due to constrains, crack presence, external force, etc.), η(x) of the whole beam is 
analytically evaluated. 

Considering the open crack model (Section 3.2.1), the boundary conditions 
due the v-th crack located at cvxx =  are related to the following condition of 
continuity of displacement 

)()( 1 cvjcvj xx +=ηη . 3.14 
The rotational spring of stiffness kcv at the cracked section introduces a 
discontinuity of the rotation, which can be written as: 
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)()()( 11 cvj
cv

cvjcvj x
k
EIxx ++ ′′=′−′ ηηη . 3.15 

In the case of the other Z sources of deflection discontinuity, kinematic 
boundary conditions related to the relative transversal displacements and 
rotations are to be imposed. 

3.3.1.2 Dynamic equilibrium 

The flexural free vibration response of a beam can be written as: 

0),(),(
2

2

4

4

=
∂

∂
+

∂
∂

t
txyA

x
txyEI ρ , 3.16 

where y(x, t) is the transversal displacement of the beam from its static 
equilibrium position at the position x and at the time t, and ρ and A are, 
respectively, the material density and the cross-sectional area. 

Consider that V cracks of rotational stiffness kcv are present in the beam, 
located at cvx , where Vv ,,2,1 K= , and Z internal constrains are positioned along 
the beam length. The counting parameter j is used to number the beam elements 
( 1,,2,1 ++= ZVj K ). 

By separating the variables in Eq. 3.16 as )()(),( tgxtxy η=  and solving the 
differential equation function of x, the modeshapes jη  of the j-th element of the 
beam become: 

)cosh()sinh()cos()sin()( 4321 xCxCxCxCx jjjjj ααααη +++=  
with   jj xxx <≤−1 , 3.17 

where 
4/12









=

EI
Aωρα , ω is the natural frequency of the cracked beam. Note that 

if 1=j , 01 =−jx  and if 1++= ZVj , Lx j = , where L is the total length of the 
beam. 

The C(.) terms are the integration constants arising from the solution of a 
fourth order differential equation in space. A system of )1(4 ++ ZV  linear 
equations is formed by imposing the static and kinematic boundary conditions 
along each element of the beam. The kinematic boundary conditions due the v-th 
crack located at cvxx =  are expressed by Eq. 3.14, while the static ones are  

)()( 1 cvjcvj xx +′′=′′ ηη ,   )()( 1 cvjcvj xx +′′′=′′′ ηη . 3.18 
The modeshapes and, hence, the natural frequencies of the cracked beam are 

found by setting the determinant of the coefficient matrix of the linear system to 
zero, and solving it numerically for the roots of α. The coefficient C1L is imposed 
to be equal to unity.  
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3.3.1.3 The case of cantilever and simply-supported beams 

The vibration-based damage identification by wavelet analysis presented in 
Chapters 4 and 5 is carried out by applying the analytical cracked beam model to 
the case of cantilever and simply supported beams with a single open edge crack. 
Free vibration and static deflection responses are evaluated for both the beam 
types (Fig. 3.3).  
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Fig. 3.3 - Cracked cantilever and simply-supported beam models. 
 
To obtain the solutions of the problem of Eq. 3.13 for the cantilever and the 

simply supported beam, the boundary conditions due to the crack (Eqs 3.14 and 
3.15) and to the constraints are imposed.  

For the cantilever beam, since the bending moment M(x) along the beam due 
to the force P is M(x) = P(L - x), the boundary conditions are: 

0)0(1 =η    and   0)0(1 =′η , 3.19 
)()( 21 cc xx ηη =   and cccc kxLPxx /)()()( 12 −=′−′ ηη , 3.20 

where )(1 xη  is related to the beam portion of cxx <≤0 , while )(2 xη  that of 
Lxxc ≤≤ . The resulting static deflection of the cantilever is given by: 

cxxxLx
EI
Px <≤
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The bending moment M(x) acting on the simply supported beam is 
2/)( PxxM =  of 2/0 Lx <≤  and 2/)()( xLPxM −=  of LxL ≤≤2/ and the 

boundary conditions are: 
0)0(1 =η ,   0)(3 =Lη , 3.23 

)()( 21 cc xx ηη = ,   )2/()()( 12 cccc kPxxx =′−′ ηη , 3.24 
)2/()2/( 32 LL ηη =    and   )2/()2/( 32 LL ηη ′=′ , 3.25 

where )(1 xη  represents the beam portion of cxx <≤0 (assuming 2/Lxc < ), 
)(2 xη  that of 2/Lxxc <≤  and )(3 xη  that of LxL ≤≤2/ . The resulting static 

deflection of the simply supported beam is given by: 
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In the case of the free vibration response, the boundary conditions due to the 

crack (Eqs 3.14, 3.15 and 3.18) and to the end constraints, have to be imposed to 
Eq. 3.17 so as to evaluate numerically the roots of α (i.e. the modeshapes and, 
hence, the natural frequencies). For the cantilever beam the boundary conditions 
at the clamped end and at the free end are, respectively: 

0)0(1 =η    and   0)0(1 =′η , 3.29 
0)(2 =′′ Lη   and   0)(2 =′′′ Lη . 3.30 

For the simply supported beam, the boundary conditions at the hinged ends  
are: 

0)0(1 =η    and   0)0(1 =′′η , 3.31 
0)(2 =Lη    and   0)(2 =′′ Lη . 3.32 

3.3.2 Numerical nonlinear cracked beam model  

A Finite Element (FE) model is used to simulate the nonlinear static and 
dynamic response due to external loading of a generic rectangular fiber-
reinforced beam with edge cracks. The composite matrix presents a linear-elastic 
behaviour, while the breathing bridged crack model (Section 3.2.2) is used to 
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describe the nonlinear elastic-plastic and the opening-closuring responses of the 
cracked sections. 

Two-node Timoshenko beam finite elements with 4 degrees of freedom, 
coupled transversal displacements and rotations, are employed in the FE model. 
The portions of the uncracked beam are modelled through finite elements with 
linear-elastic bending and shear behaviour (Friedman & Kosmatka, 1993). On the 
other hand, the breathing bridged crack model is accommodated within the 
Timoshenko beam element (Viola et al., 2002). 

3.3.2.1 Finite element formulation 

The cracked finite element is constituted by two solid portions of beam 
connected at mid-length by a lumped rotational spring of stiffness kc(t), 
representing the nonlinear crack (Fig. 3.4Fig. 3.4). The stiffness kc(t) is calculated 
using the breathing bridged crack model at every time t through the relation: 

)(/)()( ttMtk ccc ϑ&& ∆= . 3.33 
Note that, if the crack is close ( 0=∆ cϑ  and/or 0=u ), until a reversal of the 

bending moment at the crack section does not occurs (i.e. 0)()( <⋅ tMtM cc
& ), the 

stiffness of the spring is assumed to be perfectly-rigid )|)((| ∞=tkc , i.e. the 
cracked finite element behaves like a uncracked linear-elastic element. 
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Fig. 3.4 – (a) Beam element with breathing bridged edge crack; (b) sketch of the 
corresponding cracked finite element with nonlinear rotational spring. 
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In line with Timoshenko’s beam theory and considering the coupling of 
transversal displacements and rotations, the shape functions of the two portions 
of the cracked finite element can be obtained. The shape functions, N1i and N2i, 
pertaining to the transversal displacement field, are equal to (see Fig. 3.4): 
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3.35 

where lc is the length of the cracked finite element, )/(12 2
cmeq AlGIE χ=Γ is the 

shear deformation parameter of the beam, )(/)( tkIEt ceq=Ζ , Eeq is the 
equivalent Young’s modulus of the composite material, A and I area the area and 
the moment of inertia of the cross-section, respectively, χ is the shear coefficient 
(equal to 1.2 for a rectangular cross-section), Gm the shear elastic modulus of the 
matrix. Note that, being Em and Ef, respectively, the Young’s modulus of the 
matrix and of the fibers and νf the volume fraction of the fibers, through the 
classical rule of mixture so the equivalent Young’s modulus is equal to 

ffmfeq EEE νν +−= )1( . 
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The shape functions, R1i and R2i, pertaining to the rotation field, are (see Fig. 
3.4): 
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According to the standard definition of the stiffness matrix Kc(t), its related 
terms can be evaluated by differentiating the shape functions related to the 
rotations along the finite element, that is: 
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where the apex symbol indicates a derivative with respect to x. 
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The resulting stiffness matrix Kc(t) of the cracked beam element takes the 
form:  
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The translational, )(tt
cM , and the rotational, )(tr

cM , mass matrices can be 
obtained by the kinetic energy of the cracked finite element, as follows:  

∫∫ +=
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where ρeq is the density of the composite material, },,,{ 141312111 NNNN=N , 
},,,{ 242322212 NNNN=N , },,,{ 141312111 RRRR=R  and },,,{ 242322212 RRRR=R . 

Note that, being ρm and ρf respectively the density of the matrix and of the fibers, 
ffmfeq ρνρνρ +−= )1( . 

The translational mass matrix )(tt
cM  takes the form: 
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The rotational mass matrix )(tr
cM  takes the form: 
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where 41410 2
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3.3.2.2 Static and dynamic equilibrium 

According to the adopted FE model, the nonlinear static and dynamic 
equilibrium of the fiber-reinforced cracked beam can be written, respectively, in 
the following discretized forms 

)()( tt PηK =  3.44 
and 

)()()()( tttt PηKηCηM =++ &&& , 3.45 
where )(tM , )(tC  and )(tK  are, respectively, the mass matrix, the damping 

matrix and the stiffness matrix of the beam. The vectors η&& , η&  and η  represent 
the translational and rotational nodal accelerations, velocities and displacements 
and )(tP  is the vector of the nodal forces acting on the beam.  

The global matrices )(ttM , )(trM  and )(tK  are formed by assembling the 
translational mass matrices, the rotational mass matrices and the stiffness 
matrices of each uncracked and cracked finite element. Then, the mass matrix 

)(tM  is obtained by the sum of )(ttM  and )(trM . The classical Rayleigh 
method (Chopra, 1995) is employed to build the damping matrix )(tC  as a linear 
combination of the mass matrix )(tM  and the stiffness matrix )(tK . The 
coefficients of the Rayleigh mass matrix are calculated on the basis of the 
damping ratio at the first two natural frequencies of the beam.   

Due to the nonlinearity of the static and dynamic problems, related to the 
nonlinear elastic-plastic behaviour of the breathing bridged crack, Eqs 3.44 and 
3.45 are solved in incremental form. The explicit Wilson step-by-step method is 
used to solve the dynamic equilibrium (Chopra, 1995). Furthermore, in both the 
static and dynamic problems, at every time step dt, the possible variation of kc is 
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checked. If such a variation occurs, dt is subdivided in two sub-intervals and the 
proper value of kc to be used at the second sub-interval is calculated, as explained 
in more detail below. At the first time step, if the bending moment Mc opens the 
crack, the elastic value of kc (obtained by assuming all the fibers rigid) is 
assumed. Otherwise if the crack is kept closed, kc is imposed to be equal to 
infinite. At a generic time step, the system of Eq. 3.9 is solved and it is checked if 
at least a inequality condition of the breathing bridged crack model (related to 

cϑ∆  and to iF  and iw  and for every i-th fiber, see Section 3.2.2) is not satisfied. 
If the control is negative (i.e. all the inequality conditions of the crack model are 
fulfilled) in the following time step the same kc is used. Otherwise if the control 
is positive, using the Newton-Raphson’s method, the first instant within the time 
interval dt, wherein a limit constraint is reached, is identified. Consequently, dt is 
subdivided in two sub-intervals and, by updating the state of the crack and of the 
fibers, the proper value of kc to be used at second sub-interval is calculated 
through Eq. 3.33. Furthermore, the algorithm checks the occurrence of a load 
reversal within dt, namely a plastic-to-elastic return or an elastic-to-elastic return. 
Through a nonlinear optimization procedure, the time instant, wherein the 
reversal takes place by looking for the |}max{| cM  in dt, is evaluated. 

3.3.2.3 The case of a cantilever beam 

The FE model of the cracked fiber reinforced beam is used to simulated the 
nonlinear static and dynamic behavior of a cantilever beam with a single crack 
subjected to a point load P(t) at the free end (Fig. 3.5). The static and dynamic 
responses are studied by wavelet analysis to assess the nonlinear damage in 
Chapter 6. 

 



Chapter 3 79 
“Damage modelling” 
 
 

P(t)kc(t)

a

L
xc

≈ ≈

y,η

x,u
ϑ

 
 

Fig. 3.5 − Sketch of the FE model of a generic FR cantilever beam with a breathing 
bridged crack.  

 





 

Chapter 4 

 

Edge effects in damage detection  

4 using spatial CWT  

 

4.1 Introduction 

As exposed in Chapters 1 and 2, wavelet analysis is widely recognized to be 
an effective and robust damage identification tool, in analysing static or dynamic 
deflection shapes of structures. Nevertheless a reliable detection of tiny damages 
is still an open challenge because they can be masked by measurement noise 
and/or border distortions (edge effects) of the wavelet transform. While the 
damage identification technology is progressing in the development of modern 
techniques for precise and dense spatially distributed measurements (e.g. 
computer vision, laser scanning techniques and optical fibers) (Rastogi, 1997; 
Casciati, & Wu, 2010; Stanbridge & Ewins, 1999; Yang & Allen, 2011; Francis 
et al.), the issue of edge effects in continuous wavelet transforms remains poorly 
addressed in the literature (Rucka & Wilde, 2006a-2006b; Spanos et al., 2006; 
Messina, 2008).  

It is well known that border effects are very common in many finite-length 
non-stationary signal analysis and processing approaches, e.g. WT (Mallat, 2001; 
Mertins 1999) and HHT (Deng et al., 2001; Cheng et al., 2007). In wavelet 
transform, near the signal ends the convoluting window extends partially on the 
signal domain and consequently abnormal coefficients arise and taint the 
transform. To handle boundary effects two approaches are usually used: the first 
is to impose some extra constraints on the signal (e.g. extension method) while 
the second is to construct a specific wavelet. For its simplicity the signal 
boundary constraint approach is usually preferred. Traditional extending methods 
as zero padding, periodic padding, symmetric padding and linear padding (see 
MATLAB Wavelet Toolbox; Misiti et al., 2000) are usually employed in WA but 
often case-dependent models are needed to conveniently alleviate the border 
effects for the specific application. Kijewski and Kareem (2002) and Su et al. 
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(2011) discuss extensively the edge effect problem in analysing oscillatory 
signals by Morlet wavelet. They suggest, respectively, a simple extension method 
to preserve the local spectral content of the signal and a smooth extension 
scheme using a Fourier-based method to preserve the signal time-varying 
characteristics. Williams and Amaratunga (1997) develop an extrapolated 
discrete wavelet transform, applicable to Daubechies and biorthogonal wavelet 
bases, which does not exhibit edge effects in image compression and other signal 
processing applications. A non-linear extension model for CWT, named the 
Leap-Step Time Series Analysis (LSTSA) model, is proposed by Zheng et al. 
(2000) to enhance the detection of low-frequency signals in the observed Length-
Of-Day (LOD) series. 

