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Abstract

Nature based computational models are usually inhereatigllel. The collaborative

intelligence in those models emerges from the simultanewiigiction processing by
simple independent units (neurons, ants, swarm membexs,).etThis dissertation

investigates the benefits of such parallel models in termeffaiiency and accuracy.
First, the viability of a parallel implementation of biosipired metaheuristics for func-
tion optimization on consumer-level graphic cards is sddn detail. Then, in an

effort to expose those parallel methods to the research comntynthe metaheuristic

implementations were abstracted and grouped in an opecesparameter/function

optimization librarylibCudaOptimize The library was verified against a well known
benchmark for mathematical function minimization, andved significant gains in

both execution time and minimization accuracy. Crossingemoto the application

side, a parallel model of the human neocortex was developki$. model is able to

detect, classify, and predict patterns in time-series ghatan unsupervised way. Fi-
nally, libCudaOptimize was used to find the best parameterthfs neocortex model,
adapting it to gesture recognition within publicly avaibatasets.






Chapter 1
Introduction

Why are bio-inspired methods good models for intelligenth& answer to this ques-
tion lies in the difference between bio-inspired compuotaand classical Atrtificial In-
telligence (Al). In traditional Al, the programmer has detknowledge, and encodes
the intelligent behavior within the system from above. Caakther hand, bio-inspired
methods follow a bottom-up approach. In most cases of tspHed models, they
consist of a set of individuals/organisms, each applyingrke set of rules, for a
number of iterations or generations. A complex behaviagesrifrom the collective
basic individual’s actions, accumulated after rule aggtlan cycles. Such a model is
in accordance with the evolutionary approach to learninggne the simple rules are
selection, combination/reproduction, and mutation, thewaugh millions of years re-
sulted in extremely complex structures and creatures.sktiechnical terms, the most
obvious reason to use nature-based methods is that we kmmowgeierything around
us, that they actually work.

Bio-inspired methods include, but are not limited to, Genéigorithms (GA),
Artificial Neural Networks (ANN), Ant Colony OptimizationrACO), Artificial Life
(ALife), and Swarm Intelligence (SI) approaches. As spedifabove, using any of
these methods entails the simulation of a group of instbagbrocessing units, run-
ning for several iterations, which in turn limits the applidlity of these approaches,
because of the required computational load. This reasongalith the fact that they
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are decentralized methods, makes bio-inspired algorigwosllent candidates for par-
allelization. As far as we are concerned in this study, wegmeparallel instances of
the Sl algorithms, which are used for real-valued parametgémation and function
optimization. Another aspect that is of great interest @ althors is the real-time
detection of patterns or anomalies in time series data Yigeo0s, range sensor data,
audio, etc...). Here, this is achieved through a new paiali@ementation of a neural
model that is called Hierarchical Quilted Self Organizingpd (HQSOM). One of the
main contributions of this research is employing functignimization techniques to
evolve variants of the HQSOM that can adapt to the pattessiflaation task, regard-
less of the dataset nature.

The term function or mathematical optimization may soural technical to the
unfamiliar reader. However, optimization is rather widelsed in real life applica-
tions. It is defined as trying to find a set of values to varighte parameters, of a
function that give the maximum or minimum output (“objeetifunction” or, when
evolutionary computing algorithms are considered, “fismgsiction”). For example,
let us say you want to buy a new house, and for simplicity psegplet us also say
you are considering two factors only when searching for ymw home: house area,
and neighborhood. Surely, you would want to pay as littleassible. In this case, we
can consider this decision as a two-dimensional functiagmopation problem, a two-
dimensional minimization to be more precise. The functiaremeters/dimensions are
area, and neighborhood, while its output/fitness is priqainmiization methods are de-
signed to deal with such problems, to find good values foruhetion parameters that
give the optimal (or near optimal) fitness. Optimization $&d in many applications,
from different fields, ranging from engineering and aeragpadesign optimization, to
economics and operations research.

Real-time pattern detection and understanding in multamhedvironments is be-
coming paramount to applications from different fields. @w#tic surveillance sys-
tems and assisted-living homes will benefit from researctedio areas such as human
activity classification and object detection, usually imitg temporal sequences from
video cameras or other wearable sensors. Gesture and ecmgnition can be useful



for human robot interaction systems, sign language intesaand even gaming. For-
tunately, the video games industry currently fuels a hugeketapushing innovation
in the design and manufacturing process of graphic cardgwuitive gaming console
controllers. The project at hand is more specifically irdtgd in nVIDIAs CUDA
parallel programming framework, in addition to the inciagl/ popular Microsoft
Kinect™sensor.

The rest of this work is organized into four sections. Chaptaovides an overview
of the literature, and terms used throughout the dissertatt presents the notion of
metaheuristics, explaining in detail the three methoddempented, in addition to the
Memory Prediction Framework (MPF), on which the HQSOM madegnvisioned.
The parallel programming framework that supports all thehogs implemented is
also presented in this chapter. In Chapter 3, we expand aotieept of parallel meta-
heuristics, providing implementation details on the alctlgorithms, and the open
source library used in this project. Testing on a benchmérketl known mathemat-
ical functions, results are shown in terms of convergenciéofunction minimum,
speedup gain compared to a sequential method, an assesdnttemparallelism po-
tential of each metaheuristic, and finally, on a case study refal-world application.
The HQSOM model for pattern detection and classificationres@nted in Chapter
4. The basic building model of the HQSOM is the Self-Orgamgzaviap (SOM) algo-
rithm. There are several variants of this algorithm, to adajo clustering different
kinds of data. We will explain the SOM algorithm, the modifioas made to it, and
the datasets used to verify correctness of the model. Gh&pteroduces the novel
technique of finding a good parameter set for the HQSOM thraygimization by
metaheuristics, effectively decoupling the classifienfrime modality and properties
of the dataset. Finally, Chapters 6 and 7 include some fimarks and a discussion
about possible future developments.






Chapter 2
Background

In this chapter we review the key concepts required to utaedshe research project
at hand. The motivation behind using metaheuristics fotinoanus optimization is
provided below, giving more attention to the three bio-insghoptimization techniques
implemented to execute in parallel. Moving on to a seemimfiffierent subject, the
chapter continues with the biological and theoreticaldatihe HQSOM model, using
a similar approach to explain the requirements for such isodastly, the final section
describes the programming environment CUDA by nVIDIA, witkvhich we have
developed and implemented our methods, to help the readedgrstanding of the
implementation choices which will be described further on.

Although the following sections may appear unrelated toreéeder, upcoming
chapters will provide the common ground where those diffesebfields of research
come together in a single application.

2.1 Metaheuristics

A heuristic search method is the one that uses specific kilg@wlabout a problem to
find the solution. As for metaheuristics, they are a familglgbrithms that are mainly
used as global search methods for function optimizationtaNeuristics do not use
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problem-specific knowledge, but they make assumptionstaheyproblem class and
good solution locations (fitness landscape). Therefoigyittually impossible to find
a metaheuristic that can solve all kinds of optimizationgbens [1]. Metaheuristics
are usually stochastic methods, starting with randomlysehdeasible solutions, then
selecting the best one(s) as a guide for future algorithratitns. This random com-
ponent of metaheuristics make them non-deterministic agsthwhich in turn does
not guarantee optimality. However, they are less comprtatly complex than exact
methods. Moreover, in practice, they are known to find netingb solutions in very
few iterations (fast convergence).

Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a bio-inspired optiation algorithm intro-
duced by Kennedy and Eberhart [2]. Itis based on the sinmnati the social behavior
of bird flocks. In the last fifteen years PSO has been appliedviery large variety of
problems|[3] and many variants of the original algorithménaeen proposed|[4].

During the execution of PSO, a set of particles moves withiaretion domain
searching for the optimum of the function (best fitness Valdde motion of the'”
(¢ = 1,N,) particle can be described by the following two simple emunst which
regulate the particle’s position and velocity:

vi(t) = w-u(t—1)

ci -rand(0,1) - (BP, — P,(t — 1))
¢ -rand(0,1) - (BGP — P(t — 1))
Bt = 1) +ui(t)

-+

Pi(t)

wherev;(t) andP;(t) are respectively the velocity and position of the partinlthie
present iteratior;;, ¢, andw (inertia factor) are positive constantsnd(l, u) returns
random values uniformly distributed jh u|, BP; is the best-fitness position visited so
far by the particle. In the basic algorithm “global-best PSBG P is the best-fitness
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position visited so far by any particle of the swarm. In saVgariants, termed “local-
best PSO”, the swarm is subdivided into particle neighbodsowvhich can assume
different topologies. In that casB8G P becomed3G P; and represents the best-fitness
position visited so far by any particle in thi& particle’s neighborhood. Among the
possible neighborhoods, the ring-shaped one is partlgufgteresting for its simple
implementation, as well as for the role it may play in optimgthe efficiency of PSO
parallelization[[5] and even, sometimes, for the improvenoé convergence speed [6]
it may bring.

Formally, let f(P) be the fitness function under optimization (to be minimized)
whereP = [py,p2,-- -, pp| is a candidate solution in the form of a real valued vector
of size D = the problem dimension, arldandu; are the lower and upper bounds of
thei*" dimension, respectively.

The basic PSO algorithm is then defined as:

for each patricleP; do
for each dimensiod < 1, D do
P;[d] + rand(ly, uq)
Vild] <= rand(—|uqg — lql, |uqg — la])
BPF[d] < Pi[d]
end for
if f(P;) < f(BGP) then
BGP + P,
end if
end for
while termination criteria is not meto
for each patricleP; do
for each dimensiod <— 1, D do
rp < rand(0, 1)
rg <= rand(0, 1)
Vild] <= wV;[d] + e1rp, BR;[d] + cory BGPi[d]
Py[d] < Pi[d] + Vi[d]
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end for
if f(P,) < f(BP,) then
BP; + P,
if f(P;) < f(BGP)then
BGP + P,
end if
end if
end for
end while

At the end of the PSO algorith@@G P will hold the best found solution.

Differential Evolution

Differential Evolution (DE), first introduced by Storn andd® [7], has recently been
one of the most successful Evolutionary Algorithms for gllbbontinuous optimiza-
tion, especially when the function to be optimized is mutidal and non-separablée [8].
Unlike traditional EAs, DE perturbs the individuals of therent generation by the
scaled differences of other randomly-selected and disitiaividuals. Therefore, no
separate probability distribution has to be used for gemegrahe offspring([9]. This
way, in the first iterations the population members are widehttered in the search
space and possess great exploration ability. During opétiun, the individuals tend
to concentrate in the regions of the search space with bethees, so the search auto-
matically focuses onto the most promising aréas [10].

In DE, new individuals that will be part of the next generatere created by com-
bining individuals that are already members of the curreputation. Every individual
acts as a parent vector and, for each of them, a donor vectoeased. In the basic
version of DE, the donor vector for thi& parent (X;) is generated by combining three
random and distinct individualX’,;, X,» and X,s;. The donor vecto¥ is calculated
by what is called mutation of difference vectors as follows:
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‘/i - Xrl + F- (Xr2 - Xr3)

whereF’ (scale factor) is a parameter that strongly influences DEffopmances
and typically lies in the intervdl.4, 1]. Recently, several mutation strategies have
been applied to DE, experimenting with different base vacémd different numbers
of vectors for perturbations. For example, the original odt explained above is
called DE/rand/1, which means that the first element of theodwector equatiorX .,
is randomly chosen and only one difference vector (in oue égs — X,3) is added.
After mutation, every parent-donor pair generates a cliildl, called trial vector, by
means of a crossover operation.

U Vij if (rand(0,1) < C, Or j = jrana)
" X;,; otherwise

As described in the above equation, tffecomponent/dimension of th& donor
vector is obtained by means of uniform (binomial) crosspwiereC.. is the crossover
rate, andj,.,.q is a randomly selected dimension. The newly-generatediohehl U;
is evaluated by comparing its fitness to its parent’s fith@bg best survives and will
be part of the next generation.

DE shares some features with swarm intelligence technjguamly related with
the interaction among particles and the selection schempatiticular, both DE and
PSO are stochastic, population based, real-valued aigmsitand designed for chal-
lenging continuous optimization problems (non-differebte, nonlinear and/or mul-
timodal functions) using few control parameters. DE camw &le considered as an
Evolutionary Algorithm (EA), but differs from tradition&A algorithms in the aspect
of generating new vectors by adding the weighted differemaor between two pop-
ulation members to a third member.

The basic DE algorithm, with random mutation and binomialssover, can then be
described as follows:
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for each candidate solutioN;, i < 1, N do
for each dimensiod < 1, D do
X;[d] « rand(ly, uq)
end for
end for
while termination criteria is not meto
for each candidate solutiak;, i + 1, V do
rl<r2<r3<+1
while r1, r2, r3 and: are not mutually exclusive integeds
rl < rand(1, N)
r2 < rand(1, N)
r3 < rand(1, N)
end while
j < rand(1, D)
for each dimensiod <— 1, D do
if d=jVrand(0,1) < C, then
Uild] <= X [d] + F(Xy2[d] — X;s[d])
else
Ui[d] < X;[d]
end if
end for
if f(U;) < f(X;)then
X; < U;
end if
end for
end while

The best candidate solution of the final generation is thedyesall found solution.
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Scatter Search

Scatter Search (SS), originally proposed by Glover [11jaised on a systematic com-
bination between solutions (instead of a randomized onasaally happens in EAS)
taken from a considerably reduced evolved pool of solutrarmeed the reference set
(usually between five and ten times lower than typical EA pafon sizes). SS is
composed of 5 structural “blocks” or methods:

1. Diversification Generation: a population of solutiafdgs built with a certain
degree of quality and diversity. The referenceBé$ then drawn fronP, and it
is composed of thgR, | solutions with best fitness and the,| solutions with the
maximum euclidean distance to the reference set; the éwnlptocess works
only overR;

2. Improvement: to obtain quality solutions, an improvetmaethod is applied to
original solutions and/or combined solutions (usuallyacdl search”);

3. Reference Set Update: once a new solution is obtainedy{agphe combina-
tion method) it replaces the worst solution in R only if it iroges the quality of
the reference set (in terms of fitness and/or diversity);

4. Solution Combination: in most of the problems a speciflatsmn combination
method is needed, and it can be selectively applied anding wuandom ele-
ments. In many cases an existing GA crossover operator camployed,;

5. Subset Generation: the procedure generates subsetgfroma deterministic
way, to which the combination method is applied. These coatlins can be
made considering pairs, triplets,. . ..

Since SS is only a template for constructing many varianthefalgorithm, the
procedure for implementing it is not composed of concreteheraatical steps, rather
it consists of guidelines on how to use its building blockke Basic SS algorithm was
outlined in [12] as follows:
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© 9o N 2 g kA

10:
11:
12:
13:
14:
15:
16:
17:
18:

Start withP = (). Use the diversification generatiamethod to construct a solution

and apply the improvementethod. Letr be the resulting solution. lf ¢ P then
addzx to P (i.e. P = P U z), otherwise, discard.

Repeat step 1 untjP| = N

Use the reference set updatesthod to buildRefSet = {1, xq,- -, 2} With
bestb solutions inP. Order the solutions iRe fSet according to their fitness,

such thatr, is the best solution, and, the worst.
NewSolutions < TRUFE
while NewSolutions do
GenerateVewSubsets with the subset generationethod.
NewSolutions < FALSFE
while NewSubsets # () do
Select the next subsein NewSubsets

Apply the solutioncombination method tos to obtain the trial solutions.
Apply the improvemeninethod to the trial solutions.
Apply the reference set updateethod.
if RefSet has changethen
NewSolutions < TRUFE
end if
Deletes from NewSubsets

end while
end while

Solis&Wets local search

Here we use Solis&Wets local search |[13] as the improvemesihod of Scatter
Search. Solis&Wets method is a randomized hill-climbehwdiaptive step size. Each

step starts at a point. A perturbationdif is randomly chosen from a Gaussian dis-

tribution with standard deviatiop, for each problem dimension. If either+ dif or

x — di f has a better fitness thana move to the best point is performed and a success

is recorded, otherwise the position does not change antlagfas recorded. AfteV+
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consecutive successgss increased, for getting faster to the local optima, whitera
N~ failures in a rowp is consequently decreased.

