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Introduction

Main-sequence stars with masses greater than about 8M� follow two evolutionary paths; either

they form a degenerate core of O/Ne/Mg, or a degenerate Fe core, which, after undergoing

a Type II supernova core collapse, forms a proto-neutron star [1, 2]. Neutron stars (NSs)

are also expected to form through the accretion-induced collapse of a white dwarf [3, 4]. At

birth, NSs are rapidly and differentially rotating, which makes them subject to various types

of instabilities. Among these, the dynamical bar-mode instability and the shear-instability are

particularly interesting because of their potential role as sources of gravitational waves (GWs).

Indeed, a newly born NS may develop a dynamical bar-mode instability when the rotation

parameter � := T/|W |, with T the rotational kinetic energy and W the gravitational bind-

ing energy, exceeds a critical value �

c

(see, for instance, [5, 6] for some reviews). Under

these conditions, the rapidly rotating NS can become severely deformed, leading to a strong

emission of GWs in the kHz range. Analytic investigations of the conditions under which

these dynamical instabilities develop in self-gravitating rotating stars can be found in [7, 8],

but these are inevitably restricted to Newtonian gravity or to simple shell models. To im-

prove our understanding of these instabilities also in the nonlinear regimes, and to be able to

extract useful physical information from the potential GW emission, it is clear that a general-

relativistic numerical modeling is necessary. This has been the focus of a number of recent

works, e.g., [9, 10, 11, 12], which have provided important clues about the threshold for the

instability and its survival under realistic conditions. As an example, for a polytropic relativis-

tic star with polytropic index � = 2, the calculations reported in [10] revealed that the critical

value is �

c

⇠ 0.254, and that a simple dependence on the stellar compactness can be used

to track this threshold from the Newtonian limit over to the fully relativistic one [11]. Fur-

thermore, numerical simulations have also revealed that the instability is in general short-lived

and that the bar-deformation is suppressed over a timescale of a few revolutions (this was first

v



pointed out in Ref. [10] and later confirmed in Ref. [13], where it was interpreted as due to a

Faraday resonance).

One aspect of the bar-mode instability that so far has not received sufficient attention is

about the occurrence of the instability in magnetized stars. This is not an academic question

since NSs at birth are expected to be quite generically magnetized, with magnetic fields that

have strengths up to ' 10

12 G in ordinary NSs and reaching strengths in excess of 1015 G in

magnetars, if instabilities or dynamos have taken place in the proto-neutron star phase [14, 15].

Such magnetic fields can affect both the structure and the evolution of NSs [16, 17, 18, 19],

and it is natural to expect that they will influence also the development of the instability when

compared to the purely hydrodynamical case. A first dynamical study in this direction has been

carried out recently in Ref. [20], where the development of the dynamical bar-mode instability

has been studied for differentially rotating magnetized stars in Newtonian gravity and in the

ideal-magnetohydrodynamics (MHD) limit (i.e., with a plasma having infinite conductivity).

Not surprisingly, this study found that magnetic fields do have an effect on the development of

the instability, but this is the case only for very strong magnetic fields. We here consider the

same problem, but extend the analysis to a fully general-relativistic framework, assessing the

impact that the results have on high-energy astrophysics and GW astronomy.

Our investigation of the dynamics of highly-magnetized and rapidly rotating NSs is also

part of a wider study of this type of objects to explain the phenomenology associated with

short gamma-ray bursts. These catastrophic phenomena, in fact, are normally thought to be

related to the merger of a binary system of NSs [21, 22, 23, 24], which could then lead to the

formation of a long-lived hypermassive NS (HMNS) [25, 26, 27, 28]. If highly magnetized, the

HMNS could then also lead to an intense electromagnetic emission [29, 30]. This scenario has

recently been considered in Refs. [31, 32], where numerical simulations of an axisymmetric

differentially rotating HMNS were carried out. The HMNS had initially a purely poloidal

magnetic field, which eventually led to a magnetically driven outflow along the rotation axis.

A similar setup has also been considered in a number of works, either in two-dimensional

(2D) [33] or in three-dimensional (3D) simulations [34], with the goal of determining whether

or not the conditions typical of a HMNS can lead to the development of the magnetorota-

tional (MRI) instability [35, 36]. Although this type of simulations in 3D still stretches the

computational resources presently available, the very high resolutions employed in Ref. [34],

and the careful analysis of the results, provided the first convincing evidence that the MRI

can develop from 3D configurations. This has of course important consequences on much of



the phenomenology associated with HMNSs, as it shows that very strong magnetic fields, up

to equipartition, will be produced in the HMNS if this survives long enough for the MRI to

develop.

In this Thesis, we extend the previous work on the dynamical bar-mode instability [10,

11, 37] also to the case of magnetized stars. Our main goal is to accurately analyze when

and how magnetic fields can affect, or even suppress, the development of the dynamical bar-

mode instability in differentially rotating relativistic stars. We have already studied this topic

in [38, 39], but here we provide a more accurate and detailed description of the dynamics of

both bar-stable and bar-unstable models. The initial stellar models we evolve here correspond

to stationary equilibrium configurations of axisymmetric and rapidly rotating relativistic stars,

described by a polytropic EOS with adiabatic index � = 2 and members of a sequence with a

constant rest-mass of M ' 1.5 M� and a constant amount of differential rotation.

Our main result is that very strong initial magnetic fields, i.e., & 10

16 G, are able to com-

pletely inhibit the emergence of a bar deformation and the onset of a dynamical bar-mode

instability, even in those models which have been proved to be bar-mode unstable in the un-

magnetized case. On the other hand, we find that initial poloidal magnetic fields with strengths

. 10

15 G have a negligible effect on the development of the dynamical bar-mode instability,

whose dynamics is the same as in the purely hydrodynamical case. The precise threshold mark-

ing the stability region depends not only on the strength of the magnetic field, but also on the

amount of rotation. We trace this threshold by performing many simulations of a number of

sequences of many different models having the same value of the instability parameter � but

different magnetizations.

All the simulations reported here have been performed in the ideal-MHD limit, so the mag-

netic field lines are “frozen” in the fluid and follow its dynamics (see [40] for a recent extension

of the code to resistive regime). As a consequence, differential rotation drives the initial purely

poloidal magnetic field into rotation, winding it up and generating a toroidal component. At

early times, the toroidal magnetic field grows linearly with time, tapping the NS’s rotational

energy, and suddenly overcomes the original poloidal one becoming the dominant component.

At later times, this growth starts deviating from the linear behavior and the magnetic tension

produced by the very large magnetic-field winding alters the angular velocity profile of the

star. Moreover, we observe a rapid and exponential growth in the toroidal component of the

magnetic energy occurring during the matter-unstable phase of the evolution of bar-unstable

models, which was already observed in our previous studies [38, 39] and resembles the one



described in Ref. [34]. We have then extended our previous work, in order to investigate the

possible development of the MRI in bar-unstable models by performing a number of additional

simulations with a finer resolution than the ones reported in [38, 39], in order to look for the

features one would expect in the case of an MRI acting on the evolved stellar models. Actually,

we will be able to recognize some of the typical features of this kind of instability in many of

our simulations, mainly in the ones of bar-unstable models, and to provide a possible explana-

tion for these observations. Nevertheless, the resolution of these more accurate simulations is

still much coarser than in Ref. [34], and then a deeper and more extended analysis of this topic

has not been feasible by the time of the present Thesis, mainly due to computational limita-

tions. Hence we will not be able to give as firm evidences about the development of the MRI

as the ones provided in Ref. [34].

An important consequence of our results is that because the instability is suppressed in

strongly magnetized NSs, these can no longer be considered as potential sources of GWs, at

least via the dynamical bar-mode instability. Besides, if later confirmed, our observations on

an exponential growth of the magnetic field during the matter-unstable phase of the evolution

would provide the first evidence of the deveolpment of an non-axisymmetric MRI in 3D global

simulations of bar-model unstable relativistic stars.

The plan of this Thesis is as follows. In Chap. 1 a review of the main ingredients neces-

sary for the present work is presented: a general introduction to Neutron Stars (NSs), i.e., their

main properties, formation and internal structure and a detailed description of the dynamical

bar-mode instability which can develop in NSs, both in the relativistic unmagnetized case and

in the Newtonian magnetized case. Chap. 2 introduces a brief description of the 3+1 formalism

of Numerical Relativity and the full set of equations we need to solve. The code and numerical

methods we used are briefly described in Chap. 3, together with the settings we chose, the main

properties of the stellar models adopted as initial data and the methodology we employed in

our accurate analysis. In Chap. 4 we describe the effects of magnetic fields on the dynamics

of bar-mode stable models, while in Chap. 5 such analysis is extended to the case of models

which are bar-mode unstable at zero magnetization. Chap. 6 deals in detail with the evolution

of the magnetic field in both stable and unstable models. The main results of our work are

summarized in the Conclusions. Lastly, in the Appendix we discuss the influence of symme-

tries on the development of the instability and the convergence of our results, and we report an

extensive view of the dynamics of many of the magnetized models we evolved.

Unless stated differently, we adopt geometrized units in which c = 1, G = 1, M� = 1.
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Chapter 1

Neutron stars and dynamical
instabilities

1.1 Neutron stars

Neutron stars (NSs) are extremely compact stars with a typical mass M ⇠ 1.4 M� and a

typical radius R ⇠ 10 km, resulting in a compactness M/R ⇠ 100 times higher than the

Sun’s. These properties makes them the most compact objects endowed with a structure in our

Universe, such that they cannot be properly described without resorting to General Relativity.

Indeed, these are not the only features that make them among the most “extreme” objects in

nature. They exhibit very high densities (a typical value is of the order of the nuclear density

⇢

0

⇠ 2.8 · 1014 g/cm3), very fast rotation (the fastest known spin frequency for a NSs is ⇠ 716

Hz, corresponding to approximately 24% of the speed of light at its equator) [41], ultra-strong

magnetic fields (magnetic fields range from 10

13 G for ordinary NSs and up to 10

16 G in the

interior of magnetars). Besides, NSs are quite peculiar since all the four fundamental forces

play a crucial role in determining their structure and dynamics and therefore they arouse interest

in almost all fields of modern physics, representing natural laboratories to test fundamental

physics and strong-field gravity under the above-mentioned extreme conditions, not feasible on

Earth. Two of the most intriguing puzzles that one day could be solved thanks to NSs are the

behavior of matter at supranuclear densities and the existence of gravitational waves, predicted

and yet undetected spacetime perturbations (up to now, we only have indirect evidences, like

the one obtained by the Hulse and Taylor from the cumulative shift of periastron time for the

binary pulsar PSR 1913+16).
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1. NEUTRON STARS AND DYNAMICAL INSTABILITIES

1.1.1 Main observational properties

Two important properties of NSs that can be inferred from observations are their mass and

radius. Recent observations have uncovered both massive and low-mass NSs and have also

set constraints on NS radii. The largest mass measurements are powerfully influencing the

high-density equation of state because of the existence of the NS maximum mass. The smallest

mass measurements, and the distributions of masses, have implications for the progenitors and

formation mechanisms of NSs. The ensemble of mass and radius observations can realistically

restrict the properties of dense matter.

Accurate measurements for NSs masses come from pulsar timing. To date, approximately

33 relatively precise masses have become available. In these systems, five Keplerian parameters

can be precisely measured [42], which are the binary period, the projection of the pulsar’s

semimajor axis on the line of sight, the eccentricity, and the time and longitude of periastron.

From these observables we can compute a mass function, which is a relation between the

pulsar’s mass and the mass of its companion. Anyway, this is not sufficient to infer the mass,

unless the mass function of the companion is also measurable, which happens in the rare case

when the companion itself is a detectable pulsar or a star with an observable spectrum, as

in an X-ray binary. Fortunately, binary pulsars are compact systems, and general relativistic

effects can often be observed: in many cases, the detection of relativistic effects such as the

Shapiro delat, the advance of periastron or orbit shrinkage due to grativational wave emission

permits a constraint on the inclination angle and a measure of the two masses. Most NSs have

masses close to 1.3 - 1.4 M�, but lower and higher masses exist. Actually, there is now ample

observational support from pulsars for NSs with masses significantly greater than 1.5 M�. We

can claim that, presently, the mass range 1 - 2 M� is compatible with data, even if some recent

observations suggest the possibility of larger masses.

In contrast to mass determinations, there are no high-accuracy radius measurements. More-

over, there are no radius measurements for any NSs with a precise mass determination. Many

astrophysical observations that could lead to the extraction of NS radii, or combined mass and

radius constraints, have been proposed, which include thermal X-ray and optical fluxes from

isolated and quiescent NSs [43], quasi-periodic oscillations from accreting NSs, moments of

inertia measurements from spin-orbit coupling. Among them, thermal emission and X-ray

bursts from NS surfaces have dominated recent attempts to infer NS radii. Present observations

suggest NS radii in the range 9 - 16 km. Mass and radius measurements are of fundamental

2



1.1 Neutron stars

importance, since several M -R probability distributions allow to put constraints on the overall

M -R relation and then on the Equation of State (EOS) of matter at supranuclear densities.

Two other fundamental quantities for an isolated NS are the spin period P and its derivative
˙

P . The observed spin periods range between 1.56 ms, for the fastest spinning NS, and ⇠ 1 - 10

s, in the case of Soft Gamma Repeaters (SGRs) and Anomalous X-ray Pulsars (AXPs), while

the spin derivatives vary in the wide range 10

�21 - 10�9 (adimesional). Their simultaneous

knowledge is important for estimating the age (the so-called spindown age ⌧

SD

= P/2

˙

P ) and

the surface magnetic field strength, which is an essential NS property for the purposes of this

Thesis, through the formula

B =

✓
3c

3

I

8⇡

2

R

6

◆
1/2

(P

˙

P )

1/2 (1.1)

This is obtained from the assumption that the external field is dipolar and the observed spin-

down is entirely due to magnetic braking.

Typical dipole magnetic field strenghts for ordinary pulsars are in the range 10

11 - 1013

G, even if some millisecond pulsars have values down to 10

8 G; on the other hand, magnetars

(SGRs and AXPs) have dipole magnetic fields of the order of 1014 - 1015 G, even higher in their

interior. It is estimated that about one in ten supernova explosions results in a magnetar rather

than a more standard NS or pulsar and so they are actually quite common objects. Since their

first discover in 1979, 21 of them are known, with five more candidates awaiting confirmation.

They arouse wide and vivid interest in the Astrophysical community, since they show quite

a varied phenomenology, e.g., they also have implications for Gamma-Ray Bursts (GRBs).

Even though we are not entering into the details of the formation and structure of such strong

magnetic fields, this rough estimate of their typical strength is very important, since the main

topic of the present Thesis is the dynamics of highly magnetized neutron stars, and thus we

find a reasonable justification for the values we choose for the magnetic field in the models we

evolved, which are actually in the range 10

14 - 1016 G.

1.1.2 Formation of compact stars

Stars spend most of their life in a quasi-equilibrium state in which self-gravity is balanced by

the radiation pressure due to thermonuclear reactions fusing hydrogen into helium in the stellar

core (“main sequence” phase). However, after a few billion years, all available hydrogen in the

core is over and the central source of energy supporting equilibrium runs out: the star begins

3



1. NEUTRON STARS AND DYNAMICAL INSTABILITIES

to contract and warm until hydrogren burning in a shell around the core is ignited. The higher

temperatures lead to increasing reaction rates, the star’s luminosity increases as well and the

outer layers greatly expand, making the star leave the main sequence and begin its “red giant”

phase. The following evolutionary path depends on the mass of the star. If it is about 0.2

to 0.5 M�, the star is massive enough to become a red giant but not enough to initiate the

fusion of helium. Conversely, the core of stars with M & 0.5 M� gets hot enough to begin

fusing helium to carbon via the triple-alpha process. Stars with masses up to ⇠ 8 M� stop

their internal burning before heavier elements are produced: they lose most of their mass by

stellar winds forming a “planetary nebula”, while their dense core becomes a “white dwarf”,

supported by the electron degeneracy pressure. Stars with M & 8 M� can go further with

hermonuclear reactions fusing carbon to oxygen, neon and magnesium, while in slightly more

massive stars (M . 10 M�) the carbon-burning process keeps going in a shell around the core

after the carbon in the core itself is over, so the mass of the core keeps increasing. At some

point, the inverse �-decay becomes energetically favorable and extremely efficient in merging

together protons and electrons into neutrons, thuse reducing the number of electrons and their

degeneracy pression. The inner core collapses, leaving the surrounding material suspended

above it, and in supersonic free-fall. The contraction of the core suddenly stops when the

density of the nuclear matter is reached and the short-range nuclear force becomes repulsive.

The infalling material finally strikes strikes the incompressible core and rebounds, generating

a shockwave that progresses outward through the unfused material of the outer shell and a

following supernova explosion. The ejected mass will form the supernova remnant, while the

superdense core is now a proto-nuetron star (PNS). Stars with M & 10 M� evolve through

all phases of thermonuclear burning in the core up to iron: nuclear fusion of elements heavier

than iron requires energy intead of releasing it, so when all the silicon is over nuclear burning

stops. Since during silicon burning the core has reached extremely high temperatures and

densities, the photodisintegration of iron nuclei by very energetic photons reverses the process

of fusion and the inverse �-decay reduces the neutron degeneracy pression, thus leading to

a sudden collapse. Again, the collapse and bounce of the infalling material will lead to a

supernova explosion and to th formation of a PNS. If the progenitor’s mass is extremely high

(M & 20 M�) the accretion of the infalling material onto the PNS will increase its mass above

the Tolman-Oppenheimer-Volkoff limit, which is the stability treshold for NSs, and the star

will collapse into a black hole.
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1.1 Neutron stars

Figure 1.1: Schematic structure of a NS. Here ⇢ND ' 4⇥10

11 g cm�3 is the neutron drip density,
while ⇢

0

= 2.8⇥ 10

14 g cm�3 is the saturation nuclear matter density.