As mentioned above, few researchers have examined in depth the border 
distortion issue in structural damage detection through WT of deflection shapes. 
In fact, since the damage tends to nucleate and propagate in the most highly 
stressed zone of the structure which is often near the boundary (e.g. the zone 
close to the clamped end of a cantilever), the maximum WT coefficients due to 
the edge effects tend to mask the damage, leading to situations of false indication 
or even of false alarm. Spanos et al. (2006) consider multi-damaged Euler-
Bernoulli beams subjected to static loads and show numerically that applying the 
WT on the difference between the damaged and the undamaged beam responses, 
boundary effects are eliminated and damage related to local maxima is clearly 
identified. However, the drawback of this method is the need of the availability 
of the undamaged response of the beam. Rucka and Wilde, imposing the local 
continuity of the first and second derivatives at the ends, extend the signal 
outside its original support through a simple cubic spline extrapolation based on 
three (Rucka & Wilde, 2006a) or four (Rucka & Wilde, 2006b) neighbouring 
points. On the other hand, Messina (2008) discuss extensively the border 
distortion in CWT dealing with the first four Gaussian wavelets and propose two 
methods. The first method consists of padding the signal through isomorphisms 
(called “Rotation” - corresponding to a polar-like symmetry - and “Turnover” - 
corresponding to a mirror symmetry) of the original signal. The author examine 
their quality in limiting the border distortions with respect to the beam boundary 
conditions and the derivative order. The second method (called “Self-
minimization”) aims at correcting a first approximated extension, for instance 
obtained by a fitting polynomial, by minimizing an objective function which 
depends on the wavelet convolution results. 

In the present chapter the problem of the damage masked by CWT border 
distortions is discussed and a new signal extension polynomial method to reduce 
edge effects for enhanced damage detection by spatial CWT is proposed. Taking 
advantage of the slight oscillation of the structural deflection shapes, the method 
is based on high-order polynomial functions that fit the original signal and its 
first derivative so as to extend smoothly the signal and its derivatives. To 
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illustrate the effectiveness and the versatility of the method with respect to 
different boundary conditions and beam deflections (described by either 
trigonometric or polynomial functions), the free vibration and the static 
deflection responses of a cracked cantilever and a cracked simple supported 
beam are analytically simulated (see Section 3.3.1.3). A synthetic Gaussian white 
noise is added to the signal to represent real measured data. The fourth order 
Coiflet basis function (‘Coif4’) is used in wavelet analysis. The method is 
compared with the traditional linear padding method and with Messina’s 
isomorphism methods (Messina, 2008). 

4.2 Edge effects issue in damage detection by spatial CWT 

As exposed in Section 2.2.3, the continuous wavelet transform is defined by 
the convolution of the input signal, η(x), with a wavelet function generated from 
the mother wavelet, ψ(x), by scaling and translating it. For a finite-length signal, 
when the convolution operation is executed close to the signal ends, the wavelet 
window extents into a region with no available data (Fig. 4.1a). Therefore the 
transform of the signal close to the borders is tainted by the non-existing data: in 
these regions the values of the CWT coefficients arise abnormally (border 
distortions or edge effects) and the real signal features are consequently corrupted 
by the transform (Fig. 4.1b). Edge effects can provoke the masking of the 
damage and yield situations of false indicators or false alarm. 

Among the different approaches to handle edge effects, the most commonly 
used one is to preprocess the signal through extrema extension (Mallat, 2001; 
Mertins 1999). Traditional extension techniques include extension by zero 
padding, periodicity, symmetry and linearization (Misiti et al., 2000). These 
methods make simple assumptions about the signal characteristics outside the 
borders but they prove unsatisfactory for many applications (e.g. analysis of 
strong oscillating signals, imagine compression, coding applications, etc.), 
including damage detection (Rucka & Wilde, 2006a-2006b; Messina, 2008).  
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(a) 

 
 

(b) 

 
 

Fig. 4.1 – (a) In the CWT convolution, the wavelet window, close to the signal ends, 
extents into a region with no available data; (b) edge effects occurs close to the signal 
extrema, corrupting the transform. 

 
In this study the free vibrations and the static deflection of a cracked 

cantilever (Fig. 4.2) and of a cracked simple supported beam (Fig. 4.3) are 
considered as baseline signals η(x) to be analysed by WA using ‘Coif4’ wavelet 
(see Chapter 2).  

The cracked beam responses are described by means of the analytical model 
introduced in Section 3.3.1 and in accordance with the open crack model (see 
Section 3.2.1) the damage introduces a discontinuity in the rotation, )(xη′ , of the 
structural response and consequently a singularity in the curvature, )(xη ′′ , and 
singularities in the subsequent derivatives. As well-known (Section 2.2.3), a 
wavelet with m vanishing moments detects the local discontinuities of the signal 
and of its derivatives up to the m-th order. Therefore, suitable padding functions, 
to be added at both the ends in the original signal, need to have specific 
smoothness features to avoid the introduction of edge discontinuities into the 
padded signal and its derivatives up to the m-th order. The traditional padding 
methods cited above introduce discontinuities at the ends of the signal and/or in 
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its 1st or 2nd derivatives, so that small damages close to the beam extrema are 
masked by CWT border distortions. In the following, an ad-hoc extension 
method that minimizes edge effects is developed for a more effective damage 
detection through wavelet analysis. 

 

(a) 

 
 

(b) 

 
 

Fig. 4.2 – (a) Normalized 1st, 2nd and 3rd mode shapes of a generic cantilever beam 
with an open edge crack at x/L = 0.25; (b) Normalized static deflection of a generic 
cantilever with an open edge crack at x/L = 0.25 subjected to a transversal load at x = L. 
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(a) 

 

(b) 

 
 

Fig. 4.3 – (a) Normalized 1st, 2nd and 3rd mode shapes of a generic simply supported 
beam with an open edge crack at x/L = 0.25; (b) Normalized static deflection of a 
generic simply supported beam with an open edge crack at x/L = 0.25 subjected to a 
transversal load at x = L/2. 

 
In order to consider realistic measured data, noise is superimposed on the 

simulated deflection shapes η(x). As a matter of fact, the ideal situation in the 
absence of noise would produce a trivial damage identification by extending the 
signal η(x) through its interpolating spline or fitting spline (Rucka & Wilde, 
2006a-2006b). The border distortions would be suppressed and the location of 
very tiny damages close to the edges would easily be identified by WT. On the 
other hand numerical experiments prove this approach not to be effective in 
extending noisy signals. Note also that in the absence of noise WA would not be 
necessary to detect the damage position since, by numerically calculating the 
second derivative of the original signal, the damage location can readily be 
identified (Pandey et al., 1991).  
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The presence of noise is introduced by adding a synthetic Gaussian white 
noise to η(x). To quantify the noise level, the signal to noise ratio (SNR) is 
considered. The SNR, expressed in decibels, is defined as: 
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The term P with the subscripts in Eq. 4.1 denotes power and is computed as 
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where Nz  denotes the number of discrete points of a generic sampled function 
z(x). 

4.3 The proposed padding method  

A simple and computationally efficient method based on using two 
polynomial functions )( 11 xf  and )( 22 xf  to extend, in the range 0≤x  and 

,Lx ≥ respectively, the signal η(x) is proposed (Fig. 4.4).  
 

f2(x2)

x2

x, x1 

η(x) , f1(x1)

start padding function, f1(x1)

end padding function, f2(x2)
noisy data signal, η(x)

 
Fig. 4.4 - A generic noisy data signal, η(x), is extended smoothly before the start by 

)( 11 xf  and after the end by )( 22 xf . 
 
These functions are obtained by a fitting procedure in order to: 

(i) describe correctly η(x) in such a way to extend smoothly the trend of the 
signal and of its derivatives up to the order equal to the m-th vanishing moment 
of the adopted wavelet; 
(ii) ensure continuity at the boundaries up to m-th derivative order. 
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Since the original signal is corrupted by noise, conditions (i) and (ii) may 
only be satisfied in an average sense.  

This method assumes that the extension polynomials functions )( 11 xf  and 
)( 22 xf  have the same degree of the fitting functions )( 11 xf  and )( 22 xf  defined 

below. When adopting the ‘Coif4’ wavelet with 8 vanishing moments, boundary 
continuities up to the 8th derivative of η(x) have to be satisfied. Hence, 
polynomial functions of degree 8 are generated for )( 11 xf  and )( 22 xf . 
However, even though a wavelet function with fewer vanishing moments is used, 
to extrapolate accurately the noisy signal trend, numerical analysis show that 
polynomial functions of degree 8 are recommended. 

To define the extension functions, firstly η(x) is fitted in a least squares sense 
through the two polynomial functions )( 11 xf  and )( 22 xf as 
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where 111 ,,, IBA K  and 222 ,,, IBA K  are the coefficients of the fitting polynomial 
functions, )( 11 xf  and )( 22 xf , respectively. The function )( 11 xf  fits η(x) from 

0=x  to Lx 1β= ; while )( 22 xf  fits η(x) from )1( 2β−= Lx  to Lx = , where the 
parameters 1β  and 2β  can vary in the range 11.0 − . There are no optimal value 
for these parameters, as they depend on the trend of the signal and the noise 
level. For instance in the case of signals characterized by no sign change, values 
in the range of 17.0 −  work well while for oscillating signals values in the range 

4.01.0 −  are suggested; moreover the latter values are in general to be preferred 
in the presence of low noise content. 

The extension polynomials )( 11 xf  and )( 22 xf have the expressions: 
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where s is the scale parameter considered in the WA, Λ  represents the distance 
from the mother wavelet center to the position where the wavelet attains 
negligible values (for ‘Coif4’, dx11=Λ  is assumed, where dx is the sampling 
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step). The polynomial coefficients 111 ,,, IBA K  and 222 ,,, IBA K  are obtained as 
follows: 
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Then, the coefficients 1H  and 2H  are fitted through an iterative procedure to 
the first derivative )(xγ  of the noisy data η(x), being Lx ≤≤0 . Starting from 
the padded signal )()()( 2211 xfxxf ∪∪η , where 01 ≤x  and Lx ≥2 , )(xγ  is 
numerically calculated through Richardson’s extrapolation (Atkinson, 1989), 
which allows a high-order approximation (e.g. )( 8dxΟ , )( 10dxΟ  or )( 12dxΟ ) of 
the derivative. 

The iterative procedure consists of the following steps: 
(1)  γ(x) is fitted in a least squares sense through two polynomial functions 

)(~
11 xf  and )(~

22 xf , of one smaller degree with respect to that of )( 11 xf  and 
)( 22 xf , such as: 
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where 111
~,,~,~ HBA K  and 222

~,,~,~ HBA K  are the coefficients of the fitting 
polynomial functions, )(~

11 xf  and )(~
22 xf , respectively. The function )(~

11 xf  fits 
γ(x) from 0=x  to Lx 1

~β= ; while )(~
22 xf  fits γ(x) from )~1( 2β−= Lx  to Lx = , 

where 1
~β  and 2

~β  can vary in the range 11.0 − . In the following, unless not 
otherwise specified, 11

~ ββ =  and 22
~ ββ = .  

(2)  )(xγ  is recalculated through Richardson’s extrapolation starting from the 
modified padded signal )()()( 2211 xfxxf ∪∪η , where in )( 11 xf  1H  is replaced 
with 2

~H  and in )( 22 xf  2H is replaced with 2
~H . 

The steps (1) and (2) are repeated until the values of 1H and 2H converge. 
Since differentiating the original signal increases the amount of noise, the 

above described optimization approach is not effective for the other polynomial 
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coefficients, 11 ,, GA K  and 22 ,, GA K . Note that the last two equalities of Eqs 4.7 
and 4.8 impose the fundamental condition of signal continuity at the two 
extrema. Furthermore, it has to be underlined that good results can be achieved 
without performing the optimization procedure related to the first derivative (i.e. 
by assuming 

11 HH =  and 
22 HH = ) and, in fact, better results could be 

obtained in some cases, e.g., when the noise level is high. Figures 4.4, 4.5 and 4.6 
show respectively a generic noisy data signal and its 1st and 2nd derivatives 
extended through the proposed polynomial functions )( 11 xf  and )( 22 xf , and 
their corresponding derivatives. These figures point out that the conditions (i) and 
(ii), explained above, are satisfied.  

 
f2'(x2)

x2

x, x1

η'(x) , f1'(x1)

f1'(x1)

f2'(x2)
η'(x)

 
Fig. 4.5 - The 1st derivative of the padded noisy signal is shown. The functions )( 11 xf ′  
and )( 22 xf ′  extend )(xη′  smoothly. 
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f2''(x2)
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Fig. 4.6 - The 2nd derivative of the padded noisy signal is shown. Increasing the 
derivative order of η(x) leads to an increase of noise. However )( 11 xf ′′  and )( 22 xf ′′  
follow the average trend of )(xη ′′ .  

4.4 Illustrative examples 

The effectiveness and the versatility of the proposed polynomial padding 
method in minimizing the CWT border distortions are investigated by 
considering the simulated noisy free vibrations and the static deflection of a 
cantilever and a simple supported cracked beam. The method is assessed by 
analyzing structural responses having different features (trigonometric function 
for the modeshapes and cubic polynomial for the static responses) and various 
constraint conditions (clamped, simple supported and free). Moreover, the CWT 
results are compared to those obtained by the application of the traditional linear 
padding method (Misiti et al., 2000) and Messina’s isomorphism method 
(Messina, 2008), which is considered to be the most effective padding method 
available in the literature. Conversely to the linear padding method, which 
applies a linear extension of η(x) interpolating the first two and the last two 
values of the sampled beam deflection (Fig. 4.7a), the isomorphism padding 
methods proposed by Messina extend the signal end parts either through mirror 
symmetry (called “Turnover”) when the signal’s first derivative tends to zero or 
through a polar-like symmetry (called “Rotation”), when the signal’s second 
derivative tends to zero (Fig. 4.7b). 
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(a) (b) 

 

Fig. 4.7 – (a) linear padding method; (b) Messina’s padding method, where the initial 
part of η(x) is extended through the ‘Turnover’, and its final part through the ‘Rotation’.  

