
UNIVERSIT À DEGLI STUDI DI PARMA
DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

Dottorato di Ricerca in Tecnologie dell’Informazione

XXVI Ciclo

Youssef S. G. Nashed

PARALLEL BIO-INSPIRED METHODS

FOR MODEL OPTIMIZATION

AND PATTERN RECOGNITION

DISSERTAZIONE PRESENTATA PER IL CONSEGUIMENTO

DEL TITOLO DI DOTTORE DI RICERCA

GENNAIO 2014

UNIVERSIT À DEGLI STUDI DI PARMA

Dottorato di Ricerca in Tecnologie dell’Informazione

XXVI Ciclo

PARALLEL BIO-INSPIRED METHODS

FOR MODEL OPTIMIZATION

AND PATTERN RECOGNITION

Coordinatore:

Chiar.mo Prof. Marco Locatelli

Tutor:

Chiar.mo Prof. Stefano Cagnoni

Dottorando:Youssef S. G. Nashed

Gennaio 2014

To my beloved wife, Sandra

Contents

Acknowledgements 1

Abstract 3

1 Introduction 5

2 Background 9

2.1 Metaheuristics . 9

Particle Swarm Optimization . 10

Differential Evolution . 12

Scatter Search . 15

2.2 The Neocortex . 19

Memory Prediction Framework . 21

2.3 General-Purpose GPU Programming 22

NVIDIA GPU Architecture . 23

CUDA Programming Model . 23

3 Parallel Metaheuristics 27

3.1 CUDA Particle Swarm Optimization 28

ii Contents

CUDA Asynchronous PSO . 29

Implementation . 30

3.2 CUDA Differential Evolution . 34

Implementation . 34

3.3 CUDA Scatter Search . 35

Implementation . 36

3.4 libCudaOptimize . 37

Implementation . 37

Usage . 38

3.5 Testing and Results . 40

Speedup Results . 40

Benchmark Functions . 43

Real-World Application . 48

3.6 Final Remarks . 56

4 Hierarchical Quilted Self Organizing Maps 59

4.1 Self-Organizing Maps . 61

Recurrent Self Organizing Maps . 62

Parameter-less Self Organizing Maps 62

4.2 Multi-modal Pattern Recognition with HQSOM 65

Implementation . 66

Testing and Results . 68

4.3 Final Remarks . 76

Contents iii

5 Automatic Configuration of the HQSOM 77

5.1 Parameter Tuning . 77

5.2 HQSOM Tuning via Real Parameter Optimization 78

Model Formulation . 79

Fitness Function . 80

Testing and Results . 82

5.3 Final Remarks . 88

6 Further Work 91

7 Summary and Conclusions 95

Bibliography 99

List of Figures

2.1 The Neocortex lobes . 19

2.2 Face Recognition in the Visual Cortex 20

2.3 HTM Structure . 21

2.4 CUDA Grids . 24

2.5 CUDA Kernel Execution . 25

2.6 CUDA Memory Hierarchy . 26

3.1 PSO Topologies . 30

3.2 Block Diagram of the Synchronous CUDA PSO algorithm 31

3.3 Synchronous CUDA-PSO VS Asynchronous CUDA-PSO33

3.4 Block Diagram of the CUDA DE algorithm 35

3.5 Block diagram of the Scatter Search Algorithm. 36

3.6 libCudaOptimize UML diagram . 38

3.7 CUDA-PSO test results . 42

3.8 Benchmark Function Plots . 46

3.9 Body Pose Estimation Per-joint Plots 53

3.10 Body Pose Estimation Per-frame Plots 53

vi List of Figures

3.11 Body Pose Estimation PSO and DE comparison 54

3.12 Body Pose Estimation Example Results 55

4.1 HQSOM structure . 60

4.2 Simulated moving arrow sequences 69

4.3 Arrows HQSOM weights after training71

4.4 ChaLearn training samples . 72

4.5 ChaLearn HQSOM weights after training75

5.1 Box plots of DE,PSO,irace, and manually tuned parameters 86

5.2 DE VS PSO parameter estimation 87

List of Tables

3.1 Pseudo-code for the sequential versions of PSO 32

3.2 Automatically-tuned parameters for libCudaOptimize 43

3.3 Benchmark Function Definitions . 44

3.4 Results on the 20 benchmark functions. 47

3.5 Parameters used for human body pose estimation 50

3.6 Body Pose Estimation distance results 51

3.7 Body Pose Estimation fitness results 52

3.8 Body Pose Estimation fitness results on all the videos 52

4.1 Arrows HQSOM Parameters . 69

4.2 ChaLearn HQSOM Parameters . 73

4.3 ChaLearn HQSOM Results . 74

5.1 Parameters of DE/PSO tuners. 83

5.2 HQSOM parameters to be automatically estimated 84

5.3 ChaLearn HQSOM accuracy results with auto-tuned parameters . . . 85

5.4 ChaLearn HQSOM Levenshtein distances with auto-tuned parameters 85

5.5 Parameter sets found by both PSO, andirace. 86

Acknowledgements

The work presented in this thesis was carried out in the Intelligent Bio-Inspired System

(IBIS) Laboratory of the Department of Information Engineering of the University of