A single run of the Solis&Wets algorithm for a candidate $iolni: is described below:

function SOLISWETS(x, D, bias, p)
numFEval < 0
numSuccess < 0
numFailed < 0
while numFEval < maxzFEval do
fori <« 1,Ddo
difli] < randGaussian(0, p)
end for
xp < x + bias + di f
if f(zp) < f(z) then
T4 xp
bias < 0.2 x bias + 0.4 x (dif + bias)
numsSucess < numSuccess + 1
numFailed < 0
else
xp < x — bias — dif
if f(xp) < f(z)then
T 4= ap
bias < bias — 0.4 x (dif + bias)
numdSucess < numSuccess + 1
numFailed < 0
else
numFailed < numFailed + 1
numSucess < (
end if
end if
if numSucess > NT then
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p=2p
numsSucess < 0
else ifnumFailed > N~ then
p < p/2
numFailed < 0
end if
numEval < numFEval 4+ 1
end while
end function
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2.2 The Neocortex

The cerebral cortex is the folded outer layer of the human raachmalian brains.
Anatomically, it is composed of a thin layer (2 to 4 millimegén thickness) of neural
tissue, and covers the cerebrum, which is divided into twtices, the left and right
cerebral hemispheres. It is usually referred tgey matter because of the neuronal
cell bodies and blood capillaries that run through it, mgktrdarker than the underly-
ing white matterareas, that is the complex network of neuronal axon bundiesrve
cell endings, that connect parts of the cerebral cortex¢h ether, and other parts of
the central nervous system.

The neocortex, also called the isocortex and neopalliutihesiewest part of the
cerebral cortex to evolve (hence the Latin prefeg. The ratio of the size of the neo-
cortex to the total size of the brain is thought to correlatié intelligence of a species.
In humans, the neocortex is 90% of the cerebral cortex. hvislved in higher brain
functions, such as perception of sensory information, nmgnspatial reasoning, lan-
guage, and conscious thought. The neocortex is dividednomtal, parietal, occipital,
and temporal lobes, each performing a different functiee,Biguré ZJ1.

PARIETAL LOBE

FRONTAL
LoBE OcciPITAL

LoBE

Figure 2.1: The Neocortex lobes
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The neocortex is made up of layers, interconnected withféeedrd and feedback
connections. Lower-level layers detect simple featurassimg them to higher levels
that build associations of those features forming invdrédostract representations of
a concept. For a more concrete example, let us consider tloegsing of visual in-
formation. In the primary visual cortex (part of the occapilobe), the lowest level
of neurons, known as V1, respond to low-level visual feausech as horizontal and
vertical lines. Information from V1 is passed to higher le &2, V4, and V5), where
some levels are more linked to motion, while others are mesipte for storing long-
term memory of object representations; this process istithied in Figuré 2]2 for the
face recognition task. On the other hand, feedback cororecfrom higher levels to
lower levels provide predictions for the currently sensealttires based on previous
experience/memory.

PFC

AIT

Figure 2.2: Face Recognition in the Visual Cortex [14]
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Recent breakthroughs in the fields of neuroscience anditumattmagnetic reso-
nance imaging have drawn attention to the role of the reteosgl cortex (part of the
temporal lobe) in recognizing the familiarity of a persamespective of the stimulus
modality [15]. In other terms, during the task of distinguisy people known to a
subject, the flow of information through the neocortex appede similar, whether
the subject is presented with either faces or voices. Expgrah these findings, Jeff
Hawkins proposed a computational model of the neocortexMbBmory-Prediction
Framework (MPF), for identifying, clustering, and predictpatterns in any modality
of temporal signals [16], (i.e. videos, audio, stock madeadh, etc...).

Memory Prediction Framework

The MPF is inspired by the structure explained in the previsection, where the
basic unit comprising each level should perform both spatid temporal pooling or
clustering. Only the first level deals with the sensory infation from the input signal,
effectively decoupling the model from the modality of thgrsl. On the practical side,
George and Hawkins describe their implementation of the MiRFHTM [17], which
is a Bayesian network with layers arranged in a tree-shapdrbhy (Figuré 2]3),
based on the spatial correlations of the input data.

Level 0 Image 32x32 pixels
8x8 subregions
— 1 1]
Level 1 e e A
4x4 subregions || | ]
Level 2 4 B I
1 subregion ]
||
—
m
‘_-‘“""'--.____ _-‘_—"""“--.___‘_
[
= Tt _ =
~ { s ‘---..i__ﬂ.—--
4 — T T
| ] L. J.d
jl :‘

Figure 2.3: HTM Structure [18]
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As shown in Figuré 213, the lower-level layers of the HTM espond to regions in
the neocortex (V1 in the visual cortex) while, at the top, Hfl& one output node, or
neuron, that may play a similar role to the task of the Hippagas in the mammalian
brain. Although the time aspect is crucial in the MPF modelotly, the HTM was
only tested for stationary binary object recognition. Ali@M suffers from the lack
of feedback connections from higher to lower levels of itsvoeks, which contradicts
with the biological and theoretical model of the neocortaxd deprive the HTM from
pattern-prediction capabilities. Moreover, the Bayesiasis of the HTM complicates
dissecting and debugging the model during the training @h&sthis work, we will
try to address these shortcomings or provide future saiatior them.

2.3 General-Purpose GPU Programming

Modern graphics hardware has gained an important role imitha of parallel com-
puting. Graphic cards have been used in 3D graphics applisadnd gaming but, re-
cently, they have also been more and more frequently useztedemate numeric com-
putation, in what is usually called general-purpose GPUGB8B) programming [19].
The main advantage of using GPUs lies in their structurelendtandard CPUs usu-
ally contain a handful of complex computational cores, mgnregisters and large
cache memory, GPUs contain up to several hundreds of cooeped into so-called
multiprocessors, organized such that each ALU of a multigssor executes the same
operations on different data, stored in registers or deviemory. In contrast with stan-
dard CPUs, which can reschedule operations (out-of-orckrugion), current GPUs
are an example of an in-order architecture, but this dralvban be overcome by their
massive parallelism, as described by Hager et al. [20], whemproblem to be solved
fits their features well.
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NVIDIA GPU Architecture

From a hardware viewpoint, a GPU compatible with CUDA (Cotepunified Dis-
tributed Architecture) is made up of a scalable array of itiutaded Streaming Mul-
tiprocessors (SMs), each of which is able to execute setlaedd blocks at the same
time. Each SM embeds eight scalar processing cores andipgpegluwith a number of
fast 32-bit registers, a parallel data cache shared amoaograk, a read-only constant
cache and a read-only texture cache accessed via a texititbatrprovides several
different addressing/filtering modes. In addition, SMs eacess local and global
memory spaces which are (non-cached) read/write regiodsw€e memory: these
memories are characterized by latency times about two ®alenagnitude larger than
the registers and texture cache. Only threads belongingetsdame thread block can
share data in fast memory; different thread blocks may ohdres data allocated in
slow memory. CUDA's scheduler allocates as many threadkislat the same time
as possible, compatibly with available resources, whittwal a CUDA program to
be run on any number of SMs. SMs can manage hundreds of thneawisig differ-
ent code segments thanks to an architecture called SIMGlSinstruction, Multiple
Thread) which creates, manages, schedules, and execatgsdwarps) of 32 paral-
lel threads. Opposite to what happens in a SIMD (Single Wiesivn, Multiple Data)
architecture, the whole execution and branching behavithreads is specified. This
way it is possible to manage parallel code for independesiisthreads as well as
code for parallel data processing, which is executed bydinated threads.

CUDA Programming Model

CUDA is a GPGPU environment, that includes a parallel comgurchitecture and
programming model, developed by nVIDIA. This programmingdal requires the
problem under consideration be partitioned into sub-moisl, that are solved indepen-
dently in parallel by blocks of threads. In turn, each subbpem is also partitioned
into finer pieces, that can be solved cooperatively in palrbl all threads within the
same block. Blocks are organized into a one-dimensionakdimensional, or three-
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dimensional grid of thread blocks, as illustrated in Fig2u
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Figure 2.4: Grid of Thread Blocks [21]

Kernels

The programming language used within CUDA, CUDA-C, is arergton of the C
programming language which allows one to implement GPldasrallel functions,
called kernels, which, when called, are executed N timesanmalfel by N different
CUDA threads. Kernels are run on the device (GPU), while &t of the code runs
on the host (CPU), see FigureR.5. Itis also important tacedtiat, in CUDA, host and
devices have separate memory spaces and, in order to eada@rtee!, the programmer
needs to explicitly allocate memory on the device and, itiegetransfer data from and
back to the host. This is the main bottleneck which is encenat when optimizing
code for speed. The programmer should reduce as much a®lpass amount of
these transfers.



2.3. General-Purpose GPU Programming 25

Host Device
Grid 1

Ke;""' Block = Block | Block
(0, 0) (1,0) (2,0)

Block’ | Block |\ Block
(0,4) (1.1) 1\ (2.1)

7
;
- .

L+ Grid2
’ \

7 A}
Kernel — / v
7/

2 ’ ’

,
2

Block (1, 1)

Figure 2.5: Kernel Execution [21]

Memory Hierarchy

The last thing to highlight is the memory hierarchy avaiatd threads, and the per-
formance associated with the read/write operations ta/igach of the memory levels.
Each thread has its own locadgistersand all threads belonging to the same thread-
blocks can cooperate throughared memoryRegisters and shared memory are phys-
ically embedded inside SMs and provide threads with theegagtossible memory
access. Their lifetime is the same as the thread-block’s th&lthreads of a kernel
can also acceggobal memoryhose content persists over all kernel launches [21], in
addition to read-onlgonstant memorgndtexture memorywhich are located within
the same memory space as the global memory; however, readraaaperations to
global memory are orders of magnitude slower than thoseateshmemory and reg-

isters, therefore access to global memory should be miednwthin a kernel. The
nVIDIA memory hierarchy is shown in Figufe 2.6.

In order to obtain the best from this architecture, a numbespecific program-
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Figure 2.6: Memory Hierarchy and Accessl[21]

ming guidelines should be followed, the most important ofchbare: (a) minimize
data transfers between the host and the graphics card; (lxnime the use of global
memory: shared memory should be preferred; (c) ensure lgiodaory accesses are
coalesced whenever possible; (d) avoid different exeoytaths within the same warp.
Moreover, each kernel should reflect the following struetyr) load data from glob-
al/texture memory; (ii) process data; and (iii) store resshhck to global memory.

An in-depth analysis of the architecture and more detaitegqamming tips can

be found in[[21] 22].
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Parallel Metaheuristics

Traditional optimization techniques, like the classiacadjent search method, perform
effectively when the problems under consideration satisgfiyt constraints, such as
being differentiable, convex and well-defined functionsowdver, when the search
space is discontinuous, noisy, high-dimensional, andimatial, then stochastic algo-
rithms have been found to consistently outperform classieshods|[23]. Among the
stochastic approaches to continuous optimization, enamiaty and swarm intelligence
algorithms, as well as other metaheuristics [24], offer enber of attractive features:
no requirement for differentiable or continuous objecfivections, robust and reliable
performance, global search capability, virtually no needpecific information about
the problem to solve, easy implementation, and impliciapelism.

Despite several limitations which have been highlighted Hre availability of
other algorithms which perform better on global optimiaatbenchmarks [25, 26],
PSO and DE have recently become very popular. The main rdasthreir success is
related to their associating good average performancésamiteasy implementation.
However, the feature which is most relevant to our work arghered with other evo-
lutionary and swarm intelligence algorithms, is the fa@ttttbeing population-based
and featuring limited dependency between each individugderations, PSO and DE
can be easily parallelized.
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3.1 CUDA Particle Swarm Optimization

Parallel PSO seems to be the way to make practical use ofawisrful search and opti-
mization algorithm viable, in spite of its high computatist. During the last decade,
a considerable amount of literature about parallel PSO kas published. The first
parallel PSO implementations relied on multiprocessoalpgrmachines or cluster
computing systems [27, 28]. With the introduction of the GPltksearch shifted
towards parallel PSO on the GPUs to alleviate multi-promeasd cluster systems
inefficiencies, such as network overhead, shared memoggacetc. Li et al. took ad-
vantage of GPU acceleration for developing parallel vesiaf PSO and GA through
texture manipulation using shaders which are mainly usedrfaphics rendering pur-
poses([29]. In 2009 de Veronese and Krohling developed tseifitplementation of
PSO using nVIDIA CUDA[30].

Now that PSO can run efficiently on consumer-level grapharsis, researchers
have experimented with new variants of the algorithm. ZhwiBan extended the stan-
dard PSO to include the notion of ‘unhealthiness’ to descsivarms or sub-swarms
stuck at local optima, then applying random mutations touthieealthy particles’ po-
sitions [31]. Also, Zhou and Curry created a hybrid betwedU3 SO and pattern
search to enhance the convergence of RSO [32].

Almost all recent GPU implementations assign one threadd¢b particle([30, 31,
33,[34] which, in turn, means that fitness evaluations haveetcomputed sequen-
tially in a loop within each particle’s thread. Since fitneafculation is often the most
computation-intensive part of the algorithm, the executime of such implementa-
tions is affected by the complexity of the fitness function dne dimensionality of
the search domain. The speedup achieved by these impldinastis evaluated with
respect to their sequential counterparts executing on fg.C

In addition, state of the art research in GPU-based patedn of PSO focuses
on the synchronous version of the algorithm, while it waswaihoon distributed or
cluster systems, that asynchronous versions can achigteg &ecution time without
sacrificing numerical accuracdy [28,/35]. The asynchrondad SO we present in the
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following subsection overcomes the shortcomings of asyoradus PSO enforced by
the master-slave approach used in distributed systemeimgpitations, while gaining
good speedup when compared to our synchronous GPU implatitent5] as well as,
obviously, to the standard sequential PSO implementation.

CUDA Asynchronous PSO

To achieve both the fastest execution time and the bestrpeaftce, we designed a
parallel version of the algorithm, as fine-grained as pdssilithout introducing ex-
plicit synchronization mechanisms among the particlesl@ion processes [6]. A
main feature that affects the search performance of PSQeisttategy according to
which the social attractor is updated. In ‘synchronous’ Pg&itions and velocities
of all particles are updated one after another in turn duaingeneration’; this is ac-
tually a full algorithm iteration, which corresponds to adiscrete time unit. Within
the same generation, after velocity and position have beeiatad, each particle’s
fithess, corresponding to its new position, is evaluatede Wdlue of the social at-
tractor is only updated at the end of each generation, whetiittiess values of all
particles in the swarm are known. The ‘asynchronous’ versibPSO, instead, al-
lows the social attractors to be updated immediately aftatuating each particle’s
fithess, which causes the swarm to move more promptly towsnab/-found optima.
In asynchronous PSO, the velocity and position update emstan be applied to
any particle at any time, in no specific order. Regarding fifeceof changing the
update order or allowing some patrticles to be updated maes dian others, Oltean
and coworkers [36] have published results of an approachtighathey evolved the
structure of an asynchronous PSO algorithm, designing dataystrategy for the par-
ticles of the whole swarm using a genetic algorithm (GA) ahdwang empirically
that the GA-evolved PSO algorithm performs similarly, adnstimes even better,
than standard approaches for several benchmark probleegswréitng the structure of
the algorithm, they also indicate that several featuresh &g particle quality, update
frequency, and swarm size, affect the overall performah&sS® [37].
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Figure 3.1: The three PSO topologies tested in this workmAedt to right, global,
ring and star

Implementation

As reported in the previous section, GPU implementatior8®® which assign one
thread per particle, despite being the most natural way lleéizing the algorithm,
do not take full advantage of the GPU power in evaluating tihesis function in paral-
lel. The parallelization only occurs on the number of péef a swarm and ignores
the dimensions of the function. In our parallel implemeiota we designed the thread
parallelization to be as fine-grained as possible; in otluwrds, all independent sequen-
tial parts of the code are allowed to run simultaneously pasate threads.