 
A cracked beam of length L = 1m and a rectangular cross-section of height h 

= 0.05L and width b = 0.5h, constituted by an elastic linear isotropic material 
with Young modulus, E = 200 GPa, and density, ρ = 7850 kg/m3, is considered. 
The free vibration responses and the static deflections of the beams are sampled 
at dx = 0.001L intervals and analyzed through CWT using the ‘Coif4’ mother 
wavelet. The crack location, xc, and the noise level (synthetic Gaussian white 
noise is used) are varied and, unless otherwise specified, the relative crack depth 
ratio, δ (δ = a/h), is fixed to 2%.  

4.4.1 Free vibration response of a cantilever beam 
The normalized first modeshape (maximum deflection equal to unity) of the 

damaged cantilever beam is analysed using the linear padding method, Messina’s 
method (with the “Turnover” method at the clamped end and the “Rotation” 
method at the free end (see Giannoccaro et al., 2009) and the proposed 
polynomial method (with the fitting parameters, 1β  and 2β  assumed equal to 1). 
The crack is located at xc/L = 0.02 from the clamped end. A noise level SNR = 
120 dB is assumed. 

In Fig. 4.8a, where the linear padding method is used, a jump in the curvature 
is evident at x = 0. In Fig. 4.8b, where the “Turnover” method is applied to the 
clamped end, the continuity of the second derivative at x = 0 is fulfilled while a 
jump of the third derivative is expected. On the other hand, in Fig. 4.8c, thanks to 
the proposed polynomial padding, no discontinuities are present in the 
boundaries and the extending functions are in agreement with the average trend 
in the curvature )(xη ′′ . Incidentally, it is worth noticing that, for the selected 
combination of noise level and damage severity and location, it is not possible to 
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locate the crack by analyzing the curvature plot, and hence a wavelet transform 
technique is necessary to detect such damage. 

 

 
(a) (d) 

 

 
(b) (e) 

 

 
(c) (f) 

 

Fig. 4.8 – Curvature and contour plots of the CWT absolute values of the normalized 
first modeshape of a cracked cantilever beam with δ = 2% and xc = 0.02L, and SNR=120 
dB: (a,d) linear padding method; (b,e) Messina’s method; (c,f) proposed polynomial 
padding method. 

 
Figures 4.8(d-f) present zoomed contour plots of the absolute values of the 

CWT (from scale 1 to scale 40) related to the normalized first modeshape padded 
using the three methods presented previously.  

Since the linear padding method introduces a discontinuity in the second 
derivative at x = 0 (Fig. 4.8a), high coefficient values arise around that region and 
the bright cone points towards x = 0 (Fig. 4.8d). The damage location is 
consequently masked because of the edge effects. Furthermore if only the CWT 
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coefficients related to a given scale were considered (e.g. scale 24 in Fig. 4.8d), 
the analysis would locate erroneously the damage at about x = 0.01L.  

When Messina’s method is applied, even if a jump in the third derivative 
occurs at x = 0, crack discontinuity at finer and medium scales can be detected as 
the contour cones point correctly towards the crack location at x = 0.02L (Fig. 
4.8). On the other hand, at coarser scales, characterized by narrower bands of 
lower frequencies, the CWT detects the jump of the third derivative and hence it 
is unable to locate the damage.  

Figure 4.8f shows that, when the proposed polynomial extension method is 
used, the central bright cone is characterized by an axis centered to the correct 
damage location. Therefore crack position can be detected at all CWT scales, 
leading to unambiguous and more reliable damage identification.  

The contour plots of the absolute values of the CWT related to the 
normalized third modeshape of the cracked cantilever beam, obtained using 
Messina’s method and the proposed polynomial method, are presented in Fig. 4.9 
(the crack is located close to the free end at x = 0.98L and a noise level SNR = 
140 dB is imposed). Given the oscillating feature of the modeshape, 1β  and 2β  
are assumed to be equal to 0.2 and 0.333, respectively. 

Figures 4.9a and 4.9b demonstrate that wavelet analysis fails to detect the 
damage near the free end when Messina’s method is applied. This is a 
consequence of the fact that the curvature near the free end tends to be null and 
therefore damage identification is more difficult. The jump in the modeshape 
third derivative at x = 0 due to the use of the “Turnover” padding method is the 
main discontinuity that ‘Coif4’ wavelet detects in analyzing the padded signal. 

On the other hand, using the proposed polynomial padding method, no 
discontinuity is present at the extrema of the signal or its derivatives, and no 
border distortion is generated by the wavelet transform. The bright cones point 
properly to the damage position (see Figs 4.9(c-d)). 
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(c) 

 
(d) 

Fig. 4.9 – Contour plots of the CWT absolute values of the normalized third modeshape 
of the cracked cantilever beam with δ = 2% and xc = 0.98L, and SNR=140 dB: (a) 
Messina’s method; (b) zoom of (a); (c) proposed polynomial extension method; (d) 
zoom of (c). 

4.4.2 Free vibration response of a simply supported beam 

Figure 4.10 shows the effectiveness of Messina’s method (the “Rotation” 
method is applied at both extrema) and of the polynomial method ( 1β  and 2β  are 
equal to 1) in the case of the first modeshape of a cracked simply supported beam 
corrupted by noise (SNR = 140 dB). The crack, close to the left support at x = 
0.02L, is correctly identified through both methods. Note that since the beam 
modeshape is sinusoidal, Messina’s method does not introduce a discontinuity in 
the signal or its derivatives, and hence no border distortion occurs. Note also that 
the brightest cone of Fig. 4.10a is shifted at coarser scales to the left with respect 
to the damage location due to the presence of the mirrored damage at cxx −= . 

 

 
(a) 

 
(b) 

Fig. 4.10 – Zoomed contour plot of the CWT absolute values of the normalized first 
modeshape of the cracked simply supported beam with δ = 2% and xc = 0.02L, and 
SNR=140 dB: (a) Messina’s method; (b) proposed polynomial extension method. 
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4.4.3 Static deflection of a cantilever beam 

The normalized noisy static deflections of the cantilever beam subjected to 
the point load P of Fig. 3.3, with an open crack of relative depth δ = 2%, located 
at 0.02L or at 0.98L, are analysed by CWT. The polynomial extension method is 
applied assuming 1β  and 2β  equal to 1 and compared with Messina’s method. It 
can be observed that even if η(x) is a cubic function and the continuity of η(x) 
and its derivatives at the boundaries can be satisfied by polynomial functions of 
degree three, the presence of noise requires extending polynomial functions of 
eighth or higher order to overcome edge effects.  

Both padding methods prove to be effective in analyzing static deflection 
when the crack is close to the clamped end (Fig. 4.11) or when it is near the free 
end (Fig. 4.12).  

Considering a noise level of SNR = 100 dB, since finer scales are more 
sensible to noise than coarser ones, the lower parts (from scale 1 to 20) of the 
CWT contour plots in Figs 4.11a and 4.11c provide somewhat ambiguous 
damage detection for both the padding methods. On the other hand, by 
considering the upper parts of these contour plots (from scale 20 to 40) the 
damage location can clearly be identified (Figs 4.11Fig. 4.11b and 4.11d).  

 

 
(a) 

 

(b) 

 
(c) 

 
(d) 

Fig. 4.11 – Zoomed contour plots of the CWT absolute values of the normalized static 
deflection of the cracked cantilever beam with δ = 2% and xc = 0.02L, and SNR=100 
dB: (a,b) Messina’s method; (c,d) proposed polynomial extension method. 
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Figure 4.12 compares the effectiveness of the two methods in removing edge 
effects as the noise level increases. When noise level is at SNR = 100 dB, the 
damage is clearly located by both methods. Increasing the noise level to SNR = 
90 dB the damage is partially masked, while at SNR = 80 dB, the noise 
completely masks the damage. This behavioral trend demonstrates that CWT 
border distortions are effectively suppressed by both methods, but damage is 
masked when a certain level of noise (which is dependent on the specific beam 
features, and damage location and severity) is present.  

 

  
(a) 

 

(b) 

  
(c) 

 

(d) 

  
(e) 

 
(f) 

Fig. 4.12 – Contour plots of the CWT absolute values of the normalized static deflection 
of the cracked cantilever beam with δ = 2% and xc = 0.98L, for varying noise levels: 
(a,b) SNR=100 dB; (c,d) SNR=90 dB; (e,f) SNR=80 dB. The contours (a,c,e) and (b,d,f) 
are obtained using Messina’s method and proposed polynomial extension method, 
respectively. 
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At this point, one might ask the reason why using Messina’s padding 
method, a crack of δ = 2% at xc = 0.98L in the 3rd modeshape of the cantilever 
beam, with SNR = 140 dB, cannot be identified by CWT while the same damage 
in the same location can properly be detected through CWT of the static 
deflection of the same cantilever, assuming a higher amount of noise (SNR = 100 
dB). In fact one would expect that the jump in the third derivative of the static 
deflection at x = 0 due to the use of the “Turnover” method would be more severe 
for the WA than the discontinuity due to the crack at x/L = 0.98. 

The above can be understand by observing Figs 4.13a and 4.13b where the 
curvature of the normalized, respectively, first modeshape and static deflection of 
the cracked cantilever beam with δ = 2% and xc = 0.98L are shown. In Fig. 4.13 
the signals are extended at the start part by the “Turnover” and at the end part by 
the “Rotation” and the noise level is equal to SNR = 140 dB. Even though the 
beam and the crack features are the same, the trend of the static deflection, unlike 
that of the modeshape, magnifies the singularity due to the crack. Therefore, 
when the crack is close to the free end of the cantilever, the damage detection 
through CWT in combination with Messina’s padding method is more effective 
in analyzing static deflections than the modeshapes. Finally, in Section 4.4.5 it is 
shown that the damage identification is more performing in analyzing static 
deflections than modeshapes of the cantilever irrespectively of the used padding 
method and the crack location (see Fig. 4.17 below). 

 

  
(a) 

 

(b) 
Fig. 4.13 – Curvature of the normalized first modeshape (a) and static deflection (b) of 
the cracked cantilever beam with δ = 2% and xc = 0.98L, and SNR = 140 dB. The 
signals η(x) are extended at the start part by the “Turnover” and at the end part by the 
“Rotation”. 

4.4.4 Static deflection of a simply supported beam 

The normalized noisy static deflections of the cracked simply supported 
beam subjected to the point load P, applied at its middle length (Fig. 3.3), are 
analysed by CWT using ‘Coif4’ and the polynomial padding method ( 1β  and 2β  
are equal to 0.5). Since the point load P is applied at x/L = 0.5, the noisy 
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curvature trend is about triangular (Fig. 4.14a) and the wavelet analysis 
identifies, in presence of a small crack (δ = 2% and xc = 0.02L), primarily the 
jump of the deflection third derivative due to P (Fig. 4.14b). 

 

  
(a) 

 
(b) 

Fig. 4.14 – Curvature (a) and contour plot of the CWT absolute values (b) of the 
normalized static deflection of the cracked simply supported beam with δ = 2% and xc = 
0.02L, and SNR = 120 dB. The signal η(x) is extended through the polynomial padding 
method.  

 
To overcome the problem of deflection third order singularity due to P and 

localize correctly the damage, in the following the two beam portions 
5.0/0( ≤≤ Lx  and )1/5.0 ≤≤ Lx  are analysed separately by CWT. Since in the 

following the crack of δ = 2% is assumed at xc = 0.02L (SNR = 140 dB) or at xc = 
0.48L (SNR = 140), only the left portion of the beam static deflection 

)5.0/0( ≤≤ Lx  is analysed (Fig 4.15). Note that the presence of damage at xc = 
0.5L could be checked by analyzing the beam static deflection due to the load P 
applied in Lx 5.0≠  (e.g. x = 0.7L). 

The CWT contour plots of Figs 4.15(a-c) highlight that applying Messina’s 
padding method (the “Rotation” is used at the hinged end and the “Turnover” at 
x/L = 0.5), the point load P on the beam deflection still affects the CWT damage 
detection. It can be observed that the crack at xc/L = 0.48, where the curvature is 
considerable, can be identified (Fig. 4.15c), but the same crack at xc/L = 0.02, 
where the curvature tends to be null, cannot be detected (Fig. 4.15a). On the other 
hand, the polynomial padding method ( 1β  and 2β  are equal to 1, 1

~β  and 2
~β  are 

equal to 0.5), extending differently the deflection signal, allows an effective and 
clear performance of the CWT damage detection in both the cases (Figs 4.15b 
and 4.15d). 
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(a) 

 

(b) 

  
(c) 

 
(d) 

Fig. 4.15 – Contour plots of the CWT absolute values of the normalized static deflection 
of the cracked simply supported beam with δ = 2%: (a,b) xc = 0.02L and SNR = 140 dB 
where Messina’s method and the polynomial extension method are respectively used; 
(c,d) xc = 0.48L and SNR = 110 dB where Messina’s method and the polynomial 
extension method are respectively used. 

4.4.5 Summary of padding method comparison 
The linear padding method, Messina’s isomorphism method and the 

proposed polynomial extension method are quantitatively compared in Fig. 4.16 
for a range of modeshapes and static deflections obtained by varying the crack 
depth ( 9.00001.0 −=δ ) and its location (x = 0.02L, x = 0.48L or x = 0.98L). 
Crack depth is incremented by 210 −−= jdδ  throughout the range 

jj −−− ≤< 1010 1 δ  where 3,2,1,0=j . For a given noise level, the identification 
criterion considers arbitrarily that the damage is correctly detected if the highest 
absolute value of the CWT at the scale 24 falls either at the crack location or in 
the two nearest points (i.e. the preceding and the following point) for 25 different 
noise random distributions. Figure 4.16 identifies the minimum crack depth sizes 
correctly identified by each method for a given SNR. In these analyses, the fitting 
parameters 1β  and 2β  are equal to 1, except in the analysis of the second 
modeshape of the cantilever beam, where 15.01 =β  and 125.02 =β , and of the 
first modeshape of the simply supported beam, where 1667.021 == ββ . On the 
other hand, the fitting parameters 1

~β  and 2
~β  of γ(x) are always equal, 
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respectively, to 1β  and 2β , except in the analysis of the static deflections of the 
simply supported beam, wherein they are assumed to be equal to 0.4. For the 
second modeshape of the cantilever beam, the values 11 HH =  and 22 HH =  are 
employed as coefficients of the extension polynomial function. 