Parma, Italy. It would not have been possible to write this doctoral thesis without the

help and support of the kind people around me, to only some of whom it is possible to

give particular mention here.

First and foremost, I would like to express my deepest gratitude to my advisor, Prof.

Stefano Cagnoni, for his excellent guidance, caring, patience, and providing me with

an excellent atmosphere for doing research. He kept an open mind to new ideas, while

providing valuable scientific and technical context to them. Also on the administrative

and personal issues, he was always flexible and willing to lend a helping hand when

needed. Grazie professore!

Secondly, I have to specially thank my colleagues and friends in the IBIS lab, Pablo

Mesejo and Roberto Ugolotti, without whom many of the projects mentioned in this

thesis would not have seen the light. They have provided me with many ideas and clues

on how to tackle my technical, scientific, and personal problems. We have spent a lot

of time together on writing papers, debugging code, attending conferences, supervising

students, making jokes, drinking countless cups of coffee,and consuming a copious

amount of pasta. They have made time a lot more enjoyable and provided input and

technical aid to many aspects of my projects.

Besides the people at the University of Parma, I would like toextend my sincere

thanks to Luca Mussi, from Henesis s.r.l. He took time from his busy schedule to

collaborate with me on my first publication, and although most of the communication

2 Acknowledgements

was done remotely, I thank him for his patience in introducing me to CUDA, which all

of my work depends on. He was also the one that pointed me towards the Hierarchical

Quilted Self Organizing Maps model during one of his rare visits to the University.

My doctorate degree was funded by the European Comission (Marie Curie ITN

MIBISOC, FP7 PEOPLE-ITN-2008, GA n. 238819). This time involved many work-

shops, activities, and two secondments abroad. I would liketo thank the MIBISOC

network management team, more specifically Oscar Cordón and Carmen Peña, for

offering me this opportunity and arranging all the activities and paperwork. Also, a

warm thank you for all my fellow MIBISOC early-stage researchers, it was a pleasure

having all those meetings and discussions together.

Last but not the least, I am grateful to my friends and family back home for their

continuous love and encouragement. To my parents for raising me up with the love of

reading and science, and their prayers for my studies abroad. I am most grateful to my

wife, Sandra, who supported me throughout the good and bad times, specially during

the final stages of writing this thesis. Thank you.

Los Angeles, September 6, 2013

Youssef S. G. Nashed

Abstract

Nature based computational models are usually inherently parallel. The collaborative

intelligence in those models emerges from the simultaneousinstruction processing by

simple independent units (neurons, ants, swarm members, etc...). This dissertation

investigates the benefits of such parallel models in terms ofefficiency and accuracy.

First, the viability of a parallel implementation of bio-inspired metaheuristics for func-

tion optimization on consumer-level graphic cards is studied in detail. Then, in an

effort to expose those parallel methods to the research community, the metaheuristic

implementations were abstracted and grouped in an open source parameter/function

optimization librarylibCudaOptimize. The library was verified against a well known

benchmark for mathematical function minimization, and showed significant gains in

both execution time and minimization accuracy. Crossing more into the application

side, a parallel model of the human neocortex was developed.This model is able to

detect, classify, and predict patterns in time-series datain an unsupervised way. Fi-

nally, libCudaOptimize was used to find the best parameters for this neocortex model,

adapting it to gesture recognition within publicly available datasets.