Swarm intelligence techniques are intrinsically parabelcause every swarm mem-
ber has few dependencies on the others, so all operatiorsl@hadapting an individ-
ual’s values, like position update or fitness evaluatiom, lsa executed with few (or
none at all) interactions with the other swarm members. Ritgmpoint of view, in
PSO the only data to be shared among particles is the globapbsitionBG P vis-
ited so far by any member of the swarm, or the local best usi#iG P; reached by
the best fitness particle in the local neighborhood of plartic Since the global best
positions is the only information shared between partjétdgas to be stored in global
memory; the number of global memory reads within a blockr@senting a particle)
differs depending on the PSO topology used. Figure 3.1 teflie topologies imple-
mented here: the global best topology, ring topology, amdstiar topology. In the
first and third, only one global memory read per dimensiaoeAl is necessary, while
in the second, each particle compares its fitness to its twghbers’ (left and right),
resulting in two global memory reads.
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Figure 3.2: Block Diagram of the Synchronous CUDA PSO athanmi

CUDA kernels are executed sequentially, as shown in Figitheu@less streaming
is used. Consequently, the number of kernels used to impieanparallel algorithm
greatly influences its performance. In Figlrel 3.2, we shatlock diagram of the
CUDA Synchronous PSO algorithm. First, all swarm parti@es initialized to ran-
dom positions within the search domain, using the nVIDIA GURandom Number
Generation library (CURAND) [38]. Then, a kernel evaludtesfitness of the random
positions, and fills the best fithesses and best positiortsaglmemory arrays. The
main iteration loop of the algorithm consists of three ké&ngarticle positions up-
date following the equations provided in Chapter 2, parélieess evaluation (some
parts might be executed sequentially, depending on theeafuhe fitness function),
and the last kernel deals with deciding personal, globalpcal best fithess values
and positions, through a parallel reduction operation,ctvldepends on the actual
PSO topology employed. Finally, after a termination citdras been met, often the
generation/iteration maximum number, another kerneld#escthe final output of the
optimization, through a parallel reduction to minimum/rmaxm operation.

To better understand the difference between synchronaiasynchronous PSO,
the pseudo-code of the sequential versions of the algosiimnpresented in Takle B.1.
The synchronous 3-kernel implementation of CUDA-PSO, vhilowing for virtually
any swarm size, requires synchronization points wherehallparticles data have to
be saved to global memory to be read by the next kernel. Thuént access to
global memory limits the performance of synchronous CU®EPand is the main
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justification behind the asynchronous implementation.

Synchronous PSO Asynchronous PSO
<Initialize positions/velocities of all particles <Initialize positions/velocities of all particles
<Set initial personal/global bests <Set initial personal bests
for(int i = 0; i < generationsNumber; i++) for(int i = 0; i < generationsNumber; i++)
{ {
for(int j = 0; ] < particlesNumber; j++) for(int j = 0; ] < particlesNumber; j++)
<Evaluate the fithess particle-j <Evaluate the fitness of particle:j
<Update the position of particle>j
<Update the position of all particles <Update personal bests of particte j
<Update all personal/global bests }
}
<Retrieve global best information to be returned  <Calculate global best information to be returned
as final result- as final result-

Table 3.1: Pseudo-code for the sequential versions of PSO

The design of the parallelization process for the asynadusiversion is the same
as for the synchronous one, that is: we allocate a threa lpec particle, each of
which executes a thread per problem dimension. This wayeaaticle evaluates its
fithess function and updates position, velocity, and pexkbast for each dimension
in parallel.

The main effect of the synchronization constraint remosatbilet each particle
evolve independently of the others, which allows it to kekfisadata in fast-access lo-
cal and shared memory, effectively removing the need t@stnd maintain the global
best in global memory. In practice, every particle checksdighbours’ personal best
fithesses, then updates its own personal best in global nyeondy if it is better than
the previously found personal best fithess. This can speeegution time dramat-
ically, particularly when the fitness function itself is hlg parallelizable. This is a
feature which often characterizes fitness functions whiehcammonly used in sev-
eral applications, such as the squared sum of errors ovetaasdtiin classification
tasks, or other fithess functions which can be expressed astarvdot product or
matrix multiplication.

In contrast to the synchronous version, all particle thtdadks must be executing
simultaneously, i.e., ho sequential scheduling of thrdadls to processing cores is
employed, as there is no explicit point of synchronizatiéralb particles. Two dia-
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Figure 3.3: Asynchronous CUDA-PSO: particles run in patatidependently (left).
Synchronous CUDA-PSO: particles evaluate fitness in mrhlit have to wait the
end of the generation before updating positions, velaitd personal/global bests

(right). Blocks represent particles and white arrows repné threads for each dimen-
sion of the search space.
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grams representing the parallel execution for both vessame shown in Figure_3.3.
Having the swarm particles evolve independently not onlkesahe algorithm more
biologically plausible, as it better simulates a set of iegsely coordinated swarm
agents, but it also does make the swarm more ‘reactive’ tdyndiscovered mini-
ma/maxima. The price to be paid is a limitation in the numbguasticles in a swarm
which must match the maximum number of thread blocks thattaioe5GPU can main-
tain executing in parallel. This is not such a relevant stwring, as one of PSO’s
nicest features is its good search effectiveness; becdubkesponly a small number
of particles (a few dozens) is usually enough for a swarmceetarwork, which com-
pares very favorably to the number of individuals usuallguieed by evolutionary
algorithms to achieve good performance when high-dimesjoroblems are tackled.
This consideration makes the availability of swarms ofuatty unlimited size and the
deriving potential in terms of search capabilities lesseatipg than it could seem at
first sight, while increasing the relevance of the burdenasagl, in terms of execution
time, by the sequential execution of fithess evaluation. l@nother hand, currently,
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parallel system processing chips are scaling accordingdor®s law, and GPUs are
being equipped with more processing cores with the introdnof every new model.

3.2 CUDA Differential Evolution

The earliest CUDA implementation, up to our knowledge, of D&s presented in
2010 by [39]. After that, other implementations have beeveltped [32] 40], ad-
dressing problems with that first parallel version.[In [38§ fithess evaluation, which
is usually the most time consuming process, is performedhgequentially, in the
form of loops inside the device code (nested in case of noutand crossover). Our
fithess evaluation scales the number of working threadsetmtimber of dimensions,
calculating every dimension in parallel. We also use onelkbjeer solution/individual,
eliminating the need for loops. Another problem with|[39}hsit they generate and
store random numbers on the CPU for mutation, while we géaé¢n@m on the fly
on the GPU using the nVIDIA CuRAND library. In another DE irapientation[[41],
four kernels are executed sequentially limiting the mepdrallelization, while we
implement one kernel for generating the trial vectors, arattzer for their fithess eval-
uation and migration. In addition, we offer three differemitations strategies and two
kinds of crossovers, while early GPU-based DE considergdame mutation strategy
(DE/rand/1) and one kind of crossover.

Implementation
PSO is divided into three kernels described in the previeasan, while DE, as men-

tioned earlier, can be implemented as two kernels. Eacladhoé the first kernel
performs the following instructions:

e generate two or three distinct random numbers on the GPWraiog to the
mutation strategy;
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Figure 3.4: Block Diagram of the CUDA DE algorithm

e calculate an element of the donor vector from the populatiembers randomly
selected in the previous step;

e decide whether to include the donor or the parent elemertartrial vector,
based on the type of crossover and the crossoverGate,

The second DE kernel evaluates all trial vectors simultaskdn shared memory
and, if the fitness has improved, it replaces the parent wihoffspring. In the cases
of mutation "to-best” strategies, a third reduction kerizeheeded to find the best
individual, as highlighted in Figufe 3.4.

3.3 CUDA Scatter Search

To the best of our knowledge, ours is the first parallel immgamtion of this meta-
heuristic. Since Scatter Search is only a template for comdpia global search method
with an additional step of local search solution refinemég},[there are many variants
of the algorithm, differing in the building blocks of thistglate. The most notable one
is presented in [43], where the authors chose the Tabu Skemalltsearch method [44]
for the refinement phase, mainly because of its adaptive megapabilities, that
are employed in order to remember previously visited/eatald solutions in the local
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neighborhood of a candidate solution to be refined.

Implementation

Clearly, SSis not as inherently parallel as the two otheahmiristics (see Figukre 8.5).
In SS a diverse population is first initialized and evaluatidersity is simulated by
generating uniform random values for each dimension ovemthole search space.
Then, to build the reference s&t a parallel sort operation is required to fif, fol-
lowed by another kernel that calculates pairwise Euclidistances between solutions
in P — R and R, sequentially adding the solutions that are farthest frioeréference
set for| R,| iterations. As for selection and crossover, a kernel sektsolution pairs
in the reference set for mating, and combines them througBLX-« crossover [[45],
generating two distinct solutions chosen witlset to(0.5 + A) and(0.5 — \), respec-
tively. The combined solutions make up theol, to which a parallel implementation
of the Solis & Wets search method [13] is then applied as amomrgment method. For
the last step, we compared two methods for updating theerderset, one of which
considers both quality and diversity as in [46], while theestupdates the reference
set with the besitR| solutions in(R U pool). The latter yielded better results in terms
of both speed and accuracy.

2 kernels | kernel 1 kernel

e Select R1 Select R2
.
Initialization of P (best individuals) »1 (most diverse) [

2 kernels 3 kernels 1 kernel
Reference Set Subset Generation
<¢— Improvement [<— and Solution

Update

Combination

Termination
criteria met?

End |«

Figure 3.5: Block diagram of the Scatter Search Algorithm.



3.4. libCudaOptimize 37

3.4 libCudaOptimize

libCudaOptimizel[47] is an open source library which impkets some metaheuristics
for continuous optimization: presently Particle Swarmi@gatation (PSO), Differen-
tial Evolution (DE), Scatter Search (SS), and Solis&Wetsalsearch. This library
allows users either to apply these metaheuristics dir¢attiieir own fitness function
or to extend it by implementing their own parallel optimipattechniques. The library
is written in CUDA-C to make extensive use of parallelizatias allowed by Graphics
Processing Units.

The main idea behind the library is to offer a user the chao@pply metaheuris-
tics as simply and fast as possible to his own problem of ésterexploiting the par-
allelization opportunities offered by modern GPUs as mwgip@ssible. To the best
of our knowledge, there are no software tools in which théremptimization pro-
cess, from exploration operators to function evaluatisrgampletely developed on
the GPU, and allows one to develop both local and global apéition methods.

Implementation

libCudaOptimize is entirely written in C++ and CUDA-C andies on two classes:

| Opti m zer andSol uti onSet (see Figuré 316). The former is an abstract class
that includes all methods used for evolving a set of solgti@r population/swarm,
where every particular solution is an individual/partjdepending on the used termi-
nology), for setting evolution parameters and a refereadkd set (it can evolve more
than one set in parallel), represented by an instance ofldlss®ol ut i onSet . Ev-

ery different metaheuristic is implemented as a sub-cla$<pt i m zer . All these
classes (see some examples at the bottom of Higure 3.6) letheds that allow a user
to set the parameters of the metaheuristic. Moreover, nideeaelevant parameters
can be passed to the optimizer at the moment of its instaortiat

The classSol ut i onSet represents one or more sets of solutions and can be
accessed in the user-defined fitness function, where it & tasaccess the elements
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# fitnessEvaluation() + set<Solution, Set>Number()
# update()
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+ setTermination()
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DE_Optimizer PSO_Optimizer SW_Optimizer SS_Optimizer
+ setMutation() + setC1() + setMaxSuccesses() # reinitLocalSearch()
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Figure 3.6: UML diagram. For every class, the most importaethods are shown

of the population and to update their fithesses after evialuatThere are methods
that allow users to access the solutions, and their cornebpg fithesses, both on the
device and the host. In this way, the user can employ thesemation both on C++

and CUDA-C function easily.

Usage

libCudaOptimize allows users to run their methods in paldb optimize a fitness
function, introduce a new optimization algorithm, or easitodify/extend existing

ones. In the first case, the only thing one needs to do is te wré new fitness func-
tion in C++ or CUDA-C, while in the second and third cases, caie take advantage
of the framework offered by the library to avoid the need tadgep into basic imple-
mentation issues, especially regarding parallel code.

libCudaOptimize is expected to be used by users who haveasit, la basic knowl-
edge of C++. Although no explicit understanding of CUDA-Ceven of metaheuris-
tics is required it is very useful anyway; nonetheless, areuse this library just by
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writing a C++ fitness function and launching one of the optaion techniques al-
ready implemented (to date PSO, DE, SS and Solis&Wets |@zath (SW)). This
allows one to:

e implement commonly successful techniques with limited g,

e easily compare the results obtained by running differestiigues on different
functions;

e analyze the effects of changing values of the parametershwikgulate the be-
havior of the optimization techniques on user-defined @oisl;

¢ run high-dimensional optimization experiments on consulexel hardware, thanks
to the efficient CUDA-C parallel implementation.

Basically, there are two ways to use this library. The first erost direct one is
just to apply the included heuristics to optimize a userrdgfifitness function. All
one needs to do, in this simplest case, is to write a funchd+i+ or, to fully exploit
the parallelization potentiality of the package, in CUDAT®en, one must select the
heuristic, pass it the fithess function pointer, set its ters, run it, and retrieve the
solution(s) found.

The second purpose of the library is to allow the user to aeaiyd implement
an optimization technique, taking advantage of the streabd the algorithms imple-
mented in libCudaOptimize. Since several EAs share a simtlaicture, one can
extend the superclagOpt i m zer or one of its children in order to create a new
optimizer. To do so, a mandatory step is to implement the poatected functions of
| Opti m zer shown in Figuré3]6:

e i ni t Sol uti ons randomly initializes the candidate solutions within tharsé
space;

e st ep defines how the optimizer generates new potential solufrons the cur-
rent population;
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e fitnessEval uati on calls the user’s fitness function;

e updat e is called after fitness evaluation and should update thelptpn ac-
cording to the results obtained: replace current indivislugpdate personal best
locations, check constraints, ...

It is important to note that the user does not have to handieaengallocations and
releases nor grid and kernels configuration, since thesetpes are taken care for
by the library core.

3.5 Testing and Results

The parallel metaheuristics discussed in this chapter tested against many theoret-
ical and real-world applications. 10]48,149], both CUDA P&@d DE were success-
fully used to localize histological brain structures, imsthase the hippocampus, and
to estimate human body posture from multi-view video seqasnrespectively. They
were also the tool used in [60] for real-time traffic sign @éten in sequences taken
from a camera mounted on-board a car, and achieved goodsrastérms of quality
and speed. This section will focus on the tests performedeastmark functions, and
consider the human body pose estimation problem as a caemstihe usage of GPU
metaheuristics in real-world applications.

Speedup Results

We compared the performance of the different versions ofpauallel PSO imple-
mentation and of one sequential implementation based osotivalled Standard PSO
(SPSO)[[51] on a ‘classical’ benchmark which comprised at&inctions which are
often used to evaluate stochastic optimization algorith@ar goal was to compare
different parallel PSO implementations with one anothad with a sequential im-
plementation, in terms of speed. Since there is only a Stdngersion of PSO, in
these tests we only focused on PSO. So we kept all algoritmanpeters equal in
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all tests, setting them to the ‘standard’ values suggesi¢8l]: w = 0.729844 and
C, = Cy = 1.49618. Also, for the comparison to be as fair as possible, we adapte
SPSO by substituting its original stochastic-star toppkgh the same ring topology
adopted in the parallel GPU-based versions and we downgjiaitte‘float’ precision
to match the GPU-based algorithms’ precision.