1.1.3 Internal structure

According to current theories, a NS can be subdivided into four main layers with density in-

creasing inwards: the outer crust, the inner crust, the outer core and the inner core. The general

NS structure is shown schematically in Fig. 1.1. The outer crust extends for some hundred

meters, from the atmosphere bottom with density ⇢ ⇠ 10

7 g cm�3 to the layer correspond-

ing to the neutron drip density ⇢ = ⇢

ND

' 4 ⇥ 10

11 g cm�3. Its matter consists of ions

and electrons: heavy nucleons are organized in a Coulomb lattice and embedded in a strongly

degenerate, almost ideal, electron gas. As the electron Fermi energy grows with increasing ⇢,

electron capture occurs in atomic nuclei: the fractions of neutrons to protons in nuclei increases

until neutrons start to drip out producing a free neutron gas. The neutron drip point marks the

beginning of the inner crust, whose extent is about 1 km and whose density increases from

⇢

ND

to ⇠ 0.5 ⇢

0

, where ⇢

0

= 2.8 ⇥ 10

14 g cm�3 is the saturation nuclear matter density,

i.e. the mass density of nucleon matter in heavy atomic nuclei. The matter of the inner crust

consists of electrons, free neutrons, and neutron-rich atomic nuclei. The fraction of free neu-

trons increases with growing density. The neutronization at ⇢ ⇠ ⇢

ND

greatly softens the EOS,

but at the crust bottom the repulsive short-range component of the neutron-neutron interaction

comes into play and introduces a considerable stiffness. The nuclei disappear at the crust-core

interface. Free neutrons in the inner crust and nucleons confined in the atomic nuclei can be

5



1. NEUTRON STARS AND DYNAMICAL INSTABILITIES

in superfluid state. The next layer, the outer core, is several kilometers thick and has a density

in the range 0.5 ⇢

0

. ⇢ . 2.0⇢

0

. It is mainly composed by neutrons with several per cent

admixture of protons, electrons, and possibly muons. The state of this matter is determined by

the conditions of electric neutrality and beta equilibrium. All these components are strongly

degenerate. The inner core occupies the central region, whose radius can reach several kilome-

ters and whose density can be as high as 10 - 15 ⇢

0

. Its composition it the biggest unkwown

about NSs, and the EOS is very model dependent. We may expect a composition which is sim-

ilar to the one of the outer core, but even more exotic states are possible. While the EOS for the

inner and outer crust receive a wide consensus, because the models can be tested against data

produced in Nuclear Physics experiments, for supranuclear densities we only have theoretical

models, without many chances of experimental confirmation, at least not unitl GW emission

signals coming from the coalescence of binary NSs would be detected.

We are not entering here into the details of the different models proposed for the structure

of the inner core, since this goes far beyond the purpose of this Thesis. Actually, as we will

point out in Sect. 3, all the NS models we have evolved assume a simple polytropic EOS with

adiabatic index � = 2.

6



1.2 The dynamical bar-mode instability

1.2 The dynamical bar-mode instability

Newly born NSs may develop dynamical instabilities. In particular, the dynamical bar-mode

instability arises when the rotation parameter � := T/|W |, with T being the rotational kinetic

energy and W the gravitational binding energy, exceeds a critical value.

The accurate study of the dynamical barmode instability, of its nonlinear evolution and of

the determination of the threshold for its onset, as well as the extraction of physical information

from the potential gravitational wave emission, impose the use of a general-relativistic numer-

ical modeling to solve the Einstein’s field equations coupled to the hydrodynamics equations

in 3+1 dimensions (or the coupled Einstein-Maxwell-MHD equations if magnetic fields are

involved, as in the cases discussed in the present thesis).

In this Section, we will review the most significant results about dynamical instabilities in

NSs, and in particular the general features of the dynamical bar-mode instability obtained by

means of numerical simulations in recent years, focusing our attention on the unmagnetized

relativistic case and on the Newtonian case in the presence of magnetic fields.

1.2.1 A brief literature review on dynamical instabilities

Non-axisymmetric deformations of rapidly rotating bodies are rather generic phenomena in

Nature and can appear in a wide class of systems. Particularly interesting within an astrophysi-

cal context are those deformations taking place in fluids that are self-gravitating. The literature

has a long history on this topic, dating back to the work of [44] on incompressible Newtonian

uniformly rotating bodies. Since then, the study of these instabilities has continued over the

years both in Newtonian gravity and in full General Relativity.

Special attention has traditionally been paid to the study of m = 2 instabilities, which

are characterized by the exponential growth of m = 2 deformations, where m denotes the

azimuthal dependence e

im� in a standard mode decomposition in cylindrical harmonics. Most

of the interest in this type of deformation in compact stars arises from the fact that it has the

shortest growth time and possibly leads to the emission of a strong gravitational-wave sig-

nal. The development of non-axisymmetric instabilities is commonly analyzed in terms of the

above-mentioned quantity �, that provides a dimensionless measure of the amount of angu-

lar momentum that can be tapped to feed the development of the instabilities. The dynamical

bar-mode instability is not the only m = 2 instability which may develop in neutron stars.

7



1. NEUTRON STARS AND DYNAMICAL INSTABILITIES

In the past few years, another kind of m = 2 instability has been numerically discovered

in differentially rotating Newtonian stars [45] for values of � ⇠ 0.01, therefore well below the

expected values for the onset of a dynamical bar-mode instability. This appears in stars with a

large degree of differential rotation and grows on a timescale which is longer but comparable

with the dynamical one. This instability has been referred to as the “low-T/|W | instability”

and its dependence on the polytropic index and on the degree of differential rotation has been

studied in [46]. Since then, the instability has been observed or discussed in a number of re-

lated studies [47, 48, 49, 50, 51, 52, 53], all of which have highlighted the possible occurrence

of this type of instability during the collapse of a massive stellar core. In particular, this insta-

bility has been studied in great detail by Watts and collaborators [8, 54], which recognize the

low-T/|W | instabilities as the manifestation of a more generic class of instabilities, the shear

instabilities [8] , that is unstable oscillations that do not exist in uniformly rotating systems

associated to the existence of a corotation band [55, 56]. In fact, a condition that is often asso-

ciated to the instability is “corotation”, that is the presence of a point at which the star rotates

at the same pattern speed of the unstable mode [8]. An alternative suggestion for an associated

condition has been made also by Ou and Tohline [48], who instead associate the development

of the instability to the presence of a minimum in the vortensity profile of the star which can

then drive unstable not only the corotating m = 2-modes but also the odd modes such as the

m = 1 and m = 3-modes [57]. This instability has also been studied in [12], where sim-

ulations of differentially rotating neutron-star models described by a realistic SLy EOS [58]

were performed. They find the development of a bar-mode instability growing on a dynamical

timescale, even when the initial axisymmetric model is well below the critical limit for the dy-

namical bar-mode instability. These results, which match well the phenomenological scenario

portrayed in [8], suggest therefore that the idea of a low-T/|W | instability is indeed misleading

and should be replaced by the more general one of “shear instability”. Depending then on the

degree of rotation and of differential rotation, the instability will develop on timescales that are

comparable to the dynamical one (as reported here) or on much longer ones (as reported in the

first low-T/|W | instability studies).

Besides dynamical instabilities, which are purely hydrodynamical, secular instabilities are

also possible in rotating compact stars and these are instead triggered by dissipative processes,

such as viscosity or radiation emission. If, in particular, the dissipative mechanism is the

emission of gravitational radiation, then the secular instability is also known as Chandrasekhar-

Friedman-Schutz or CFS instability [59, 60]. Contrary to what their name may suggest, secular

8



1.2 The dynamical bar-mode instability

instabilities do not necessarily develop on secular timescales (although they normally do) and

are characterized by having a much smaller threshold for the instability. Once again, in the case

of a Newtonian polytrope, the critical secular instability parameter is as small as �
c

⇠ 0.14 and

thus much more easy to attain in astrophysical circumstances.

1.2.2 The bar-mode instability in unmagnetized relativistic stars

Much of the literature on the dynamical bar-mode instability before 2000 has been limited to a

Newtonian or post-Newtonian (PN) description. While this represents an approximation, these

studies have provided important information on several aspects of the instability that could not

have been investigated with perturbative techniques. In particular, these numerical studies have

shown that in the case of a Newtonian incompressible self-gravitating polytrope the dynamical

bar-mode instability develops for � � 0.2738 [44], this critical threshold depending weakly on

the stiffness of the equation of state (EOS) and that, once a bar has developed, the formation

of spiral arms is important for the redistribution of the angular momentum (see Refs. [61, 62,

63, 64, 65, 66, 67, 68, 69]). Afterward, it was shown that the threshold can be smaller for stars

with a high degree of differential rotation and a weak dependence on the EOS was confirmed

in Refs. [70, 71, 72, 73, 74].

Only in the last fifteen years it has become possible to perform simulations of the dynamical

bar instability in full General Relativity [10, 75]. These studies have shown that within a

fully general-relativistic framework the critical value for the onset of the instability is smaller

than the Newtonian one (i.e., �
c

' 0.24 � 0.25) and this behavior was confirmed by PN

calculations [76, 77] which also showed that �
c

varies with the compactness M/R of the star.

The numerical simulations presented in [10] revealed that the critical threshold for the

onset of the dynamical bar-mode instability in neutron star models with a polytropic EOS with

polytropic index � = 2 is �
c

⇠ 0.255 and that the instability is in general short-lived, the bar-

deformation being suppressed over a timescale of a few revolutions (this was later confirmed

in Ref. [13]).

The qualitative behavior of the evolution of bar-mode unstable stellar models is shown

in Fig. 1.2 and 1.3. In particular, in Fig. 1.2 we show the power P

m

in the first four non

axi-symmetric m-modes (cf., Eq. (3.18)). It’s important to note that at the beginning of the

simulation, as a result of the Cartesian discretization, the m=4 mode has the largest power.

While this can be reduced by increasing the resolution, the m=4 deformation plays no major

role in the development of the instability, which is soon dominated by the lower-order modes.

9



1. NEUTRON STARS AND DYNAMICAL INSTABILITIES

This figure allows us to easily divide the dynamics of the bar in four representative stages,

which are shown in Fig. 1.3 with representative snapshots of the rest-mass density, one for

each phase. In particular, here we report the evolution of model U11-1.0e14, one of the

models we evolved for this work (cf., Chap. 3), which is actually magnetized with an initial

magnetic field B ⇠ 10

14 G. Anyway, as we will show in Chap. 5, a magnetic field with this

strength have negligible effects on the onset and development of the bar-mode instability, so

these snapshots can be used here with confidence to describe the qualitative evolution in the

case of unmagnetized models. In the initial phase of the instability [stage (a)] we observe an

exponential growth of the m=2 mode and m=3 mode, the latter one having a smaller growth

rate. A first interesting mode coupling takes place when the exponentially growing m=3 mode

reaches the same power amplitude of the m=4 mode, at which point the two modes exchange

their dynamics, with the m=4 mode growing exponentially and the m=3 mode reaching satura-

tion. At approximately the same time, the m=1 mode also starts to grow exponentially but with

a growth rate which is smaller than that of the other modes. Note that this “mode-amplitude

crossing” between the m=3 and m=4 modes also signals the time when collective phenomena

start to be fully visible. For a qualitative picture of a typical unstable model in this phase see

the upper-left panel of Fig. 1.3. This stage continues until the m=2 mode reaches its maximum

power and the bar has reached its largest extension. In the second phase [stage (b)] the in-

stability reaches saturation and we observe the formation of spiral arms which are responsible

for ejecting a small amount of matter and for a progressive attenuation of the bar extension.

Furthermore, when the exponentially growing m=1 mode reaches the same power amplitude

of the m=3 mode, the latter, whose growth had slowed down for a while, returns to grow expo-

nentially (see the upper-right panel of Fig. 1.3). In the following phase of the instability [stage

(c)] the m=1, 3 and 4 modes reach comparable powers and this marks the time when the bar

deformation has a sudden decrease. As a result of this crossing among the three modes, only

the m=1 mode will continue to grow, while the m=3 and the m=4 modes are progressively

damped (see the lower-left panel of Fig. 1.3 Finally, the last phase [stage (d)] starts when the

growing m=1 mode reaches power amplitudes comparable with those of the m=4 mode and

the final mode-amplitude crossing takes place. This marks the suppression of the bar defor-

mation and the emergence of an almost axisymmetric configuration (see the upper-left panel

of Fig. 1.3). Note that, since the coordinate times at which the four different stages occur is

different for different unstable models (and for different resolutions), in Fig. 1.2 no labels have

10



1.2 The dynamical bar-mode instability

Figure 1.2: Schematic evolution of the collective modes [Eq. 3.18] of the rest-mass density ⇢.
The dynamics of the instability can be distinguished in four representative stages: (a) onset and
exponential growth of the instability; (b) saturation and development of spiral arms; (c) attenuation
of the bar deformation; (d) suppression and emergence of an almost axisymmetric configuration.

been indicated in the x-axis, but ticks every ms are still present just as an indication for an

approximate duration of the different phases.

We can summarize the general and common features on the dynamical bar-mode instability

in the unmagnetized case we obtained at the very beginning of our work by evolving stellar

models with zero magnetic fields, which confirm the results presented in [10], as follows:

• the bar-deformation is not a persistent phenomenon but is suppressed rather rapidly over

a timescale which is of the order of the dynamical one and strongly depends on the degree

of overcriticality;

• nonlinear mode-coupling effects (especially between the m=1 and the m=2-mode) take

place during the evolution and allow for the growth of other modes besides the fastest

growing m=2-mode: this has the overall impact of depriving the m=2-mode of energy

with a progressive attenuation of the bar deformation after the instability has saturated,

limiting its persistence;

• for slightly overcritical models (e.g., U3, for which � = 0.2596), when the power-

amplitude of the m=1-mode has become comparable with the one in the m=2-mode, the

11



1. NEUTRON STARS AND DYNAMICAL INSTABILITIES

Figure 1.3: Snapshots of the rest-mass density for model U11-1.0e14, which is only weakly
magnetized and whose evolution is the same as for unmagnetized models (cf., Chap. 5). Each panel
represents on the four main phases of the evolution. In the initial phase [stage (a)] an exponential
growth of the m=2 mode occurs and collective phenomena start to be fully visible. In the second
phase [stage (b)] the instability reaches saturation and we observe the formation of spiral arms. In
the third phase [stage (c)] the bar deformation has a sudden decrease. Finally, in the last phase
[stage (d)] we observe the suppression of the bar deformation and the emergence of an almost
axisymmetric configuration.
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1.2 The dynamical bar-mode instability

instability is suppressed, the bar deformation significantly reduced and the star evolves

towards an almost axisymmetric configuration;

• for largely overcritical models (e.g., U13, for which � = 0.2812), the dynamics of the

instability are so violent and the stellar model so far from equilibrium that the strong bar-

deformation is lost even in the absence of mode-coupling effects, through the conversion

of kinetic energy into internal one.

1.2.3 The bar-mode instability in magnetized Newtonian stars

The dynamical bar-mode instability has already been studied by means of numerical simula-

tions of stellar models in the presence of magnetic fields, both initially toroidal and poloidal,

but only in the Newtonian case [20].

The main results of this work is that purely toroidal seed magnetic fields are not able to

affect the dynamical evolution of the stars, regardless of initial field amplitude. On the contrary,

models with initially poloidal magnetic fields evolve differently than unmagnetized cases if the

initial field amplitude is large, showing a growing impact on the bar formation with increasing

field strength.

In cases with a low magnetization, the magnetic pressure being always less than a few

percent of the fluid pressure, the magnetic field has little effects on the growth of the m = 2

mode and so on the bar dynamics. In the presence of intermediate magnetic fields, a bar forms

with a shape and a growth similar to the zero magnetization case, but with a temporal delay

and all the non-axisymmetric modes exhibits slightly smaller amplitudes. Lastly, when strong

magnetic field are present, the magnetic pressure reaching about 80% of the fluid pressure

within a few dynamical times, there is no indication that a structure with the shape of a bar is

going to form at at all.

The overall conclusion is that the effect of magnetic fields on the emergence of the bar-

mode instability in the Newtonian case is not likely to be very significant, except in special

cases where NSs are born very highly magnetized.

Moreover, in all cases where the initial field is purely poloidal, an increase in the overall

magnetic pressure is observed, mainly due to an increase in the azimuthal contribution since

the field lines show an immediate and dramatic stretching in the azimuthal direction. This be-

havior is characteristic of the ⌦-dynamo, which one would expect to be active when a poloidal

magnetic field is present. Another interesting result is that the late time saturation level of

13



1. NEUTRON STARS AND DYNAMICAL INSTABILITIES

the inverse “plasma beta” 1/�

B

, where �

B

is the ratio of the fluid pressure over the magnetic

pressure, is approximately the same for all models with initial purely poloidal magnetic field,

as well as in the toroidal cases. This independence from the initial field strength and orienta-

tion indicates that a common and robust physical mechanism is at play, determining the final

saturation level. Moreover, the final magnitude of the azimuthal component is approximately

the same in all poloidal cases, and the second most significant component - the radial one -

always ends up within an order of magnitude below the azimuthal component. This suggests

that these two components have either achieved a static final configuration common to all the

simulations, or they are feeding off of one another and exchanging energy with the gas through

some equilibrium process. The latter is consistent with expectations of the MRI, which gradu-

ally takes over as the ⌦-dynamo saturates, and which is expected to be active in all those stellar

models.

Keeping all these results in mind, we have decided to perform many 3D numerical simula-

tion of similar stellar models, all with initial purely poloidal magnetic fields (since the effects

of purely toroidal fields has proved to be negligible), in order to study the onset and develop-

ment of the dynamical bar-mode instability, as well as the evolution of the magnetic field itself,

in a full general-relativistic framework.
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Chapter 2

Mathematical setup

A relativistic description of fluid-dynamics is needed when studying many astrophysical sys-

tems like compact stars, flows around compact objects, jets emerging from galactic nuclei and

gamma-ray burst engines. A treatment within a Special Relativistic framework is appropriate

for astrophysical jets, but General Relativity becomes mandatory when the gravitational field is

strong enough, as in the vicinity of a compact object. Besides, in several astrophysical scenar-

ios both magnetic and gravitational fields play an important role in determining the structure

and the evolution of the matter, like in the case of highly magnetized NSs. The equations of

General Relativistic Magnetohydrodynamics (GRMHD) consist of the local conservation laws

for the stress-energy tensor, which must be solved coupled to the Einstein field equations for

the metric tensor, and the Maxwell equations for the evolution of the magnetic field. This sys-

tem of equations is a nonlinear system of PDE, wich must be closed by an algebraic equation,

the Equation of State (EOS), and, as mathematical problem, it is usually posed as an Initial

Value Problem. This can be solved numerically, within the 3+1 ADM formalism [78], where

the matter equations are re-written in a conservative form that allows for a consistent treatment

of discontinuities like the ones that are present at the surfaces of stars.