Chapter 1

Introduction

Why are bio-inspired methods good models for intelligence?The answer to this ques-

tion lies in the difference between bio-inspired computation and classical Artificial In-

telligence (AI). In traditional AI, the programmer has all the knowledge, and encodes

the intelligent behavior within the system from above. On the other hand, bio-inspired

methods follow a bottom-up approach. In most cases of bio-inspired models, they

consist of a set of individuals/organisms, each applying a simple set of rules, for a

number of iterations or generations. A complex behavior arises from the collective

basic individual’s actions, accumulated after rule application cycles. Such a model is

in accordance with the evolutionary approach to learning, where the simple rules are

selection, combination/reproduction, and mutation, thatthrough millions of years re-

sulted in extremely complex structures and creatures. In less technical terms, the most

obvious reason to use nature-based methods is that we know, from everything around

us, that they actually work.

Bio-inspired methods include, but are not limited to, Genetic Algorithms (GA),

Artificial Neural Networks (ANN), Ant Colony Optimization (ACO), Artificial Life

(ALife), and Swarm Intelligence (SI) approaches. As specified above, using any of

these methods entails the simulation of a group of instruction processing units, run-

ning for several iterations, which in turn limits the applicability of these approaches,

because of the required computational load. This reason, along with the fact that they

6 Chapter 1. Introduction

are decentralized methods, makes bio-inspired algorithmsexcellent candidates for par-

allelization. As far as we are concerned in this study, we present parallel instances of

the SI algorithms, which are used for real-valued parameterestimation and function

optimization. Another aspect that is of great interest to the authors is the real-time

detection of patterns or anomalies in time series data (i.e.videos, range sensor data,

audio, etc...). Here, this is achieved through a new parallel implementation of a neural

model that is called Hierarchical Quilted Self Organizing Maps (HQSOM). One of the

main contributions of this research is employing function optimization techniques to

evolve variants of the HQSOM that can adapt to the pattern classification task, regard-

less of the dataset nature.

The term function or mathematical optimization may sound too technical to the

unfamiliar reader. However, optimization is rather widelyused in real life applica-

tions. It is defined as trying to find a set of values to variables, or parameters, of a

function that give the maximum or minimum output (“objective function” or, when

evolutionary computing algorithms are considered, “fitness function”). For example,

let us say you want to buy a new house, and for simplicity purposes, let us also say

you are considering two factors only when searching for yournew home: house area,

and neighborhood. Surely, you would want to pay as little as possible. In this case, we

can consider this decision as a two-dimensional function optimization problem, a two-

dimensional minimization to be more precise. The function parameters/dimensions are

area, and neighborhood, while its output/fitness is price. Optimization methods are de-

signed to deal with such problems, to find good values for the function parameters that

give the optimal (or near optimal) fitness. Optimization is used in many applications,

from different fields, ranging from engineering and aerospace design optimization, to

economics and operations research.

Real-time pattern detection and understanding in multimodal environments is be-

coming paramount to applications from different fields. Automatic surveillance sys-

tems and assisted-living homes will benefit from research done in areas such as human

activity classification and object detection, usually involving temporal sequences from

video cameras or other wearable sensors. Gesture and voice recognition can be useful

7

for human robot interaction systems, sign language interfaces, and even gaming. For-

tunately, the video games industry currently fuels a huge market, pushing innovation

in the design and manufacturing process of graphic cards andintuitive gaming console

controllers. The project at hand is more specifically interested in nVIDIA’s CUDA

parallel programming framework, in addition to the increasingly popular Microsoft

KinectTMsensor.

The rest of this work is organized into four sections. Chapter 2 provides an overview

of the literature, and terms used throughout the dissertation. It presents the notion of

metaheuristics, explaining in detail the three methods implemented, in addition to the

Memory Prediction Framework (MPF), on which the HQSOM modelis envisioned.