The following implementations of PSO have been comparejlthd sequential
SPSO version modified to implement a two nearest-neighlgstopology; (2) the
synchronous three-kernel version@f/DA-PSQ (3) CUDA-PSQOimplemented asyn-
chronously with onlyl kernel as in[[6]. Values were averaged over3Rdest results
out of 100 runs.

Figures[ 3.7 compares average execution times obtainedréttgm dimension
D ranging from2 to 128 in optimizing fitness functions from typical test-beds for
function optimization. We tested our code on the followingdtions: (a) the simple
Sphere function within the domai-100, 100]”, (b) Rastrigin function, on which
PSO is known to perform well, within the domdin5.12, 5.12]7, (c) the Rosenbrock
function, which is non-separable and thus hard to solve b9,Rfthin the domain
[—30, 30]”, and (d) the Griewank function within the domain600, 600" .

In general, the asynchronous version was much faster tremythchronous ver-
sion, at the price of being able to run swarms of sizes Wy tor 32 depending on the
graphics card. Itis also worth noticing that the executioretgraphs are virtually iden-
tical for the functions taken into consideration, whichwkdhat GPUs are extremely
effective at computing arithmetic-intensive functiongstly independently of the set
of operators used, and that memory allocation issues avalpré in determining per-
formance. Taking speed-up values into consideration, anetso notice that the best
performances were obtained on the Rastrigin and Griewardtifuns. This is probably
due to the presence of complex math functions in their dedmitin fact, GPUs have
internalfast mathfunctions which can provide good computation speed at teeafo
slightly lower accuracy, which causes no problems in theeca
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Figure 3.7: Average execution times (left column) and spgesi(right column) vs.
problem dimension for the Sphere, Rastrigin, RosenbrodiGarewank functions (top
to bottom). Experiments were performed running one swarsg pharticles (GTS-450)
or 27 (GTX-260) for10000 generations. Plotted values were averaged over thé&Best

results out ofl00 runs.
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Benchmark Functions

After establishing the superiority of parallel algorithtogheir sequential counterparts,
the subsequent experiments were run using methods imptechby means of libCu-
daOptimize, whiose results are reported in [52]. We evalbath quality and speed
of the parallel versions, analyzing their accuracy acldeme limited amount of time,
to assess the degree of parallelization that each of themvatb reach.

The algorithms we compared have a number of parametersfthat both accu-
racy and parallelism. “Manual” parameter tuning is time sioming and may intro-
duce a bias in comparing an algorithm with a reference, dueetter knowledge of
the algorithm under consideration and to possible diffetieme spent tuning each of
them. Therefore, the automatimingof all three algorithms was performed using the
i r ace software package [53], to find the configurations that yiglthee best results
in a given time: we set this time to one second, since it is galyeshort enough to
avoid reaching full convergence with all three methodsywveéilhg one to compare their
short-term performances.

DE PSO SS
Cr =0.879 c1 = 1.862 |P| = 140
F =0.520 ¢y = 1.881 IR =9, |Ry| =1
Exponential Crossover w = 0.494 A =0.220
Random Mutation | Population Size = 12% Solis & Wets iterations 85
Size =48

Table 3.2: Automatically-tuned parameter values usedsbd#ferent optimization
techniques.

The tuner was run on afl0 functions with a budget 80000 experiments, each
being one run of one configuration on one function with a teation criterion of
one second. Since the functions have different fithess sgargeank-based test is
preferable to a test based on the solutions’ mean valuesordicgly, the Friedman
test was used to discard significantly worse configuratiéés.tuned the parameters
for 30-dimensional problems, and assumed that such configusagiengood also for
lower-sized ones. Table 3.2 displays the parameters that Ibeen tuned for each
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algorithm, and the best corresponding values.

We compared our results to the values that are most commeely in literature.
For instance, the authors in|[9] suggéste (0.4,0.95) andCr € (0.9,1) for mul-
timodal separable functions (the most common ones in owhieark); we obtained
similar results. Regarding PSO, in most papers= ¢, = 2.0 [54], while our auto-

matic tuning set them to slightly smaller values.

Name Range Formula
fo Sphere [-100,100]" [ S°7~ 01 2 _ uls
fi Elliptic [—100, 100]™ DD ! (106)D-1 2 u S
f2 | Sum of Squares| [—1,1]™ S a? ul s
f3 | HyperElipsoid -1, 1] S 01 i? - 22 ul s
fi | Schwefel222 | [-10,10]" | > " Tlw| + 170 Joi ] ul's
n—1 2 ; 2
o Tt ) + 0 0512 +
fs Zakharov [—10,10]™ (ZZ’O ’ ) (ZZ’% ' ) ul| s
+ (Z;‘:ol 0.5-i- IiQ)
— - pi
fo | Schwefel12 | [-100,100" | ) (i) U | Ns
maz {A;x — B},
7 Schwefel 2.6 [—100, 100]™ 1=0,...,n—1,x=[z0,...,Tn-1], U | NS
A, B defined in[[55].
fs | Dixon-Price [—10,10]" (z0 — 1)2 + 0} (z (22,2 — xi_l)Q) U | Ns
fo Rastrigin [-5.12,5.12]™ '~ {2? — 10 - cos(2nz;) + 10} M| S
fio | Schwefel 2.26 | [—500,500]" | 418.9829 -n + 37—, (:c sin |:ci|) M| s
fi1 Katsuura [~1000, 1000]" | T2, (1 +E+1) e, mund(zkmi)rk) -1 M
; -1 =7
fi2 Griewank [~600,600]™ | St ois — 170, cos(ZE L) +1 M | NS
f13 Rosenbrock [~100, 100]™ Z"fl 100(z; — 22 ;)% + (1 —xi1)? M | NS
fia Ackley [—32, 32]™ ,—02y/ 2 SIS w2 Ly Lcos(ana) L0t M | NS
Griewank
f15 + [_5127512}’” fgriewa,nk (f'r'osenbrock) M NS
Rosenbrock
Py F(i, i), on = 90(0 )
fi6 Scaffer [—100, 100]™ sin? (v/22492)—-0.5 M | NS
whereF'(z,y) = 0.5 + T50.0001 (a7 97)
iy (A = Bi(x)”, x = [z0,...,2n-1]
_ n
iz Schwefel 2.13 [=mm] A“B (x) defined as in[55]. M| NS
fis Salomon [-10,10]™ — cos (2m/ S @ ) +0.14/ S w2+ 1 M | NS
sin?(myo) + >roy [(yi — 1)? (10sin?(my; +1))] +
fio Levy [-10,10]™ (yn—1 —1)2 (1 +10sin?(27yn—1)) M | NS
wherey; =1+ 2L i =0,...,n—1

Table 3.3: Benchmark functions. For every function, thdgaows the name, the
range of the search space, the formula, the multimodalityt{modal, unimodal) and
the separability (separable, non separable). All mininearaf0}".
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To evaluate both the effectiveness and the efficiency ofttreztparallel implemen-
tations, tests oB0 numerical benchmark functions (see Tablé 3.3) were run @hlzt6
Intel(R) Core i7 CPU running at 2.67GHz using CUDA v. 4.1 onvdDIA GeForce
GTS450 graphics card with 1GB of DDR memory and compute dapab.1 [21].
Table[3.4 reports the results obtained executid@runs per function@000 indepen-
dent runs) and setting 1 second as the only terminatiorricmite The first column is
the function under consideration. The following ones axdéid into two blocks ac-
cording to the number of dimensiong)(and30). Within each block, the mean best
fitness and the standard deviation over all runs are reptwteshch method. Results
reported on a grey background highlight those cases in wihiehmedian over 100
runs obtained by the method is significantly better than theramethods, according
to the Kruskal-Wallis test, with a confidence leveloof1.

The results reported in Table B.4 and Figureg 3.8 allow onedwdome conclu-
sions about the behaviour of the three parallel metah@sgis€Conforming with pre-
vious results obtained by sequential implementations, Btained the best results,
sometimes tied with some other method, in 35 out of the 40 raxeats performed,
while PSO was the best method, sometimes tied with some otétrod, in 20 out of
40 functions, its main drawback being its tendency to stegaad find sub-optimal
solutions more often than DE, even if a higher number of fimncévaluations is run.
Regarding SS, whose first parallel implementation is pitesehere, it obtained the
best result in 11 out of 40 problems; however, this metak&ayiwhich is not as par-
allelizable as the other methods, as reflected by the nunfbaroels, has achieved
better performance over multimodal non-separable probl@nd time-consuming fit-
ness functions, like Katsuura.

All tests were run with a temporal limit of one second, a shione in which all
three methods can generally obtain results close to thenaptiithout reaching full
convergence. Figuie 3.8 shows that PSO requirges almest tinmes as many fitness
function evaluations as DE to converge on 30-dimensioralpms. It is important
to notice that the population size in PSO is also almost thirees as large as in DE,
which justifies the larger number of fithess evaluations.
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10 dimensions

30 dimensions

DE PSO SS DE PSO SS
Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std

fo 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

f1 0.0 0.0 0.0 0.0 2.5e-03| 9.2e-03 0.0 0.0 0.0 0.0 2.2e-06 | 6.3e-06
fa 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.1e-44 | 8.6e-44
fs 0.0 0.0 0.0 0.0 7.0e-45| 2.9e-44 0.0 0.0 0.0 0.0 6.7e-05 | 3.0e-04
fa 0.0 0.0 0.0 0.0 1.1e-25| 1.7e-25 0.0 0.0 0.0 0.0 5.1e-24 | 2.7e-24
I 0.0 0.0 0.0 0.0 0.0 0.0 2.5e-28 | 3.4e-28| 1.8e-28| 2.2e-28 | 1.2e-05| 1.7e-05
fe 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.7e-012| 9.9e-012| 2.5e-03 | 3.3e-03
fr | 9.8e-06| 6.9e-05| 1.0e-03 | 4.0e-04 | 2.7e-04 | 3.5e-04| 2.1e+02| 3.3e+02| 3.8e+03| 1.1e+03| 9.9e+02 | 3.4e+02
fs | 5.0e-01 | 5.0e-08| 3.5e-02| 1.3e-01| 2.9e-01| 2.5e-01| 5.0e-01 0.0 4.2e-01| 1.9e-01| 5.0e-01 | 2.1e-05
fo 0.0 0.0 5.2e-01 | 7.8e-01| 6.9e-01| 9.1e-01 0.0 0.0 7.2e+01| 1.6e+01| 3.5e+01| 9.7e+00
fio | 5.9e+00| 3.1e+01| 1.2e+02| 1.2e+02| 8.1e+01| 1.1e+02| 1.7e+01| 4.8e+01| 2.9e+03| 4.1e+02| 2.4e+03| 9.0e+02
fi1 | 1.2e-03| 4.9e-06| 1.2e-03 | 2.9e-05| 1.2e-03| 2.4e-18| 1.2e-02 | 5.1e-05| 1.2e-02 | 1.8e-04 | 1.2e-02| 8.7e-18
fi2 0.0 0.0 1.1e-02 | 1.0e-02| 1.1e-03| 2.9e-03| 7.4e-05| 7.4e-04| 6.3e-10| 6.0e-09 | 1.5e-03 | 4.3e-03
f13 0.0 0.0 3.9e-07 | 4.8e-07| 5.9e-01| 3.3e+00 0.0 0.0 2.1e-01 | 7.2e-01 | 2.2e+01| 2.6e+01
J14 0.0 0.0 6.7e-07 | 1.1e-06 0.0 0.0 1.1e-06| 1.2e-06| 4.5e-06 | 9.4e-07 | 9.3e-03 | 9.3e-02
fis 0.0 0.0 1.2e-03 | 6.5e-03| 6.3e-31| 4.4e-30 0.0 0.0 1.5e-28 | 1.2e-27 | 1.1e-27 | 2.7e-27
fi6 | 3.3e-02| 2.9e-02| 1.0e-01 | 2.4e-02| 7.3e-01| 5.4e-01| 3.2e-01| 3.0e-02| 8.5e+00| 8.6e-01 | 8.7e+00| 1.2e+00
fir | 4.5e+01| 2.2e+02| 1.3e+00| 5.1e+00| 4.7e+00| 8.5e+00| 2.8e+04 | 6.1e+03| 3.1e+04 | 1.8e+04| 5.2e+03| 5.6e+03
fis | 1.0e-01 | 2.8e-17| 1.0e-01 | 2.8e-17| 9.8e-02| 1.4e-02| 1.9e-01| 3.1e-02| 2.0e-01| 1.7e-02 | 2.4e-01 | 5.1e-02
J19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.3e-02 | 1.0e-01

Table 3.4: Results on the 20 benchmark functions.
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Real-World Application

Moving more towards the application side, this section dbss a real-world problem
to which metaheuristics were applied, to both solve thelpratand compare the effec-
tiveness of DE and PSO as global optimization methods withisy\framework. The
problem addressed here is that of the three-dimensionahhurody pose estimation.
3D human body pose estimation from video is the problem obekihg an accurate es-
timate of the posture of a human body, along with its locatiospace, from an image
or a frame within a video stream. This is a complex problen liaa been invariably
formulated as a high-dimensional space search problemodihe complexity of the
human body pose parameterization. The problem has bededdnktrying to reduce
the complexity of the search while also relying on effecéearch schemes.

The search complexity can be reduced based on local preac.g., using parti-
cle filters [56) 57], or by partitioning the search space sitmller, more manageable
subspaces [56, 58]. The use of machine learning techniquéisfine specific motion
models for particular actions from training data colledateddvance has also been con-
sidered[[59, 60]. These approaches suffer from varioussksh The particle-filtering
solutions critically rely on a high number of particles teegdately represent the pos-
terior distribution, which increases their computatiocaiplexity beyond practical
use when considering a wide variety of motion. As well, negyon pre-trained mo-
tion models causes the human body tracking approachesddHes generalization
abilities, which points to methods that can reliably pr@vidotion estimates without
depending on much prior knowledge [61].

In [62,163], an effective search algorithm was proposedctvlig capable of re-
covering the pose without any prior knowledge of the natdrenotion. The main
drawback of the method is its huge computational complewitych makes the time re-
quired for execution of a standard sequential implememdtardly acceptable. How-
ever, relying on the parallel nature of both the search élgorand the multi-view
pose estimation problem by implementing the approach oahigal processing unit
(GPU), the authors showed that they could reach executiestiacceptable for prac-
tical purposes [49].
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Model Formulation

The input consists ofV views of the body, taken from different angles. From each
image, we extract the silhouette of the body, i.e., a binargge in which all pixels
belonging to the body are set to The set of silhouettes represents the target to be
matched to the silhouettes generated by a transformatitimeamodel, according to
the following steps:

e apose estimation is generated by the search algorithm;
e a 3D rendering of the body, in such a pose, is made;

e aset ofN images, corresponding to the projections of the renderdg {slhou-
ettes) on the image planes of the input cameras, is computed.

The body model consists of two layers, the skeleton and thre Skhe skeleton
layer is defined as a set of homogenedus4 transformation matrices which encode
the information about the position and orientation of eveipt with respect to its
parent joint in the kinematic tree hierarchy. The skin layérich represents the second
layer in the model, is connected to the skeleton throughdheg' local coordinate
systems. Each joint controls a certain area of the skin. \&mna joint or limb
moves, the corresponding part of the skin moves and defoithgtwAs the skin is a
subdivision surface, only the base mesh has to be specifibe icorresponding joint
coordinate system. After the joint configuration has bearci$ied, the base mesh is
subdivided by repeatedly applying the Catmull-Clark suisiton operator([64] until
the desired smooth shape of the body is obtained.