2.1 3+1 formalism

In the so-called “3+1” formulation, e.g., [79], the spacetime M is assumed to be globally

hyperbolic (i.e., admits a Cauchy surface ⌃) and, as such, it can be foliated by a family of

spacelike hypersurfaces (⌃
t

)

t2R. This means that there exists a smooth and regular scalar field

t on M such that each hypersurface is a level surface of t and these ⌃

t

’s do not intersect each
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other, so that the foliation covers the whole spacetime, i.e., M =

S
t2R⌃

t

. The timelike unit

4-vector, normal to ⌃

t

, is n

µ

:= �↵rt, where the positive function ↵ is called the lapse

function. The induced 3-metric on ⌃

t

is given by �

µ⌫

⌘ g

µ⌫

+ n

µ

n

⌫

and the (spacelike) shift

vector is � ⌘ @

t

�↵n (�µ

n

µ

= 0). Using coordinates adapted to the foliation, the line element

of the spacetime in the 3+1 formalism can be written as

ds

2

= �(↵

2 � �

i

�

i

)dt

2

+ 2�

i

dx

i

dt+ �

ij

dx

i

dx

j

, (2.1)

where ↵, �i and �

ij

are functions of the coordinates t, xi. A key observer associated with

the 3+1 splitting is the one with four velocity n perpendicular to the hypersurfaces of constant

t at each event in the spacetime, i.e., the so-called Eulerian observer, which reduces to the

locally non-rotating or zero angular momentum (ZAMO) observer in the case of axisymmetric

and stationary spacetimes. The contravariant and covariant components of n are given by

n

µ

= (1/↵,��

i

/↵) and n

µ

= (�↵, 0, 0, 0), respectively. In spacetimes containing matter, an

additional natural observer is the one that follows the fluid during its motion, also called the

comoving observer, with four-velocity u. With the standard definition, the three-velocity of the

fluid as measured by the Eulerian observer can be expressed as

v

i

=

u

i

↵u

t

+

�

i

↵

, (2.2)

while v
i

= u

i

/W , where W ⌘ 1/

p
1� v

2

= ↵u

t is the Lorentz factor (v2 = �

ij

v

i

v

j). At this

point, the 3+1 formalism allows to consider the four dimensional PDEs as “time”-evolution

equations on the foliation coordinate t for variables defined on the three-dimensional spacelike

foliation ⌃.

2.2 Equations for the evolution of fields and matter

Einstein equations

The original ADM formulation casts the Einstein equations into a first-order (in time) quasi-

linear [80] system of equations. The dependent variables are the three-metric �

ij

and the ex-
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trinsic curvature K

ij

, with first-order evolution equations given by

@

t

�

ij

= �2↵K

ij

+r
i

�

j

+r
j

�

i

, (2.3)

@

t

K

ij

= �r
i

r
j

↵+ ↵

"
R

ij

+K K

ij

� 2K

im

K

m

j

�8⇡

✓
S

ij

� 1

2

�

ij

S

◆
� 4⇡⇢ADM�ij

#

+�

mr
m

K

ij

+K

im

r
j

�

m

+K

mj

r
i

�

m

.

(2.4)

Here, ↵ is the lapse function, �
i

is the shift vector, r
i

denotes the covariant derivative with

respect to the three-metric �

ij

, R
ij

is the Ricci curvature of the three-metric, K ⌘ �

ij

K

ij

is

the trace of the extrinsic curvature, S
ij

is the projection of the stress-energy tensor onto the

space-like hypersurfaces and S ⌘ �

ij

S

ij

(for a more detailed discussion, see [81]). In addition

to the evolution equations, the Einstein equations also provide four constraint equations to be

satisfied on each space-like hypersurface. These are the Hamiltonian constraint equation

H =

(3)

R+K

2 �K

ij

K

ij � 16⇡⇢ADM = 0 , (2.5)

and the momentum constraint equations

r
j

K

ij � �

ijr
j

K � 8⇡j

i

= 0 . (2.6)

In equations (2.3)–(2.6), ⇢ADM and j

i are the energy density and the momentum density as

measured by an observer moving orthogonally to the space-like hypersurfaces.

In particular, we use a conformal traceless reformulation of the above system of evolution

equations, as first suggested by Nakamura, Oohara and Kojima [82] (NOK formulation), in

which the evolved variables are the conformal factor (�), the trace of the extrinsic curvature

(K), the conformal 3-metric (�̃

ij

), the conformal traceless extrinsic curvature (

˜

A

ij

) and the

conformal connection functions (

˜

�

i

), defined as

� =

1

4

log(

3
p
�) , (2.7)

K = �

ij

K

ij

, (2.8)

�̃

ij

= e

�4�

�

ij

, (2.9)

˜

A

ij

= e

�4�

(K

ij

� �

ij

K) , (2.10)

˜

�

i

= �̃

ij

,j

. (2.11)
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The code used for evolving these quantities is the one developed within the Cactus com-

putational toolkit [83] and is designed to handle arbitrary shift and lapse conditions. In partic-

ular, we have used hyperbolic K-driver slicing conditions of the form

@

t

↵ = �f(↵) ↵

2

(K �K

0

), (2.12)

with f(↵) > 0 and K

0

⌘ K(t = 0). This is a generalization of many well known slicing

conditions. For example, setting f = 1 we recover the “harmonic” slicing condition, while, by

setting f = q/↵, with q an integer, we recover the generalized “1+log” slicing condition [84].

In particular, all the simulations discussed in this Thesis are done using condition (2.12) with

f = 2/↵. This choice has been made mostly because of its computational efficiency, but we

are aware that “gauge pathologies” could develop with the “1+log” slicings [85, 86].

As for the spatial gauge, we use one of the “Gamma-driver” shift conditions proposed

in [87], that essentially acts so as to drive the ˜

�

i to be constant. In this respect, the “Gamma-

driver” shift conditions are similar to the “Gamma-freezing” condition @

t

˜

�

k

= 0, which, in

turn, is closely related to the well-known minimal distortion shift condition [88].

In particular, all the results reported here have been obtained using the hyperbolic Gamma-

driver condition,

@

2

t

�

i

= F @

t

˜

�

i � ⌘ @

t

�

i

, (2.13)

where F and ⌘ are, in general, positive functions of space and time. For the hyperbolic Gamma-

driver conditions it is crucial to add a dissipation term with coefficient ⌘ to avoid strong oscil-

lations in the shift. Experience has shown that by tuning the value of this dissipation coefficient

it is possible to almost freeze the evolution of the system at late times. We typically choose

F =

3

4

↵ and ⌘ = 2 and do not vary them in time.

Maxwell equations

The electromagnetic field is completely described by the Faraday electromagnetic tensor field

F

µ⌫ obeying Maxwell equations

r
µ

⇤
F

µ⌫

= 0, (2.14)

r
µ

F

µ⌫

= 4⇡J, (2.15)

where r is the covariant derivative with respect to the four-metric g, J is the charge current

four-vector and ⇤
F is the dual of the electromagnetic tensor defined as

⇤
F

µ⌫

=

1

2

⌘

µ⌫��

F

��

, (2.16)
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⌘

µ⌫�� being the Levi-Civita pseudo-tensor. A generic observer with four-velocity U will mea-

sure a magnetic field B and an electric field E given by

E

↵ ⌘ F

↵�

U

�

, (2.17)

B

↵ ⌘ ⇤
F

↵�

U

�

, (2.18)

and the charge current four-vector J can be in general expressed as

Jµ = qu

µ

+ �F

µ⌫

u

⌫

, (2.19)

where q is the proper charge density and � is the electric conductivity.

Hereafter we will assume our fluid to be a perfect conductor (� ! 1, ideal MHD limit)

and so, in order to keep the current finite, that Fµ⌫

u

⌫

= 0, i.e. the electromagnetic tensor and

its dual can be written exclusively in terms of the magnetic field b measured in the comoving

frame in the form

F

µ⌫

= ✏

µ⌫↵�

u

↵

b

�

, (2.20)
⇤
F

µ⌫

= b

µ

u

⌫

� b

⌫

u

µ

, (2.21)

with the Maxwell equations taking the simple form

r
⌫

⇤
F

µ⌫

=

1p
�g

@

⌫

�p
�g(b

µ

b

⌫ � b

⌫

b

µ

)

�
= 0. (2.22)

In order to express these equations in terms of quantities measured by an Eulerian observer,

we need to compute the relation between the magnetic field measured by the comoving and by

the Eulerian observers, respectively b and B. To do that, we introduce the projection operator

P

µ⌫

⌘ g

µ⌫

+ u

µ

u

⌫

orthogonal to u. If we apply this operator to the definition of the magnetic

field B measured by an Eulerian observer, we can easily derive the following relations

b

0

=

WB

i

v

i

↵

, b

i

=

B

i

+ ↵b

0

u

i

W

, b

2 ⌘ b

µ

b

⌫

=

B

2

+ ↵

2

(b

0

)

2

W

2

, (2.23)

where B

2 ⌘ B

i

B

i

. The time component of equations 2.22 provides the divergence-free con-

dition

@

i

Bi

= 0, (2.24)

where Bi ⌘ p
�B

i and � is the determinant of �
ij

. The spatial components of equations 2.22,

on the other hand, yield the induction equations for the evolution of the magnetic field

@

t

Bi

= @

j

(ṽ

iBj � ṽ

jBi

), (2.25)

where ṽ

i ⌘ ↵v

i � �

i.
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Conservation equations

The stellar models are here treated in terms of a perfect fluid in hydrodynamical equilibrium,

with a super-imposed purely poloidal magnetic field.

The fluid part is thus described by a stress-energy tensor in the form

T

µ⌫

fluid = ⇢hu

µ

u

⌫

+ pg

µ⌫

, (2.26)

where h = 1+✏+p/⇢ is the specific enthalpy, ✏ the specific internal energy and ⇢ the rest-mass

density, so that e = ⇢(1 + ✏) is the energy density in the rest-frame of the fluid.

The contribution from the magnetic field is described in terms of a stress-energy tensor in

the form

T

µ⌫

EM = F

µ�

F

⌫

�

� 1

4

g

µ⌫

F

↵�

F

↵�

=

=

✓
u

µ

u

⌫

+

1

2

g

µ⌫

◆
b

2 � b

µ

b

⌫

, (2.27)

The equations of relativistic magneto-hydrodynamics are then given by the conservation laws

for the total energy-momentum

T

µ⌫

= (⇢h+ b

2

)u

µ

u

⌫

+

✓
p+

b

2

2

◆
g

µ⌫ � b

µ

b

⌫ (2.28)

and for the baryon number in the form

r
µ

T

µ⌫

= 0 ,

r
µ

(⇢u

µ

) = 0 ,

(2.29)

once supplemented with an EOS of type p = p(⇢, ✏). While the code has been written to use

any EOS, all the simulations presented here have been performed using either an isentropic

“polytropic” EOS

p = K⇢

�

, (2.30)

where K is the polytropic constant and � the adiabatic exponent.

An important feature of the Whisky code is the implementation of a conservative for-

mulation of the hydrodynamics equations in which the set of equations (2.29) is written in a

hyperbolic, first-order and flux-conservative form of the type

@

t

q+ @

i

f (i)(q) = s(q) , (2.31)
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where f (i)(q) and s(q) are the flux-vectors and source terms, respectively (see ref. [89] for

an explicit form of the equations). Note that the right-hand side (the source terms) depends

only on the metric, and its first derivatives, and on the stress-energy tensor. In order to write

system (2.29) in the form of system (2.31), the primitive hydrodynamical variables i.e. the

rest-mass density ⇢ and the pressure p (measured in the rest-frame of the fluid), the fluid three-

velocity v

i and the magnetic field B

i (measured by a local zero–angular-momentum observer),

the specific internal energy ✏ and the Lorentz factor W = ↵u

0) are mapped to the so called

conserved variables q ⌘ (D,S

i

, ⌧,Bk

)

T via the relations

D ⌘ p
�W⇢ ,

S

i ⌘ p
�(⇢h+ b

2

)W

2

v

i � ↵

p
�b

0

b

i

, (2.32)

⌧ ⌘ p
�


(⇢h+ b

2

)W

2 �
✓
p+

b

2

2

◆
� ↵

2

(b

0

)

2

�
�D ,

Bi ⌘ p
�B

i

.

As previously noted, in the case of the polytropic EOS (2.30), one of the evolution equations

(namely the one for ⌧ ) does not need to be solved as the internal energy density can be readily

computed by inverting the relation p = (� � 1) ⇢ ✏. Additional details of the formulation we

use for the MHD equations can be found in [89].
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Chapter 3

Numerical setup and methodology

3.1 Numerical code and settings

The code and the evolution method are the same as the ones used in Baiotti et al. [90, 91] and

therein described. For convenience we report here the main properties and characteristics of

the employed simulation method. The simulations have been carried out using the general-

relativistic ideal-MHD (GRMHD) code WhiskyMHD [24, 92, 93]. The code provides a 3D

numerical solution of the full set of the GRMHD equations in flux-conservative form on a

dynamical background in Cartesian coordinates. It is based on the same high-resolution shock-

capturing (HRSC) techniques on domains with adaptive mesh refinements (AMR) [94, 95]) as

discussed in [91] within the Cactus framework [96, 97]. The reconstruction method adopted

is the one discussed in the piecewise parabolic method (PPM) [98], while the Harten-Lax-

van Leer-Einfeldt (HLLE) approximate Riemann solver [99] has been employed in order to

compute the fluxes. The divergence of the magnetic field is enforced to stay within machine

precision by employing the flux-CD approach as implemented in [93], but with the difference

that we adopt as evolution variable the vector potential instead of the magnetic field. This

method ensures the divergence-free character of the magnetic field since the field is computed

as the curl of the evolved vector potential using the same finite-differencing operators as the

ones for computing the divergence of the magnetic field. Because of the gauge invariance of

Maxwell equations, a choice needs to be made and we have opted for the simplest one, namely,

the algebraic Maxwell gauge. This choice can introduce some spurious oscillations close to

the AMR boundaries in highly dynamical simulations, but this has not been the case for the

simulations reported here. On the other hand, it has allowed us to keep the divergence of the
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3. NUMERICAL SETUP AND METHODOLOGY

magnetic field essentially nearly at machine precision. A more advanced prescription has been

also introduced recently in Ref. [100]; this approach requires a certain amount of tuning for

optimal performance and will be considered in future works. Additional information on the

code can also be found in Refs. [92, 93].

Furthermore, to remove spurious post-shock oscillations in the magnetic field, a fifth-order

Kreiss-Oliger type of dissipation [101] to the vector potential evolution equation with a dis-

sipation parameter of 0.1 has been added. Finally, the evolution of the gravitational fields is

obtained through the CCATIE code, which provides the solution of the conformal traceless

formulation of the Einstein equations [102, 103], which was first introduced by Nakamura,

Oohara and Kojima [82].The time integration of the evolution equations is achieved through a

third-order accurate Runge-Kutta scheme.

Essentially all of the simulations presented in this Thesis use a 3D Cartesian grid with

four refinement levels and with outer boundaries located at a distance ⇠ 150 km from the

center of the grid, which is approximately five times the stellar radius1. The finest resolution is

�x ' 0.375M� ' 550 m (between 40 and 60 points across the stellar radius, depending on

the model) for all the simulations we performed with the main aim of studying the dynamics

of the bar-mode instability (this resolution is high enough for this purpose, cf., [10] where

�x ' 0.500M� ' 740 m). The further runs we used to search for the magnetorotational

instability have instead a finer grid such that �x ' 0.256M� ' 380 m (i.e., 60 - 90 points

across the stellar radius). Unless stated differently, all the simulations discussed hereafter have

been performed imposing a bitant symmetry, i.e., a reflection symmetry across the z = 0 plane.

3.2 Initial data

The initial data of our simulations are computed as stationary equilibrium solutions of ax-

isymmetric and rapidly rotating relativistic stars in polar coordinates and without magnetic

fields [104]. In generating these equilibrium models we adopt a “polytropic” EOS [105],

p = K⇢

�, with K = 100 and � = 2, and assume the line element for an axisymmetric

and stationary relativistic spacetime to have the form

ds

2

= �e

µ+⌫

dt

2

+ e

µ�⌫

r

2

sin

2

✓(d�� !dt)

2

+e

2⇠

(dr

2

+ r

2

d✓

2

) ,

(3.1)

1Our outer boundaries are too close for an accurate extraction of gravitational radiation, which we expect to be
of the order of 10�5 M� [10]. This is also the precision with which we conserve the energy in the system.
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3.2 Initial data

Model ⇢

c

r

p

/r

e

A

b

(10

�4
)

U13 0.599 0.200 1.85⇥ 10

6

U11 1.092 0.250 1.46⇥ 10

6

U3 1.672 0.294 8.74⇥ 10

5

S1 1.860 0.307 6.94⇥ 10

5

S6 2.261 0.336 4.50⇥ 10

5

S7 2.754 0.370 2.01⇥ 10

5

S8 3.815 0.443 5.96⇥ 10

4

Table 3.1: Parameters we used to generate the initial models for our simulations. In the first
column we report the model name, while in the next three we report the central rest-mass density
⇢c, the ratio between the polar and the equatorial coordinate radii rp/re and the parameter Ab of
Eq. (3.10) that would generate a magnetic field whose initial maximum value in the (x, y) plane is
1.0⇥10

15 G, which represents an intermediate value for the present work. Unless explicitly stated,
all these quantities are expressed in geometrized units in which G = c = M� = 1.

where µ, ⌫, ! and ⇠ are space-dependent metric functions. To reach the large angular momen-

tum needed to trigger the dynamical bar-mode instability, a considerable amount of differential

rotation needs to be introduced and we do so following the traditional constant specific angular

momentum law (“j-constant”) of differential rotation, in which the angular velocity distribution

takes the form [106, 107]

⌦

c

� ⌦ =

1

ˆ

A

2

R

2

e


(⌦� !)r

2

sin

2

✓e

�2⌫

1� (⌦� !)