The parallel programming framework that supports all the methods implemented is

also presented in this chapter. In Chapter 3, we expand on theconcept of parallel meta-

heuristics, providing implementation details on the actual algorithms, and the open

source library used in this project. Testing on a benchmark of well known mathemat-

ical functions, results are shown in terms of convergence tothe function minimum,

speedup gain compared to a sequential method, an assessmentof the parallelism po-

tential of each metaheuristic, and finally, on a case study ofa real-world application.

The HQSOM model for pattern detection and classification is presented in Chapter

4. The basic building model of the HQSOM is the Self-Organizing Map (SOM) algo-

rithm. There are several variants of this algorithm, to adapt it to clustering different

kinds of data. We will explain the SOM algorithm, the modifications made to it, and

the datasets used to verify correctness of the model. Chapter 5 introduces the novel

technique of finding a good parameter set for the HQSOM through optimization by

metaheuristics, effectively decoupling the classifier from the modality and properties

of the dataset. Finally, Chapters 6 and 7 include some final remarks and a discussion

about possible future developments.

Chapter 2

Background

In this chapter we review the key concepts required to understand the research project

at hand. The motivation behind using metaheuristics for continuous optimization is

provided below, giving more attention to the three bio-inspired optimization techniques

implemented to execute in parallel. Moving on to a seeminglydifferent subject, the

chapter continues with the biological and theoretical basis of the HQSOM model, using

a similar approach to explain the requirements for such models. Lastly, the final section

describes the programming environment CUDA by nVIDIA, within which we have

developed and implemented our methods, to help the readers’understanding of the

implementation choices which will be described further on.

Although the following sections may appear unrelated to thereader, upcoming

chapters will provide the common ground where those different subfields of research

come together in a single application.

2.1 Metaheuristics

A heuristic search method is the one that uses specific knowledge about a problem to

find the solution. As for metaheuristics, they are a family ofalgorithms that are mainly

used as global search methods for function optimization. Metaheuristics do not use

10 Chapter 2. Background

problem-specific knowledge, but they make assumptions about the problem class and

good solution locations (fitness landscape). Therefore, itis virtually impossible to find

a metaheuristic that can solve all kinds of optimization problems [1]. Metaheuristics

are usually stochastic methods, starting with randomly chosen feasible solutions, then

selecting the best one(s) as a guide for future algorithm iterations. This random com-

ponent of metaheuristics make them non-deterministic methods, which in turn does

not guarantee optimality. However, they are less computationally complex than exact

methods. Moreover, in practice, they are known to find near optimal solutions in very

few iterations (fast convergence).

Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a bio-inspired optimization algorithm intro-

duced by Kennedy and Eberhart [2]. It is based on the simulation of the social behavior

of bird flocks. In the last fifteen years PSO has been applied toa very large variety of

problems [3] and many variants of the original algorithm have been proposed [4].

During the execution of PSO, a set of particles moves within afunction domain

searching for the optimum of the function (best fitness value). The motion of theith

(i = 1, Np) particle can be described by the following two simple equations which

regulate the particle’s position and velocity:

vi(t) = w · vi(t− 1)

+ c1 · rand(0, 1) · (BPi − Pi(t− 1))

+ c2 · rand(0, 1) · (BGP − Pi(t− 1))

Pi(t) = Pi(t− 1) + vi(t)

wherevi(t) andPi(t) are respectively the velocity and position of the particle in the

present iteration,c1, c2 andw (inertia factor) are positive constants,rand(l, u) returns

random values uniformly distributed in[l, u],BPi is the best-fitness position visited so

far by the particle. In the basic algorithm “global-best PSO”, BGP is the best-fitness

2.1. Metaheuristics 11

position visited so far by any particle of the swarm. In several variants, termed “local-

best PSO”, the swarm is subdivided into particle neighborhoods which can assume

different topologies. In that case,BGP becomesBGPi and represents the best-fitness

position visited so far by any particle in theith particle’s neighborhood. Among the

possible neighborhoods, the ring-shaped one is particularly interesting for its simple

implementation, as well as for the role it may play in optimizing the efficiency of PSO

parallelization [5] and even, sometimes, for the improvement of convergence speed [6]

it may bring.