Considering the body composed of head, torso, and a thieekjoematic chain
for each limb, the model ha¥® degrees of freedom, represented by real-valued pa-
rameters: three of them represent the global body positi@pace, while the other
29 represent relative angles, in space, between consecetiveents of the kinematic
chains, i.e., joint orientations. These are subject toamaial constraints which limit
both their number and possible value range. A more detadsdription of the model
can be found in [49].



50 Chapter 3. Parallel Metaheuristics

Fitness Function

The fitness function compares the silhouettes extracted fine original images to the
silhouettes generated by the model in its candidate pose¢héeémages containing the
original silhouettes be denoted &% : = 1...N. Similarly, let/™, i = 1...N denote

the images of thenodelsilhouettes. The cost function can then be written as falow

row col

Y 1 (e] m
E ;Zz;[ & IM) (3.1)
whererow andcol denote the number of image rows and columns, respectively,
and{& denotes the bitwisAND operation. Coefficient&; are the normalization con-
stants obtained by counting the number of silhouette pixeks/ery original image.
Therefore, the fitness value that can be obtained for eaghraieges from 0 to 1, with
0 corresponding to the absence of overlapping between theitouettes, and 1 to a
perfect overlap. Thus, the overall fithess valé® fanges from 0 taV.

Experiments and Results

Tests were run on a computer equipped with a 64-bit f@bre i7 CPU running at
2.80 GHz with 6 Gb of RAM using CUDA v. 4.1 on a nVIDIA GeForce 6450
graphics card with 1GB of DDR memory and compute capability 2

DE PSO
Cr=0.9 ¢ =20
F=05 co =2.0

Uniform Crossover w=2.0/e"
Mutation: DE/rand/1
Population Size = 10 Population Size = 10

Table 3.5: Parameters used for human body pose estimatiegaréing the inertia
factorw, we setr;,;;iq = 2.0; x = x + 0.05 if, at the end of a generation, the global
best has not improved. For the very first framg;;;, was set tal.0 to increase the
algorithm’s exploration ability, when it is required to m@r the initial pose from
scratch.
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We compared the results obtained by our CUDA implementatidiDE and PSO.
The parameter values used in the tests were set startingfi@most commonly used
values reported in literature, and refined during the dearaknt of the system. The
values we set for the most relevant parameters are showrbla[3.

Our algorithms were tested on a setdofest sequences, kindly made available
by the CVSSP, University of Surrey. They were acquired in@diagded multi-camera
acquisition studio and consist b synchronized videoclips with resolutiGB0 x 576,
and a frame rate of5 fps.

Since these sequences come with no ground truth, we deadectdte a “syn-
thetic” sequence to statistically estimate the error madeuy system in recovering
the pose of the body. To do so, we took the sequence contaimngost complex
(and fastest) movements, which represents a man perforrkagate kick, and let our
system optimize it multiple times for a very high number ohgetions. After collect-
ing the best results (highest fitness values) for each fraraegndered the silhouette
images of our model in those very same positions. This way btaimed an artifi-
cially created sequence of which the articulated model wel@yrexactly matches all
the silhouettes available and for which we know, frame byngathe actual pose of
each joint of the model. In other words, we created a syrdisetjuence which comes
with “ground truth” values for all the parameters we needptroize. After this, we
compared the three-dimensional position of every jointhef mmodel in the reference
sequence and the values obtained as output by the test rons wiethod.

It is important to remark that, in the final tests, insteadatfisg a fixed number of
iterations/generations as in most iterative algorithmespged the value of the decreas-
ing inertia parameter defined in Tablel3.5 as a stoppingmitdéor both DE and PSO,
ending our process whenfell below0.1.

Average| StdDev| Worst | Best| Median| Wilcoxon
DE 6.41 6.60 | 41.42|0.36| 3.76 | <1.0E—10
PSO| 4.32 4.47 | 32.71| 0.22| 2.40 -

Table 3.6: Results of human body pose estimation: averagantie values (in cm) to
the joints obtained processing the reference sequence independent runs.
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Average| StdDev| Worst | Best | Median| Wilcoxon
DE 8.21 0.11 | 8.06 | 8.42| 891 | <1.0FE—-10
PSO| 8.24 0.13 | 8.05 | 845| 8.98 -

Table 3.7: Results of human body pose estimation: averagesfitvalues obtained
processing the reference sequence in ten independent runs.

Average| StdDev| Worst | Best | Median| Wilcoxon
DE 8.30 0.11 | 8.13 | 8.49| 889 | <1.0FE—-10
PSO| 8.34 0.12 | 8.15 | 8.52| 8.94 -

Table 3.8: Results of human body pose estimation: averagesfitvalues obtained
processing all the “real” video sequences in ten indepermders.

The first two tables refer to the results obtained procegsi@ageference sequence.
In particular, in Tablé 316 we show the results obtained b R8d DE, expressed as
distances, and in Table 3.7 as fitness values (higher fitredges/are associated with
better solutions). In Table_3.8 we show the global resulttasss values computed
on the other four sequences.

The first column in all tables is the mean value of the measodeuconsideration
over all runs and frames. For example, in Tdble 3.7, the valtige first row and first
columnis the fitness obtained by DE averaged ovebtlieexecutions of the algorithm
(50 frames and 0 runs). The second column reports the mean of the averagdesthn
deviations obtained for every joint in the model. The thindl dourth columns report
the mean of the worst and best values, respectively, averaggr all frames in each
run. The fifth column is the mean of the median values for eaoh Finally, the last
column in all tables reports the p-value obtained with thé&cd¥on Signed-Rank test
[65] with a significance level 0§.001.

The null hypothesis used in Talhle 3.6 was that the mediarstdigces obtained by
PSO is greater or equal than the median of the distancesebthy DE. In Tables 3.7
and 3.8 the p-value refers to the following null hypothe#is: median fitness obtained
by PSO is less or equal than the median fithess obtained by DE.

In Figure$ 3.p and 3.10, all the results obtained, per joidt@er frame respectively,
are plotted.
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Figure 3.9: Body pose estimation: per-joint performancdlenreference video se-
guence. Scatter plot of the distances (in cm) of each joarhfthe ground truth esti-
mated over all frames over 10 runs. Means are representeghtgr bullets.
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Figure 3.10: Body pose estimation: per-frame performancéhe reference video
sequence. Scatter plot of the distances from the grourfudfull joint estimates over
10 runs for each of the 50 frames. Means are representedtigiigullets.



54 Chapter 3. Parallel Metaheuristics

7.5

3.0

Figure 3.11: Average fitness values vs number of generatariSO and DE in the
body pose estimation problem for the first frame of the 5 sege® Full optimization
of the whole body.

In the first frame, the initialization of the swarm is complgtrandom, while in
the subsequent ones the swarm is initialized in a vicinitghef best pose found in
the previous frame, thereby implementing some sort of trackAs the pose changes
only slightly between two consecutive frames, performing optimization over the
whole search space is both unnecessary and time consumimgevdr, to investigate
the general localization ability of DE and PSO, the optirtimawas allowed to run
for more iterations500 in this case, and the hierarchical optimization steps, ritsed
in [49], were also removed to increase the complexity of theblem. Results are
reported in Figuré_3.11, showing how fitness values imprawénd the optimization
process. As explained before, only the results obtainedegsing the first frame are
actually representative of the global search ability ofrttethod used.

As the tables show, the results obtained by PSO in this pmolbiging the hierar-
chical optimization are better than the ones obtained wiih i terms of fithesses
and distances. However, if we increase the complexity ofptlablem by removing
the hierarchical strategy and the time constraints, optingiall the parameters at the
same time, DE obtains better results than PSO (see Higulie Jhis behavior can be
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Figure 3.12: Example pose results shown as skeletons aVveriahe corresponding
input image. The examples shown are taken from differenieseces (JonWalk, Tony
Kick, Tony Punch and Tony Stance) and different camera vigWsviews were used
for each sequence), hence the difference in person sizelbasnientation.

explained, in first place, taking into account that DE is oftbe best-performing meth-
ods for large-scale continuous optimization problemstf®refore, the more complex
the environment the better the expected performance wafhex to other methods. A
second explanation can be the evolutionary nature of DEEgpdime scaled differences
of randomly selected and distinct population members amsbawed to create new
solutions, the weighted combination of good partial soluican produce very good
global results.

It is also important to notice that the best results are abthusing the hierarchical
approach, in which, whenever a good position for one parhefttody is found, all
other joints are constrained to this newly found best pmsifi.e. they cannot explore
other orientations and positions that are inconsistert ijit With respect to execution
time, the hierarchical version of the human body pose estimaising DE takes on
averagel677.60 ms per frame, while the corresponding version based on PIS3 ta
4810.33 ms. Figuré 3.12 shows examples of estimated poses foretitfeamera views
and different sequences.
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3.6 Final Remarks

In this chapter the rationale behind parallel metahegsstias given, along with the
details of our GPU implementations of some popular optitiretechniques on the
nVIDIA CUDA platform. The gains of parallel implementati®of metaheuristics are
manifold: exploiting the inherently parallel nature of sigoalgorithms, which, in turn,
allows the use of such powerful global optimizers on conguleeel hardware in a
fraction of the computing power and time required to runnti@®U/sequential coun-
terparts. We mainly implemented three methods: PSO, DE,3®dwith two distinct
variants of PSO: synchronous, and asynchronous PSO. Thel@sdl asynchronous
version of the PSO algorithm was able to significantly redexecution time with re-
spect to the synchronous one, imposing limitations on thebar of particles which
seemed not to affect performances significantly, at leagsherbenchmark we used
for tests. Depending on the degree of parallelization ably the fitness functions
we considered, the asynchronous version of CUDA-PSO caadr speed-ups of up
to about 300 (in the tests with the highest-dimensional iRastfunctions) with re-
spect to the sequential implementation, and often of mane time order of magnitude
with respect to the corresponding GPU-based 3-kernel sgnolis version, some-
times showing a limited, possibly only apparent, decredsearch performances.

The development of libCudaOptimize, in addition to the audtic tuning abili-
ties ofi r ace, allowed us to make a fair comparison of our implemented Gakkd
methods, chiefly due to the common code base that was alesttacthe library. The
results reported in the tests comparing the performancheofmplemented parallel
metaheuristics, although conforming with the No Free Lutidorem|[1], did in fact
prove the superiority of one of the methods, DE, in attairtimg best overall results
over the set of benchmark functions used in the experimétaaiever, the main pur-
pose of the experiments was not to prove the superiority e&dgorithm over the other
in terms of general applicability, but rather in terms of hewll the parallel version
performs, under the given time constraint. Ultimately,fitreseen goal of libCudaOp-
timize is to expose the power of GPU metaheuristics to rebeas and users from
different fields of science.
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Finally, we described a parallel approach to articulatehdwu body pose estima-
tion from multi-view video sequences, based on the CUDA iggcture. The results
show that the execution time can be cut down noticeably bydibaiting the algorithm
on the GPU, without sacrificing the pose estimation accurdgreby exploiting the
vast computational resources available on an ordinarytdp$kC. The current imple-
mentation still combines the computational power of the Giad GPU, for example,
for the purpose of camera projection, which induces a coatjmutal overhead when
passing data between the two processing units. Additigresdup is therefore possi-
ble by deploying the complete algorithm on GPU in order taé#oe communication
bottleneck. This would also allow us to increase the sizéeftvarm, which is likely
to lead to better performance. A further improvement iscipdited from exploiting
the parallelism in the kinematic structure of the human b@&bth improvements have
been left as future work.






Chapter 4

Hierarchical Quilted Self Organizing
Maps

The HQSOM was introduced in [66] mainly to model the visiomtpa the neocor-

tex, and achieve biological similarity to a considerableeak It builds upon previous
computational models such as the Neocognitroh [67], NéAlvatraction Pyramid[68],

and VisNet[[69]. However, it improves upon those models amtyHh several aspects.
Firstly, it uses the same simple algorithm for both spatia &emporal clustering, the
Self Organizing Map (SOM), and the Recurrent Self Orgagiaitap (RSOM), respec-
tively. Furthermore, unlike the HTM, it employs online laarg through the training

and testing phases, thus adapting to new inputs and inogegsneralization. Finally
and more importantly, it uses temporal associations to foxariant representations
of causes and patterns in spatio-temporal sequences, mwbadels like the Neocogni-
tron are more suited to recognition tasks from a single imag®ring the time aspect
that humans and animals rely on to evolve their sophisticaton systems.

Much like the HTM, HQSOM tries to exploit the spatial corredas between pix-
els of an input image to form transformation invariant reprgations. Figure 4.1
shows a HQSOM configuration with a two dimensional grid asutnps is the case
when working with pixels of an image or a video frame. As diéxsxt earlier, each
layer is composed of a number of units or nodes running ex#wotl same procedure;
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in the case of HQSOM this unit is denoted as 8@M-RSOM pairThe input feature

vector can be divided into overlapping or non-overlappiecgeptive fields, and fed to
a single SOM-RSOM pair. This subdivision of the input spatsuees that every pair
only responds to features in its corresponding field, thuslatimg the shift invariance
property of biological vision.

Our HQSOM implementation follows the description abovert@atent. However,
as it stands, this system can not cope with real world appiicsa. In fact, in the orig-
inal paper, HQSOM was only tested with synthetic sequent@sx@ binary images.
To address these limitations, this work amends the modsésasg and comparing
the effect of each variant of the algorithm. To further expkie limitations, a short
description of all the implemented variants is needed.

Layer 2
Layer 1 0800) (a000e) (apeo:
R IREREK ABBREKL
(%o 60079400001 00000750
RSOM (¢ (00090 e ‘
SOM (¢ FETEOO
=~ 7
7
/
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Figure 4.1: HQSOM structure, taken from [66]
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4.1 Self-Organizing Maps

The self-organizing map, sometimes referred to as the Kemomap [[70], is perhaps
the most popular unsupervised clustering algorithm. Ifquers a type of dimension-
ality reduction from the input space dimensions, to the magcsV, (usually two-
dimensional). The output of each map is a discrete repratentof the training sam-
ples input space. The SOM has the unique property of pregethie topology of the
input space, meaning that samples that are close to eadhimfieature space remain
close in map space. Maps in the SOM consist of a grid of nodedenonents each
representing an input instance by a set of weight$or every element of V,. At
every iteration of the training phase, a distance metrialsuated between all the
map weights and the input vecto(t), then a best matching unit (BMW)is found
according to the following equation:

||2(t) — wy|| = min ([|2(t) — wil]) (4.1)

where|| x || is a distance measure which, in our case, is the Euclidetandis. Then
all the weights of a neighborhood of the BMU are shifted tadgahe input, using the
update rule:

wi(t +1) = wi(t) + vha(t) (x(t) — wi(t)) (4.2)

~ is the learning rate and ranges between 0 and 1, and is oferaded over the
course of training. Note that weights are shifted based em#ighborhood function,
hi, Which in turn depends on the distance (in map space) beteleerents and the
BMU b, and it is typically defined as a Gaussian:

—[|Zi — I||”
hip(t) = —_— 4.3
b( ) exp < Iub(t)o_g ( )
wherel, and I; are the indices of the BMW and element in map spaceg(¢) is a
neighborhood scaling constant, apglt) is the mean square error of comparing the
input z(¢) to w,. Using the main square error dynamically adjusts the neididnd
size of the update, in effect, adjusting to new inputs evehertesting phase.
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Recurrent Self Organizing Maps

For temporal clustering, the RSOM is used![71] mainly beeanfsts robustness, sim-
plicity, and the elegance of using one algorithm for bothtigpand temporal cluster-
ing. The input for the RSOM(¢) is obtained from an activation vector defined by the
following equation:

—|II, — 2
A(t) = exp (%) (4.4)

wherep is the standard deviation of a Gaussian function centerednarthe BMU
index in map space. Lower values @fesult in a dense representation of the spatial
input, while higher values are useful for better generéibra especially for larger
training sets. As for the RSOM weights update, the SOM upeéatetion is modified
as follows:

it +1) = (1 = a)yi(t) + a (A(t) — wi(t)) (4.5)
wi(t +1) = w;(t) + vhi(t)yi(t) (4.6)

wherey;(t) is considered to be the recursive difference between thet iapd the
previous weights of the map;(¢t—1), and is controlled by the parameter) < o < 1,
specifying the responsiveness of the map to inputs fromeeatérations. Wheny
tends to zero, the RSOM maintains a longer-term memory,enhiiena is equal to
one, the RSOM update is equivalent to that of the SOM, igoattie temporal aspect.