2

r

2

sin

2

✓e

�2⌫

�
, (3.2)

where R

e

is the coordinate equatorial stellar radius and the coefficient ˆ

A is a measure of the

degree of differential rotation, which we set to ˆ

A = 1 in analogy with other works in the

literature. Once imported onto the Cartesian grid and throughout the evolution, we compute

the angular velocity ⌦ (and the period P ) on the (x, y) plane as

⌦ :=

u

�

u

0

=

u

y

cos�� u

x

sin�

u

0

p
x

2

+ y

2

, P =

2⇡

⌦

. (3.3)

Other fundamental quantities of the system, which allow us to describe the main properties

of the stellar models we used as initial data for our simulations, are the baryon mass M
0

, the

gravitational mass M , the angular momentum J , the rotational kinetic energy T , the gravita-
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3. NUMERICAL SETUP AND METHODOLOGY

Mod. R

e

M M/R

e

J/M

2

⌦

c

⌦

e

T W � �

mag

[km] [M�] [rad/s] [rad/s] (10

�2
) (10

�2
) (10

�6
)

U13 35.9 1.462 0.0601 1.753 3647 1607 2.183 7.764 0.2812 5.3

U11 34.4 1.460 0.0627 1.661 3997 1747 2.284 8.327 0.2743 4.7

U3 32.4 1.456 0.0664 1.538 4434 1916 2.352 9.061 0.2596 3.5

S1 31.6 1.460 0.0682 1.497 4593 1976 2.384 9.388 0.2540 3.0

S6 30.0 1.449 0.0713 1.412 4901 2093 2.369 9.859 0.2403 2.3

S7 28.1 1.447 0.0760 1.309 5284 2234 2.360 10.56 0.2234 1.0

S8 26.7 1.439 0.0862 1.121 5995 2482 2.255 11.96 0.1886 0.4

Table 3.2: Main properties of the stellar models evolved in the simulations. In the first column we
report the model name, while in the remaining columns we report, from left to right, the proper
equatorial radius Re, the gravitational mass M , the compactness M/Re, the ratio of the total
angular momentum J to M

2 (angular momentum parameter), the angular velocities at the axis
⌦c = ⌦(r = 0) and at the equator ⌦e = ⌦(r = Re), the rotational kinetic energy T and the
gravitational binding energy W , their ratio � (instability parameter) and finally �

mag

= Emag/(T+

|W |) (magnetization parameter), corresponding to models with B

z
max|t,z=0

= 1.0⇥10

15 G. Unless
explicitly stated, all these quantities are expressed in geometrized units in which G = c = M� = 1.

tional binding energy W and the instability parameter �, calculated as in [108]

M

0

:=

Z
d

3

x

p
�D , (3.4)

M :=

Z
d

3

x↵

p
�

⇥
�2(T

fl

)

0

0

+ (T

fl

)

µ

µ

⇤
, (3.5)

J :=

Z
d

3

x↵

p
�(T

fl

)

0

�

, (3.6)

T :=

1

2

Z
d

3

x↵

p
�⌦(T

fl

)

0

�

, (3.7)

W := T + E

int

+M

0

�M , (3.8)

� := T/|W | , (3.9)

where D is the conserved rest-mass density, � is the determinant of the three-metric and (T

fl

)

µ

⌫

corresponds to the fluid contributions to the stress-energy tensor. We note that we have defined

the gravitational mass and angular momentum taking into account only the fluid part of the

energy-momentum tensor and thus neglecting the electromagnetic contributions. This is strictly

speaking incorrect, but tolerable given that the relative electromagnetic contributions to the

mass and angular momentum are . 10

�5. Besides, the definitions above for J , T , W and � are
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3.2 Initial data

meaningful only in the case of stationary axisymmetric configurations and should therefore be

treated with care once the rotational symmetry is lost. All the equilibrium models are members

of a sequence having a constant rest-mass M
0

' 1.5M� and are stable to gravitational collapse

on the basis of the results of [109].

An initial poloidal magnetic field is added as a perturbation to the initial equilibrium models

by introducing a purely toroidal vector potential A
�

given by

A

�

= A

b

(max(p� p

cut

, 0))

2

, (3.10)

where p

cut

is 4 % of the maximum pressure, while A

b

is chosen in a way to have the cho-

sen value for the maximum of the initial magnetic field B. The Hamiltonian and momentum

constraint equations are not solved after superimposing the magnetic field, but we have verified

that for the magnetic-field strength considered here, this perturbation introduces only negligible

additional violations of the constraints.

In Tab. 3.1 we report the three parameter we used to generate each initial model, namely

the central rest-mass density ⇢

c

and the axis ratio r

p

/r

e

for the matter configuration, where r

p

and r

e

are the polar and equatorial coordinate radii respectively, and the coefficient A
b

which

corresponds to an initial poloidal magnetic field strength equal to 10

15 G.

The main properties of all the stellar models we have used as initial data are reported in

Table 3.2, where we have introduced part of our notation to distinguish the different models.

In particular models indicated as U* and as S* refer to NSs that are unstable and stable to

the purely dynamical bar-mode instability, respectively. In the left panel of Fig. 3.1, all the

initial configurations are reported in a diagram with the instability parameter � versus the

compactness M/R. This result was determined in Refs. [10, 11] and confirmed in the initial

phase of this work, performing new simulations of these models with zero magnetization and

with better resolution than the one employed in the cited papers. The right panel of Fig. 3.1 and

the two panels of Fig. 3.2 show the initial profiles of the rest-mass density ⇢, of the rotational

angular velocity ⌦, and of the z-component of the magnetic field for all the models we have

evolved. The profiles for the models that are unstable in the unmagnetized case are drawn with

blue solid lines, while we use red dot-dashed lines for stable models. Note that the position

of the maximum of the rest-mass density coincides with the center of the star only for models

with low �; for those with a larger �, the maximum of the rest-mass density resides, instead,

on a circle on the equatorial plane.
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3. NUMERICAL SETUP AND METHODOLOGY

Figure 3.1: Left panel: Position on the (M/R, �) plane of the considered equilibrium stellar
models, belonging to a sequence of constant rest-mass M

0

= 1.5 M�. Blue and red circles
indicate the models which are stable (S8, S7, S6, S1) or unstable (U3, U11, U13) against a bar
deformation when no initial magnetic field is present, respectively. The horizontal red dashed line
marks the stability threshold. Right panel: Initial profiles of the rest-mass density ⇢ for all the
above-mentioned initial models. The profiles of the stable models are here drawn with blue solid
lines, while those for the unstable models with red dot-dashed lines.

Figure 3.2: Initial profiles of the angular velocity ⌦ (left panel) and the z-component of the mag-
netic field (right panel) for the same models as in Fig. 3.1.
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3.2 Initial data

Figure 3.3: Representation of the initial models in a (�,�

mag

) plane. Blue and red symbols mark
models that are respectively bar-mode stable and bar-mode unstable at zero magnetizations, while
the vertical red dashed line marks the stability threshold for zero magnetic fields.

The strength of the initial magnetic field can be characterized by the value of the magne-

tization parameter �

mag

which, in analogy with the instability parameter � (cf., Eq. (3.9), we

define as

�

mag

:= E

mag

/(T + |W |), (3.11)

where the total magnetic energy is computed as

E

mag

:=

Z
d

3

x↵

2

p
� T

00

em . (3.12)

This magnetization parameter should not be confused with what is usually defined as the �

parameter of a plasma, i.e., the ratio of the fluid pressure to the magnetic pressure.

All the magnetized initial configurations we evolved for our main study about the dynamics

of bar-stable and bar-unstable models (cf., Chap. 4 and 5) are reported in Fig. 3.31, according

to the values of � and �

mag

. Here we have a clear representation of the parameter space we

intend to explore in the present Thesis by means of numerical simulations. The models that are

known to be stable against the bar-mode instability in the unmagnetized case are here drawn
1Further weakly magnetized models (B . 1014 G, i.e., �mag . 5⇥ 10�7) will be presented in Chap. 6, when

we focus our attention on the evolution of the magnetic field.

29



3. NUMERICAL SETUP AND METHODOLOGY

in blue (S1, S6, S7 and S8), while the unstable ones are drawn in red (U3, U11 and U13).

The different symbols used in this figure will be further discussed in Sect. 5.1 when illustrating

the results of our work about the general effects of the magnetic field on the dynamics of the

bar-mode instability; it is sufficient to say for now that squares and triangles refer to unstable

models with unmodified and modified growth times, respectively. Hereafter we will also extend

our notation and denote a particular magnetized model by marking it by the maximum initial

value of the z-component of the magnetic field on the (x, y) plane, i.e., Bz

max|t,z=0

, expressed

in Gauss. As an example, the bar-mode unstable model with initial Bz

max|t,z=0

= 1.0⇥ 10

15 G

will be indicated as U11-1.0e15.

3.3 Methodology of the analysis and diagnostic

A number of different quantities have been computed during the evolution, in order to monitor

the dynamics of the instability and to check that the numerical simulations were providing

reasonable results.

A first important set of diagnostic quantities focuses on the detection of a bar deformation,

which can be quantified in terms of the distortion parameters [110]

⌘

+

:=

I

xx � I

yy

I

xx

+ I

yy

, (3.13)

⌘⇥ :=

2 I

xy

I

xx

+ I

yy

, (3.14)

⌘ :=

q
⌘

2

+

+ ⌘

2

⇥ , (3.15)

where the quadrupole moment of the matter distribution can be computed in terms of the con-

served density D as in [10, 111]

I

jk

=

Z
d

3

x

p
�D x

j

x

k

. (3.16)

Note that all quantities in Eqs. (3.13)–(3.15) are expressed in terms of the coordinate time t

and do not represent therefore invariant measurements at spatial infinity. However, for the

simulations reported here, the length-scale of variation of the lapse function at any given time

is always larger than twice the stellar radius at that time, ensuring that the events on the same

time-slice are also close in proper time.

In particular, ⌘
+

can be used to quantify both the growth time ⌧bar of the instability and the

oscillation frequency fbar of the unstable bar once the instability is fully developed. In practice,
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3.3 Methodology of the analysis and diagnostic

we can obtain a measurement of ⌧bar and fbar by performing a nonlinear least-square fit of the

computed distortion ⌘

+

(t) with the trial function

⌘

+

(t) = ⌘

0

e

t/⌧B
cos(2⇡ fB t+ �

0

) . (3.17)

In addition, as a tool to describe and understand the nonlinear properties of the development

and saturation of the instability, we can decompose the rest-mass density into its Fourier modes

so that the “power” of the m-th mode is defined as

P

m

⌘
Z
d

3

x ⇢ e

im�

. (3.18)

It is worth stressing here that, despite their denomination, the Fourier modes (3.18) do not

represent proper eigenmodes of oscillation of the star. While, in fact, the latter are well defined

only within a perturbative regime, the former simply represent a tool to quantify, within a

fully nonlinear regime, what are the main components of the rest-mass distribution. Stated

differently, we do not expect that quasi-normal modes of oscillations are present but in the

initial and final stages of the instability, for which a perturbative description is adequate.

In order to better analyze the effects of magnetic fields on the dynamics of the bar-mode

instability, we have introduced additional diagnostic variables to quantify and describe the evo-

lution of the magnetic field itself. For axisymmetric configurations one usually decomposes the

magnetic field in toroidal and poloidal components, studying their dynamics separately. When

axisymmetry is lost, however, this nice decomposition is no longer available. Nevertheless,

there exists a decomposition that can be defined even if axisymmetry is not preserved, which is

reduced to the usual poloidal-toroidal one in the axisymmetric stationary case. The main idea

of this decomposition is to separate the magnetic field in a component in the direction of the

fluid motion and hence parallel to the fluid three-velocity and in a component that is orthogonal

to it. We therefore split the magnetic field measured by an Eulerian observer as

B

i

= Bk
v

i

p
�

ij

v

i

v

j

+B

i

? , (3.19)

where we define the “perpendicular” part of the magnetic field from the condition B

i

?vi = 0,

while the “parallel” part is a scalar and is trivially defined as Bk := B

j

v

j

/(v

i

v

i

)

1/2. Initially,

when the flow is essentially azimuthal, Bi

? corresponds to the poloidal component of the mag-

netic field, while Bkv
i

/(v

j

v

j

)

1/2 to the toroidal component. Hereafter we will refer loosely

to these as the “poloidal” and “toroidal” components, respectively. Within this decomposition,
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we can then define the electromagnetic energy contributions associated to the “toroidal” and

“poloidal” magnetic-field components as

E

tor

mag

:=

Z
d

3

x

p
�

1

2

BkBk , (3.20)

E

pol

mag

:=

Z
d

3

x

p
�

1

2

�

ij

B

i

?B
j

?(1 + �

rs

v

r

v

s

) . (3.21)

Note that the total electromagnetic energy satisfies the condition E

mag

= E

tor

mag

+E

pol

mag

, since

the electric field E

i provides a contribution to the energy, Ei

E

i

= (v

i

v

i

)(B

i

B

i

� B

2

k), that is

already included in the definitions (3.20) and (3.21).

Unless stated differently, we generally impose “bitant symmetry”, i.e., a reflection sym-

metry with respect to the (x, y) plane. As a result, during the evolution the compact star is

constrained to be centered at the origin of the coordinate system in the z direction, while it is

allowed to move in the (x, y) plane. In order to monitor the relative motion of the rest-mass

density distribution with respect to the coordinate system, we compute the first momentum of

the rest-mass density distribution

X

i

CM

=

1

f
M

Z
d

3

x ⇢ x

i

, (3.22)

where f
M ⌘

R
d

3

x ⇢. These quantities are reminiscent of the Newtonian definition of the center

of mass of the star but, because they are not gauge-invariant quantities, they are not expected to

be constant during the evolution. However, since in a Newtonian framework a time-variation

of one of the X

i

CM

would signal a nonzero momentum in that direction, we monitor these

quantities as a measure of the overall accuracy of the simulations. Of course, given the above-

mentioned imposed symmetry, z
CM

is supposed to be zero during the whole evolution.

For each of the simulations we report on this Thesis, we have performed a diagnostic

analysis during the evolution, monitoring many of the quantities which we have defined in

this Section. This is a fundamental step, which allows us to check for the presence of unex-

pected features or errors due to computational issues, or to wrong choices in the settings. In

Fig. 3.4 an example of diagnostic analysis for one of the evolved magnetized models, namely

U11-1.0e14, is shown. The three upper panels show the time evolution of the distortion

parameters ⌘
+

and ⌘ and of the instability parameter �. The red dot-dashed vertical lines mark

the interval we selected for computing the growth-time of the instability ⌧

bar

and the frequency

of the bar deformation f

bar

by means of a nonlinear least-square fit, as shown in the two lower

panels on the right. The results of this computations are reported in Tab. 5.1. In the other six
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3.3 Methodology of the analysis and diagnostic

lower panels we report the total magnetic energy, the total rest-mass normalized to its initial

value, the divergence of the magnetic field, the Hamiltonian constraint and the two components

of the first momentum of the rest-mass density distribution on the (x, y) plane.

In the Appendix, we will show many other figures similar to this one, showing the dynamics

of almost all U11 magnetized models we evolved for the present work, both bar-stable and bar-

unstable.
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Figure 3.4: Example of diagnostic analysis for one of the evolved magnetized models, namely
U11-1.0e14. The three upper panels show the time evolution of the distortion parameters ⌘

+

and ⌘ and of the instability parameter �. The red dot-dashed vertical lines mark the interval we
selected for the fits of the growth-time of the instability ⌧

bar

and of the frequency of the bar defor-
mation f

bar

. In the other six lower panels we report the total magnetic energy, the total rest-mass
normalized to its initial value, the divergence of the magnetic field, the Hamiltonian constraint and
the two components of the first momentum of the rest-mass density distribution on the (x, y) plane.
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Chapter 4

Evolution of bar-mode stable
magnetized neutron star models

In this Chapter we will focus on illustrating how magnetic fields affect the dynamics of bar-

mode stable models. Although these show a comparatively simpler evolution than unstable

ones, they provide a number of interesting considerations, as we will see.

We recall that using the same EOS adopted here, Ref. [10] has determined the threshold

for the development of a dynamical bar-mode instability to be �

c

' 0.255 (cf., Fig. 3.3).

We have therefore considered a number of stable models, namely S1, S6, S7 and S8, that

are increasingly more distant from the threshold. We have then added to each model an ini-

tial poloidal magnetic field, all confined inside the star, with two different strengths, namely,

B

z

max|t,z=0

= 1.0 ⇥ 10

15 G and B

z

max|t,z=0

= 1.0 ⇥ 10

16 G, and performed simulations to

record the different impact of the magnetic fields on the dynamics.

4.1 General features of the dynamics of stable magnetized models

The above-mentioned models have been proved to be stable in the absence of magnetic fields

(cf., [10]), so we expect them to remain stable also with the additional magnetic tension.

However, while models with B

z

max|t,z=0

= 1.0 ⇥ 10

15 G do not show in their dynamics any

significant deviation from a purely hydrodynamical evolution, models with B

z

max|t,z=0

= 1.0⇥
10

16 G do quite the opposite. This is shown in Fig. 4.1, which reports the evolution of the

rotation parameter � for all these stable models. Solid lines of different color refer to the

different models but all having an initial magnetic field B

z

max|t,z=0

= 1.0 ⇥ 10

15 G. On the
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4. EVOLUTION OF BAR-MODE STABLE MAGNETIZED NEUTRON STAR
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Figure 4.1: Evolution of the rotation parameter � := T/|W | for models S1, S6, S7 and S8 which
are stable against the bar-mode deformation in the unmagnetized case. The solid lines refer to
models with B

z
max|t,z=0

= 10

15 G, while the dash-dot lines to models with B

z
max|t,z=0

= 10

16 G.

other hand, dot-dashed lines of different color refer to models with B

z

max|t,z=0

= 1.0⇥ 10

16G.

Note that for comparatively “low” magnetic fields, the rotation parameter does not show any

significant variation from the initial value over a timescale of around 25 ms, with changes that

are . 0.4% for model S1 and . 1.0% for model S8. On the other hand, for magnetic fields

that are one order of magnitude larger, the rotation parameter changes significantly, decaying

almost linearly with time. This is obviously due to the combined action of the differential

rotation and of the magnetic winding, which increases the magnetic tension and drives the

NS towards a configuration that is uniformly rotating. We note that the higher is the initial

value of �, the steeper is its decrease during the evolution. A more detailed explanation of the

mechanisms behind these changes as well as a more accurate description of the dynamics of

the magnetic fields during the evolution will we given in Chap.6. In the next section, we will

describe in detail the dynamics of model S1, which is the closest stable model to the threshold

�

c

and then seems to be the most sensitive to the effects of magnetic fields among the stable

models we evolved.
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4.2 Detailed dynamics of S1 magnetized models

4.2 Detailed dynamics of S1 magnetized models

What is discussed in general for all the stable models, can be better analyzed looking in detail

at the structural changes for model S1 with the two different values of the initial magnetic

field. In Fig. 4.2 we show two snapshots of the rest-mass density on the (x, y) plane for model

S1-1.0e15 at the beginning and at the end of the evolution (i.e., 25 ms). Clearly, no major

changes in the initial configuration can be appreciated for an initial poloidal magnetic field

such as B

z

max|t,z=0

= 10

15 G (and, accordingly, for weaker fields). The same conclusion is

confirmed if we have a look at Fig. 4.4, showing a spacetime diagrams of the evolution of the

rest-mass density (left panel) and of the angular velocity (right panel) along the x-axis for the

same model, and Fig. 4.6, directly comparing the initial and final profiles of the same two quan-

tities: the angular velocity and rest-mass density in the stellar core hardly change. The only

difference we observe is an increase of about 20% in the rest-mass density in the central region,

with the star maintaining a toroidal, albeit only slightly, shape. The envelope surrounding the

star in Fig. 4.4 represents and extended, very low-density outer mantle containing only a very

small amount of matter, since in that region ⇢ . 10

�6

⇢

c

. This is the reason why such a feature

is not visible at all in Fig. 4.2, where the lower limit of the color code has been set at about

⇢ ⇠ 10

�4

⇢

c

, to provide a clear and not misleading qualitative picture of the global evolution.