Figure 4.16 clearly shows, for all the conditions being analysed, the 
weakness of the linear padding method in tackling border distortions. For 
instance, when the first modeshape of the cantilever beam with xc = 0.98L is 
analysed, even cracks of about 9.0=δ  are masked by edge effects. Moreover, at 
a given noise level, the minimum crack size that can be identified using the linear 
padding method is larger than those detectable using the other methods. For both 
the linear padding method and Messina’s method, the plots in Fig. 4.16 display a 
plateau representing the minimum crack size that can be detected irrespective of 
SNR. In the linear padding method this plateau occurs because ‘Coif4’ 
recognizes the dominance of the discontinuity in the second derivative at x = 0 
over the discontinuity introduced to the first derivative by the crack. As expected, 
at higher noise levels, the minimum damage that can be detected increases.  

Using Messina’s method, the observed plateau in the δ − SNR curves is 
dependent on the discontinuity in the third derivative at x = 0 related to the 
“Turnover” method. Since a jump in the third derivative has less influence on the 
CWT than one in the second derivative, the minimum detectable crack using 
Messina’s method at a given SNR is smaller than that detectable using the linear 
padding method. When Messina’s method is applied to the modeshapes of the 
simply supported beam, the minimum detectable δ decreases monotonically with 
increasing SNR (Fig. 4.16d). As mentioned above, this is due to the fact that, 
extending a sinusoidal signal through the “Rotation” method, no edge 
discontinuities arise in all its derivatives. On the other hand, in analyzing half of 
the static deflection of the simply supported beam, Messina’s method results to 
be weak (Figs 4.16 (g-h)) and, when the crack is close to the application point of 
the load P, it is not robust with respect to different noise distributions (Fig. 
4.16h). 

The proposed polynomial padding method is observed to be the most 
effective and versatile method in analyzing different structural responses 
corrupted by different noise levels. At severe noise levels, the proposed 
polynomial method and Messina’s method succeed in identifying very similar 
minimum detectable damage levels. However, at medium-to-low noise levels, the 
polynomial method is more successful in removing CWT border distortions, and 
it is capable of identifying smaller cracks than either of the other two methods. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Fig. 4.16 – Minimum detectable relative crack depth δ against noise level SNR for 
different padding methods. The following cases are analysed: (a,b) cantilever first and 
second modeshapes, respectively, with xc = 0.02L; (c) cantilever first modeshape with xc 
= 0.98L; (d) simply supported beam first modeshape with xc = 0.02L; (e,f) cantilever 
static deflection with xc = 0.02L and xc = 0.98L, respectively; (g,h) simply supported 
beam static deflection with xc = 0.02L and xc = 0.48L, respectively. 
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Figure 4.17 shows the comparison of the performance in identifying damage 
by CWT (at scale 24) applied to the first modeshape and the static deflection of 
the cantilever beam, using Messina’s padding method (Figs 4.17(a-b)) and the 
polynomial padding method (Figs 4.17(c-d)). It can be noted that, regardless of 
the padding method, the damage identification is more effective when applied to 
the static deflection than to the modeshapes. This behavior, which is more 
evident when the crack is located close to the free end (Figs 4.17b and 4.17d), is 
attributed to the different impact of cracks, at the same size, as the beam shape is 
made to vary. 

 

 
(a) 

 
(b) 

  
(c) 

 
(d) 

Fig. 4.17 – Minimum detectable relative crack depth δ against noise level SNR for the 
first modeshape and the static deflection of the cantilever beam. The padding method 
and the crack position are varied: (a,b) Messina’s padding method is used and the crack 
is located, respectively, at xc = 0.02L and xc = 0.98L; (c,d) the polynomial padding 
method is used and the crack is located, respectively, at xc = 0.02L and xc = 0.98L. 
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Chapter 5 

 

Sampling effect in damage detection 

5  using spatial CWT 

 

5.1 Introduction 

In the last decades the researchers have made a great deal of effort in 
replacing traditional sensors (e.g. accelerometers, strain gages, load cells), which 
have the limitation of measuring the relevant parameters at a single location and 
of requiring cumbersome wiring. The modern measurement techniques, instead, 
can capture the spatial field of the relevant parameters with high precision and in 
a quasi-continuous manner, even for large civil engineering structures. Such 
techniques include the Digital Imagine Correlation (DIC) and the digital imagine 
stereo-correlation (3D-DIC) (Rastogi, 1997; Orteu, 2009; Ozbek et al., 2010), the 
Global Positioning Systems (GPS) (Nickitopoulou et al., 2006; Casciati & 
Fuggini, 2009), the Local Positioning Systems (LPS) (Casciati & Wu, 2010; 
Casciati & Wu, 2012), the scanning laser vibrometers (Stanbridge & Ewins, 
1999; Khan et al., 2000; Yang, & Allen, 2011) and the optic fiber sensors (Zhou 
& Sim, 2002; Li et al., 2004; Adewuyi et al., 2009). 

In order to fully exploit the potentiality and versatility of the spatial wavelet 
analysis when quasi-continuous spatial measurement data are available, the 
present chapter is centered on the impact of the spatial sampling of beam 
vibrating shapes in detecting the damage.  

The state of the art highlights that in vibration-based damage detection 
methods the issue of the sampling interval to discretize operational deflection 
shapes is well known but few authors investigated in depth its effect. Sazonov 
and Klinkhachorn (2005) provide analytical and numerical arguments to select 
the optimal sampling interval on curvature or strain energy of modeshapes to 
maximize sensitivity to damage and accuracy of damage localization. They 
highlight that the effects of measurement noise invalid the intuitively reasonable 
idea that smaller sampling intervals mean higher precision in damage 
localization. Guan and Karbhari (2008), noticing that modal curvature methods 
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exhibit problems related to large sampling intervals and measurement noise 
increase by numerical differentiation procedures, propose a new damage 
identification method based on the concept of element modal strain damage 
index able to correctly locate a damage region even using sparse measurements 
of noisy data. Zhong and Oyadiji (2013) analyze the sampling interval sensitivity 
for damage detection in simply supported cracked beams using three different 
methods based on the stationary wavelet transform. They search for the proper 
sampling distance as a function of depth, width and location of the crack as well 
as of the amount of noise. The proposed methods are shown to be robust if higher 
modeshapes are considered and to be accurate if the sampling interval with 
respect to the beam length is equal or less than 0.01. In (Surace et al., 2012; 
Surace et al., 2013), the authors deal with the problem of crack localization in 
post-damage operational beam shapes through a method based on a polynomial 
annihilation technique. Through numerical simulations, they quantify the number 
of sampling points (19 to 100 sampling points were considered) needed for 
damage detection. Whilst in absence of noise, even with few measurements 
points (e.g. 25 data points), a small-medium crack can be located, increasing the 
noise level cracks can be identified only by using smaller sampling intervals. 
Many authors (Douka et al., 2003; Rucka & Wilde, 2006b; Zhong & Oyadiji, 
2011b) notice that in the presence of course sampling intervals, damage detection 
may encounter difficulties when CWT is used. To overcome the problem, they 
adopt the technique of over-sampling the measured data through a cubic spline 
interpolation. 

The present chapter aims at studying in depth the spatial CWT damage 
identification in beam structures with the goal of answering to the following key 
questions:  

(i) can the cost of damage detection be reduced by down-sampling ? 
(ii) what is the minimum number of sampling intervals performing the optimal 

damage detection ? 
The beam structures of Section 3.3.1.3 with constant cross-section and 

characterized by homogeneous isotropic material with linear elastic behavior are 
considered in the following. 

5.2 Parametric study 

A thorough investigation of the effect of the spatial sampling of the beam 
shapes in identifying the damage through spatial CWT is numerically carried out 
varying the relevant features of the problem, that is:  

(i) the normalized sampling interval dx/L: dx/L is considered equal to 0.025, 
0.01, 0.005, 0.0025, 0.001, 0.0005 and 0.00025); 
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(ii) the noise level: SNR value is assumed equal to 130 dB, 100 dB or 70 dB 
(see Section 4.2); 

(iii) the padding method: the linear padding (Misiti et al., 2000), Messina’s 
isomorphism methods (Messina, 2008) and the polynomial padding 
method (Montanari et al., 2014) are considered (see Sections 4.3 and 4.4);  

(iv) the wavelet function: the 4th order Coiflets wavelet (‘Coif4’), the 2nd 
order Daubechies wavelet (‘Db2’), the 4th order Gaussian wavelet 
(‘Gaus4’) and the real Morlet wavelet (‘Morl’) (Daubechies, 1992) are 
considered (see Section 2.2.2); 

(v) the vibrating shape of the beam: the first three modeshapes of the 
cantilever and the simply supported beam are considered (see Section 
3.3.1.3). Note that in the following the beam shapes are considered 
normalized with respect to the maximum value of the deflection; 

(vi) the relative crack position xc/L along the beam: xc/L is considered to be 
equal to 0.1, 0.3, 0.5, 0.7, 0.9; 

In Sections 5.2 and 5.3 cracked beams of length L = 1 m with a rectangular 
cross-section of height h = 0.05L and width b = 0.5h, constituted by an elastic 
linear isotropic material of Young modulus E = 200 GPa and density ρ = 7850 
kg/m3, are considered. Then, in Section 5.4, the results found in Sections 5.2 and 
5.3 are generalized by varying the beam parameters ρ, E, L, h, b. 

5.2.1 Criterion for minimum detectable crack size  

In order to investigate the effect of sampling interval in CWT damage 
detection, the minimum detectable (threshold) crack size for a given spatial 
sampling interval is obtained according to the following criterion based on an 
iterative procedure.  

By increasing gradually the relative crack depth δ from a value of 0.0001 to 
0.95, the wavelet transform is executed at fixed values of the scale s 

)200,,6,4,2( K=s  and the maximum absolute value of the transform is 
determined for each scale. If at a given relative crack depth such a maximum is 
always attained for all the scales at the crack position by considering an arbitrary 
number of 20 different random Gaussian white noise distributions, such a relative 
crack depth δ can be regarded to be detectable, otherwise a larger value of δ has 
to be assessed. Because of the numerical approximation of the CWT, it is 
assumed that, according to the aforementioned criterion, the crack depth can be 
regarded as detectable even if the CWT absolute maximum is attained in either of 
the two nearest points (i.e. the preceding and the following point) to the actual 
damage location. For very small sampling intervals ( 005.0/ <Ldx ), the criterion 
is relaxed to any of the four nearest points to the damage location.  
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The results pertaining the effect of sampling interval on the minimum 
detectable crack size are presented in the following Sections (see the 
bilogarithmic graphs in Figs 5.1 to 5.7) as a function of the pseudo-frequency af  
(see Section 2.2.2).  

5.2.2 Sampling effect varying the padding method   
Firstly the present study deals with the effect of sampling distance on CWT 

near-edge crack detection (xc/L = 0.1 is considered) using three different padding 
methods (i.e. linear, Messina’s and polynomial padding methods). The first 
modeshape of the cantilever beam is investigated and ‘Coif4’ wavelet is used. 

Figures 5.1(a-c), 5.3(a-c) and 5.4(a-c) represent, for different noise levels and 
padding method, the minimum detectable relative crack depth δ as a function of 
the data relative sampling distance dx/L and of the pseudo-frequency fa. More in 
details, graphs (a) refer to ‘low’ noise (SNR = 130 dB), graphs (b) to 
‘intermediate’ noise (SNR = 100 dB) and graphs (c) to ‘high’ noise (SNR = 70). 
Figures 5.1d, 5.3d and 5.4d summarize the results reported in the graphs (a-c), 
that is to say, they report the results for the three noise levels being considered as 
a function of the pseudo-frequency, irrespectively of the sampling interval. Note 
that the curves in Figs 5.1, 5.3 and 5.4 are plotted by considering an upper limit 
of δ equal to 0.95.  

By juxtaposing the results reported in Figs 5.1, 5.3 and 5.4, it can be observed 
that the padding method significantly influences the relation between minimum 
detectable crack size and pseudo-frequency. When the linear padding method is 
used, considering 12≥af  m-1, at low noise level (SNR = 130 dB) the damage 
identification results to be a function of the pseudo-frequency only and not of the 
sampling interval (Fig. 5.1a). Increasing the noise level, instead, at a given value 
of pseudo-frequency larger sampling intervals result to be more effective in 
damage detection in comparison to smaller ones (see Figs 5.1(b,c)). This 
occurrence is deemed to be due to the linear extension method whose 
performance in reducing edge effects might decrease substantially in the presence 
of high noise level and very small sampling step. 

Moreover, considering 12≥af  m-1, the curves in Figs 5.1(a-c) present a 
positive curvature with a minimum value, regardless of the sampling distance, at 
about the same pseudo-frequency equal to around 330, 60 and 12 m-1 for SNR 
equal to 130, 100 and 70 dB, respectively (note that in Figs 5.1(b-c) for very low 
values of dx/L the positive curvature is not evident). This behavioral trend is 
caused by two reasons: the noise influence and the edge effects due to the linear 
padding. Moving from the high to low values of fa, since high values of fa are 
very sensible to noise, and smaller cracks can be detected until a minimum 
detectable crack size for certain level of noise is reached (the part of the curves 
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with respect to their minimum value is ruled by the presence of noise). The 
smallest detectable crack is obtained because when decreasing beyond a certain 
value fa, the wavelet detects only edge discontinuity due to the padding method 
(the part of the curves on the left with respect to their minimum value is ruled by 
the edge effects). 

Finally, as expected, the minimum detectable crack size tends to decrease 
with decreasing noise level (see Fig. 5.1d).  
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Fig. 5.1 – Impact of the sampling interval in damage detection by spatial CWT with 
‘Coif4’. The linear padding method is used. The first modeshape of the cantilever beam 
with crack at xc/L = 0.1 is analysed. (a) SNR = 130 dB; (b) SNR = 100 dB; (c) SNR = 70 
dB; (d) summary of the results plotted in (a), (b) and (c). 