Parameter-less Self Organizing Maps

In the HQSOM maodel, as was introduced|in|[66], a single SOMBRSair has eight
parameters to set. There is little theoretical basis on kwbite can set the values
of those parameters. Moreover, the number of parametersases dramatically in
the case of the HQSOM, where there are several layers eadlisting of multiple
SOM-RSOM pairs. This requirement alone makes the use of H@®Sfctically im-
possible, as tuning all these parameters manually wouldtoersely time-consuming.
We amend the model by employing a parallel implementatiothefimproved Pa-
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rameterless SOM (PLSOMZ2) [72], which automatically adapéslearning rates and
neighborhood functions of the model, effectively redudimgnumber of parameters to
two per SOM-RSOM pair: the responsiveness parametand the generalization pa-
rameterp. Both parameters are data/problem dependent. The firsfisggbhe RSOM
sensitivity to inputs from earlier iterations, and shou&ldet based on the length of
the input sequence for a specific class, while the secondnadea is directly related to
the size of the dataset and the dimensions of the SOM. It@lsrttre SOM output ac-
tivation vectorA(t), and its ability to associate variations in the spatial irfpetween
instances of the same class.

The PLSOM2 is an improvement on the original parameterl€dd 8LSOM) [73],
in the sense that the PLSOM uses the maximum error encodrdareng training, to
scale the weight update functions, while the PLSOM2 aclsi¢hre same scaling but
based on the range of the inputs observed so far in the ttagamples. Thus, the
PLSOMZ2 effectively overcomes the drawbacks of its predsmesvhich are: the over-
sensitivity to extreme outliers, and the dependence on @ Sode weights initial
value distribution. PLSOM2 has two stages. First, it caltes the input space size
S(t), based on the training samples encountered up to thisideratThen, it updates
every map node weight vectar, but instead of using the learning ratand the neigh-
borhood functiom;,, PLSOM2 computes a single scaling factor from the previpusl
computed input space size. The input space size is defindtk alataset diameter at
timet.

S(t) = mazi; (llo: —xill*), 4,5 <t (4.7)

Sincez; is the input at time, therefore the above equation calculates the maximum
distance between all the training samples processed upgHowever, this calculation
requires the storage and the diameter calculation of althestntire training dataset,
which in turn is naturally very time and memory consumingr s reason, in[72]
the authors of the PLSOM2 propose an approximation for deténg S(t). The
algorithm proceeds as follows:
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kE<+n+1
A+
S+ —1
for every training sample do
s <+ diam(A U x)
if s > S then
S+ s
while size(A) > k do
A+ A — findNearest(x)
end while
A+ AUx
end if
end for

wheren is the number of dimension of the input sample vectors, tmetfan
diam(x) calculates the diameter of a set, that is the largest disthatween any two
set members, and the functigind Nearest(x) computes the distance between an in-
put and a set, returning the member that is nearest to the. irfgue we use also the
Euclidean distance measures for both functions. The adgeeithm works indepen-
dently of the timef, approximating the calculation ¢f to a great extent to the value
found by equation 417, io(k(k — 1)) complexity, as reported in [72].

The main power of the PLSOM2 algorithm lies in the map weigittate function,
that is, unlike the original SOM update, independent of tbation number. PLSOM?2
scales the weight update with the factit) that is defined as:

d(t) = min (erg(t), 1) (4.8)

Whereerr(t) is the distance between the input at titrend the BMU or, in other
words, the error of the map, arttlis the input space size calculated using the approx-
imation algorithm above. Then, a new neighborhood funcitsodefined usingi(t)
as:
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w(d(t)) = B In (1 +d(t)(e — 1)) (4.9)

In is the natural logarithn is the Euler number, and is the only parameter of
the algorithm and is referred to as the neighborhood range. neighborhoodange
parametef is an upper bound to the neighborhazeparameter, and is usually set
to the radius of the map. The new neighborhood functi¢#(t)) is then substituted
in equatiori 4.8 forming the following equation:

— i — L|?
w(t) = T 4.10

As for the learning ratey, the scaling factori(¢) is used instead, turning equa-
tion[4.2 into:

wi(t +1) = wi(t) + d(t)ha(t) (x(t) — wi(t)) (4.11)

The following section provides some details about the perahplementations of
the above mentioned versions of the SOM algorithm.

4.2 Multi-modal Pattern Recognition with HQSOM

Introducing time into the training phase of Self Organizidgps (SOM) has been
addressed by many researchers. The father of self orggmzaps, Teuvo Kohonen,
introduced a new time-normalized distance operator baseldymamic Time Warp-
ing (DTW), to compute differences between entire sequeatésature vectors with
variable length([74]. Training is not performed one featueetor at a time, but the
whole sequence is merged into a single matrix, then evalwagainst the existing map
weights using DTW. It was successfully demonstrated inraflspeech recognition
of Finnish words. However, it requires batch processing taedorior knowledge of
the length of the sequence. Moreover, temporal versionse@Kbhonen map were
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devised in order to implement some sort of neural feedbadealy integrators from
previous time step inputs. The Temporal Kohonen Map (TKIM][The Recurrent
Self Organizing Map (RSOM) [71], and the Recursive Self @igag Map (Rec-
SOM) [76] are the best-known methods. An excellent comparf those temporal
versions can be found in [77]. Finally, the model explaine{/8] is very close to the
model presented in this work, where the model is made up ocdiadand a temporal
SOM on top of each other, with a leaky integrator in betwedme authors used it for
sequence and sub-sequence classification of musical nbiegroves over previous
models, especially the Kangas’ model|[79], in terms of cotaponal efficiency, also
for not requiring a window to be applied over the input sequesn However, the model
does not have the potential of being multi-layered or evely trierarchical, making it
biologically implausible.

The HQSOM tries to a great extent to mimic the parallel higranal isocortical
processing in the brain, using the previously explaine@dpyd/layered structure. The
real power of the model lies in its independence from the ditydaf the dataset.
By subjecting the lower level spatial poolers (the bottogetaof SOMSs) to various
sensory domains, while the higher levels extract the teal@ssociations, the model
is able to form invariant representations of patterns aneatdin spatiotemporal data
sequences. This ability, along with the real-time GPU impatation, makes the
HQSOM ideal for several applications, especially since@@sinot require ang priori
domain knowledge, or data preprocessing. In fact, the medslvalidated on both
raw sensory data and extracted feature vectors, achieeiod) iggcognition rates.

Implementation

Apart from the data flow between different layers, which ltabe done sequentially,
the steps executed by each SOM-RSOM pair are completelypamdkent from the
other pairs. Moreover, within a single pair, the BMU searad ¢he maps weight
updates can also be easily parallelized for every SOM/RSQid element. First, we
calculate the Euclidean distance between the input vectortiae weight vector of
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every element, along each dimension, simultaneously irkengel. Then, the BMU
index is found via a minimum parallel reduction kernel, agguatiori 4.l1. Using the
BMU index, the neighborhood function and the map weight tgdee both performed
in parallel by a single kernel. Following this, dependingtbe learning algorithm
employed, if the PLSOM2 method is used we first have to findrthatispace siz8(t),
and the scaling factai(¢) to be used in the weight update equations. A parallel version
of Algorithm[13 has been devised, where the functi@isn (x) and find Nearest(x)
were each implemented as a CUDA kernel, with as many threattseanput vector
dimensions. Either equatidn 4.6 or equation ¥.11 is usedh®SOM and RSOM
weight updates, where for the SOM the value of thparameter is always set to
1. Lastly, the activation vectoA(t) is created from the BMU of the SOM, using
equatiori 4.4, also in parallel. A CUDA stream is specifieddeery SOM-RSOM
pair, which is useful to execute more than one pair simutiasky if there are enough
available resources on the GPU chip.

There are many modes of operation of the HQSOM, one for older@ing, where
the SOM-RSOM pair node weights are updated in both the trgiand testing phases.
Another mode, which is employed in the case of offline leagrioclassical SOM equa-
tions), in which the maps are updated only in the trainingsphahile in the testing/-
validation step, the activation vectdxt) is formed from the accumulated activation of
all the instances of a given sequence, and only moves to ahigyel at the end of the
whole input validation sequence. The final mode, which iglusehe following tests,
is based on the PLSOM2 learning algorithm, mainly becaus@t8OM?2 is relatively
slower than the other two learning variants (online andradjli In this mode, only the
bottom layer SOMs are trained first, to fully converge to thyaut dataset, and since we
use the parameterless version, the bottom layer can clrstierepresent the data with-
out any tuning of the model. After the bottom layer SOMs’ cengience, the training
is repeated for the higher level SOM-RSOM pairs normallyisEifectively reduces
the tuning time significantly, providing more robustnesthmactivation vectors gener-
ated directly from the dataset cluster centers (the botay@rISOMs), and formalizes
the training process for different data modalities, whas the model learns the spa-
tial topology of the data, then finds the temporal sequepaéigtns of the previously
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learned spatial cluster centers. Validation in this modievs the same procedure as
the offline mode testing phase.

Testing and Results

The results of two experiments are presented in this sechiothe first, the model is
exposed to simulated data of gray scale images, repregemimple moving arrow,
while in the second, a public dataset for gesture recognigresented to the model.
For the simulated dataset, the model learns directly fraamdlv input sequences with-
out any preprocessing; in fact, it is able to successfulhgsify the patterns even in
the presence of noise. On the other hand, the gesture réicogexperiment dataset
required some preprocessing imposed by the nature of thseataflhis public dataset
was acquired from a Microsoft Kinect depth sensor, and ispmsed of one training
instance per gesture, along with multiple validation seges, each containing one or
more test gestures. Hence, the validation set needed tarigotelly segmented to
extract the input test sequences; moreover, because dartgthlof the sequences, the
training and validation sequences were reduced to havelgxaie frames per gesture.
Although this preprocessing is not necessary for the maxkddrn, it facilitates the
manual tuning process of the model parameters, an issueithbte addressed in the
following chapter.

Synthetic Sequences

In order to validate the model, a simple simulated time sesgquence is employed.
The data consists of gray-scale images that are of sizer-pixels. There are 3 se-
guences, each composed of 5 images, representing a hatlganbving arrow, a
period of no movement, and a vertically moving arrow, resipely. The arrow is rep-
resented by black pixels on a white background, where blaskthe value of and
white 1, the actual dataset is shown in Figlrel 4.2. Gaussian noidedhstandard de-
viation 0.001 was added to all the image pixels while keeping the pixeleshvithin
the gray-level0, 1] range, which means that the random noise values were stdatrac



4.2. Multi-modal Pattern Recognition with HQSOM
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Figure 4.2: Simulated moving arrow sequences

from white pixels and added to the black ones. Each imagentasiuced to the HQ-
SOM for 1000 iterations, with the noise recomputed at every iterationc&there are
only 11 distinct images, 5 (horizontal arrow) + 1 (blank) +Brtical arrow), the SOM
size was set to 16 (a 2D grid @fx 4 nodes), while for the RSOM, its size was set to
4 (2 x 2 grid), as the output classes represent 3 sequences. Tl tegtparameters
are specified in Table4.1.

SOM RSOM
Learning Algorithm PLSOM2| PLSOM2
Grid Size 4 x4 2 x 2
Neighborhood Range5) 2.5 1.75
Memory () 1.00 0.45
Activation Sensitivity p) 0.2 -

Table 4.1: Parameters used for the SOM-RSOM pair in the ngoairows classifica-

tion.
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Results

Figurel4.8 shows the SOM-RSOM pair node weights after tnginit is clear from the
figure the SOM nodes converged correctly to the input samplbere almost every
node is directly correlated to a statistical cluster cenfahe dataset, apart from the
five nodes at the top-right of the 2D grid, which are assodiat#h noise or cluster
center interpolations. Similarly, RSOM nodes succesgftdinverged to the input se-
guences, represented as a sequence of cascaded firing of 8@dd. nFor instance,
looking at the RSOM map, black pixels represent no SOM nodtieitycat the same
index as the pixel. On the other hand, higher intensity gigajnify higher occurrence
of firing SOM nodes also at the same pixel locations. Thusutn visual inspection,
one can infer that node 1 corresponds the the vertically ngpairow sequence. In ef-
fect, the HQSOM reduce the dimensionality of the problenmfé® (7 x 7) dimensions
to only 1 single integer output, representing the overalpouclass RSOM index. It
is now enough to examine the output of the model to know thaesece presented at
the bottom level of it. However insightful the visual inspiea is, a quantification of
the results is still necessary. The Probability of Corrdets§ificationP is adopted
here, which is defined as:

> maz; (vij)

Poc = Z—UU

[2¥}

WhereV is a two dimensional matrix with the correct label given bg thw index
i, the unsupervised HQSOM output given by the column infleand each value;;
in the matrix representing the number of times that oujpwis given for the input
corresponding to label This finds the simplest mapping from outputs to labels and
calculates the likelihood that, using such a mapping, argimput would be matched
with its correct label. For 100 independent runs, in each lottvthe HQSOM was
reinitialized, and the noise applied to both training anstitgy samples, the overall
achievedP.¢ is 99%.
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Figure 4.3: (left) 4«4 SOM weights after training from a sample run. (righy2
RSOM weights after training, representing activity/firsgguence of the SOM nodes.
Higher pixel intensity signifies SOM nodes that fire togethex given sequence.

Video Sequences

The system was tested on the ChalLearn gesture dataset {80f&ud for one-shot
learning. This dataset contains video sequences of arddhb&ches, each including
100 recorded gestures performed by the same user. We randbode a batch for
classification, which contains 9 gesture classes, eachomithone training example,
and 91 test gestures. Two video streams are provided foy @esture sequence, a
depth stream acquired by the Kinect sensor along with itslsymized RGB color
stream, see Figufe 4.4. The main advantages of using thet&easor is that it con-
siderably facilitates user segmentation. To start, we igdéa@anotion feature vectors
for every frame, by computing the difference between theeturframe and the pre-
vious one, only from the depth video. Then we automaticdiiyase ten frames per
sequence that are representative of the gesture trarssibased on the average total
amount of change in the motion feature image. The featurtov@onage is then re-
sized to32 x 32 pixels. In effect, each feature vector has 1024 dimenswhgh is
the maximum number of threads that our GPU can currentlyrrparallel. The exper-
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Figure 4.4: Training input example: (top) raw depth and R&®Brfes, (bottom) five
samples of the significant 32x32 rescaled feature frames

iment was run on a 64-bit Intel(R) Cdf&i7 CPU running at 2.67GHz using CUDA
v. 4.1 on a nVIDIA GeForce GTS450 graphics card with 1GB of DBBmMory and
compute capability 2.1.

As a proof of concept, we used a single SOM-RSOM pair. The SQIM size was
set t0100 (10 x 10 2D grid), since, havin@ gesture classes each with significant
frames, the total number spatial clusters can not be lesth&Similarly, the RSOM
size was set t@5 (5 x 5 2D grid), which is sufficient to accommodate the number of
output classes. The complete set of parameters, obtaineagth manual tuning, is
summarized in Table 4.2. Since the training set is only caadof one sequence for
every gesture class, it is not enough to achieve converghmragy training. Therefore,
the same training set is introduced to the HQSOMIfdr iterations.
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SOM RSOM
Learning Algorithm | PLSOM2 | PLSOM2
Grid Size 10 x 10 5x5
Neighborhood Range5) 5.65 4.75
Memory () 1.00 0.152
Activation Sensitivity p) 0.8 -

Table 4.2: Parameters used for the SOM-RSOM pair in the Clralgesture recogni-
tion system.