This is to be contrasted with Fig. 4.3 for model S1-1.0e16, where snapshots of the rest-

mass density are shown at regular intervals of 5 milliseconds during the whole evolution (the

initial configuration is of course identical to the one of model S1-1.0e15 in Fig. 4.2). Here,

after 10 ms of evolution, quite a significant change in the stellar structure is already evident:

the rest-mass density in the inner regions of the star has increased while it has correspondingly

decreased in the outer ones, which have expanded. At later times, the central rest-mass density

keeps growing, with the outer envelope expanding beyond the boundaries of the finest grid.

A more detailed description of the structural changes due to the presence of a very strong

magnetic field can be achieved by looking at the spacetime diagrams of Fig. 4.5 and the profiles

of Fig. 4.7. Regarding the evolution of the rest-mass density, we have a clear confirmation of

what has just been described talking about Fig. 4.3 and we can easily quantify the increase in

its central value: after 10 ms of evolution the central density is already twice the initial value

while at the end of the evolution, meaning after 25 ms, its value is about 2.4 times the initial

one. The angular velocity profile, instead, shows a more varied evolution, with changes mainly

concerning the central region (the one where the increase of the rest-mass density occurs). In
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Figure 4.2: Snapshots of the rest-mass density on the (x, y) plane for model S1-1.0e15 at the
beginning and at the end of the evolution, namely t = 0 and 25 ms. The color code is defined in
terms of log

10

(⇢), where ⇢ is in cgs units (g cm�3). Additionally, isodensity contours are shown
for ⇢ = 10

11, 1012, 5⇥ 10

12, 1013, 5⇥ 10

13 and 10

14 g cm�3.

Figure 4.3: Same as Fig. 4.2 but for model S1-1.0e16 at different times during the evolution,
namely t = 5, 10, 15 and 25 ms.
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4.2 Detailed dynamics of S1 magnetized models

Figure 4.4: Spacetime diagrams of the evolution of the rest-mass density (left panel) and of the
angular velocity (right panel) along the x-axis for models S1-1.0e15. The color code for the rest-
mass density is defined in terms of log

10

(⇢), where ⇢ is in cgs units (g cm�3). In addition, both
diagrams also report isodensity contours of the rest-mass density for ⇢ = 10

6

, 10

11

, 10

12

, 5 ⇥
10

12

, 10

13

, 5⇥ 10

13 and 10

14 g cm�3.

Figure 4.5: Same as Fig. 4.4 but for model S1-1.0e16.
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4. EVOLUTION OF BAR-MODE STABLE MAGNETIZED NEUTRON STAR
MODELS

Figure 4.6: Initial (t = 0 ms, left panels) and final (t = 25 ms, right panels) profiles of the
rest-mass density ⇢ (blue lines) and of the angular velocity ⌦ (red lines) along the x-direction,
normalized to their initial central values, for model S1-1.0e15.

the first milliseconds of the evolution the angular velocity increases at the center, so the inner

core of the neutron star accelerates its rotation. Then it rapidly decreases, reaching almost zero

values, before settling to a constant value. We can briefly summarize the situation by saying

that at the end of the evolution the angular velocity profile has flattened considerably and indeed

the star has settled into a more compact configuration which is essentially axisymmetric and

in uniform rotation within a coordinate radius of ' 15 km, surrounded by a very-low density

envelope.
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4.2 Detailed dynamics of S1 magnetized models

Figure 4.7: Same as Fig.4.6 but for model S1-1.0e16 at four different times during the evolu-
tion, namely t = 4, 8, 10 and 25 ms. The initial profiles are also drawn with black dotted lines in
the all panels.
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Chapter 5

Dynamical bar-mode instability in
magnetized and rotating relativistic
stars

In this Chapter we discuss in detail the results relative to models that are bar-unstable in the

unmagnetized case and describe what are the changes in the dynamics when an initial poloidal

magnetic field is added as a perturbation to the initial matter equilibrium configuration.

5.1 General features of the dynamics of models that are bar-mode
unstable in the unmagnetized case

The main aim of this study is to accurately study and quantify the effects of magnetic field on

the onset and development of the bar-mode instability in NSs. In order to obtain an extensive

analysis of this subject, we selected three representative classes of initial models, namely U3,

U11 and U13, all belonging to the same sequence of constant rest-mass M

0

= 1.5M� as

the stable models already studied in the Chap. 4. These models are all bar-unstable at zero

magnetization, having different values of the rotation parameter � that lie above the threshold

for the onset of the instability, and cover the whole range of interest. We recall here that, as

stated in Sec. 1.2, simulations of magnetized models in the Newtonian case has shown that for

very high magnetic field strengths the instability is completely suppressed, and so we expect a

similar behavior in full general relativity as well) For each of these models, we ran about ten

simulations with different magnetic fields ranging from 1.0 ⇥ 10

14 to 1.0 ⇥ 10

16 G, in order
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5. DYNAMICAL BAR-MODE INSTABILITY IN MAGNETIZED AND ROTATING
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Figure 5.1: Qualitative summary of the results of all our simulations in the (�,�

mag

) parameter
space which was previously shown in Fig. 3.3. The vertical red dashed line marks the stability
threshold for zero magnetic fields. The red-shaded area collects models that turned out to be bar-
mode unstable: hence, red squares refer to initial models that still develop a bar deformation, while
red triangles refer to potentially bar-unstable models that are stabilized by the presence of strong
magnetic fields.

to observe the effects of the magnetization on the onset and development of the dynamical

bar-mode instability and to determine an approximate threshold for its suppression The reason

we chose this range of values for the magnetic field is that magnetic fields below 1.0 ⇥ 10

14

G, which corresponds to �

mag

⇠ 5 ⇥ 10

�8, are too weak to have detectable effects on the

dynamics while fields above 1.0⇥ 10

16 G (�
mag

& 5⇥ 10

�4) are too strong to be considered

as a perturbation to the initial equilibrium model. Fig. 5.1 shows a qualitative but exhaustive

summary of the results of all our simulations in the (�,�

mag

) diagram, where � is the rotation

parameter and �

mag

represents the magnetization. Here, blue and red symbols mark models

that are respectively bar-mode stable and bar-mode unstable at zero magnetizations, while the

vertical red dashed line marks the stability threshold for zero magnetic fields �

c

= 0.2554.

The red-shaded area collects models that the evolutions reveal to be bar-mode unstable: hence,

red squares refer to initial models that still develop a bar-mode instability, while red triangles
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5.2 Detailed dynamics of U11 magnetized models

refer to potentially bar-unstable models that are stabilized by the presence of strong magnetic

fields. We can then easily identify an approximate threshold for the complete suppression of the

dynamical bar-mode instability due to the magnetization around 2⇥10

�6 . �

mag

. 8⇥10

�5,

which corresponds to initial magnetic fields strengths in the range 8 ⇥ 10

14 . B

z

max|t,z=0

.
4⇥ 10

15 G and whose exact value is different for the different initial models. These threshold

values, as well as a quantitative description of the effects of magnetic fields even for models

below this threshold, will be reported in the following Sections of this Chapter.

5.2 Detailed dynamics of U11 magnetized models

A deep and detailed analysis of the dynamics of bar-unstable models have been performed,

starting with model U11. For this model the rotation parameter has an initial value �

U11

=

0.2743, which is intermediate between the instability threshold �

c

⇠ 0.255 and the rotation

parameter of the most unstable model �
U13

= 0.2812. Since this model is neither slightly nor

largely overcritical, its dynamics are very clear and allow us to show a full qualitative and quan-

titative picture of what happens as the bar-mode instability develops. We will initially focus

our attention on models U11-1.0e14, U11-2.0e15, U11-4.0e15 and U11-1.0e16,

which, as discussed before, have initial poloidal magnetic field such that Bz

max|t,z=0

is equal to

1.0⇥ 10

14, 2.0⇥ 10

15, 4⇥ 10

15 and 1.0⇥ 10

16 G, respectively.

The different qualitative behavior of these four magnetized models can be described by

showing in Fig. 5.2, 5.3, 5.4 and 5.5 a few snapshots of the rest-mass density ⇢ on the (x, y)

plane at different times during the evolution.

In particular, Fig. 5.2 refers to model U11-1.0e14 and show the dynamics of this model

at six different times during the evolution, namely t = 10, 15, 20, 25, 30 and 35 ms. This

model clearly turns out to be still bar-mode unstable, as its unmagnetized counterpart. After 15

ms we can already observe a small deformation with respect to the initial axisymmetric config-

uration, which is then amplified until a bar is fully formed at 20 milliseconds. Later, we start

appreciating the development of spiral arms, which are responsible for ejecting a small amount

of matter and for a progressive attenuation of the bar extension until a an almost axisymmetric

configuration is reached at the end of the simulation.

A similar evolution is shown in Fig. 5.3, which refers to model U11-2.0e15 at the same

times during the evolution. As well as U11-1.0e14, this model is still bar-unstable, but a

few differences are evident. The bar deformation starts to develop at a slightly later times and
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5. DYNAMICAL BAR-MODE INSTABILITY IN MAGNETIZED AND ROTATING
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Figure 5.2: Snapshots of the rest-mass density on the (x, y) plane for model U11-1.0e14 at
different times during the evolution, namely, t = 10, 15, 20, 25, 30 and 35 ms. The color code is
defined in terms of log

10

(⇢), where ⇢ is in cgs units (g cm�3). Additionally, isodensity contours
are shown for ⇢ = 10

11, 1012, 5⇥ 10

12, 1013, 5⇥ 10

13 and 10

14 g cm�3.
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5.2 Detailed dynamics of U11 magnetized models

Figure 5.3: Same as Fig. 5.2 but for model U11-2.0e15 at different times during the evolution,
namely, t = 10, 15, 20, 25, 30 and 35 ms.
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Figure 5.4: Same as Fig. 5.2 but for model U11-4.0e15 at different times during the evolution,
namely, t = 6, 14, 22 and 30 ms.
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5.2 Detailed dynamics of U11 magnetized models

Figure 5.5: Same as Fig. 5.2 but for model U11-1.0e16 at different times during the evolution,
namely, t = 6, 14, 22 and 30 ms.
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5. DYNAMICAL BAR-MODE INSTABILITY IN MAGNETIZED AND ROTATING
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it takes a little more time to grow. Besides, the maximum distortion is clearly smaller and the

spiral arms are less pronounced.

A different situation in shown in Fig. 5.4 for the evolution of model U11-4.0e15, which

appears to be stable against bar-mode deformations due to the presence of the strong magnetic

field. In this case, after around 15 ms the density profile has already changed, turning from

an initial toroidal profile (cf., Fig. 3.1) to an oblate profile with its maximum residing on the

z-axis. Later in the evolution, we observe an increase in the central density and the outer layers

expanding well beyond the borders of the finest grid, but always preserving an axisymmetric

configuration.

Finally, in Fig. 5.5 we show snapshots of the density for model U11-1.0e16, the most

magnetized model we evolved. Even this model turn out to be stable and shows a similar

behavior to the previous model. The only important difference is the larger increase of the

central rest-mass density and the more significant expansion of the outer layers of the star.

Indeed, after the first 15 ms of evolution, matter has been shed already beyond the edges of the

finest grid.

Even if snapshots are the fastest way to identify the presence of a bar deformation and

the development of the bar-mode instability, the distortion parameters (3.15) represent a more

useful tool to detect and quantify such deformation, as we mentioned in Sec. 3.3. In Fig. 5.6

we show the evolution of the distortion parameters ⌘

+

(top panel) and ⌘ (bottom panel) for

these models. In the least magnetized model (i.e., U11-1.0e14), ⌘
+

starts oscillating after

about 10 ms of evolution with an amplitude that almost reaches unity, and it keeps oscillating

for about 20 ms. At the same time, ⌘ undergoes an exponential growth, increasing its value

by about three orders of magnitude until it reaches a saturation level, which persists for about

10 ms and then decays. This is exactly the behavior we expect from a stellar model which

is unstable against the dynamical bar-mode instability, as model U11 is known to be in the

unmagnetized case (cf., Sec. 1.2 and, for further details, Refs. [10, 111]).

However, when the initial poloidal magnetic field is two orders of magnitude stronger

(i.e., as for model U11-1.0e16), the dynamics shows a very different behavior. The am-

plitude of the oscillations in ⌘

+

is negligible and ⌘ does not grow exponentially, being two

orders of magnitude lower than it is for model U11-1.0e14 during the whole evolution.

This indicates that although the model is unstable in the absence of magnetic fields, no bar-

mode deformation develops in this case over a timescale of ⇠ 35 ms of evolution and for this

magnetic-field strength.
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5.2 Detailed dynamics of U11 magnetized models

Figure 5.6: Evolution of the distortion parameters ⌘
+

(top panel) and ⌘ (bottom panel) for model
U11 with different values of the initial poloidal magnetic field: U11-1.0e14 (the least magne-
tized model among the ones we evolved), U11-2.0e15 (the last bar-unstable model in a scale
of increasing magnetization), U11-4.0e15 (the first stable model) and U11-1.0e16 (the most
magnetized model). The dotted vertical lines in the top panel mark the four main phases of the
evolution of the bar-mode instability (cf., Sec. 1.2).

Figure 5.7: Comparison of the power in the Fourier modes m = 1, 2, 3 and 4 (cf. Eq. (3.18))
for the bar-unstable model U11-1.0e14 (top panel) and for the bar-stable model U11-1.0e16
(bottom panel). The dotted vertical lines in the top panel mark the four main phases of the evolution
of the bar-mode instability (cf., Sec. 1.2).
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Figure 5.8: Evolution of the rotation parameter � := T/|W | for U11 models with five differ-
ent values of the initial poloidal magnetic field between 10

14 and 10

16 G, three of which are still
unstable (U11-1.0e14, U11-1.0e15, U11-2.0e15) while the other are stable due to mag-
netization (U11-4.0e15 and U11-1.0e16).

For intermediate initial poloidal magnetic fields, we find a significant change in the dynam-

ics by simply varying the field strength by a factor of two, which corresponds to a change of a

factor of four in the magnetic energy. Moreover, in model U11-2.0e15 the bar-mode insta-

bility still develops, even though it takes a little longer to grow, while model U11-4.0e15 is

stable and the bar-mode instability is suppressed, since ⌘ does not show an exponential growth.

As a result, we can bracket the stability threshold for the development of the bar-mode in-

stability between these two models in the presence of strong magnetic fields (cf., Fig. 5.1).

An important way to describe the dynamics of the bar-mode instability is represented by the

decomposition of the rest-mass density in its Fourier modes (3.18) and their evolution, as dis-

cussed in Chap. 3.3. In Fig. 5.7 we report the power P
m

in the first four m-modes for model

U11-1.0e14 (top panel) and model U11-1.0e16 (bottom panel). Relating the evolution of

these quantities to the changes in the deformation of the star ⌘
+

allows us to provide a deeper

and consistent description of the different stages of the instability. First of all, we have to note

that at the beginning of both simulations the m = 4 mode has the largest power, as a result of

the Cartesian discretization. While this can be reduced by increasing the resolution, the m = 4
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5.2 Detailed dynamics of U11 magnetized models

deformation plays no major role in the development of the instability. The initial phase of the

instability [stage (a) in Fig. 5.6 and 5.7] is clearly characterized by the exponential growth of

the m = 2 mode. At the same time, but to a lesser extent, we also observe a growth of the

m = 3 mode and of the m = 1 mode. A first mode coupling takes place when the m = 4

mode reaches the m = 2 mode at about 15 ms, which is the time when collective phenomena

start to be fully visible and the distortion parameter starts to be appreciably different from zero

(cf., Fig. 5.6 and 5.2). Soon after, the m = 3 and the m = 1 mode stop their growth for a

few milliseconds while the m = 2 mode reaches its maximum power and the bar reaches its

largest extension. During the following phase [stage (b)] the m = 3 and the m = 1 suddenly

return to grow with the same growth rate and the bar-mode instability has reached a nonlinear

saturation. Later in the evolution [stage (c)] modes m=1, 3 and 4 reach comparable powers

and this marks the time when the bar deformation has a sudden decrease. As a result of this

crossing among the three modes, only the m=1 mode will continue to grow, while the m=3

and the m=4 modes are progressively damped. The final phase [stage (d)] starts when the

m=1 mode reaches a power amplitude comparable with those of the m=4 mode and the final

mode-amplitude crossing takes place. At this point we observe a clear loss of the bar deforma-

tion and the emergence of an almost axisymmetric configuration. Another important quantity

we can look at to appreciate the changes in the evolution due to different values of the initial

magnetization is the the rotation parameter �. Fig. 5.8 shows its time evolution for the same

four models we have already mentioned talking about Fig. 5.6 plus model U11-1.0e15. We

recall here once again that the definitions of quantities such � are meaningful only in the case

of stationary axisymmetric configurations and should be treated with care once the rotational

symmetry is lost, therefore looking at its evolution during the unstable phase is not so meaning-

ful. Anyway, keeping this in mind, we can still extract a qualitative behavior of the dynamics

from this quantity and a clear comparison between differently magnetized models. First of all,

we can see that for model U11-1.0e14 the rotation parameter � is almost constant during the

first stage of the evolution (up to ⇠ 15� 17 ms) during which the model is still axisymmetric.