 
At this point it might be worth explaining the reasons why for 12<af  m-1 the 

curves of Fig. 5.1 deviate from the behavioral trend described above, showing a 
vertical asymptote corresponding to about 4.2=af  m-1. These reasons are 
related to the edge effect at x = 0 due to the linear padding method and the crack 
location close to that beam end (xc/L = 0.1), as it is discussed at the following. 

As shown in Fig. 4.8a, when the linear padding is applied to a signal end with 
curvature different from zero (at x = 0 in the case of the cantilever 1st 
modeshape), the second derivative of the padded signal presents a severe 
discontinuity at that position. Consequently, as shown in Fig. 5.2, the CWT 
analysis of the padded beam shape exhibits, when δ is smaller than a certain 
value, the highest coefficients close to the clamped end of the beam. More in 
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details, using s = 8, corresponding to fa = 17.4 m-1, the highest value of the 
wavelet coefficients is at 02.0/ ≅Lx  when 05.0≤δ , while using s = 52, 
corresponding to fa = 2.7 m-1, it is at 1.0/ =Lx , regardless of the value of δ (the 
blue curves related to δ = 0 are overlapped by the green and red ones). This 
means that, around the pseudo-frequency range ]42[ −=af  m-1, the CWT 
analysis does not detect the presence of tiny cracks but the discontinuity due to 
the linear padded method at x = 0 (Fig. 5.2b) and the vertical asymptotic trend of 
Fig. 5.1 takes place. On the other hand, as shown in Fig. 5.2a, by analyzing the 
signal by means of high pseudo-frequencies (fa = 17.4 m-1 is used), for small 
crack size the wavelet analysis is more sensitive to the discontinuity due to the 
padding method, while for large crack size, the wavelet analysis is more sensitive 
to the crack discontinuity and the damage identification is satisfied. Analogous 
reasoning can be made for fa smaller than about 1.3 m-1. 
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(b) 

Fig. 5.2 – Zoom of the normalized absolute values of the CWT coefficients obtained by 
analyzing the normalized first modeshape of the cantilever beam with crack at xc/L = 0.1 
varying the relative crack depth δ. The signals are sampled at dx/L = 0.005, considering 
SNR = 100 dB. Two different scales are considered: (a) s = 8, corresponding to fa = 17.4 
m-1 in Fig. 5.1; (a) s = 52, corresponding to fa = 2.7 m-1 in Fig. 5.1b. 

 
Conversely to the results pertaining to the linear padding, by applying 

Messina’s padding method, regardless of the noise level, the CWT- fa curves for 
different values of dx/L tend to overlap and the damage identification becomes, 
with a good approximation, function of the pseudo-frequency only (see Fig. 5.3). 
This implies that, since the scale can be made to vary as desired, large sampling 
intervals can be as effective as small ones. As for linear padding with decreasing 
noise level, smaller cracks can be detected (Fig. 5.3d). 

As in Fig. 5.1, the curves of Fig. 5.3 present a positive curvature with a 
minimum value, but now, given the smaller influence of border discontinuities on 
the CWT introduced by Messina’s padding method (see Section 4.4.1), the 
curves of Figs 5.3(a-c) attain their minimum value at a lower pseudo-frequency 
with respect to that of Figs 5.1(a-c). The values of pseudo-frequencies offering 
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the optimal damage detection are equal to around 45, 16 and 5 m-1 for SNR 
values equal to 130, 100 and 70 dB, respectively.  
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Fig. 5.3 – Impact of the sampling interval in damage detection by spatial CWT with 
‘Coif4’. Messina’s padding method is used. The first modeshape of the cantilever beam 
with crack at xc/L = 0.1 is analysed. (a) SNR = 130 dB; (b) SNR = 100 dB; (c) SNR = 
70 dB; (d) summary of the results plotted in (a), (b) and (c). 

 
By using the polynomial padding method (see Section 4.3), (the following 

parameters are assumed, 121 == ββ , 11 HH = , 22 HH = ) the damage 
identification turns out to be, with a good approximation, function of the pseudo-
frequency only (Fig. 5.4). However the of Fig. 5.4 curves exhibit a different trend 
than that, characterized by a of positive curvature, of the curves related to the 
linear and Messina’s padding methods. They decrease monotonically from high 
to low pseudo-frequencies until, in correspondence to a specific frequency, a 
sudden jump occurs toward the upper limit of δ (say, equal to 0.95). Such a 
specific value of pseudo-frequency corresponds at the same time, with good 
approximation, to the lowest and optimal value of pseudo-frequency for damage 
identification (the optimal value is that allowing the minimum crack size to be 
detected as the pseudo-frequency is made to vary). It needs to be underlined that 
this lowest/optimal value of fa is the same independently by the noise amount 
(Fig. 5.4). As shown further in Section 5.2.3, this result appears to occur when 
the polynomial padding method is used together with wavelet functions 
characterized by many vanishing moments. 

The jump in the curves of Fig. 5.4 at the lowest/optimal value of fa occurs 
because, by analyzing the cracked beam shape with wavelet functions 
characterized by lower pseudo-frequencies, even large cracks cannot be localized 
due to the influence of the edge effects. In Section 5.2.5 it will be illustrated that 
lower pseudo-frequencies can detect cracks located more far away from the beam 
end, but in any case below a certain value of fa, damage detection fails due to the 
edge effects even in the presence of large cracks. 
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Figures 5.4(a-c) show that the curves related to dx/L = 0.00025 exhibit jumps 
to the upper limit of δ at higher values of pseudo-frequency in comparison to 
those related to larger sampling intervals. This trend is due to the fact that, when 
the crack is near the signal extremum, the wavelet analysis is tainted by edge 
distortions, and, particularly for very low sampling intervals, the maximum CWT 
coefficient value falls not exactly at the crack location (or at its two four nearest 
points, as permitted by the detection criterion), but at sampling points other from 
that of the crack location. In Section 5.2.5, it will be shown that when the crack is 
located far away from the beam ends, regardless of the value of the sampling 
interval, the lower bound of pseudo-frequency is the same.  

Hereafter, since its effectiveness and versatility in handling general shapes of 
beam deflection (see Chapther 4), the polynomial padding method is used. Note 
that, in order to reduce the computational cost, 11 HH =  and 22 HH =  is always 
imposed, but this assumption does not affect the results of this investigation. The 

optaf ,  is used to indicate the optimal value of pseudo-frequency fa giving the 

minimum detectable crack size ( optaf ,  is equal to about 12 m-1 in Fig. 5.4). The 

value optaf ,  of pseudo-frequency coincides, as shown above, approximately with 
the lowest pseudo-frequency for performing damage detection. 
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Fig. 5.4 – Impact of the sampling interval in damage detection by spatial CWT with 
‘Coif4’. The polynomial  padding method is used. The first modeshape of the cantilever 
beam with crack at xc/L = 0.1 is analysed. (a) SNR = 130 dB; (b) SNR = 100 dB; (c) 
SNR = 70 dB; (d) summary of the results plotted in (a), (b) and (c). 
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5.2.3 Sampling effect varying the wavelet function  

Figure 5.5 displays the results of the sampling step impact in the CWT 
damage detection using the 2nd order Daubechies (‘Db2’), the 4th order 
Gaussian (‘Gaus4’) and the real Morlet (‘Morl’) wavelet functions. The first 
modeshape of the cantilever beam with crack at xc/L = 0.1 is analysed.  

Figure 5.5a shows that CWT damage identification by ‘Db2’, conversely to 
that by the other wavelet functions, depends on both ‘dx/L’ and fa.  In addition, 
‘Db2’ exhibits a poor damage identification performance due to its characteristic 
of having two vanishing moments only (see Section 2.2.2). Similarly to ‘Coif4’, 
using ‘Gaus4’ and ‘Morl’, the damage detection is, with good approximation, 
only pseudo-frequency dependent in the medium-high fa range. Moreover, using 
‘Morl’ fa,opt is function of the sampling interval dx/L (Fig. 5.5c). The behavioral 
trend of results shown in Fig. 5.5 seems to be similar for the different SNR 
values being considered.  

The comparison with the results for ‘Coif4’ (see Fig. 5.4d) demonstrates that 
‘Coif4’ exhibits the best performances in damage detection in comparison to the 
other wavelet functions, and hence it is adopted in the following. 
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Fig. 5.5 – Impact of the sampling interval in damage detection by spatial CWT varying 
the wavelet function. The polynomial  padding method is used and the first modeshape 
of the cantilever beam with crack at xc/L = 0.1 is analysed. (a) ‘Db2’; (b) ‘Gaus4’; (c) 
‘Morl’. 

5.2.4  Sampling effect varying the modeshape 
The second and the third modeshapes of the cantilever beam and the first 

three modeshapes of the simply supported beam are analysed. The crack is 
located at xc/L = 0.1. Figure 5.6 illustrates the effect of sampling interval in CWT 
damage detection using ‘Coif4’ and the polynomial padding method ( 121 == ββ  
is used in Figs 5.6(a,c), 25.01 =β  and 33.02 =β  in Fig. 5.6b, 5.021 == ββ  in 
Fig. 5.6d and 3.021 == ββ  in Fig. 5.6e). The jumps of the curves are dependent 
on the analysed modeshape and, neglecting the disturbance due to the edge 
effects at low frequencies, the damage identification appears to be clearly 
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function of fa only. In Figs 5.6(a-e) the optimal pseudo-frequency optaf ,  is, 
respectively, equal to about 11 m-1, 18 m-1, 12 m-1, 16 m-1 and 21 m-1. 
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Fig. 5.6 – Impact of the sampling interval in damage detection by spatial CWT with 
‘Coif4’. The polynomial  padding method is used and different beam modeshapes with 
the crack at xc/L = 0.1 are analysed. (a,b) second and third modeshape of the cantilever 
beam, respectively; (c,d,e) first, second and third modeshape of the simply supported 
beam, respectively. 

5.2.5 Sampling effect varying the crack position 

The effect of the sampling interval in the CWT damage detection is 
investigated varying the crack location: xc/L = 0.3, 0.5, 0.7 and 0.9 are 
considered. The first modeshape of the cracked cantilever beam is analysed. By 
juxtaposing the results of Fig. 5.7 with those reported in Figs 5.1 to 5.6, the 
influence of border distortions in dictating the optimal value fa,opt of pseudo-
frequency of the curves is clearly manifested. The more the crack location is far 
from either beam end, the lower is the optimal pseudo-frequency fa,opt. This 
means that damage detection can be achieved considering a reduced number of 
sampling points. Furthermore, Figs 5.7(a-c) show that, since the crack is far away 
from the beam ends, the fa,opt is the same for every curves. In Fig. 5.7d, instead, 
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since the crack is close to the beam end (i.e. xc/L = 0.9), a similar trend to that of 
Fig. 5.4d is shown. In Figs 5.7(a-d) the optimal pseudo-frequency optaf ,  is, 
respectively, equal about 6 m-1, 2.5 m-1, 6 m-1 and 12 m-1. 
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Fig. 5.7 – Impact of the sampling interval in damage detection by spatial CWT with 
‘Coif4’. The polynomial  padding method is used. The first modeshape of the cantilever 
beam with crack at different locations is analysed. (a) xc/L=0.3; (b) xc/L=0.5; (c) 
xc/L=0.7; (d) xc/L=0.9. 

5.3 Discussion of the results 

From the results of Section 5.2, pertaining to polynomial padding method and 
‘Coif4’ wavelet, the following conclusion can be drawn: 

(i) there is an optimal value of pseudo-frequency, independent on the noise 
level, which maximizes the performance of the damage detection for a 
given beam deflection shape and crack position; 

(ii) by adjusting the wavelet scale, damage detection performances can be 
similar for small and large sampling intervals. 

Being the CWT damage detection with good approximation function of the 
pseudo-frequency only, it is numerically illustrated how the choice of the proper 
scale range is essential in detecting the damage when different sampling intervals 
are considered. 

Firstly, the first modeshape of the cantilever beam, defined in Section 5.2, 
with a crack of δ = 0.2 at xc/L = 0.1 is analysed. The noise level is assumed to be 
equal to 70 dB. The same modeshape is sampled at dx/L = 0.01 and dx/L = 
0.0004.  

Figs 5.8(a,b) report the contour plots of the CWT (‘Coif4’ and the polynomial 
padding method with 121 == ββ  are used) when the signal is sampled at dx/L = 
0.01, and the scale ranges ]244[ −=s  (i.e. 24,6,5,4 K=s ) and ]64[ −=s  are 
respectively used. The CWT coefficients, considering the broad scale range, 
completely mask the crack location (Fig. 5.8a), which on the contrary can be 
identified using the narrow scale range (Fig. 5.8b).  
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Figures 5.8(c-d) highlight that even if the signal is sampled at an extremely 
small sampling interval (dx/L = 0.0004), the CWT damage detection can be 
achieved only considering a proper scale range. The damage localization at the 
scale range ]402[ −=s  fails (Fig. 5.8c), while it succeeds for ]15896[ −=s  
(Fig. 5.8d).  

The results reported in Fig. 5.8 are in agreement with those of Fig. 5.4c, 
which deal with the same beam deflection. Indeed Fig. 5.4c highlights that the 
optimal pseudo-frequency is in the range ]1811[ −=af  m-1, which corresponds 
for dx/L = 0.01 to the scale range ]64[ −=s , and for dx/L = 0.0004 to 

]15896[ −=s . 
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Fig. 5.8 – Contour plots of the spatial CWT using ‘Coif4’ and the polynomial  padding 
method (SNR = 70 dB). The first modeshape of the cantilever beam with crack of δ = 
0.2 at xc /L = 0.1 is analysed. Sampling interval dx/L and scale range are varied: (a) dx/L 
= 0.01, ]244[ −=s ; (b) dx/L = 0.01, ]64[ −=s ; (c) dx/L = 0.0004, ]402[ −=s ; (d) 
dx/L = 0.0004, ]15896[ −=s . 
 

Then, the third modeshape of the simply supported beam with a crack of δ = 
0.01 at xc/L = 0.1 is analysed. The modeshape is sampled at dx/L = 0.005 and the 
noise level is assumed to be equal to 100 dB. 