Formally, letf(P) be the fitness function under optimization (to be minimized),

whereP = [p1, p2, · · · , pD] is a candidate solution in the form of a real valued vector

of sizeD = the problem dimension, andli andui are the lower and upper bounds of

theith dimension, respectively.

The basic PSO algorithm is then defined as:

for each patriclePi do

for each dimensiond← 1, D do

Pi[d]← rand(ld, ud)

Vi[d]← rand(−|ud − ld|, |ud − ld|)

BPi[d]← Pi[d]

end for

if f(Pi) < f(BGP) then

BGP ← Pi

end if

end for

while termination criteria is not metdo

for each patriclePi do

for each dimensiond← 1, D do

rp ← rand(0, 1)

rg ← rand(0, 1)

Vi[d]← wVi[d] + c1rpBPi[d] + c2rgBGPi[d]

Pi[d]← Pi[d] + Vi[d]

12 Chapter 2. Background

end for

if f(Pi) < f(BPi) then

BPi ← Pi

if f(Pi) < f(BGP) then

BGP ← Pi

end if

end if

end for

end while

At the end of the PSO algorithmBGP will hold the best found solution.

Differential Evolution

Differential Evolution (DE), first introduced by Storn and Price [7], has recently been

one of the most successful Evolutionary Algorithms for global continuous optimiza-

tion, especially when the function to be optimized is multimodal and non-separable [8].

Unlike traditional EAs, DE perturbs the individuals of the current generation by the

scaled differences of other randomly-selected and distinct individuals. Therefore, no

separate probability distribution has to be used for generating the offspring [9]. This

way, in the first iterations the population members are widely scattered in the search

space and possess great exploration ability. During optimization, the individuals tend

to concentrate in the regions of the search space with bettervalues, so the search auto-

matically focuses onto the most promising areas [10].

In DE, new individuals that will be part of the next generation are created by com-

bining individuals that are already members of the current population. Every individual

acts as a parent vector and, for each of them, a donor vector iscreated. In the basic

version of DE, the donor vector for theith parent (Xi) is generated by combining three

random and distinct individualsXr1, Xr2 andXr3. The donor vectorVi is calculated

by what is called mutation of difference vectors as follows:

2.1. Metaheuristics 13

Vi = Xr1 + F · (Xr2 −Xr3)

whereF (scale factor) is a parameter that strongly influences DE’s performances

and typically lies in the interval[0.4, 1]. Recently, several mutation strategies have

been applied to DE, experimenting with different base vectors and different numbers

of vectors for perturbations. For example, the original method explained above is

called DE/rand/1, which means that the first element of the donor vector equationXr1

is randomly chosen and only one difference vector (in our caseXr2 − Xr3) is added.

After mutation, every parent-donor pair generates a child (Ui), called trial vector, by

means of a crossover operation.

Ui,j =

{

Vi,j if (rand(0, 1) ≤ Cr or j = jrand)

Xi,j otherwise

As described in the above equation, thejth component/dimension of theith donor

vector is obtained by means of uniform (binomial) crossover, whereCr is the crossover

rate, andjrand is a randomly selected dimension. The newly-generated individualUi

is evaluated by comparing its fitness to its parent’s fitness.The best survives and will

be part of the next generation.

DE shares some features with swarm intelligence techniques, mainly related with

the interaction among particles and the selection scheme. In particular, both DE and

PSO are stochastic, population based, real-valued algorithms, and designed for chal-

lenging continuous optimization problems (non-differentiable, nonlinear and/or mul-

timodal functions) using few control parameters. DE can also be considered as an

Evolutionary Algorithm (EA), but differs from traditionalEA algorithms in the aspect

of generating new vectors by adding the weighted differencevector between two pop-

ulation members to a third member.