Results

After training, the K-Means algorithm is run on the traineB@M node weights with
k =9, to find the RSOM cluster centers corresponding to 9 gestqaence classes.
Then the training set is used once more but as a validatignnsetder to assign an
RSOM node index to a gesture class ID. This should not be senfwith supervised
learning, in the sense that the class labels are not usec itednning process, but
merely to find correspondence between them and the RSOM tontules. Since
the class labels/annotations are not used in the trainiaggghthe HQSOM can be
considered as an unsupervised method.

The SOM and RSOM weights were randomly initialized from afamn distribu-
tion. Thus, the results are dependent on this initial wedligtribution. Overall results
were obtained from00 independent runs of the training and validation phasesaeand
reported in Tablé 4]13. Moreover, Figurel4.5 shows the SONDRSair after training
from a sample run, along with the overall classification cgidn matrix. From the
confusion matrix shown, it is apparent that gesture class6aare strongly associ-
ated. This is due to the fact that those two gestures arerpgztbwith the same arm,
with the only difference being in the number of fingers showithe camera. Such
a subtle change can not be captured by our motion featureeim@igo, the training
frames for gesture class 9 were not representative of tharggsose transitions, hence
the performance degradation. It is also important to naéettie manual tuning of the
model parameters introduces some bias in the results. &inabe optimal results, an
unbiased automatic tuning or model evolution method isiatuc
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Average| StdDev| Worst Best | Median
Accuracy 69.08% | 9.03 | 41.76%| 87.91%| 69.23%
Levenshtein Distance 0.3132 | 0.0865| 0.5714 | 0.1319| 0.3187

Table 4.3: Results of ChalLearn gesture classification: a@esaccuracy percentage
values, and Levenshtein distances over 100 independesnt run

1

[
1 2 3 4 5 8 7 8

Figure 4.5: (top) 1&10 SOM weights after training from a sample run, showing all
the clustered gesture significant frames. (bottom lefth RSOM weights after train-
ing, representing activity/firing sequence of the SOM nodegher pixel intensity
signify SOM nodes that fire together in a given sequence.tqbotight) A sample
classification confusion matrix of the 9 gesture classes
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4.3 Final Remarks

The HQSOM model has the ambitious goal of extracting, digssj, and predict-
ing causes and patterns in temporal sequences. The modedl dfeable to achieve
these goals in realtime, thanks to the GPU implementatitiiewnaintaining biolog-
ical equivalence. Currently, we are working on adding festiconnections, to con-
form with the MPF. We are also investigating activity reciigm from Kinect skeleton
datasets, where the full power of the method is needed, ankli¢harchical approach
maps well to the joint hierarchy found in the data. Also, aemxtensive testing of the
implemented variants is needed, and experiments withrdiftanodalities. Finally, a
comparison with HTM and the state of the art in temporal di@sgion will shed more
light on the advantages of this method.






Chapter 5

Automatic Configuration of the
HQSOM

5.1 Parameter Tuning

Very few methods or models claim to be truly parameterlesd,even those are usu-
ally domain specific and lack the generalization ability afgmeterized techniques.
Parameters are considered a part of the problem and théschtithe same time. On
one hand, an algorithm’s parameters can exhibit its flagjtith a multitude of distinct
problems and datasets while, on the other hand, finding tstevBies of those param-
eters that yield the best algorithm performance is a chgiltgnproblem on its own. In
most cases, this problem is addressed empirically throughaind error, or what is
usually termed manually tuning the algorithm parameters.itAas been mentioned
earlier, manual parameter tuning is a time consuming taskuaually does not lead to
the optimal values for the parameters under consideratlamual tuning is performed
by systematically changing the value of one parameter viieigping all the other pa-
rameter values fixed, until a certain performance criter@®es a given threshold.
This is usually an ad-hoc procedure that in most cases ddaguacantee optimality,
even more so with an increasing number of parameters, dugetaforementioned
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curse of dimensionality issue. Obviously, the more paramset method has, the more
difficult manual tuning becomes. Therefore, there has bemmsiderable amount of
interest and research in automatic tuning of algorithmipatars.

In [52], we used the r ace package to automatically tune the GPU methods im-
plemented in libCudaOptimize to achieve the best mininorgperformance over 20
mathematical benchmark functions. Tiheace package implements the iterated rac-
ing algorithm, which is an extension of the Iterated F-racecedure, that is based
on a statistical approach for selecting the best configuraiut of a set of candidate
configurations under stochastic evaluation. Its main psgpe to automatically con-
figure optimization algorithms by finding the most approfarisettings given a set of
instances of an optimization problem. The scenario usw@ltyressed byr ace is
described as offline configuration [81]. In a preliminaryihghphase, given a set of
tuning instances representative of a particular problemglgorithm configuration is
chosen, and in a subsequent production (or testing) phasehbsen algorithm con-
figuration is used to solve unseen instances of the samegonobifhe goal is to find,
during the tuning phase, an algorithm configuration thatimizres some cost measure
over the set of instances that will be seen during the proalugthase. In general
terms, this tuner has been used to solve combinatorial mob[82| 83, 84], but there
are also examples of its use in the optimization of metakgcsifor global continuous
optimization problems [85].

5.2 HQSOM Tuning via Real Parameter Optimization

The use of optimization methods for automatically tuningogithm parameters has
been studied extensively. In [23], the authors used a GeAdjorithm (GA) to find
the best variants of GA methods given a set of numerical opétion problems, and
also given an image registration task. Moreover] [86] usé® @nd simulated an-
nealing to automatically tune the scale of the kernel andebalarization parameter
of the popular Support Vector Machine (SVM) classificatioathod. Similar to the
work in [87], we presented a framework for to estimate thet pasameters of PSO
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on typical global optimization problems, but using our plaianetaheuristics for this
purpose, GPU PSO and DE namely|[88].

In the previous chapter it was pointed out that to achieve tfata independence
in the HQSOM model two main concerns have to be addressedfirfhées in the
stimulus sensing layer of the HQSOM, i.e. the SOM part of that &r lowest layer
of SOM-RSOM pairs. Since those SOMs are the only part in theehihat deal with
raw input data, in contrast with the rest of the model whichntygorocesses SOM
and RSOM activations, therefore, tuning their correspoggiarameters will have to
depend on the input sample sequences value ranges. Fadba, it makes sense to
use the PLSOM2 algorithm for the SOM part of the sensing l&aning, effectively
eliminating any parameters to tune for this part of the lagrcept maybe for the size
of the map parameter. As for the rest of the model layers, LH®OM2 algorithm is
both computationally expensive and unfitting. The actoratvectors that propagate
from lower level layers to the higher ones, also between S@Ms RSOMs of the
same layer, vary greatly based on the learning parametdrigloér RSOM pairs, the
activation density parameterof lower SOMs, and on the RSOM memory parameter
«. Those parameters in turn depend on the size of the mapsuthber of input
sequences, and the sequence length of the input sequeridesnol clear that to
adhere more to the biological base of the HQSOM model, anduie#e the model’s
classification ability from the sensory information, thatsa-dependent parameters
have to be automatically estimated or, in other words, edbased on the fitness of
the model, simulating the evolution of our own brains.

Model Formulation

In order to attain the automatic parameter estimation oHQ&OM through function
optimization, the optimized model needs to be properly @efifirst. LibCudaOpti-
mize metaheuristics are used to optimize variants of the GBIk $nodel, where each
candidate solution is equivalent to a complete run of thieitrg and testing phases of
the HQSOM classification algorithm. The fitness of a run/cdae solution is calcu-
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lated from metrics of the testing phase overall performaniaaining phase metrics
were not considered in the fitness function, because pradirpitests showed the PL-
SOM2 learning algorithm to be more effective than autonadlifcduned parameters in
adapting the SOM/RSOM weights to the training samples.

Fitness Function

Three performance metrics are taken into accaount as tefriting ditness function
used in the automatic HQSOM parameter estimation. The fiast@mployed in the
previous chapter in the results section, as an alternaiivieet classification accuracy
percentage. The Levenshtein distance [89], sometimesedfe as the edit distance,
is a distance measure between two string sequences, aedeafs the minimum num-
ber of single-character edits (insertion, deletion, stt&in) required to change one
string into the other. The Levenshtein distakg,(|A|, |B|) between two string se-
qguencesA = aqas - - -ay andB = by by - - - by is mathematically defined as:

(max(i,j), if min(z,7) =0

.. Alev(i_laj)_'_l

Alev(za]) = . (51)
min § Ay, (4,7 — 1)+ 1

Alev(i - 17] - 1) + [ai 7& bl]

From the above definition it seems that the Levenshteinmistaan be computed
recursively, where the first element in the minimum corresjsato the cost of deleting
a;, the second to the cost of insertihg and the third to a the cost of replaciagwith
b;. In practice, the Levenshtein distance is computed usingnardic programming
solution, which involves filling g N + 1) x (N + 1) matrix 7. The computation is
done according to the base-case rules giveff'fy0] = 7'[0,y] = 0, and the rest of
Tz, y] values are filled according #y,., (7, j) defined in equation 5.1.

To assess the HQSOM classification accuracy using the Lbteinglistance, we
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consider the output classification label sequence and thengrtruth label classifica-
tion sequence as the two stringsand B to be compared. Heréy is the number of
testing samples in the dataset, and eactepresents the HQSOM output class label
for the testing samplée

The second performance metric used in the fitness evaluattbe total temporal
error of the HQSOMer7y.,,,,. This metric conveys how well the RSOMs of the model
have converged to the training sample sequences, in tertie afhole sequence of
lower level SOM firing indexes. It is given by:

N Uj

L
erTtemp = Z Z ||z — w;’kH (5.2)

i=1 j=1 k=1

<

where N is the number of testing samplesthe number of HQSOM layers, and
U, the number of SOM-RSOM pairs in laygr The aggregated error is the Euclidean
distance between testing input sequencand the BMU Weightsué?,k of thek» RSOM
in the ;" layer of the HQSOM. This metric provides an indication of Hfawor similar
the trained weights, represented by the matching RSOM BMikgssimilar to the input
sequences.

Finally, the third metric is a simple ratio of the number ofepresented class labels
to the total number of classég,,.;. This metric is used mainly as a constraint on the
fitness function, to prevent the highest classification SR$OM unit from converg-
ing to represent multiple classes with one RSOM map elem&stdescribed in the
previous chapter, the top SOM-RSOM pair is responsibleHeraverall classification
model output, with each RSOM element or cluster center sgmting a distinct input
class. In certain cases, the HQSOM learning algorithm témdspresent more than
one input class with a single top RSOM element, sometimeas aVéhe input classes.
This behavior is directly affected by the memory paramatancorrect values of this
parameter makes it difficult for the HQSOM to distinguishvibetn one training se-
guence and the preceding and following others. Notice tiatdarning mechanism
in this model is unsupervised, meaning no hints were givehéanodel on when an
input training sequence begins or ends. Hg,, is calculated as$:;,.s = ‘%‘, where
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¢ Is the set of data classes that have no matching top RSOM etemapresenting
them, andK is the total number of classes in the dataset.

Each of those three fitness metrics provides a different ameas on the overall
classification performance given ky,.,; ii. on the model convergence to the input
sequences as described dy-.,,, and controlled by the learning rate)(and neigh-
borhood ¢) parameters of the RSOM from equation|4.2 and equatidn 4atively,
andiii. the class representation measured by the fatiq,, which is affected by both
thea memory parameter and the SOM activation dengighown in equatioh 416 and
equatiori 4.4 respectively. Thus, the fitness function usembinposed of the sum of
those metrics:

f = Alev + ETTtemp + Rclass (53)

Testing and Results

Experiments were run on the same Kinect ChalLearn gestusgméion dataset, using
the same batch as the experiments from the previous chapsting with the same
dataset and application as the manually tuned HQSOM mal@Essdible to make a
fair comparison between the parameters set manually, seidey our parallel meta-
heuristics, and also the ones found by a state-of-the-aertur ace. PSO and DE
were employed here for the automatic estimation of the HQSfk&hmeters, again
to compare their optimization performance, but this timeaditness function that is
nondeterministic in its nature. This might create a probienthe search procedure of
PSO and DE, as the same candidate solution (HQSOM paranadtesy might give
better or worse fitness values (classification performanae$ubsequent optimization
generation/iteration, depending on the stochastic Imméiion of the model. For this
reason, fitness values will not be always decreasing, inaifsmction minimization,
during the course of the optimization algorithm, as has gdAzappened throughout
the previous experiments.

The PSO and DE parameters used in the experiments are surachariTablé 51.
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DE PSO
DE/Rand/1 Mutation Cy, = 1.49618
Binomial Crossover Cy = 1.49618

F=0.9 w = 0.729844
Cr=0.2 Global Best Topology
Population Size = 20
Number of Generations = 100

Table 5.1: Parameters of DE/PSO tuners.

Those PSO parameters are set to the ‘standard’ values sedge$s1] by the creator
of PSO, while the parameters for DE are set to the values useobst of our experi-
ments, including the automatic parameter tuning expermieRSO itself[48] 50, 88].
Of course, another automatic tuner can be used to tune thenpéers of the PSO and
DE tuners, but then we may fall into an endless loop of autantahers. Notice that
the population size and number of generations were set to/édues, because they
greatly affect the computation time of one run of the opteniDespite the HQSOM
and the tuners’ GPU implementations, each particle in th@ B\8arm, or member in
the DE population, represents a whole run of the HQSOM tingiaind testing stages,
which saturates the hardware resources of our single GRldgesachine. For the
sake of comparison fairness, the experiment budgetifarce was also set ta000 to
match the number of HQSOM runs performed by PSO and DEpérticles/solutions
x 100 generations).

Given that the interaction between the particles/elemantsthe PSO/DE equa-
tions themselves are still executed in parallel, in thisec&sr every generation, each
particle fithess has to be computed on the host side, thertlesdes array transferred
to the device side through device global memory, which isretconsuming opera-
tion. The execution time could have been reduced significéra multi-GPU system
had been available, where the fithess function could have &lse executed in paral-
lel, with a single GPU per particle. CUDA version 5.0 intradd the Unified Virtual
Address (UVA) ability [90], which will be very useful in thisase, where the fithesses
array can be mapped across multi-GPU address spacedatauijithe memory shar-
ing after every generation.
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As stated earlier, the main objective of the optimizatioesimating parameters
for the higher HQSOM layers RSOM nodes, since the lower |8¢& units are being
trained using the PLSOM2 algorithm, virtually requiring parameters, except for the
PLSOM2 neighborhood range parametemwhich is usually set equal to the radius of
the map, or half the map size, as suggested in [72]. TherdafeeSOM parameters of
the SOM-RSOM pair used for gesture recognition from the @aah dataset were not
adapted during the optimization experiments. The trairetSveights were loaded
from saved values to allow a fair comparison between the mlaand automatic tun-
ing of the HQSOM parameters. Talblel5.2 summarizes the HQS&rshpeters under
optimization, along with the allowed ranges for every pagtan Those parameters
represent the dimensions of the problem optimized by our Gptunizers, with the
upper and lower bounds of the candidate solution positienglpmension. There are
two things to notice from Table 5.2; first, the map size patamis an integer value,
while the implemented metaheuristics are real-valuedicoatis optimization tech-
niques; for this reason, the rounded integer value of thetisol position is set in the
model instead of the real valued one. Secondly, the SOMatiivdensity parameter
is considered as a parameter of the optimization problespitiebeing a parameter
of the SOM part of the SOM-RSOM pair. This happens becauseptimameter does
not affect the learning process and the actual weight upd#Htéhe SOM, rather, it
controls the output vector content passed from a SOM to thesponding RSOM in
a specific pair.