Figures 5.9(a-c) report the contour plots of the CWT (‘Coif4’ and the 
polynomial padding method with 33.021 == ββ  are used) when the scale ranges 

]42[ −=s , ]86[ −=s  and ]1210[ −=s  are respectively considered to analyse 
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the same modeshape. The CWT coefficients at ]42[ −=s  (Fig. 5.9a) and at 

]1210[ −=s  (Fig. 5.9c) completely mask the crack location and hence damage 
detection fails. On the other hand, using the scale range ]86[ −=s , the crack is 
properly localized (Fig. 5.9b). It can be noted that the results of Fig. 5.9 are in 
agreement with those reported in Fig. 5.6e, where the same beam deflection is 
considered. In fact, using the scale range ]86[ −=s  when dx/L is equal to 0.005 
corresponds to analyse the beam shape at a pseudo-frequency range 

]2317[ −=af  m-1 centered to the optimal pseudo-frequency, and to be able to 
detect cracks with 01.0≥δ  (Fig. 5.6e). 
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Fig. 5.9 – Contour plots of the spatial CWT using ‘Coif4’ and the polynomial  padding 
method (SNR = 100 dB). The third modeshape of the simply supported beam with crack 
of δ = 0.01 at xc = 0.1m is analysed. The modeshape is sampled at dx/L = 0.005 and the 
scale range is varied: (a) ]42[ −=s ; (b) ]86[ −=s ; (c) ]1210[ −=s . 

5.4 Generalization of the parametric study 

The results reported in Figs 5.4 to 5.7 in terms of minimum detectable crack 
size are related to beams characterized by particular values of the parameters 
ρ, h, b, L and E. In this Section, the influence of these beam parameters on the 
effect of sampling interval and on the optimal pseudo-frequency in the CWT 
damage identification is analysed. 

Since the material density ρ affects the natural frequencies of the cracked 
beam but not its modeshapes, this beam parameter is not considered in the 
generalization of the parametric study. Then, by substituting the LEFM 
expression of the local rotational stiffness kc due to the crack (Eq. 3.1) in the 
boundary condition representing the rotation discontinuity at the crack section 
(Eq. 3.15), we can write: 

)()(f~2)()( 212 ccc xhxx ηδηη ′′=′−′ . 5.1 

where ( ) )12.1384.3514.3769.1993.5()1/()(f~ 4322 δδδδδδδ +−+−−= is a 
function of the relative crack depth δ only. 

Equation 5.1 demonstrates that the rotation discontinuity due to the crack is a 
function of h and δ, but not of the other beam parameters b and E. Therefore, at 
equal values of h and δ, keeping L constant, the beam deflection shape and, 
consequently, the CWT damage detection do not vary. In summary, similarly to 
the density ρ, the beam parameters b and E are not considered in the 
generalization of the parametric study.  

Figure 5.10 presents the results, at different noise levels, of the CWT damage 
detection in terms of minimum detectable crack size, when the first modeshapes 
of cantilever beams with different height values h, crack at xc/L = 0.1 and L = 1 m 
are analysed. Three different values of h are assumed (0.5m, 0.05m and 0.005m) 
in order to vary substantially the stiffness of the beam. As expected, Fig. 5.10 
highlights that increasing the height h of the beam, and hence its stiffness, 
smaller cracks can be detected at equal values of pseudo-frequency. Moreover, 
Fig. 5.10 points out that, varying h, the performance of the CWT damage 
detection remains independent on dx/L and that h has no influence on the optimal 
pseudo-frequency value. 
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Fig. 5.10 – CWT damage detection results in terms of minimum detectable crack size 
when the first modeshapes of cantilever beams with three different h values, crack at 
xc/L = 0.1 and L = 1 m are analysed. Different noise levels are considered: (a) SNR = 
130 dB; (b) SNR = 100 dB; (c) SNR = 70 dB.  
 

The results obtained so far demonstrate that the optimal pseudo-frequency 
fa,opt is independent of the beam parameters b, h, E and ρ and hence it is function 

SNR=130 dB 

SNR=100 dB 

SNR=70 dB 
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of the padding method, the wavelet function, the beam shape and the relative 
crack position xc/L. It remains to be discussed the relationship between fa,opt and 
the beam length L. 

Consider a deflection shape of a beam long L = L1 = 1 m and discretized by 
1dxdx = . The beam has a crack at 11, / Lxc . In addition, consider the same 

deflection shape for a beam of length L = L2 ≠ 1 m, with crack at 
11,22, // LxLx cc =  and discretized by 2dxdx = . Executing the CWT with ‘Coif4’ 

and the polynomial padding method, the optimal pseudo-frequency of the beam 
of unit length can be express as: 

)1, deflection (beamf 111,
11

4,
1,, === L/Lx

sdx
f

f c
Coifc

opta , 5.2 

where f(∙) express the dependence of fa,opt on same beam parameters and 4,Coifcf  
indicates the center frequency of ‘Coif4’. 

The optimal pseudo-frequency of the beam with length 2L  is given by: 

)1, ,deflection (beamf 222,
22

4,
2,, ≠== L/Lx

sdx
f

f c
Coifc

opta . 5.3 

Let us now introduce the following normalized optimal pseudo-frequency for 
the beam of length L2: 

2
2

2

4,*
2,,

s
L
dx
f

f Coifc
opta = . 

5.4 

Such a normalized quantity can be regarded as the optimal pseudo-frequency 
of a beam with spatial parameters normalized with respect to L2, that is 

22
*
2 / Ldxdx =  , 1/ 22

*
2 == LLL . Given the dependence of the optimal pseudo-

frequency on beam deflection, xc/L and L, it follows that, since xc,1/L1 = xc,2/L2 by 
hypothesis, 

1,,
*

2,, optaopta ff =  5.5 
and, thus 

1,,

2
2

2

4,
opta

Coifc f
s

L
dx
f

= . 
5.6 

Finally, combining Eqs 5.6 and 5.3, the relationship between 2,,optaf  and 

1,,optaf  becomes: 

21,,2,, Lff optaopta = . 5.7 
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Equation 5.7 shows that, at equal beam deflection shape and relative crack 
location xc/L, the optimal pseudo-frequency of a beam is equal to the product of 
its length by the optimal pseudo-frequency of a beam of unit length. Note that 
Eq. 5.7 could be also easily be derived through the Buckingam theorem of 
dimensional analysis. 

The relation expressed by Eq. 5.7 is numerically verified by considering the 
first modeshapes of cantilever beams of different length L, with h = 0.05 m, crack 
at xc/L = 0.1, and different noise levels (Fig. 5.11). The beam lengths are assumed 
to be equal to L = 1 m (Fig. 5.11a), L = 2 m (Fig. 5.11b) and L = 3 m (Fig. 5.11c), 
while different sampling intervals are considered for discretizing the beam 
deflections (Tab. 5.1). 

 
Tab. 5.1 – Sampling intervals considered to discretize the beam deflections of 
different lengths. 
 

L = 1 m L = 2 m L = 3 m 
dx dx/L dx dx/L dx dx/L 

0.01 0.01 0.01 0.005 0.05 0.01667 
0.0025 0.0025 0.004 0.002 0.01 0.00333 
0.0005 0.0005 0.0008 0.0004 0.003 0.001 
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Fig. 5.11 – CWT damage detection results in terms of minimum detectable crack size 
when the first modeshapes of cantilever beams of three different lengths with h = 0.05 m 
and crack at xc/L = 0.1 are analysed. Different SNR values are considered: 130 dB, 100 
dB and SNR = 70 dB. The beam lengths are equal to: (a) L = 1 m; (b) L = 2 m; (c) L = 3 
m. 

 
The results of Fig. 5.11 point out that, regardless of the noise amount, there is 

a specific value of optimal pseudo-frequency which depends on the beam length. 
This value is equal to about 11 m-1, 5.7m-1  and 3.5 m-1 for L = 1 m, L = 2 m and 
L =3 m, respectively. 

As shown in Fig. 5.12, by plotting the minimum detectable crack size against 
a normalized pseudo-frequency (equal to the pseudo-frequency times the beam 
length), the curves of Fig. 5.11 tend to converge together and to exhibit the same 
normalized optimal pseudo-frequency. 

 

SNR=100 dB 

SNR=130 dB 

SNR=70 dB L = 2 m 

SNR=70 dB 

SNR=130 dB 

SNR=100 dB 

L = 3 m 



Chapter 5 129 
“On the effect of the spatial sampling in CWT damage detection in cracked beams” 
 
 

100 101 102 103 10410-3

10-2

10-1

100

 fa L

C
ra

ck
 d

ep
th

 ra
tio

,  
δ 

=
 a

/h

 

 

 L = 1
 L = 2
 L = 3

 
Fig. 5.12 – Collection of the CWT damage detection results of Fig. 5.11 plotted versus 
the pseudo-frequency multiplied by the beam length.  

5.5 Concluding remarks 

The key parameter of the CWT damage detection, executed using the 
polynomial padding method and a wavelet function with a significant number of 
vanishing moments (e.g. ‘Coif4’), is the optimal pseudo-frequency, representing 
the pseudo-frequency of the wavelet which allows the detection of the minimum 
crack depth. The optimal pseudo-frequency value is dependent on the beam 
deflection shape, the relative crack location xc/L, the length L of the beam, while 
it is not influenced by the noise level and the parameters ρ, E, h and b. 

The above dependence can be formally written as: 
) ,deflection (beamf, /Lxf copta =  5.8 

Using the normalized pseudo-frequency Lff aa =*  (note that *
af  is 

proportional to sn / , where n is the number of sampling intervals along the 
beam), Eq. 5.8 can be generalized as follows: 

) ,deflection (beamf,
*
, /LxLff coptaopta ==  5.9 

Figure 5.13 illustrates the *
,optaf  against xc/L curves pertaining to the first three 

modeshapes of cantilever and simply supported beams. It can be noted that, 
mainly due to the edge effects, *

,optaf  turns out to be higher near the beam ends, 
especially for the third modeshapes. 
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Fig. 5.13 - The optimal dimensionless pseudo-frequency *

,optaf  for the CWT damage 
detection is plotted against the normalized crack location for the first three modeshapes 
of: (a) cantilever beams; (b) simply supported beams. 

 
The results of Fig. 5.13 can be understood also in the following manner. For a 

given wavelet scale, it is possible to know the optimal number of sampling 
intervals needed to detect the smallest crack located at xc/L from a beam vibration 
modeshape. For example, suppose to monitor the service state of a wind turbine 
blade of L = 50 m through the spatial CWT using the polynomial padding method 
and ‘Coif4’ wavelet. By analyzing its first modeshape or its operational shapes 
similar to it, the optimum sampling interval capable of detecting the smallest 
crack at at least 1 m distant from the beam ends, e.g. using s = 2, is 

≅
⋅

⋅
==

224
506957.0

*
, sf

Lfdx
opta

c 0.72 m. 

Finally, from the definition of *
,optaf , the optimal number L/dx of sampling 

intervals to obtain the best CWT damage detection at the scale s for a given crack 
location xc/L, is equal to copta fsf /*

, . As an example, in Fig. 5.14 the minimum of 
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such an optimal number of sampling intervals is considered by taking s = 2 (the 
value of s = 1 is discarded in the present study) and it is plotted as a function of 
xc/L.  
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Fig. 5.14 - The minimum optimal number of beam sampling intervals, L/dx, to perform 
the optimum CWT damage detection at scale s = 2 is plotted against the normalized 
crack location for the first three modeshapes of: (a) cantilever beams; (b) simply 
supported beams. 

 





 

Chapter 6 

Nonlinear damage identification  

in cracked beams through  

 time-space wavelet analysis  

 

6.1 Introduction 

In this chapter the problem of the quantification of damage severity for SHM 
is discussed. It is well-known that wavelet analysis is, in the space domain, an 
efficient way to determinate the damage location (Section 2.3.2), while, in the 
time domain, it is an efficient tool to identify the system stiffness variation 
(Section 2.3.1). Based on the idea of combining the information of the structural 
response in both space and time domains, a new time-space wavelet-based 
technique aimed at identifying the nonlinear behaviour of damage is developed.  

The FE model of a fiber-reinforced cantilever beam, with rectangular cross-
section and breathing crack, exposed in Section 3.3.2, is used to simulate the 
nonlinear, static and dynamic, structural response. On the basis of particular 
conditions related to the beam deflection CWT and of the features of ‘Coif4’ (the 
results of this chapter pertain to ‘Coif4’ only, even though other wavelet 
functions, such as the 8th order of Symlets, ‘Morl’ and the 5th order of Coiflets, 
could be used), a linear relation between the values of the relative rotation due to 
the crack and the normalized wavelet coefficients at the crack position is ruled 
out. By analysing through CWT the time sequence of the beam response in the 
space domain through the aforementioned linear relation, the nonlinear structural 
behaviour due to damage is identified. The effectiveness of the method in 
calibrate a small crack is discussed with respect to the wavelet scale, the noise 
level and the spatial sampling interval. 
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6.2 Normalized CWT coefficients and crack relative rotation  

In the following, on the basis of numerical findings, a linear relation between 
the values of the relative rotation due to the crack and the normalized CWT 
coefficients at the crack location, function of the wavelet scale, is determined. 

Consider two linear elastic cantilever beams, modelled as in Section 3.3.1.3, 
of length L = 1 m and having very different values of flexural stiffness EI/L equal 
to 0.0015 and 0.15 Nm. Through CWT, using ‘Coif4’ at s = 8 and the polynomial 
padding method ( 2.021 == ββ ), the static non-normalized deflections of the 
beams due to a point load P = 10 kN at the free end (see Fig. 3.3) are analysed. 
The both cases of intact structure and damaged structure with crack of rotational 
stiffness kc = 8000 kNm at xc/L = 0.2 (note that, according to Eqs 3.15 and 3.12, 
the relative rotation Δϑc for P = 10 kN is equal to 0.001 rad) are considered. No 
noise is added to the deflections which are sampled at dx/L = 0.001. The results 
are shown in Fig. 6.1, where the wavelet coefficients ),( stW , normalized with 
respect to dx2, are considered so that the values of the coefficients become 
independent of the signal sampling interval. 

Observing the results pertaining to the first beam with lower stiffness and 
thus larger curvature, the wavelet transform of the undamaged beam deflection 
attains normalized values of the coefficients along the beam (Fig. 6.1a), of the 
same order of magnitude than those obtained by analyzing the damaged beam 
deflection (Fig. 6.1b). Note that in Fig. 6.1b the coefficient at the crack position 
xc of value hd,1 = 1.89∙10-3 can be read as the sum of two contributions: that due 
to deflection of the undamaged structure, hu,1 = 2.56∙10-4 (see Fig. 6.1a), and that 
due to the crack discontinuity, hc,1 (see Fig. 6.1b). Consequently we have hd,1 ≈ 
hu,1 + hc,1, and hence, hc,1 ≈ hd,1 − hu,1 ≈ 1.63∙10-3. 