When the bar deformation starts to develop and the distortion parameters reach a greater value

than about 1%, it suddenly decreases and then oscillates until it seems to settle to a value below

the instability threshold, since a new almost axisymmetric configuration has been reached after

the attenuation of the bar deformation. Model U11-2.0e15, which is still bar-unstable de-

spite the magnetization, shows a similar behavior, with the oscillations having a much smaller

amplitude. Model U11-4.0e15, on the contrary, is stabilized by the presence of the magnetic
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field and in this case � decreases slowly after the onset of the instability. The most magnetized

model, U11-1.0e16, shows a quite different behavior since the rotation parameter starts de-

creasing very early in the evolution (after about 5 ms), falling below the instability threshold

before 10 ms and then it keeps decreasing considerably. Finally, we describe the time evolu-

tion of � for model U11-1.0e15, which has an intermediate magnetization. This case is very

similar to model U11-1.0e14, even if the differ by an order of magnitude in the magnetic

field (and by two orders of magnitude in the magnetization �

mag

), showing that the effects

of initial magnetic fields up to about 1015 G are almost negligible for model U11. On the

contrary, the time evolution of � for model U11-1.0e15 is much different from the one for

model U11-2.0e15, even if their magnetizations differ only by a factor of 2, since the latter

is quite close to the threshold for the suppression of the instability due to magnetic fields and

their effects on the dynamics are quite strong.

A deeper insight in the matter dynamics of the differently magnetized models discussed

above can be obtained by means of the spacetime diagrams shown in Fig. 5.9, 5.10 and 5.11,

and that are reminiscent of similar ones first presented in Ref. [28]. In particular, Fig. 5.9 shows

the rest-mass density profile along the x-axis for the four U11 models using both a colormap

(see the right-edge of the different panels) and some representative contour lines; note that

the colorcode and the color ranges are the same in the four cases. It is worth mentioning that

the low-magnetic-field model U11-1.0e14 (upper-left panel) shows the evolution we expect

from a bar-mode unstable model, since the bar deformation is clearly visible after about 20 ms.

Model U11-2.0e15 (upper-right panel) is unstable as well, even though the bar deformation

is not as broad as in the previous case. The highly magnetized model U11-4.0e15 (lower-

left panel), on the other hand, shows no bar deformation and exhibits instead a transition from

a toroidal configuration to an oblate one as is evident in Fig. 5.4. In addition, a small amount

of matter is shed on the equatorial plane after about 15 ms of evolution. Finally, for the very

highly magnetized model U11-1.0e16 (lower-right panel), the expansion of the outer layers

is much more rapid and the stellar material reaches a size of about 100 km (not shown in

the figure), which is almost twice as large as for model U11-4.0e15. The ejected material

creates an extended and flattened envelope of high-density matter1, with rest-mass densities as

high as 1012 g cm�3.

1It is tempting and sometimes encountered in the literature to refer to the envelope as “disk” or “torus”; how-
ever, we find this is very misleading as the envelope is not disjoint from the star but rather an integral part of it
which should not be discussed separately.
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5.2 Detailed dynamics of U11 magnetized models

Figure 5.9: Spacetime diagrams of the evolution of the rest-mass density along the x-axis for mod-
els U11-1.0e14 (upper-left panel), U11-2.0e15 (upper-right panel), U11-4.0e15 (lower-
left panel) and U11-1.0e16 (lower-right panel). The color code is defined in terms of log

10

(⇢),
where ⇢ is in cgs units (g cm�3). In addition, all diagrams also report isodensity contours of the
rest-mass density for ⇢ = 10

6

, 10

11

, 10

12

, 5⇥ 10
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Figure 5.10: Spacetime diagrams of the evolution of the time-component of the fluid four-velocity
along the x-axis for models U11-1.0e14 (upper-left panel), U11-2.0e15 (upper-right panel),
U11-4.0e15 (lower-left panel) and U11-1.0e16 (lower-right panel). In addition, all dia-
grams also report isodensity contours of the rest-mass density for ⇢ = 10
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5.2 Detailed dynamics of U11 magnetized models

Figure 5.11: Spacetime diagrams of the evolution of the angular velocity along the x-axis for mod-
els U11-1.0e14 (upper-left panel), U11-2.0e15 (upper-right panel), U11-4.0e15 (lower-
left panel) and U11-1.0e16 (lower-right panel). In addition, all diagrams also report isodensity
contours of the rest-mass density for ⇢ = 10
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To determine whether the ejected matter is gravitationally bound or not, we look at the

time component of the fluid four-velocity u

t

(Fig. 5.10) since the local condition u

t

> �1 pro-

vides a necessary although not sufficient condition for a fluid element to be unbound [28]. We

recall that this condition is exact only in an axisymmetric and stationary spacetime. These

requirements are not matched during the matter-unstable phase, but the conditions can be

used nevertheless as a first approximation to determine whether part of the material is ac-

tually escapes to infinity during the evolution. As is evident from Fig. 5.10, this condition

is fulfilled throughout the whole evolution for the highly magnetized models U11-2.0e15,

U11-4.0e15 and U11-1.0e16 not only on the finest refinement level shown in Fig. 5.10,

but on the whole computational domain. However, this is not the case for model U11-1.0e14

at the time the bar-mode instability is fully developed. In fact, in this case we observe that a

little amount of unbound matter is shed in correspondence with one of the spiral arms of the

bar. The ejection of matter occurs only in a very low-density region around the star, where

⇢ ' 10

8 g cm�3 ' 10

�6

⇢

c

. Overall, the total amount of matter (both bound and unbound)

escaping from the outer grid after 20 ms of evolution is less than 0.2% of the total initial rest

mass of the NSs.

The description of the dynamics of these four U11 models can be further improved by

reporting in Fig. 5.11 the spacetime diagram relative to the angular velocity ⌦ along the x-axis.

We recall that all models have the maximum of ⌦ at the stellar center (cf., Fig. 3.1) and this

remains the case also for the low-magnetic-field and bar-mode unstable models U11-1.0e14

and U11-2.0e15, modulo the variations brought in by the development of the instability.

On the other hand, for models U11-4.0e15 and U11-1.0e16, the angular velocity at the

stellar center first increases, then reaches a maximum and later decreases again; at the same

time, the outer layers of the star expand and the maximum of the angular velocity occurs at

larger radii. By the time an extended flattened envelope has been produced near the equatorial

plane, much of the differential rotation has been washed out and the NS has acquired a central

angular velocity that is smaller but mostly uniform.

The main features that have been accurately described in detail for the four magnetized

U11 models can be briefly summarized as follows:

• model U11-1.0e14 is still bar-mode unstable and no effects are evident on the onset

and development of the instability; a very small fraction of the rest-mass is shed at the

edges of the bar-deformed object.
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5.3 Dynamics of U3 and U13 magnetized models

• model U11-2.0e15 is still bar-mode unstable but the instability shows a lower growth

rate and the maximum distortion is a little lower as well.

• model U11-4.0e15 is bar-mode stable for the timescales considered here and after

about 25 ms of evolution it settles into a more compact configuration; the new equilib-

rium structure has an almost uniform angular velocity and is surrounded by a differen-

tially and flattened envelope.

• model U11-1.0e16 is also bar-mode stable with a dynamics that resembles that of

model U11-4.0e15; the main differences are the shorter timescales required to reach

equilibrium and the flattened envelope with larger mean rest-mass densities.

The qualitative behavior summarized above is consistent with what we would expect for highly

magnetized and differentially rotating fluids. Under these conditions, in fact, magnetic braking

transfers angular momentum from the core to the outer layers, changing the rest-mass density

and the rotation profiles of the star. Because during this process part of the rotational energy of

the star is tapped, the onset of the instability is inhibited. We recall that with the exception of

the most-highly magnetized models, the � parameter is always above �

c

at the time at which

the instability develops in the case of zero magnetization. On the other hand, for the most

extreme magnetizations � decreases very rapidly, going below �

c

before the time when the

instability develops for zero magnetizations. In Chap. 6 we will extensively discuss about the

evolution of the magnetic field during the whole evolution. This will allow us to better clarify

the mechanisms behind the above-mentioned changes in the dynamics of highly magnetized

models.

5.3 Dynamics of U3 and U13 magnetized models

The same analysis we have accurately shown in Sec. 5.2 for U11 magnetized models has then

been repeated for other two initial stellar configurations, in order to span the whole range of

values of the rotation parameter � (cf., Fig. 5.1). These are model U3, which is only slightly

overcritical in the unmagnetized case (�
U3

= 0.2596 & �

c

), and model U13, which on the

contrary is largely overcritical at zero magnetization (�
U13

= 0.2812 � �

c

).

The description of the dynamics for model U3 can be started from Fig. 5.12, where we

show the time evolution of the distortion parameters ⌘

+

and ⌘. Looking at these diagnostic

quantities, we can easily conclude that models U3-1.0e14 and U3-6.0e14 turn out to be
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Figure 5.12: Evolution of the distortion parameters ⌘

+

(top panel) and ⌘ (bottom panel) for U3
models with different values of the initial poloidal magnetic field between 10

14 and 10

16 G.

Figure 5.13: Spacetime diagrams of the evolution of the rest-mass density along the x-axis for the
same U3 models as in Fig. 5.12. Color code and isodensity contours are the same as in Fig. 5.9.
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5.3 Dynamics of U3 and U13 magnetized models

Figure 5.14: Evolution of the distortion parameters ⌘
+

(top panel) and ⌘ (bottom panel) for U13
models with different values of the initial poloidal magnetic field between 10

14 and 10

16 G.

Figure 5.15: Spacetime diagrams of the evolution of the rest-mass density along the x-axis for the
same U13 models as in Fig. 5.14. Color code and isodensity contours are the same as in Fig. 5.9.
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bar-unstable, while U3-8.0e14 and U3-1.0e16 are stabilized by the presence of the strong

initial magnetic field, so no bar deformation is observed in these two cases. Clearly, being

quite close to the threshold for the onset of the instability at zero magnetization, the instability

starts growing at a later time than for model U11 and the maximum distortion is about half as

large. In Fig. 5.13 we also show spacetime diagrams of the evolution of the rest-mass density

⇢ along the x-axis for these four differently magnetized U3 models. The qualitative behavior

of the two unstable models is almost the same as the one of U11 models (cf., Fig. 5.9), even

though the development of the instability is more moderate. Model U3-1.0e16 shows no bar

deformation and exhibits a transition from a toroidal configuration to an oblate one. In addition,

a small amount of matter is shed on the equatorial plane forming a low density envelope around

an axisymmetric configuration. Model U3-8.0e14, instead, shows neither a bar deformation

nor an expansion of the outer layers, except for a very low density envelope with ⇢ . 10

�6

⇢

c

.

Its behavior is almost the same as the one of model S1-1.0e15 (cf., Fig. 4.4), which is just

below the instability threshold and whose initial value of the rotation parameter is very similar

(�
S1

= 0.2540). In this case, in fact, the differences between the initial and final configuration

are negligible, at least within 35 ms of evolution, so the magnetic field is just strong enough to

cause the suppression of the instability without any other effects on the dynamics.

The general dynamics of U13 magnetized models is represented by the time evolution of

the distortion parameters ⌘

+

and ⌘, which is shown in Fig. 5.14. This reveals that models

U13-1.0e14 and U13-2.4e15 are still unstable, while U13-4.0e15 and U13-1.0e16

show no development of a bar deformation, due to the presence of magnetic fields. Being

far from the instability threshold, for the two unstable models the instability shows a steeper

growth than the one in U3 and U11 unstable models and the maximum distortion is a little

higher than for U11 models with comparable initial magnetic fields. In Fig. 5.15 we show

spacetime diagrams of the evolution of the rest-mass density ⇢ along the x-axis for all the four

differently magnetized U13 models. The qualitative behavior is almost the same as the one of

U11 models (cf., Fig. 5.9), even though the development of the instability is now more violent

and the spiral arms have a wider extent.

5.4 Quantitative effects of magnetic fields on the dynamics

A more quantitative assessment of the influence of the magnetic fields on the unstable models

has been obtained after performing a number of simulations of models U3, U11 and U13, with
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5.4 Quantitative effects of magnetic fields on the dynamics

Figure 5.16: Growth time of the bar-mode instability for the three unstable models U3 (blue), U11
(red) and U13 (black), shown as a function of the initial magnetization. The horizontal dashed
lines report the growth times in the absence of magnetic fields, while the dotted lines represent the
corresponding error bars.

initial poloidal magnetic fields varying in the whole parameter space shown in Figs. 5.1. More

specifically, we have performed 27 simulations with initial maximum magnetic fields in the

range Bz

max|t,z=0

= 1.0⇥ 10

14 and 1.0⇥ 10

16 G. All the results of this extensive investigation

are collected in Figs. 5.1 and 5.16, as well as in Table 5.1, which reports the measured growth

time of the instability ⌧bar and its frequency fbar. In particular, Fig. 5.1 reports the initial models

within a (�, �

mag

) diagram and allows one to easily distinguish the ranges of rotational and

magnetic energies that allow for the development of a dynamical bar-mode instability. It is,

in fact, easy to distinguish models that are bar-mode stable (blue symbols) from those that

are unstable (red symbols) at zero magnetizations; of course, models that are stable at zero

magnetizations are also stable at all magnetizations (this is marked with the vertical red dashed

line). Equally simple is to distinguish models that, although unstable in the absence of magnetic

fields, become stable with sufficient magnetization (red triangles). As an example, for models

U3 the threshold between squares and triangles appears for initial maximum magnetic fields

B

z

max|t,z=0

> 6.0⇥10

14 G, while for models U11 and U13 the threshold is at about 2.0⇥10

15

and 2.4 ⇥ 10

15 G respectively. As a result, only the light-red shaded area in Fig. 5.1 collects
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stellar models that are bar-mode unstable. Outside this region, either the rotational energy is

insufficient, or the magnetic tension is too strong to allow for the development of the instability.

Similarly, Fig. 5.16 reports the measured growth time of the bar-mode instability ⌧bar (and

the corresponding error bars) for the three different classes of unstable models (U3, U11 and

U13) as a function of the magnetization parameter �
mag

. Taking the horizontal dashed lines as

references for the unmagnetized models, it is easy to realize that as the magnetization increases,

so does the growth time for the instability. This behavior can be physically interpreted as due

to the fact that as the magnetic field strength increases, so does the timescale over which the

magnetic tension needs to be won to develop a bar deformation1.

1Note that the error bars are larger for model U3 because this is closer to the stability threshold (cf., Table 3.2).
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Model �mag t

1

t

2

⌘max ⌧bar fbar

[ms] [ms] [ms] [Hz]
U11-0.0e00 0.0 16.2 18.3 0.784 1.10

+0.04

�0.05

490

+1

�4

U11-1.0e14 4.7⇥ 10

�8

14.7 16.8 0.787 1.09

+0.05

�0.02

491

+3

�6

U11-2.0e14 1.9⇥ 10

�7

15.0 17.0 0.778 1.11

+0.02

�0.01

488

+1

�1

U11-4.0e14 7.5⇥ 10

�7

15.1 17.7 0.773 1.12

+0.03

�0.01

488

+2

�2

U11-8.0e14 3.0⇥ 10

�6

14.8 18.2 0.754 1.15

+0.03

�0.04

490

+2

�5

U11-1.0e15 4.7⇥ 10

�6

14.2 16.8 0.751 1.17

+0.04

�0.05

491

+2

�4

U11-1.4e15 9.2⇥ 10

�6

13.9 16.2 0.714 1.22

+0.04

�0.03

491

+1

�2

U11-1.6e15 1.2⇥ 10

�5

14.5 17.3 0.681 1.32

+0.07

�0.07

489

+2

�1

U11-1.8e15 1.5⇥ 10

�5

13.2 16.7 0.639 1.34

+0.08

�0.08

490

+2

�1

U11-2.0e15 1.9⇥ 10

�5

14.8 17.3 0.532 1.49

+0.09

�0.11

489

+4

�2

U13-0.0e00 0.0 11.6 14.7 0.865 0.94

+0.01

�0.01

449

+1

�3

U13-1.0e14 5.3⇥ 10

�8

12.2 15.3 0.866 0.94

+0.02

�0.01

450

+2

�2

U13-4.0e14 8.5⇥ 10

�7

12.7 15.8 0.851 0.94

+0.02

�0.01

450

+2

�2

U13-8.0e14 3.3⇥ 10

�6

12.7 15.8 0.842 0.95

+0.01

�0.01

451

+1

�2

U13-1.0e15 5.3⇥ 10

�6

14.1 16.7 0.833 0.96

+0.01

�0.02

451

+3

�1

U13-1.6e15 1.3⇥ 10

�5

11.6 14.8 0.813 0.98

+0.02

�0.01

456

+1

�2

U13-2.4e15 3.0⇥ 10

�5

13.0 15.9 0.734 1.09

+0.04

�0.06

461

+1

�1

U3-0.0e00 0.0 24.8 26.4 0.486 2.55

+0.28

�0.34

540

+2

�2

U3-1.0e14 3.5⇥ 10

�8

24.9 27.1 0.472 2.38

+0.59

�0.18

537

+5

�10

U3-2.0e14 1.4⇥ 10

�7

26.1 28.0 0.456 2.47

+0.21

�0.04

536

+5

�3

U3-4.0e14 5.6⇥ 10

�7

24.0 26.3 0.421 2.81

+0.20

�0.13

537

+2

�3

U3-6.0e14 1.2⇥ 10

�6

24.2 25.7 0.300 3.12

+0.31

�0.10

535

+5

�6

Table 5.1: Main properties of the initial part of the instability for model U11, U13 and U3 for
different values of the initial poloidal magnetic field. Here we report the representative times t

1

and t

2

between which the maximum values of the distortion parameter ⌘, the growth times ⌧bar and
the frequencies fbar are computed.
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Chapter 6

Evolution of magnetic fields

This Chapter focuses on the dynamics of magnetic fields, during both the initial phase of the

evolution, which is common to stable and unstable models, and after the onset of the bar-mode

instability, when the initial axisymmetric is lost.