Parameter Range
RSOM Size 3,32]
RSOM Neighborhood | [1.5,32000]
RSOM Learning Rate 10.0,1.0]
RSOM Memoryao 10.0,1.0]
SOM Activation Densityp | 0.0, 1.0]

Table 5.2: HQSOM parameters to be automatically estimated their value ranges.

Tests were run on a 64-bit Intel(R) Core i5 CPU running at 213@sing CUDA
v5.0 on a nVidia GeForce GT630M graphics card with 1GB of DDBnmry and
compute capability 2.1. Performance results are reportéicable[5.8 and Table 5.4,
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obtained after 100 independent runs of the HQSOM with thé¢ pa&sameter values
found by each optimizer, along with the results of the maguahed parameters used

in the experiments of the previous chapter.

Average| StdDev| Worst Best | Median| Holm—Bonferroni
Manual | 69.08% | 9.03 | 41.76%| 87.91%| 69.23%| < 1.0E — 10
PSO | 78.55% | 8.02 | 52.75%| 91.21%| 81.32% -

DE 77.53%| 7.42 |59.34%)| 91.21%| 76.92% -
irace | 77.07%| 8.87 | 49.45%/| 90.11%| 79.12% -

Table 5.3: Gesture classification accuracies of each paeaset, calculated over 100

runs.
Average| StdDev| Worst | Best | Median | Holm—Bonferroni
Manual| 0.3132 | 0.0865| 0.5714| 0.1319| 0.3187| < 1.0E—10
PSO | 0.2127 | 0.0793| 0.4725| 0.0879| 0.1868 -
DE 0.2200 | 0.0725| 0.4066| 0.0879| 0.2198 -
irace | 0.2275| 0.0869| 0.4945| 0.0989| 0.2088 -

Table 5.4: Levenshtein distances of of each parameteradetilated over 100 runs.

Two statistical tests were performed to study the existerfiqgeirwise statistical
differences among the results of the four methods used tongehe parameters of
the HQSOM: pairwise Friedman tests with Dunn-Sidak coroad91] to thep values,
and also, the Holm—Bonferroni correction [92] for multiplélcoxon signed rank tests.
The last column in Table 5.3 and Table]5.4 reports the cadeptvalue, setting the
significance level to 0.05. The statistical tests foundeleme statistical differences
between the results of the three automatic tuner resultgr@ndhanual one; on the
other hand, the tests found no pairwise significant staesistifferences among PSO,
DE, i race. Figure[5.1 provides another way to visualize the resultshoigh the
results of the automatic tuning using three different mdthare very similar, it is clear
from the plots that PSO achieves the best results, evenssinggathe state-of-the-art
in automatic parameter estimation, in terms of both acquaad distance values, and
also in terms of the standard deviation of the obtained testihis, in turn, translates
into efficient and robust pattern recognition and clasdifica
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Figure 5.1: Box plots representing the overall performasfaach parameter set. (top)
Classification accuracy percentages, higher values aterbgbottom) Levenshtein
distances between classification output lables and grautid tower values are better.

RSOM Size| RSOM¢ | RSOM~ | RSOMa | SOMp

PSO 32 32000.0| 0.790 0.136 0.689
DE 28 32000.0| 0.543 0.117 0.778

I race 27 8935.59| 0.760 0.130 0.680

Table 5.5: Parameter sets found by both PSO,iaratce.
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Table[5.5 summarizes the automatic parameters estimatditt@ydaOptimize,
and those found biyr ace. An interesting observation from the table is that the value
found by each of the three methods share a lot of similarifiee automatic parameter
estimation process provided insight on the effect of the B@ISarameters that was
not obvious from the manual tuning. For instance, all metrs®t the RSOM map size
to near the maximum size allowetR(x 32 nodes), with PSO setting it to the maximum,
which can be understood as increasing the generalizatibty alh the time sequence
matching units, with RSOM units effectively representitigs®M node index trajec-
tories found in the training data, and compensating for aimgstrajectory link in any
of the test samples. It can be foreseen that increasingrtiits lfor the RSOM size
and neighborhood scaling constamj ill result in enhancing the performance of the
automatic parameter estimation search. Also worth notiagtee values of the SOM
activation density parameter and the RSOM memory parameterwhich are set to
almost identical values by PSO andace, meaning the HQSOM has successfully
adapted to the input dataset variables, especially theeseguength variable which is
affected by thev parameter, all in an unsupervised manner.
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Figure 5.2: Fitness values vs number of generations for R&8D& in the automatic
HQSOM parameter estimation.

Studying the best fithess updates along a metaheuristiseofiaction, or through
its generations, can shed some light on where a specific iatic excels, stagnates,
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converges, or prematurely converges. Fiduré 5.2 showstafilbe fitness values for
the PSO and DE runs. It is obvious that PSO achieves bettesé$itmalues than DE
throughout its execution course, keeping in mind that theddrd parameter values
used for PSO are far more well studied than those used in DiEedfer, PSO appears
to have a higher resistance to the nondeterministic nafuheditness function, which
is probably because of the global best topology employedisexperiment, where
the swarm is always trying to converge to the best partictgtiom, preserving the best
fitness results found so far. It is also noticeable from tlod fplat both PSO and DE
have not yet converged to the global optimum, as the fithdsgsare still improving
up to the last generation. In this case, increasing the nuwibgenerations should
give the optimizers a chance to converge. Finally, we beleecomplete study of the
effects of PSO and DE parameters, self or auto-tuning oktpesameters, will also
result in a better comparison of those optimization methodghe task of automatic
parameter estimation.

5.3 Final Remarks

This chapter investigated the use of GPU-based metahesrighplemented using
libCudaOptimize, to automatically tune the parameter©iefHQSOM model, for the
ChalLearn gesture recognition application. The parametere set over a dataset
of training and testing video sequence samples of a humgaduyierforming a ges-
ture. The classification/recognition task was formulatedua optimization problem,
where the optimizer is trying to minimize an error/fitnesadtion representing the
overall performance of our bio-inspired parallel classifiS€ince this classifier uses
SOMs as its building blocks, the final classification outpluth® model is nondeter-
ministic, based on the random initialization of the SOM wviegy libCudaOptimize
proved efficient in solving this optimization problem, watlit any domain specifia(
priori) knowledge, apart from the fitness function itself, whichndependent from
the optimizer implementations. To verify the quality of tfesults obtained by our
tuners, we compared the results they obtained with thosa@reat using the manu-
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ally tuned parameters, and the ones obtained by anotheradtdéite-art tuning method
(i race). The results achieved by the algorithm tuned using DE ard ®R8re gen-
erally better than the ones acquired manually, and sligigtyer than those achieved
by i race. Keeping in view that r ace was designed specifically to statistically
compare different parameter configurations of stochasticesrolutionary algorithms,
repeating a single configuration multiple times to verife @ffects of its parameter
values, while metaheuristics are general optimizationhiodt that through our im-
plementation proved also to be effective in the automatrampeter estimation of a
stochastic classification method.

Based on the statistical tests, we can conclude that alhtiee tmetrics in the fit-
ness function, defined in equatibnl5.3 and used by all thenzatto tuners, have a
positive effect on guiding the search process to the glop@aimum of the complicated
fithess landscape of the HQSOM parameter values search s$padenportant to note
that the optimization performance is upper-bounded by timaber of particles and
generations, which, as was stated earlier, were set to ltvesdecause of the com-
putational complexity incurred by increasing those numebévioreover, the overall
gesture classification accuracy still suffers from the p@ots arising from resizing the
feature vectors to 1024 dimensions, to be processed by hi@dds simultaneously,
see Figuré 4l4. Itis clear that all the algorithm limitasare hardware based, and are
expected to be overcome with the newer, more powerful GPusGPU clusters.






Chapter 6

Further Work

All the methods that were demonstrated in this thesis hage lmeplemented using the
nVIDIA CUDA framework, thus, other interesting developrntemay be offered by the
availability of OpenCL, which will allow owners of differélGPUs (as well as multi-
core CPUs, which are also supported) than nVIDIAs to impeiparallel algorithms
on their own computing architectures. The availability based code which allows
for optimized code parallelization even on more traditionalti-core CPUs will make

the comparison between GPU-based and multi-core CPUg éaiste possibly, fairer)
besides allowing for a possible optimized hybrid use of cotimg resources in modern
computers.

Regarding libCudaOptimize future developments, seveadets can be improved
or extended. Our next efforts will mainly be concerned abthé realization of some
visualization and statistical tools in order to help bebeal and performance anal-
ysis of metaheuristics; more support for multiple solutsmts, like allowing differ-
ent sets to have independent termination criteria; theilpdigsto evolve solutions
of data types other than floats; and the parallel implemematf other well-known
optimization methods like Genetic Algorithms, Evolutiotrédegies or Evolutionary
Programming as well as further expansions of the methodadyrpresent. Also, the
library needs extensive documentation and a user manunall¥;iit needs support for
combinatorial optimization problems, and a way to represenstrained optimization
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problems.

As for the HQSOM, currently we are testing a full hierarchy S®M-RSOM
pairs on public datasets like the Microsoft Research Caigkril2 (MSRC-12) ges-
ture dataset [23], which consists of sequences of humastskéldy part movements
(represented as body part locations) and the associatesimgaaat needs to be rec-
ognized by the model. For this dataset, we have a HQSOM tltainigposed of three
layers: the bottom sensory layer has five SOM-RSOM cellsh @accessing differ-
ent body part information, namely, right arm, right legtlafm, left leg, and torso
3D skeletal joint positions. The mid layer consists of thcells, each grouping the
features and sequences extracted by the lower layer irtig teft, and middle body
movements. Lastly, the top layer consists of a single SONDR:ell, that is re-
sponsible for forming invariant representations of the l@hmdy movements through
time, again based on the features clustered by the secoed [Blge Australian Sign
Language signs (AUSL) Data Seét [94] is another dataset againich the HQSOM
is being verified. The AUSL dataset consists of sample of &ugAustralian Sign
Language) signs. 27 examples of each of 95 Auslan signs vegteired from a na-
tive signer using high-quality position tracker gloves eTHQSOM employed for this
dataset, has two layers: the sensory layer has two cellsiooniee left hand and the
other for the right hand, each processing an eleven dimeriseture vector of the
following format: (3D hand position, 3 axial rotation angleand 5 finger bend val-
ues). Similarly, the top layer is composed of one SOM-RSON) eose input is the
RSOM element index output of the lower layer (left hand cellght hand cell), and its
output the top RSOM sequence index representing an Augianciss. Preliminary
results of HQSOM training on both those datasets exhibé&sptitential of using such
a model to detect and recognize patterns in spatio-tempatal in an unsupervised
way, as the model’s building block, the SOM, is able to pres@nd make use of the
data’s spatial topology, while, on the other hand, the RS®HMesigned to cluster the
detected spatial patterns through time. Ultimately, we lditike to release the source
code of the HQSOM model to the public, as an open-sourcerjibas we did with
libCudaOptimize. However, this will involve extensive dmeentation and refactoring
of the source code.
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Finally, as was mentioned in the previous chapter, the usie©tidaOptimize to
automatically tune the HQSOM parameters suffers from samigattions, mainly per-
taining to the computational complexity resulting from tliteess function being a
complete run of another GPU-based method. Therefore, aneatamake use of the
fine-grained parallelization, because of GPU resourcedimns. This hardware con-
straints can be addressed by using a multi-GPU system, og@a GPU cluster, which
would make it possible to run the parameter estimation dpéition with larger pop-
ulations for more iterations, achieving better resultsl even allowing the automatic
tuning of the libCudaOptimize parameters itself. Anothegraative would be to cal-
culate the fitness of a HQSOM parameter set ‘online’, or duthre execution time
of the training phase, using some sort of performance metrast likely computed
from the mean square error between the inputs and the BMUseofdrresponding
SOM-RSOM pair. The goal here is to decouple the model fromdtta being pro-
cessed, which can be enhanced by also estimating the paranoéthe lowest level
SOM (the sensory layer), including the size of the receptelds of this layer’s cells,
effectively removing the need for the parameter-less imgiralgorithm (PLSOM2),
which is also another time consuming stage. Once the expatgwith the MSRC-12
and the AUSL datasets are complete, it would be certainBr@sting to optimize a
full HQSOM with many layers, verifying whether the estindhjmrameters can detect
and adapt to the spatial boundaries found in the input ssgf@ming appropriate re-
ceptive fields, akin to the early development of neuronatigyn the primary visual
cortex.






Chapter 7
Summary and Conclusions

Bio-inspired models and methods tend to be intrinsicallsajpel. This thesis inves-
tigated the benefits of such parallel models in terms of efficy and accuracy. It
started by the implementation of a GPU version of the Asyoicbus Particle Swarm
Optimization (PSO), using the nVIDIA CUDA platform on comser-level Graphics
Processing Units (GPU), then comparing it in terms of exeoutime and accuracy
to the existing parallel synchronous PSO algorithm. Alsdetailed the implementa-
tion of a parallel version of the Differential Evolution (DEnd Scatter Search (SS)
optimization algorithms, and their integration into a coomiramework that enabled
the comparison between DE, PSO, SS, and any other populzied optimization
method. The comparison was in terms of the fitness values\aahiby the GPU
methods over a benchmark of 20 popular mathematical fumstispecifying execu-
tion time as a termination criterion, effectively asseggime parallelization potential
of each optimization method.

While implementing those parallel techniques, similagtbetween the designs of
the population based optimization algorithms appearedlifeg this, we managed
to abstract the core of the GPU algorithms to create an opertedibrary (libCu-
daOptimize), to be used by the community or anyone with aicoats parameter
optimization problem. The library is a C++ API that handléddlee GPU thread and
memory allocation, the parallel optimization method, amel $tatistics for comparing
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one method to the other. Users have only to provide their opthmization prob-
lem (fitness function). Using the GPU-based PSO and DE we geshto address
real-world problems like road sign detection and clasdificea and human body pose
estimation. Also, the libCudaOptimize library enabled tbgearchers in the IBIS lab
to easily compare two popular metaheuristics (PSO and DH)drcontext of object
detection in 2D images and videos. We formulated objectatiete as a continuous
optimization problem, where the parallel optimization huet generates candidates of
a deformable model, specifying the object to be detectedewtte fitness of these can-
didates is the degree of overlap between the model and théenmgdia (images/video).
The experiments for this comparison were run for two realldvapplications. First,
the Hippocampus localization in histological images, aadosd, the human body
pose estimation from multi-view video sequences.

Afterwards, the thesis focused on Kinect gesture recagniising a parallel model
of the neocortex, namely the Hierarchical Quilted Self @igag Maps (HQSOM).
Since all neural based models are also inherently paralferallel version of this neo-
cortex model was implemented on the GPU, and expanded by asiaw kind of Self
Organizing Maps (SOM), called the Parameter-less Self izgeg Map (PLSOM2).
This choice was motivated by the HQSOM requirement of mangl$eof interacting
SOMs, arranged in a tree structure. Therefore, decredsengumber of model param-
eters is paramount to applying the model to real-world digasion problems. The
model was verified on the Microsoft ChalLearn Kinect gestataskt, achieving good
classification results. Lastly, merging the two main paftsus research, the HQSOM
model parameters were set to be optimized by libCudaOptimzore specifically
by PSO, essentially achieving automatic adaptation of tbdahparameters based on
overall classification performance. This, in essence,grespthe model to find, predict,
and classify patterns in any temporal signal from differeotalities.

In summation, we proved the parallel approach to implemgntiomputational
models is able to leverage the increasing processing pdweulti-core architectures
to solve real-world problems, while injecting the speciftordhin intelligence through
the distributive collaboration of nature-inspired modeheents. Our own brains have
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evolved to tune this very same parallel approach. Thergfneulating this process,
through evolutionary computation and swarm intelligerateng with the parallel pro-
cessing capabilities of modern supercomputers, will axadht lead to general meth-
ods that can adapt to the different data requirements oétiscientific questions.
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