The results related to the second beam with higher stiffness and thus lower 
curvature (Figs 6.1(c-d)) show that, for undamaged structure the wavelet 
coefficients have the same trend as that of Fig. 6.1a, but with values about two 
orders of magnitude smaller, i.e. hu,2 = 2.56∙10-6 << hu,1 = 2.56∙10-4. The 
normalized wavelet coefficients of Fig. 6.1d, instead, attain a peak at the crack 
position, hd,2 = 1.63∙10-3, while tend to negligible values at the other positions 
along the beam. As discussed before, we have hd,2 ≈ hu,2 + hc,2, but being hu,2 << 
hd,2, thus hd,2 ≈ hc,2. Finally, comparing Fig. 6.1d and 6.1b it is noticeable that hd,2 
≈ hc,2 ≈ hc,1 = 1.63∙10-3, that is to say that the value of the normalized wavelet 
coefficient at the crack location due to the crack discontinuity appears to be a 
function of the relative rotation.  
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Fig. 6.1 – Absolute value of the normalized CWT coefficients at s = 8 obtained by 
analyzing the static non-normalized deflection of cantilever beams of length L = 1 m 
with different flexural stiffness EI/L, both in the case of intact structure and damaged 
structure with crack of rotational stiffness kc = 8000 kNm at xc/L = 0.2. The signals are 
sampled at dx/L = 0.001 and no noise is added. (a,b) EI/L = 0.0015 Nm, respectively 
without and with crack; (c,d) EI/L = 0.15 Nm, respectively without and with crack. 

 
Similar observation can be made in the presence of noisy signals. Assume 

again two cantilever beams of length L = 1 m modelled as in Section 3.3.1.3, but 
now with flexural stiffness EI/L equal to 5∙103 and 5∙105 Nm. Through CWT, 
using ‘Coif4’ at s = 8 and the polynomial padding method ( 2.021 == ββ ), the 
static non-normalized deflections of the beams due to the point load P = 10 kN at 
the free end (see Fig. 3.3) are analysed. The both cases of intact structure and 
damaged structure with crack of rotational stiffness kc = 8000 kNm at xc/L = 0.2 
(note that the relative rotation Δϑc for P = 10 kN is equal to 0.001 rad) are 
considered. The beam deflections are sampled at dx/L = 0.001 and synthetic noise 
of 120 dB is added. The results are displayed in Fig. 6.2. 

Considering the first beam with larger curvature, it appears that the 
normalized wavelet coefficients obtained by analysing the noisy undamaged 
beam deflection (Fig. 6.2a) attain values of the same order of magnitude of those 
obtained by analysing the noisy damaged beam deflection (Fig. 6.2b). In this 
case, even though the coefficient peak in Fig. 6.2b is clearly at the crack location 
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(hnd,1 = 1.94∙10-3), the contribution of the crack discontinuity, hnc,1, can not be 
distinguished from the value of hnd,1 due to the presence of noise. 

On the other hand, when the wavelet coefficients detect more clearly the 
crack discontinuity than the noisy curvature trend (the normalized CWT 
coefficients of Fig. 6.2c are around two orders of magnitude smaller than those of 
Fig. 6.2d, i.e. hnu,2 << hnd,2), the normalized CWT value at the crack location (i.e. 
hnd,2 = 1.63∙10-3), obtained by analyzing the damaged beam deflection, can be 
assumed to be roughly equal to the contribution due to the crack relative rotation 
(i.e. hnd,2 ≈ hnc,2 = 1.63∙10-3). Note further that, analyzing the beam with the same 
crack relative rotation, Δϑc = 0.001 rad, both in absence and in presence of noise, 
when the CWT attains negligible values of its coefficients in the undamaged 
parts of the beam with respect to those close to the crack location, the peak value 
at xc is the same, i.e. hc,2 = hnc,2 = 1.63∙10-3. 

 

 
 

 
 

Fig. 6.2 – Absolute value of the normalized CWT coefficients at s = 8 obtained by 
analyzing the static non-normalized deflections of cantilever beams of length L = 1 m 
with different flexural stiffness EI/L, both in the case of intact structure and damaged 
structure with crack of rotational stiffness kc = 8000 kN at xc/L = 0.2. The signals are 
sampled at dx/L = 0.001 and SNR = 120 dB. (a,b) EI/L = 5∙103 Nm, respectively without 
and with crack; (c,d) EI/L = 5∙105 Nm, respectively without and with crack. 
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Figure 6.3 shows the wavelet transforms (‘Coif4’ at scale 32 and the 
polynomial padding method with 5.021 == ββ  and 667.0~~

21 == ββ  are used) of 
the static non-normalized deflections of two cracked cantilevers (see Section 
3.3.1.3) of unit length, subjected to P = 10 kN, with EI/L equal to 5∙105 Nm. A 
beam has a crack of rotational stiffness kc = 9000 kNm at xc/L = 0.1 (Fig. 6.3a) 
while the other one has a crack of rotational stiffness kc = 1000 kNm at xc/L = 0.9 
(Fig. 6.3b) (note that the crack relative rotation Δϑc induced by the load P is 
equal to 0.001 rad in both the beams). The beam deflections are sampled at dx/L 
= 0.001 and SNR = 100 dB is added. 

The results in Fig. 6.3 highlight that, if the value of the normalized CWT 
coefficient at the crack location is significantly greater than the others along the 
beam, this latter does not depend on the crack location (ha = hb = 0.0131). 
Furthermore, the value of the normalized coefficient at xc depends on the 
analyzing scale (e.g. ha = 0.0131 ≠ hnc,2 = 0.00163). 

 

  
Fig. 6.3 – Absolute value of the normalized CWT coefficients at s = 32 obtained by 
analyzing the static non-normalized deflections of cantilever beams, having length L = 1 
m and, flexural stiffness EI/L = 5∙105 Nm and crack of rotational stiffness kc dependent 
on the crack location xc. The signals are sampled at dx/L = 0.001 and SNR = 100 dB. (a) 
kc = 9000 kNm and xc/L = 0.1; (b) kc = 1000 kNm and xc/L = 0.9.  

 
In the light of the above discussion, we can conclude that, when the 

coefficients of the wavelet transform attain negligible values in the undamaged 
parts of the beam in comparison with those close to the crack location (this 
happens when the crack discontinuity due to relative rotation alters significantly 
the beam curvature), the value of the normalized CWT coefficient at the crack 
location depends, with good approximation, on the value of the crack relative 
rotation and on the analyzing wavelet scale. 

The bilogarithmic graph of Fig. 6.4 shows that the relative rotations due to 
the crack, Δϑc, and the normalized CWT coefficients at the crack location xc, 

),( sxW c  (when ),(),( sxWsxxW cc <<≠ ) are linearly dependent and function 
of the scale s. Plotting the curves of Fig. 6.4 in bilinear graphs (Fig. 6.5) we 
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obtain approximately straight lines, passing through the axis origin and 
characterized by different values of the angular coefficient, Θ(s), function of the 
wavelet scale s, that is: 

cc ssxW ϑ∆Θ= )(),( . 6.1 
In Appendix A tabular values of Θ(s) related to ‘Coif4’ are reported. In Fig. 

6.6 the trend of Θ(s) against the wavelet scale is illustrated. 
 

 
Fig. 6.4 – Relation between the normalized CWT coefficients at the crack location xc 
and the relative rotation due to the crack. Different scales s are considered.  

 

    
Fig. 6.5 – The curves of Fig. 6.4 are plotted in bilinear graphs assuming different ranges 
of crack relative rotation: (a) Δϑc = [0 – 0.001] rad; (b) Δϑc = [0 – 0.1] rad. 
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Fig. 6.6 – Trend of the function Θ(s).  

6.3 Identification method of the nonlinear crack behaviour 

The proposed time-space wavelet-based damage identification method allows 
the description of the nonlinear crack behaviour in terms of relative rotation of 
the crack. The technique requires the availability of the beam response both in 
time and in space at rather dense intervals. Furthermore, the crack discontinuity 
has to be such that the wavelet transform can locate it by means of a peak of its 
coefficients markedly higher than the coefficient values along the undamaged 
parts of the beam. The proposed method operates as following, at each time step: 

(i) the beam deflection, opportunely extended to avoid edge effects, is 
analysed through CWT; 

(ii) the wavelet coefficient value at the crack location (which has to be known a 
priori) is normalized with respect to the square of the spatial interval; 

(iii) the crack relative rotation Δϑc is determined through Eq. 6.1, knowing the 
value of Θ(s). 

Once the time history of the crack relative rotation is extracted, the evolution 
of damage can be determined through an appropriate mechanical model. 

The reliability of the method depends particularly on the crack size and on 
the accuracy of the response data in terms of precision and noise cleaning. An 
opportune pre-processing (e.g. data denoising) of the time-space input data and a 
post-processing (e.g. data smoothing) of the output data of the crack relative 
rotation can enhance the effectiveness of the damage quantification.  
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6.4 Numerical examples 

The damage calibration method is applied to numerical data which simulate 
both the static and the dynamic responses of a cracked fiber-reinforced composite 
beam subjected to a point load P(t) at the free end (see Fig. 3.5). The FE model 
presented in Section 3.3.2. is used. A cracked beam reinforced with long 
unidirectional fibers equally distributed in the matrix with a volume fraction νf of 
10% is assumed. The beam is long L = 2 m with height h = 0.2 m and width b = 
0.15 m. The matrix has density ρm, Young’s modulus Em and Poisson coefficient 
νm, respectively, equal to 2400 kg/m3, 30 GPa and 0.15. The fibers are 
characterized by diameter of 30 μm, density ρf of 2500 kg/m3, Young‘s modulus 
Ef of 80 GPa and tensile/compression yield stress of 2000 MPa. The density and 
Young’s modulus of the composite are, respectively, equal to ρeq = (1 – νf )ρm + νf 
ρf  = 2410 kg/m3 and Eeq = (1 – νf )Em + νf Ef  = 35 GPa. The crack has a relative 
depth δ = 10% and its position is varied in the simulations (i.e. xc/L = 0.05, 0.1). 
The damping ratio of the first two modes of the beam is assumed to be equal to 
3%. 

The beam deflection shapes are sampled considering different sampling 
intervals (i.e. dx = 0.01 m, 0.001 m) and to simulate real measurement data, 
synthetic Gaussian white noise is added (different SNR values are imposed). The 
deflections of the static analysis are sampled at each variation ΔP = ± 2000 N of 
the acting load P(t). For the dynamic analysis an integration time step dt of 
0.0002 sec is assumed. 

In the static analysis Timoshenko’s finite element formulation, exposed in 
Section 3.3.2.1, is used. In the dynamic analysis instead, Euler-Bernoulli’s 
formulation is preferred (the shear deformation parameter Γ = 0 is imposed in 
Eqs 3.34 to 3.43 and in the formulations related to the uncracked elements; 
Friedman & Kosmatka, 1993) in order to avoid the discontinuity between the 
elements of first derivative of the transversal displacements due to nodal inertial 
forces. 

Two different finite element discretizations of the beam are adopted for the 
static problem and for the dynamic one. Since the shape functions of the finite 
element model are cubic and the static deflection due to a point load is also 
described by a cubic function, only the cracked finite element and the two 
adjacent solid finite elements are needed to obtain the theoretical exact solution 
of the static problem. On the other hand, in the dynamic analysis a more refined 
FE model is required. In fact the shapes of dynamic beam deflection are 
described by trigonometric functions. Since the finite element model adopts 
cubic shape functions, in order to obtain accurate results and to minimize the 
inter-element curvature discontinuities, which can be detected by wavelet 
transform, a very dense finite element discretization is used in the dynamic 
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analysis. For instance, after a convergence study, when the crack is at xc/L = 0.05 
and dx = 0.001, a cracked finite element of 0.04 m length and 2 and 47 uncracked 
finite elements, respectively before and after the crack, are considered. 

The CWT is executed using ‘Coif4’ wavelet and the polynomial padding 
method is adopted to reduce border distortions (if dx = 0.001m, 

5.0~~
2121 ==== ββββ ; if dx = 0.01m, 1~~

2121 ==== ββββ ). 
The analysis results are discussed in respect to the analysing scale s of the 

wavelet, the spatial sampling interval dx/L and the noise level. Different load 
time histories are considered. 

6.4.1 Nonlinear static analysis 
The illustrative examples presented in the following are related to the load 

histories of Fig. 6.7. 
Firstly the wavelet scale providing the best estimation of the crack relative 

rotation is determined. Different scale values are investigated, i.e. s = 10, 30, 60, 
90 and 120. The load path (a) is imposed to the beam, and the crack position xc/L, 
the spatial sampling interval dx and the noise level are assumed, respectively, 
equal to 0.1, 0.001 m, SNR = 120 dB. Figures 6.8a and 6.8b display respectively 
the histories of the beam displacement at the free and of the rotational stiffness of 
the crack section. 

 

  
Fig. 6.7 – Load histories considered in the nonlinear static analysis. 
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Fig. 6.8 – (a) History of the beam displacement at the free end; (b) history of the 
rotational stiffness of the crack section. 

 
In Fig. 6.9 the history of the crack relative rotation Δϑc estimated by the 

wavelet-based calibration method at the scales s equal to 10, 30, 60, 90 and 120, 
is displayed. Figure 6.10 reports the normalized CWT coefficients at a position 
far from the crack location (say, x/L = 0.7) divided by Θ(s) for different wavelet 
scales. By juxtaposing the results of Fig. 6.10 with those of Fig. 6.9, one can 
verify that the proposed calibration method is applicable. In fact, at each load 
step the value of the CWT coefficient at a beam point far away from the crack 
location is at least one order of magnitude smaller than that at the crack section 
for every considered scales. 

It can be noted that in Fig. 6.11, the distributions of the normalized CWT 
coefficients along the beam length for a certain load level at different wavelet 
scales are reported. Scale 120, in comparison with the other scales, identifies 
higher values of Δϑc, due to the influence of the edge effects (Fig. 6.11d). On the 
contrary, Figs 6.11(a-c) show that using the scales 30, 60 and 90 the edge effects 
do not influence the peak value of the CWT coefficients.  