All the simulations presented in this Thesis have been performed in the ideal-MHD approx-

imation, in which the conductivity is assumed to be infinite. In this limit, the diffusion becomes

very slow, so the evolution of the magnetic field is completely determined by the plasma flow

(the field is assumed to be “frozen-in” to the plasma). That means that two plasma elements

that are on a common field line will remain on the same field line. In this sense we can actually

talk about “moving” field lines. There are several processes involving compact objects, such

as NSs and BHs, where resistive effects could play an important role. These include the inter-

action of the magnetospheres of two NSs in a binary system before the merger, the stability of

the magnetosphere that may be produced around a HMNS, or the stability of the magnetic field

within the torus that will be produced once the HMNS collapses to a black hole. In all of these

scenarios, the ideal-MHD limit may not be sufficient to study those physical phenomena which

involve reconnection or the presence of anisotropic resistivities. Anyway, when considering

the interior dynamics of magnetized stars the electrical conductivity of the plasma is extremely

high and the ideal-MHD limit represents a very good approximation, so our choice is justified.
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6. EVOLUTION OF MAGNETIC FIELDS

Figure 6.1: Snapshots of the total electromagnetic energy density T

00

em , as measured in the Eulerian
frame, on a horizontal plane at z ' 1.5 km for model S1-1.0e16 at different times during the
first 5 milliseconds of evolution. The color code is defined in terms of log

10

(T

00

em/c

2

) where T 00

em/c

2

is in cgs units (g cm�3). Additionally, magnetic field lines are shown with white solid lines.
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6.1 Effects of differential rotation

Figure 6.2: Time evolution of the square root of the poloidal component of the magnetic energy
E

pol
mag [cf., Eq. (3.21)] and its toroidal component Etor

mag [cf., Eq. (3.21)], both normalized to the
initial total magnetic energy, for differently magnetized S1 models. Dash-dot lines are used for the
former, solid lines for the latter. Lines drawn with different colors refer to models with different
values of the initial magnetic field strength. The black dashed line is a straight line, providing a
comparison with a linear growth.

6.1 Effects of differential rotation

In Fig. 6.1 we show some representative snapshots of the total electromagnetic energy den-

sity T

00

em as measured in the Eulerian frame on a horizontal plane at z ' 1.5 for bar-stable

model S1-1.0e16. Note that the color code here is defined in terms of log
10

(T

00

em/c
2

), where

T

00

em/c
2 is expressed in cgs units (g cm�3). Additionally, magnetic field lines are superimposed

to every snapshot, drawn with white solid lines. These are clearly dragged along with the fluid

in differential rotation and rapidly wind on a timescale of very few milliseconds, leading to a

sudden formation and rapid growth of a toroidal magnetic field component. This can be also

observed in Fig. 6.2, where we show the time evolution of the square root of the poloidal com-

ponent of the magnetic energy E

pol
mag [cf., Eq. (3.21)] and its toroidal component Etor

mag [cf., Eq.

(3.21)], both normalized to the initial total magnetic energy, for differently magnetized S1

models. The first obvious thing to notice is that for all the three magnetizations considered,

i.e., Bz

max|t,z=0

= 10

14, 1015 and 10

16 G, the growth of the toroidal magnetic field component

is linear in time initially. This is not surprising and is indeed the mere manifestation of the

“frozen-in” condition of the magnetic field within the ideal-MHD approximation. Using the
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induction equation it is, in fact, straightforward to show that in a linear regime the differential

rotation will generate toroidal magnetic field at a rate which is linear in time. This is because

as long as the stellar configuration remains axisymmetric the poloidal magnetic field is not

affected by the newly produced toroidal field, and the total electromagnetic energy can only

grow linearly with time tapping part of the rotational energy of the star. A black dashed line is

drawn in the figure, in order to offer a sudden comparison with a linear growth. This initial

linear phase lasts about 5 ms for models S1-1.0e14 and S1-1.0e15, while it stops only

after about 2 ms for model S1-1.0e16. As a result of this growth, the toroidal component

becomes rapidly larger than the initial poloidal one and an amplification of the toroidal elec-

tromagnetic energy takes place for all models. In the case of model S1-1.0e15, this reaches

a higher value of about two orders of magnitude over a timescale of ⇠ 10 ms and then it keeps

growing at a slower rate, becoming four times higher at the end of the simulation (about 28

ms). In the case with an ultra-strong magnetic field, namely S1-1.0e16, a saturation occurs

already after very few milliseconds, at a value that is only an order of magnitude higher than

the initial one. For both these models, the poloidal component of the magnetic energy shows

only very minor changes, increasing only by a factor of 2 during the whole evolution. The least

magnetized case, namely S1-1.0e14, is quite peculiar. Its behavior is exactly the same as for

model S1-1.0e15 during the first 10 ms of evolution, but then is starts deviating from that.

The toroidal component of the magnetic energy shows a much higher and quicker increase,

reaching a higher value of about 50%, and even the popoidal one undergoes an amplification,

getting about an order of magnetic above the constant value of the other two magnetized mod-

els. A possible explanation to this feature will be proposed in Sec. 6.2.

In Fig. 6.3 we show some representative snapshots of the total electromagnetic energy den-

sity T

00

em as measured in the Eulerian frame on a horizontal plane at z ' 1.5 for the bar-unstable

model U11-1.0e14. Here, we observe the winding of the magnetic field lines in the early

phase just as for the stable model S1-1.0e16 we have just described (see the first snapshot,

corresponding to t = 5 ms). Anyway, in this matter-unstable case, later in the evolution the dis-

tortion of the magnetic field lines also mimics the bar-mode deformation as the star undergoes

the development of the instability. In Fig. 6.4, 6.5 and 6.6 we show some representative snap-

shots of the total electromagnetic energy density for models U11-2.0e15, U11-4.0e15

and U11-1.0e16 respectively. Note that all the panels in these three figures have the same

color ranges as in Fig. 6.3, but the colormap is different for different initial magnetic field

strengths in order to better highlight the internal structure of the electromagnetic field. The
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6.1 Effects of differential rotation

Figure 6.3: Same as Fig. 6.1 but for model U11-1.0e14 at t = 10, 15, 20, 25, 30 and 35 ms.
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Figure 6.4: Same as Fig. 6.1 but for model U11-2.0e15 at t = 10, 15, 20, 25, 30 and 35 ms.
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6.1 Effects of differential rotation

Figure 6.5: Same as Fig. 6.1 but for model U11-4.0e15 at t = 15 and 22.5 ms.

Figure 6.6: Same as Fig. 6.1 but for model U11-1.0e16 at t = 15 and 22.5 ms.
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expected winding of the field lines and the consequent linear growth of the toroidal field are

clearly present in all three models and are independent of the initial poloidal magnetic field

strength. The reason is that they only depend on the angular velocity profile, or equivalently

on the differential rotation law, which is the same for all U11 models in the first part of the

evolution.

In Fig. 6.7 we report a full summary of the evolution of the normalized magnetic energy

for all the evolved magnetized models: bar-stable models (upper-left panel), U3models (upper-

right panel), U11 models (lower-left panel) and U13 models (lower-right panel) for different

initial poloidal magnetic-field strengths. The behavior of the magnetic field is almost the same

for all stable models with B

z

max|t,z=0

= 10

15 G, while when B

z

max|t,z=0

= 10

16 G the maximum

value of the total magnetic energy is a little different for the different models, with the value at

the end of the evolution being quite similar.

The growth of the magnetic-field strength in bar-mode unstable models offers the opportu-

nity for a number of useful considerations. The first obvious thing to notice for all the consid-

ered magnetized models is that the growth of the magnetic energy is linear in time initially. As

we already discussed for model S1-1.0e16, the toroidal component becomes rapidly larger

than the initial poloidal one and an amplification of the total electromagnetic energy takes

place, reaching a higher value of about two orders of magnitude over a timescale of ⇠ 10 ms.

After this initial phase, the toroidal field keeps growing at a slower rate, reaching a saturation

with the maximum amplification being almost independent of the initial poloidal magnetic field

strength and of the rotation of the stellar model. The only exceptions to this behavior appear in

models with ultra-strong magnetic fields, in which cases the saturation occurs at values that are

about two orders of magnitude smaller (cf., blue solid lines in the different panels of Fig. 6.7).

Interestingly, for models U11 and U13, that is for the unstable models with smaller growth

rates and far from the threshold of the dynamical bar-mode instability, the linear growth of the

magnetic field is followed also by a rather short exponential growth of the magnetic field. We

will describe this feature and try to provide a possible explanation in Sec. 6.3.

6.2 An overview on the magnetorotational instability

In the previous Section we hinted at the presence of a short exponential growth in the evolution

of the magnetic energy, occurring in many magnetized U11 and U13 models after about 15-20

ms of evolution (see Fig. 6.7). This behavior is actually quite similar to the one recently seen
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Figure 6.7: Evolution of the total magnetic energy Emag, normalized to its initial value, for the
different categories of models we evolved, namely all the stable models (upper-left panel), the U3
sequence with different values of the magnetization (upper-right panel), the U11 sequence (lower-
left panel) and the U13 sequence (lower-right panel). In the case of stable models, the solid lines
refer to models with B

z
max|t,z=0

= 10

15 G, while the dash-dot lines to models with B

z
max|t,z=0

=

10

16 G. In the case of unstable models, the black solid line refers to the least magnetized case, the
blue solid line to the most magnetized case, and the red solid line to the last unstable model before
excessive magnetic tension suppresses the instability.
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in Ref. [34], where it was attributed to the development of the magnetorotational instability

(MRI). Anyway, a similar conclusion cannot be drawn with the same confidence here, the main

motivation for this being the lower resolution of our simulations in respect to the one employed

in Ref. [34]. Before analyzing in detail all the clues in favor or against this hypothesis, it’s

useful to recall here the main features of this type of instability and the physical mechanism

behind its onset and growth.

The MRI arises from the action of the magnetic field in a differentially rotating system. It

is also known as the Balbus-Hawley instability, since they discovered its relevance in accre-

tion disks numerically in 1991, after it was originally studied in the 1950s by Chandrasekhar

[112, 113] and independently by Velikhov [114]. Indeed, it is thought to be responsible for

turbulence and angular momentum transport in astrophysical disks, being able do lead to large

scale mixing and turbulence very quickly. Given that magnetic fields are quite omnipresent in

the universe and that differentially rotating disks are commonplace, the MRI can act in a huge

number of different astrophysical scenarios (including X-ray binaries, the Galactic disk and

protoplanetary disks).

A brief explanation of the nature of the MRI can help us understand its behavior and look

for its features in our simulations. In an ideal plasma the action of the magnetic field is to link

neighboring fluid elements that lie along a common field line, so they can be thought as con-

nected with elastic bands. If we try to displace such elements perpendicular to a magnetic field

line, the magnetic tension behaves as an attractive force that acts to bring them back together,

just like in a spring under tension. Normally, such a force is restoring and, hence, it tends

to preserve a system’s stability. However, if the fluid is differentially rotating, this restoring

force can actually be destabilizing. Understanding how this can be possible is straightforward

if we just consider two neighboring fluid elements situated along a stellar radius and connected

together by a spring representing the magnetic force. Since the star is differentially rotating,

the inner element is of course rotating faster than the outer one, so the initial displacement

increases and the magnetic tension causes the former to slow down and the latter to speed up.

This transfer of angular momentum makes the inner fluid element migrate inwards while the

outer one is pushed outwards. Now, this cycle can be repeated from the start, but with a larger

displacement than the initial one. However, if the magnetic field is too strong, the tension will

cause the displacement between fluid elements to oscillate rather than grow and this feedback

cycle won’t run. This is why the MRI is usually considered as a weak-field instability.

The necessary conditions for the MRI to develop are the following:
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• differential rotation, with the angular velocity decreasing outwards (d⌦/dR < 0);

• presence of a weak poloidal magnetic field (i.e., a magnetic field component which points

in a direction normal to the rotation).

Analyzing the role of magnetic fields in a differentially rotating plasma is in general a

highly complex nonlinear problem that can only be treated by means of numerical simulations.

Anyway, this is usually a very challenging task for numerical MHD as well, due to the very high

resolution needed to resolve the MRI-modes which requires the use of massive computational

resources. This can be easily understood by having a look at an order-of-magnitude estimate for

the typical wavelength of these modes. In Ref. [33], they estimate the characteristic timescale

⌧

MRI

and the wavelength of the fastest growing mode �
MRI

, making use of a simple Newtonian

linear analysis [115], to be of the order of:

�

MRI

⇠ 3 cm
✓

⌦

4000 rad s�1

◆�1

✓
B

10

12 G

◆
, (6.1)

⌧

MRI

⇠ ⌦

�1 ⇠ 0.25ms
✓

⌦

4000 rad s�1

◆�1

. (6.2)

The characteristic timescale ⌧

MRI

is independent of the magnetic field strength and only de-

pends on the angular velocity, so it is supposed to have the same value for all the differently

magnetized models sharing the same initial matter configuration. Instead, �
MRI

is linear in

the magnetic field, so larger magnetic fields will result in longer MRI wavelengths. Of course,

when �

MRI

& R

e

, the characteristic length scale of the instability is comparable with the

equatorial radius of the star R
e

and so the development of the MRI will be inhibited. On the

contrary, when �

MRI

⌧ R

e

, the resolution will not be high enough to resolve it. That means

that a clear and definite detection of the effects of the MRI in 3D global numerical simulations

is indeed quite a challenging goal, due to the demanding computational requirements.

6.3 Search for non-axisymmetric MRI

It’s important to recall here that the estimates (6.1) - (6.2) have been computed from a linear

perturbation analysis of the Newtonian MHD equations for axisymmetric perturbations, which

can at best hold approximately only in the case of bar-stable models (i.e., S-models) or models

that are stabilized by the presence of the magnetic field (i.e., only highly magnetized U-models).

In all other cases, instead, the development of the bar-mode instability leads to a considerable
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deformation of the initial configuration, breaking axisymmetry, and so these estimates cannot

be fully trusted anymore.

The typical value of the angular velocity ⌦ appearing in Eq. (6.1) and (6.2) is 4000 rad

s�1. This can actually be considered as an approximate average value for the angular velocity

of our initial models (cf., Tab. 3.2), so we can expect as an order-of-magnitude estimate for

the timescale ⌧

MRI

⇠ 0.25 ms. Of course, the real value would be a little lower for model

S8, which is the fastest rotating model, than for model U13, which is the slowest rotating one.

The estimate of the characteristic wavelength, instead, is also dependent on the initial magnetic

field strength and so is different for each magnetized model. The magnetic field being equal,

we would expect �
MRI

to be about an order of magnitude higher than in Ref. [34], since the

angular velocity of the model they studied is ⌦
c

= 2⇡⇥ 7.0 ⇠ 44000 rad s�1, which is just an

order of magnitude higher than the average value for our models. For example, for one of our

stable models with a magnetic field B ⇠ 10

15 G we should expect �
MRI

⇠ 30 m.

Our analysis of the main points in favor and against the possibility that the MRI could ac-

tually develop in our models starts from Fig. 6.7, which suggests that U13 magnetized models

are the ones that show the most pronounced exponential growth of the total magnetic energy.

Therefore, we decided to perform many other simulations, in particular:

• seven more simulations of magnetized models, all having U13 as initial matter config-

uration but with many different initial magnetic field strengths between 10

11 and 10

14

G, at fixed resolution �x = 0.378 km (which is better than the one employed in all the

simulations reported in Chap. 4 and 5);

• five more simulations of model U13-1.0e14 at different resolutions between �x =

0.378 km and �x = 1.180 km;

These additional simulations were chosen with the specific aim of identifying particular

features that one would expect to observe if an MRI was acting during the evolution, and they

actually allow us to analyzed the evolution of the magnetic field at better resolution and in a

more accurate way.

In particular, in the upper-left panel of Fig. 6.8 we show the evolution of the square root

of the total magnetic energy Emag for six differently magnetized U13 models with initial mag-

netic field strengths between 10

12 and 10

14 G at fixed resolution, i.e., �x = 378 m. Clearly,

the initial slope of these curves is different for different values of the seed poloidal magnetic

field, being linear in it, as expected from theory. Later in the evolution, a sudden and rapid
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6.3 Search for non-axisymmetric MRI

Figure 6.8: Upper-left panel: evolution of the square root of the total magnetic energy Emag for
six differently magnetized U13 models with initial magnetic field strengths between 10

12 and 10

14

G, at fixed resolution. Upper-right panel: evolution of the square root of the total magnetic en-
ergy Emag, normalized to its initial value, for the same models as in the upper-right panel plus
U13-1.0e11. Lower-left panel: evolution of the square root of the total magnetic energy Emag

for model U13-1.0e14 at five different resolutions. Lower-right panel: evolution of the square
root of the total magnetic energy Emag, of its toroidal component Etor

mag

[Eq. (3.20)] and its poloidal
component Epol

mag

[Eq. (3.21)], all normalized to the initial value. A sudden increase can be ob-
served in correspondence with the bar-unstable phase, as can infer by looking at the time evolution
of the distortion parameter ⌘. A magnification of the first 2 ms of the evolution is shown in the
inset, to better appreciate the moment when the toroidal component overcomes the poloidal one.
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growth of the magnetic energy is observed, which is is higher for the most magnetized model

(i.e., , U13-1.0e14), while is barely visible for the least magnetized ones. If this growth was

actually due to an MRI, the characteristic wavelength �

MRI

would be linear in the magnetic

field and then modes corresponding to stronger fields would be easier to detect, allowing for a

full development of the instability. When weaker fields are acting, instead, �
MRI

would be too

short in respect to the resolution employed and so the effects of the MRI could not be captured,

or only partially captured, explaining the minor growth. In the upper-right panel of Fig. 6.8, we

show the evolution of the same quantity but normalized to its initial value, for the same models

plus U13-1.0e11. Clearly, for all these models the magnetic field shows the very same evo-

lution in the first 12 milliseconds, since this is due to the winding up of the magnetic field lines

and only depends on the differential rotation profile, which is the same for all models. Later

in the evolution, the growth time is clearly independent of the the magnetic field strength, just

as we would expect if the characteristic time scale was ⌧
MRI

[cf., Eq.(6.2)]. It’s important here

to note that after the initial linear growth and just before the sudden exponential growth, the

square root of the total magnetic energy has increased between 10 and 20 times above its initial

value. This implies that we should take into account this higher value, and not the initial one, in

order to get a more accurate estimate for �
MRI

. This is even more true if we think that an MRI

would actually act on the toroidal component (even if the presence of a poloidal component

is a necessary requirement), which is in fact much higher than the poloidal one at that time.

That means that for an initial purely poloidal magnetic field with strength 10

14 G we would get

�

MRI

⇠ 30�60m instead of 3 m, while for B ⇠ 5⇥10

14 we would get �
MRI

⇠ 150�300m.