Among the scales 10, 30, 60 and 90, scale 60 is chosen to estimate Δϑc as it 
averages the estimations of the other scales. Figure 6.12a highlights that the 
wavelet-based calibration method using s = 60 describes accurately the history of 
the crack relative rotation simulated by the FE model. Furthermore, calculating 
from static equilibrium the bending moment at the crack location, the moment 
versus relative rotation curve estimated with the wavelet analysis can be 
compared with that of the FE model (Fig. 6.12b). 
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Fig. 6.9 – Histories of the crack relative rotation Δϑc estimated by the wavelet-based 
calibration method at different scale s of the wavelet (SNR = 120 dB).  

 

 
 

Fig. 6.10 – Normalized CWT coefficients at x/L = 0.7 divided by Θ(s) at different 
wavelet scale s (SNR = 120 dB). 
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Fig. 6.11 – Normalized CWT coefficients divided by Θ(s) along the beam at different 
wavelet scale s when P(t) = 3.5∙105 N (SNR = 120 dB). (a) s = 30; (b) s = 60; (c) s = 90; 
(d) s = 120. 

 

(a) 

 

(b) 

 
Fig. 6.12 – Comparison of the estimate of the wavelet-based calibration method at s = 
60 (SNR = 120 dB) and the simulation of the FE model: (a) history of the crack relative 
rotation; (b) bending moment at xc against the crack relative rotation. 
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Let us now consider the same problem but with an increasing noise level 
(SNR equal to 100 and 80 dB is imposed). Figure 6.13 shows that the calibration 
method at SNR = 100 dB provides still a good description of the history of the 
crack relative rotation. At SNR = 80 dB, the history of Δϑc is sensibly influenced 
by the presence of noise, but an approximate quantification of the values of Δϑc 
can be carried out (a smoothing post-processing of the data could be helpful). 

 

 
Fig. 6.13 – Comparison of the history of the crack relative rotation Δϑc estimated by the 
wavelet-based calibration method at s = 60 with SNR = 80 dB and 100 dB and that 
obtained by the FE model. 

 
Consider now to apply the load history of Fig. 6.7b to the beam. The crack is 

located near the clamped end at xc/L = 0.05 and dx and SNR are assumed to be 
equal to 0.001 m and 120 dB. Figures 6.14a and 6.14b show respectively the 
histories of the beam displacement at the free end and of the rotational stiffness 
of the crack section. In this load case, the beam is significantly less stressed than 
in the load case of Fig. 6.7a, so that, as comparing Fig. 6.14b with Fig. 6.8b, the 
rotational stiffness at the crack section is higher due to the fact that most of the 
fibers are not yielded. 

Figure 6.15 shows that, using the wavelet scales 40, 60 or 80, the orders of 
magnitude of the normalized CWT coefficients divided by Θ(s) at the crack 
section and at x/L = 0.7 is the same. This means that at these scales the wavelet 
analysis is significantly affected by noise and, hence, higher scales have to be 
used in order to reduce the influence of noise. 
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Fig. 6.14 – (a) History of the beam displacement at the free end; (b) history of the 
rotational stiffness at the crack section. 

 

  
 

Fig. 6.15 – Histories of the normalized CWT coefficients divided by Θ(s) at the scales 
40, 60 and 80 at: (a) the crack section; (b) x/L = 0.7. SNR = 120 dB. 

 
Figure 6.16 highlights that using higher scales, such as s = 100, 120 or 140, 

the difference between the values of the CWT coefficients at the crack section 
(Fig. 6.16a) and those at x/L = 0.7 (Fig. 6.16b) is greater than before. Scale 120 is 
chosen and the comparison between the wavelet-based results and those obtained 
by the FE model simulation are shown in Fig. 6.17. 

 

  

Fig. 6.16 – Histories of the normalized CWT coefficients divided by Θ(s) at the scales 
100, 120 and 140 at: (a) the crack section; (b) x/L = 0.7. SNR = 120 dB. 
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Fig. 6.17 – Comparison of the estimate of the wavelet-based calibration method at s = 
120 (SNR = 120 dB) and the simulation of the FE model: (a) history of the crack relative 
rotation; (b) bending moment at xc against the crack relative rotation. 

6.4.2 Nonlinear dynamic analysis 

The time histories of the point loads at the free end of the cantilever beam 
(Fig. 3.5) are described by the following harmonic functions (Fig. 6.18): 

)(10105)( 54 tsentP aa Ω+⋅=  N 6.2 
and  

)(10)( 5 tsentP bb Ω=  N, 6.3 
where 15.0 ω=Ωa  and 12ω=Ωb  being 1ω  the first natural pulsation of the 
uncracked beam equal to 192.45 rad/sec. 

 

  
(a) (b) 

 

Fig. 6.18 – Time histories of the harmonic loads being considered in the nonlinear 
dynamic analysis. 

 
As a first example, consider the beam subjected to the load (a) at Fig. 6.18 

with crack at xc/L = 0.1. Its response is sampled either at dx = 0.001m or dx = 
0.01m and two SNR values equal to 100 and 80 dB are imposed. Figure 6.19 
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bending moment at the crack section (Fig. 6.19b), of rotational stiffness at the 
crack section (Fig. 6.19c), as well as the diagram of the bending moment against 
crack relative rotation (Fig. 6.19d). Figure 6.19d highlights that all the fibers 
yield in tension and compression during the loading cycles. 

Figure 6.20 shows that the wavelet-based calibration method allows a good 
estimation of the time history of the crack relative rotation when the beam 
deflection is sampled at dx = 0.001 m and dx = 0.01 m with SNR equal to 100 dB 
and 80 dB. Note that the results related to the higher sampling interval are more 
corrupted by the presence of noise (Fig. 6.20b). 

 

  
 

(a) (b) 
 

  
(c) (d) 

Fig. 6.19 – (a) Time history of the beam displacement at the free end; (b) Time history 
of the bending moment at the crack section; (c) Time history of the rotational stiffness at 
the crack section; (d) Diagram of the bending moment against crack relative rotation at 
the crack section. 
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(a) 

 

(b) 

 
Fig. 6.20 – Comparison between the time histories of the crack relative rotation obtained 
by FE model simulation and that evaluated by the wavelet-based calibration method 
considering: (a) s = 60 and dx = 0.001 m; (b) s = 8 and dx = 0.01 m. SNR values equal to 
100 and 80 dB are imposed.  

 
In the second numerical example, the harmonic load (b) of Fig. 6.18 is 

imposed so that the beam, with crack at xc/L = 0.05, is less stressed than in the 
previous example. Figure 6.21 shows the beam response in terms of beam 
displacement at the free end (Fig. 6.21a), bending moment at the crack section 
(Fig. 6.21b), rotational stiffness at the crack section (Fig. 6.21c) and bending 
moment against crack relative rotation at the crack section (Fig. 6.21d).  

The beam deflection is sampled at dx = 0.001m and dx = 0.01m and a noise 
level of 120 dB is imposed. Figure 6.22 highlights again that a denser 
discretization of the beam shape helps the wavelet-based method to quantify 
more accurately the damage. 
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(a) (b) 

  
(c) (d) 

Fig. 6.21 – (a) Time history of the beam displacement at the free end; (b) Time history 
of the bending moment at the crack section; (c) Time history of the rotational stiffness at 
the crack section; (d) Diagram of the bending moment against crack relative rotation at 
the crack section. 
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(b) 

 
Fig. 6.22 – (a) Comparison between the time history of the crack relative rotation 
obtained by the FE model simulation and that evaluated by the wavelet-based 
calibration method considering: (a) s = 55 and dx = 0.001 m; (b) s = 6 and dx = 0.01 m. 
SNR = 120 dB. 
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Conclusions 

 

 
 
The present thesis deals with the vibration-based damage identification in 

beam structures through wavelet analysis. Three main problems of damage 
identification through continuous wavelet transform are studied: the 
minimization of border distortions, the effect of the spatial sampling in damage 
detection and the assessment of the nonlinear behaviour of damage for structural 
health monitoring and control.  

A new effective and computational efficient signal extension method to 
reduce CWT edge effects of beam deflections is presented. The method is based 
on the approach of padding the original signal using two functions that satisfy 
continuity conditions and extend the average trend of the noisy signal and its 
derivatives. Two high-order degree polynomial functions are determined through 
a fitting procedure of the noisy signal and by imposing signal and first derivative 
continuity conditions in the beam extrema. The capability of the polynomial 
method is compared with that of the most effective padding methods available in 
the literature, such as the linear padding method and, Messina’s isomorphism 
methods. The analytical free vibration and static deflection responses of 
cantilever and simply supported cracked beams are analysed. Crack depth ratio 
and position are varied, and different levels of synthetic Gaussian white noise are 
introduced to the signal to emulate real measured data. The comparison between 
the considered padding methods highlights a great effectiveness and versatility of 
the proposed method. 

A thorough parametric investigation of the effect of spatial sampling interval 
in damage detection by CWT is carried out to answer to the following key 
questions: can the cost of damage detection be reduced by down-sampling? What 
is the minimum number of sampling intervals performing the optimal damage 
detection? With reference to the results obtained using the proposed polynomial 
padding method and ‘Coif4’ wavelet, the optimal performance of the CWT 
damage detection in terms of the minimum detectable crack size is shown to be 
dependent only on a particular value of the pseudo-frequency, which is a function 
of the length and the shape of the beam and of the crack location. Since the 
sampling interval is strictly related to the pseudo-frequency, general charts are 
produced in order to provide with good approximation the minimum optimal 
number of sampling intervals required to perform the optimal damage detection. 

Finally, a new health structural monitoring method based on time-space 
wavelet analysis is presented to control the static and dynamic, nonlinear 
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behaviour of a cracked fiber-reinforced beam. The method is based on a linear 
relation between the normalized CWT coefficients and the relative rotation due 
to the crack, which holds true on particular conditions related to the CWT beam 
deflection and the features of the wavelet (such as ‘Coif4’). The effectiveness of 
the method in describing the nonlinear structural response due to a small crack is 
discussed in relation to the wavelet scale, the noise level and the spatial sampling 
interval. 
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Values of the function Θ(s) related to ‘Coif4’ (see Section 6.2):  
 

Scale s Θ(s)  Scale s Θ(s) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

0.0721748817892021 
0.204141393377929 
0.375031686867526 
0.57739905431362 
0.806939709743333 
1.06074979577544 
1.33669751683799 
1.63313114702344 
1.94872180830845 
2.28237016307287 
2.63314702401343 
3.00025349494022 
3.38299308218976 
3.78075151420547 
4.19298172776103 
4.61919243450894 
5.05893923926692 
5.51181762120409 
5.9774573036414 

6.45551767794671 
6.94568404054367 
7.44766446616427 
7.96118718534858 
8.48599836620349 
9.02186022365025 
9.56854939649426 
10.1258555454232 
10.693580134704 

11.2715353677388 
11.8595432523644 
12.4574347762391 

 

33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 

13.6822332881701 
14.3088409667854 
14.9447325650247 
15.5897744664677 
16.2438386633143 
16.9068023746316 
17.5785477000201 
18.258961304583 

18.9479341316499 
19.6453611401905 
20.3511410642526 
21.0651761921074 
21.7873721630702 
22.5176377802217 
23.2558848374626 
24.0020279595218 
24.7559844536963 
25.5176741722411 
26.2870193844425 
27.0639446575182 
27.8483767455748 
28.6402444859367 
29.4394787022265 
30.2460121136437 
31.0597792499417 
31.8807163716486 
32.7087613951251 
33.5438538220883 
34.3859346732658 
35.234946425871 

36.0908329546259 
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32 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 

13.0650491761875 
37.8230124959393 
38.6991997593657 
39.5820502037585 
40.4715139141355 

41.36754208077 
42.2700869589934 
43.1791018310152 
44.094540969633 
45.01635960371 

45.9445138853192 
46.878960858441 

47.8196584291314 
48.7665653370654 
49.7196411283817 
50.6788461297467 
51.6441414235738 
52.6154888243285 
53.5928508558629 
54.5761907297188 
55.5654723243495 
56.5606601652096 
57.5617194056684 
58.5686158086995 
59.5813157293141 
60.5997860976895 
61.6239944029676 
62.6539086776822 
63.6894974827885 
64.7307298932644 
65.7775754842529 
66.8300043177241 
67.8879869296279 
68.9514943175194 
70.0204979286298 
71.0949696483623 
72.1748817892022 
73.2602070800089 
74.3509186556861 
75.4469900472019 

64 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 

36.9535394760715 
81.006844363386 

82.1345398054755 
83.2674200997646 
84.4054616244367 
85.5486410776315 
86.6969354702797 
87.8503221191639 
89.0087786401979 
90.172282941911 

91.3408132191235 
92.5143479468223 
93.6928658742058 
94.8763460189154 
96.0647676614279 
97.2581103396152 
98.4563538434583 
99.6594782099124 
100.867463717917 
102.080290883548 
103.297940455298 

104.5203934095 
105.74763094586 

106.979634483129 
108.21638565487 

109.457866305361 
110.704058485593 
111.954944449376 
113.210506649548 
114.470727734283 
115.735590543495 
117.005078105329 
118.279173632746 
119.557860520197 
120.841122340367 
122.128942841021 
123.421305941905 
124.718195731741 
126.019596465285 
127.325492560461 
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104 
105 
106 
107 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 

76.5483951719537 
77.6551083244553 
78.7671041673342 
79.8843577226333 
133.921869162734 
135.25441899705 

136.591359460205 
137.93267618006 
139.2783549247 

140.628381600158 
141.982742248212 
143.34142304421 

144.704410294962 
146.07169043666 

147.443250032861 
148.819075772504 
150.199154467972 
151.583473053192 
152.972018581786 
154.36477822525 

155.761739271175 
157.162889121513 
158.568215290866 
159.977705404818 
161.391347198304 
162.809128514006 
164.231037300786 
165.657061612146 
167.08718960473 

147 
148 
149 
150 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 

128.635868595561 
129.950709306513 
131.269999584215 
132.593724471928 
168.521409536838 
169.959709766989 
171.402078752497 
172.848505048088 
174.298977304531 
175.753484267306 
177.212014775291 
178.674557759483 
180.141102241732 
181.611637333505 
183.08615223468 

184.564636232346 
186.047078699645 
187.533469094618 
189.02379695909 

190.518051917554 
192.016223676098 
193.518302021337 
195.024276819368 
196.534138014744 
198.04787562947 

199.565479762011 
201.086940586321 
202.612248350888 
204.141393377798 
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