In the lower-left panel of Fig. 6.8 we show the evolution of the square root of the total magnetic

energy Emag for model U13-1.0e14, the one who exhibits the most pronounced exponential

growth, at five different resolutions between �x = 0.378 km and �x = 1.180 km. It’s clearly

evident that this growth is resolution dependent, since the simulation performed at the highest

resolution shows the highest growth while the ones at much coarser resolutions show almost

no growth at all. Again, that would be consistent with the expectation that the higher is the

resolution, the more the MRI modes can be fully captured and their effects observed. Lastly, in

the lower-right panel of Fig. 6.8 we show the evolution of the square root of the total magnetic

energy Emag, of its toroidal component Etor

mag

[cf., Eq. (3.20)] and its poloidal component Epol

mag

[cf., Eq. (3.21)], all normalized to the initial value, in correspondence with the evolution of the

distortion parameter ⌘. We can clearly identify the time interval when the exponential growth

occurs with the matter-unstable phase, when the bar deformation starts to be considerable (⌘
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increases above a few percent) until it is suppressed. Here, the two components of the magnetic

energy are drawn separately. This let us realize that indeed the total magnetic energy is mainly

dominated by the toroidal part already after 1 ms of evolution, since the poloidal component is

almost constant until the bar-mode instability sets in. A magnification of the first 2 ms of the

evolution is shown in the inset, to better appreciate the moment when the toroidal component

overcomes the poloidal one.

The features presented in this Section allow us to make a list of the combined elements

that seem to support the suggestion that the exponential growth in the (toroidal) magnetic field

could be the result of the development of an MRI:

• the instability disappears with decreasing resolution (the smallest wavelength needs to

be properly resolved);

• the growth rate does not depend on the initial poloidal magnetic field (in the simplest

description the growth rate depends only on the local angular velocity);

• the exponential growth is followed by a rapid decay possibly caused by reconnection

processes (this behavior was also found in Ref. [34]);

• the exponential growth disappears for sufficiently strong magnetic fields (the bar-mode

deformation is no longer the lowest energy state energetically because of the large magnetic-

field contribution; besides, �
MRI

could be of the same order of the stellar radius and in

this case the development of the MRI will be inhibited).

However, the resolution employed in these finest resolution simulations (�x ' 380 m) is

considerably coarser than those employed in Ref. [34], and even if in our case we expect the

characteristic wavelength �

MRI

to be about an order of magnitude smaller, it is still difficult

to see the appearance of channel-flow structures typical of the MRI [116] and hence to make

robust measurements of the wavelengths of the fastest-growing modes.

Anyway, one important feature of models U11 and U13 is that they develop pronounced

bar-mode deformations (they are further away from the stability threshold in Fig. 5.1) and it

is therefore possible that these large deviations from axisymmetry act as an additional trigger,

favoring the development of the MRI1. This could explain why an exponential growth is seen
1We recall that the assumption of axisymmetry is a fundamental one in all perturbative calculations on the MRI

and that it is exactly the absence of axisymmetry that allows for the development of dynamos against the limitations
of the Cowling theorem [117].
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in these models despite the coarse resolution. Besides, when the toroidal magnetic compo-

nent dominates over the poloidal one, non-axisymmetric MRI modes are supposed to grow

much faster and with a much longer characteristic length-scale than that of the axisymmetric

MRI [118].

The above-mentioned exponential growth does not seem to be so pronounced in the dy-

namics of model U3 for all the different magnetizations considered (cf., the upper-right panel

of Fig. 6.7). Although the angular frequency of these models is larger than that of U11 and

U13 and hence the timescale for the development of the MRI ⌧MRI would be correspondingly

shorter (⌧MRI ⇠ ⌦

�1). The evolutions have been carried out on sufficiently long timescales

to allow for the potential appearance of the MRI. This behavior is indeed consistent with the

conjecture discussed above, since this class of models is very close to the threshold for the

development of the bar-mode instability. As a result, these models experience much smaller

bar-mode deformations and maintain a configuration which is more axisymmetric than those

found in models U11 and U13. Because these conditions are more similar to those assumed

by perturbative MRI analysis, the corresponding predictions are expected to be more accurate.

Hence, it is not surprising that almost no MRI is observed in this case simply because no MRI

can be seen for these quasi-axisymmetric objects at these resolutions.

Unexpectedly, a hinted exponential growth can be observed in the case of stable models

S7 and S8 (cf., the upper-left panel of Fig. 6.7), which are quite below the threshold for the

onset of the dynamical bar-mode instability and then develop no bar deformation, keeping an

axisymmetric configuration for the whole evolution. Anyway, a possible explanation to this

behavior could be related to the development of a shear-instability, which can be reasonably

expected in models with a much lower value of the instability parameter � than the threshold

for the onset of the dynamical bar-mode instability. This instability, if present, could maybe

act as an additional trigger for MRI modes to develop, even if the connection between this two

phenomena is just a working hypothesis, up to now.

That being said, the MRI is not the only process that would lead to an exponential growth

of the magnetic field and, indeed, there is a number of instabilities that can develop in mag-

netized differentially rotating fluids [119]. For example, the exponentially growing bar-mode

deformation could cause sharp increases in local shear and hence an exponential amplification

in the magnetic energy. Clearly, additional simulations at even higher resolutions are required

to further clarify this point. Indeed, this will be the subject of a future work, which is already

ongoing.
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We have presented an extensive study of the dynamical bar-mode instability in differentially

rotating and magnetized NSs in full general relativity and investigated how the presence of

magnetic fields affects the onset and the development of the instability. In order to do that, we

have performed 3D ideal-MHD simulations of a large number of stellar models that were al-

ready studied in the absence of magnetic fields [10, 11, 37], by adding an initial purely poloidal

magnetic field with strengths between 10

11 and 10

16 G. In this way, we were able to explore

quite extensively the parameter space (�, �

mag

) from � = 0.1886 to 0.2812, determining a

threshold for the onset of the instability both in terms of the rotation parameter � = T/|W |
and of the magnetization parameter �

mag

= Emag/(T+|W |) for each initial matter equilibrium

configuration.

We have started our investigation by considering initial stellar models that are bar-mode

stable in the absence of magnetic fields. While these are comparatively simpler configurations,

the magnetic fields can provide structural changes if sufficiently strong. More specifically,

for magnetic fields & 10

16 G, the stellar models are braked considerably in their rotation and

evolve into configurations that have uniformly rotating extended cores with large rest-mass

densities when compared to the initial values. On the contrary, weaker magnetic fields do not

show any significant effect on the evolution of stable models.

When considering initial stellar models that are bar-mode unstable in the absence of mag-

netic fields, no effects are present on the dynamics of the bar-mode deformation for initial

poloidal magnetic fields whose strength is ⌧ 10

15 G, with the exact threshold depending on

the rotational properties and being higher for slower rotating models. This is not particularly

surprising given that in these cases the magnetic energy, even the one produced via magnetic-

field shearing, is only a small contribution to the total energy of the system. For stronger initial

magnetic fields, the corrections introduced by the magnetic tension become quite large. In par-

ticular, below a critical �
mag

, the development of the instability is modified, showing growth
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rates and bar-mode distortions that become smaller with increasing magnetic fields. Above a

critical �
mag

, on the other hand, the instability is totally suppressed as the enormous magnetic

tension cannot be overcome by the differential rotation. Under these conditions, the star sheds

its outer layers leading to an extended, axisymmetric object with a high, uniform-density core

and a low-density, slowly rotating envelope.

On the basis of the phenomenology discussed above, and after carrying-out a large num-

ber of simulations, we were able to locate in the (�, �

mag

) diagram the region in which the

values of the rotational and magnetic energies are sufficient to give rise to the development a

dynamical bar-mode instability. In this sense, our study confirms the Newtonian results of [20]

and extends them to a general-relativistic framework and to a more generic range of initial

conditions. Moreover, our previous work on the effects of magnetic fields on the dynamical

bar-mode instability [38, 39] has been extended, providing a more detailed and accurate de-

scription on the different phases of the evolution of both bar-stable and bar-unstable stellar

models.

In all cases considered, the differential rotation shears the poloidal magnetic field, gener-

ating a toroidal component that grows linearly in time, and which soon provides the largest

contribution to the total electromagnetic energy on a timescale of the order of 1 ms. At later

times, this growth starts deviating from the linear behavior and the magnetic tension produced

by the very large magnetic-field winding alters the angular velocity profile of the star. A sud-

den exponential growth of the toroidal component of the magnetic field is observed during the

matter-unstable phase of the evolution of bar-unstable models, resembling the evolution de-

scribed in Ref. [34]. This feature in the dynamics was first observed in [38, 39], therefore in

the present Thesis we tried to get a deeper insight on the possible development of the MRI in

bar-unstable models by performing a number of additional simulations with a finer resolution,

focusing our attention on the evolution of the most bar-unstable model, namely U13. Actu-

ally, we were able to recognize some of the typical features one would expect in the case of

an MRI acting on the evolved stellar models. We provided a possible explanation for these

observations, involving the growth of non-axisymmetric MRI modes which could be triggered

by the deformation due to the onset of the matter instability. Nevertheless, the resolution of

these more accurate simulations is still much coarser than the one employed in Ref. [34], and

then a deeper and more extended analysis of this topic has not been feasible by the time of the

present Thesis, mainly due to computational limitations.
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As a final remark we note that although we have restricted our attention to a simplified

EOS, our results also point out that it is unlikely that very highly magnetized NSs can develop

the dynamical bar-mode instability and hence be considered as strong sources of GWs, and that

the magnetic field can undergo an amplification of about an order of magnitude in the initial

phase of the evolution due to differential rotation, and of a further factor of 5 due to the onset

of the dynamical bar-mode instability.
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tato tutte le mie crisi e lamentele porgendo l’altra guancia, da buon cattolico, l’uno e contrat-
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che avete fatto per me. Vi voglio bene.

89



APPENDIX

90



Appendix

The WhyskyMHD code employed in this Thesis has been tested in a number of different sce-

narios and its accuracy has already been explicitly reported in various works [24, 92, 93].

Nevertheless, we have performed additional tests to check that the specific settings we used are

sufficient to capture the main properties of the evolved systems.

The role of symmetries

As discussed in Sect. 3.1, all of the results presented here about the dynamics of the bar-

mode instability in magnetized relativistic stars were achieved with a spatial resolution �x =

0.375M� ' 0.550 km on the finest grid and exploiting a “bitant symmetry”, i.e., a reflection

symmetry with respect to the (x, y) plane. While this choice obviously reduces the computa-

tional costs by a factor two, it is important to verify that it does not introduce systematic effects

and that all the results would be unchanged if this symmetry was suppressed. For this purpose,

we have evolved the bar-mode unstable model U11 when threaded by an initially moderate

magnetic field, i.e., model U11-1.0e15, both when imposing the bitant symmetry and when

evolving the equations in the full domain. In Fig. 6.9 we report the evolution of the distortion

parameters ⌘
+

(top panel) and ⌘ (bottom panel) for model U11-1.0e15. In particular, the fig-

ure offers a comparison between a simulation using the bitant symmetry (red dot-dashed line)

and one using the full domain (black solid line), both performed at the reference resolution of

�x = 0.550 km on the finest grid. Clearly, no significant differences can be observed between

the two cases during the first 25 ms of evolution, and so no spurious or unphysical effects due

to the imposed symmetry were introduced. The same conclusion holds for all quantities related

to the magnetic field, since they have been also monitored. This result fully justifies our choice

to perform all the simulations presented here imposing bitant symmetry.
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Figure 6.9: Evolution of the rotation parameter � (top panel) and of the distortion parameters ⌘
+

(middle panel) and ⌘ (bottom panel) for model U11-1.0e15 when imposing a bitant symmetry
(black solid line) or when using the full domain (red dot-dashed line).

The role of resolution and convergence

Furthermore, we have performed a few simulations of the same model varying the resolution of

more than a factor of two, that is, with the finest grid having resolutions between �x = 0.370

km and 0.920 km.

For all these runs we computed the growth rate, ⌧
bar

, and the frequency, fbar, of the bar-

mode instability. The results of this extensive series of tests are reported in Table 6.1) and

show that these quantities do not depend on resolution within the accuracy of our estimate.

Hence, we conclude that all of the results have been achieved at sufficient resolution to extract

physically significant information.

Determining the convergence properties of our simulations is of course an essential val-

idation of the results presented and a considerable effort has been put into performing these

measures within the numerical setup used here. Lacking an analytic solution that describes the

fully nonlinear development of the bar, we can only perform self-convergence tests at this stage.

However, there is a regime in our calculations in which we can exploit the knowledge of an

analytic solution and this refers to the initial shearing of the poloidal magnetic field by the dif-
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Figure 6.10: Initial growth of the square root of the toroidal component of the magnetic energy
E

tor

mag

[Eq. (3.20)] for different resolutions of the finest grid. The reference resolution, �x ' 0.550

km, is shown with a black solid line. The inset shows instead the growth rate � as a function of the
resolution and its fit with a quadratic function (dashed line). Note that the expected value � = 1 is
approached in the limit of �x ! 0.

�x �x symmetry ⌘max ⌧bar fbar

[M�] [km] symmetry [ms] [Hz]
0.250 0.370 bitant 0.743 1.15

+0.01

�0.01

491

+1

�1

0.350 0.445 bitant 0.746 1.16

+0.03

�0.03

492

+1

�1

0.375 0.520 bitant 0.751 1.17

+0.04

�0.05

491

+2

�4

0.375 0.520 full 0.753 1.14

+0.01

�0.01

490

+3

�2

0.450 0.665 bitant 0.745 1.18

+0.03

�0.05

489

+2

�2

0.540 0.800 bitant 0.754 1.19

+0.05

�0.05

487

+3

�5

0.625 0.920 bitant 0.743 1.20

+0.11

�0.05

484

+2

�7

Table 6.1: Main properties of the bar-mode instability for model U11-1.0e15 at different res-
olutions. Here we report the resolution in terms of solar masses and kilometers, the symmetry
we imposed to the computational domain, the maximum value of the distortion parameter ⌘, the
growth times ⌧bar and the frequencies fbar of the bar-mode deformation.
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ferentially rotating star. It is in fact not difficult to show that within an ideal-MHD framework

the induction equation predicts a growth of the toroidal magnetic field which is linear in time

(see, for instance, [120] for a pedagogic presentation of the perturbed induction equation). To

explore this regime we have performed a large number of simulations of model U11-1.0e15

with varying resolution and monitored the growth of the square root of the toroidal magnetic

energy E

tor

mag

[cf., Eq. (3.20]; we recall that the poloidal magnetic field is not expected to grow

during this stage (cf., Sect. 6).

Figure 6.10 reports the results of these simulations relatively to the first ⇠ 7 ms, with

different curves referring to different resolutions. It is then evident that the curves are getting

closer and closer to straight lines as the resolution increases. To measure whether a linear-

in-time-growth is actually reached we have actually computed the growth rate “�” by fitting

the square root of the magnetic energy with a trial function which is a power-law in time with

undetermined growth rate, i.e., with

q
E

tor

mag

(t) = y(t) = y

0

+mt

�

, (6.3)

where the time interval has been selected to be between 0.2 to 5 ms.

Also reported in the inset of Fig. 6.10 are the values of � (colored symbols) as a function

of the resolution �x, as well as a fit for �(�x) (dashed line) when assuming a second-order

convergence with resolution, i.e., assuming �(�x) = �|
�x=0

+ k�x

2 (the point for �x =

0.920 km has been excluded from the fit). Having made this assumption, we do find that

the growth rate is in very good agreement with the one expected in this linear regime, with

�|
�x=0

= 1 ± 0.005. Of course this result does not prove directly that we have second-order

convergence over this period of time. However, what it does prove is that if a second-order

convergence is assumed, then our solution matches the expected perturbative one.

Next we consider a more general calculation of the convergence order by performing again

simulations of model U11-1.0e15 for a range of resolutions. This time our results for the

convergence are obtained by taking into account the data corresponding to the whole timescale

of the simulations, i.e., ⇠ 25 ms. Also in this case we monitor the growth of the toroidal

magnetic energy E

tor

mag

and report in the top panel of Fig. 6.11 its evolution for three runs at

resolutions: �x = 0.370, 0.550, and 0.665 km, respectively. The bottom panel of the same

figure reports instead the convergence order �
c

, computed via a self-convergence test [105],

when shown as a function of time.
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Figure 6.11: Top panel: evolution of the toroidal component of the magnetic energy E

tor

mag

for three
different resolutions. Bottom panel: order of the self-convergence test, �c, shown as a function of
time. Note that a convergence order around 2 is measured before the bar-mode instability develops
and shocks are produced (gray-shaded area).

In this case it is then possible to recognize that the code does indeed converge at around sec-

ond order during the linear growth stage (i.e., for t . 5 ms), in agreement with the results found

in purely hydrodynamical simulations [121], or with the new resistive code [40]. However, as

the bar-mode instability develops, the second-order convergence is lost and the convergence

order reduces to one. This is not surprising as the development of the bar also leads to the

formation of shocks, which necessarily degrade our solution to a first-order convergence. We

also note that the large variations in the convergence order shown in the gray-shaded area of

Fig. 6.11 (i.e., for t & 18 ms) are simply the consequence of the fact that the instability starts

growing at different times for different resolutions and this inevitably leads to large excursions

in �

c

. Because all the major considerations made about the onset and development of the bar

deformation, as well as the estimates for the growth rates and frequencies, are obtained after

looking at the first 20 ms of the evolution, we conclude that all of our results have been achieved

with solutions converging at the expected rates.
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An extensive view on the evolution U11 magnetized models

In the following few pages, we report quite an extensive view on the dynamics of almost all

magnetized models of the U11 sequence, both regarding the evolution of matter and of the

magnetic field. In particular, from top to bottom, the four panels show for each model:

• the time evolution of the total magnetic energy Emag, of its toroidal component Etor

mag

[Eq. (3.20)] and its poloidal component Epol

mag

[Eq. (3.21)], all normalized to the total

(i.e., poloidal) initial value;

• the time evolution of the distortion parameter ⌘
+

;

• the time evolution of the distortion parameter ⌘;

• the time evolution of the instability parameter �.

Moreover, for all bar-unstable models, two red dot-dashed vertical lines mark the interval in

which the distortion ⌘ ranges from 1% of the maximum and the maximum itself, i.e., the

matter-unstable phase.
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Figure 6.12: Dynamics of model U11-5.0e13.
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Figure 6.13: Dynamics of model U11-1.0e14.
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Figure 6.14: Dynamics of model U11-2.0e14.
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Figure 6.15: Dynamics of model U11-1.0e15.
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Figure 6.16: Dynamics of model U11-1.4e15.
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Figure 6.17: Dynamics of model U11-1.6e15.
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Figure 6.18: Dynamics of model U11-1.8e15.
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Figure 6.19: Dynamics of model U11-2.0e15.
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Figure 6.20: Dynamics of model U11-4.0e15.
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Figure 6.21: Dynamics of model U11-1.0e16.
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