The basic DE algorithm, with random mutation and binomial crossover, can then be

described as follows:

14 Chapter 2. Background

for each candidate solutionXi, i← 1, N do

for each dimensiond← 1, D do

Xi[d]← rand(ld, ud)

end for

end for

while termination criteria is not metdo

for each candidate solutionXi, i← 1, N do

r1← r2← r3← i

while r1, r2, r3 andi are not mutually exclusive integersdo

r1← rand(1, N)

r2← rand(1, N)

r3← rand(1, N)

end while

j ← rand(1, D)

for each dimensiond← 1, D do

if d ≡ j ∨ rand(0, 1) ≤ Cr then

Ui[d]← Xr1[d] + F (Xr2[d]−Xr3[d])

else

Ui[d]← Xi[d]

end if

end for

if f(Ui) < f(Xi) then

Xi ← Ui

end if

end for

end while

The best candidate solution of the final generation is the best overall found solution.

2.1. Metaheuristics 15

Scatter Search

Scatter Search (SS), originally proposed by Glover [11], isbased on a systematic com-

bination between solutions (instead of a randomized one, asusually happens in EAs)

taken from a considerably reduced evolved pool of solutionsnamed the reference set

(usually between five and ten times lower than typical EA population sizes). SS is

composed of 5 structural “blocks” or methods:

1. Diversification Generation: a population of solutionsP is built with a certain

degree of quality and diversity. The reference setR is then drawn fromP , and it

is composed of the|R1| solutions with best fitness and the|R2| solutions with the

maximum euclidean distance to the reference set; the evolution process works

only overR;

2. Improvement: to obtain quality solutions, an improvement method is applied to

original solutions and/or combined solutions (usually a “local search”);

3. Reference Set Update: once a new solution is obtained (applying the combina-

tion method) it replaces the worst solution in R only if it improves the quality of

the reference set (in terms of fitness and/or diversity);

4. Solution Combination: in most of the problems a specific solution combination

method is needed, and it can be selectively applied and/or using random ele-

ments. In many cases an existing GA crossover operator can beemployed;

5. Subset Generation: the procedure generates subsets fromR, in a deterministic

way, to which the combination method is applied. These combinations can be

made considering pairs, triplets,. . . .

Since SS is only a template for constructing many variants ofthe algorithm, the

procedure for implementing it is not composed of concrete mathematical steps, rather

it consists of guidelines on how to use its building blocks. The basic SS algorithm was

outlined in [12] as follows:

16 Chapter 2. Background

1: Start withP = ∅. Use the diversification generationmethod to construct a solution

and apply the improvementmethod. Letx be the resulting solution. Ifx 6∈ P then

addx to P (i.e. P = P ∪ x), otherwise, discardx.

2: Repeat step 1 until|P | = N

3: Use the reference set updatemethod to buildRefSet = {x1, x2, · · · , xb} with

bestb solutions inP . Order the solutions inRefSet according to their fitness,

such thatx1 is the best solution, andxb the worst.

4: NewSolutions← TRUE

5: while NewSolutions do

6: GenerateNewSubsets with the subset generationmethod.

7: NewSolutions← FALSE

8: while NewSubsets 6= ∅ do

9: Select the next subsets in NewSubsets

10: Apply thesolutioncombination method tos to obtain the trial solutions.

11: Apply the improvementmethod to the trial solutions.

12: Apply the reference set updatemethod.

13: if RefSet has changedthen

14: NewSolutions← TRUE

15: end if

16: Deletes from NewSubsets

17: end while

18: end while

Solis&Wets local search

Here we use Solis&Wets local search [13] as the improvement method of Scatter

Search. Solis&Wets method is a randomized hill-climber with adaptive step size. Each

step starts at a pointx. A perturbationdif is randomly chosen from a Gaussian dis-

tribution with standard deviationρ, for each problem dimension. If eitherx + dif or

x− dif has a better fitness thanx, a move to the best point is performed and a success

is recorded, otherwise the position does not change and a failure is recorded. AfterN+

2.1. Metaheuristics 17

consecutive successesρ is increased, for getting faster to the local optima, while after

N− failures in a row,ρ is consequently decreased.

A single run of the Solis&Wets algorithm for a candidate solutionx is described below:

function SOLISWETS(x, D, bias, ρ)

numEval ← 0

numSuccess← 0

numFailed← 0

while numEval < maxEval do

for i← 1, D do

dif [i]← randGaussian(0, ρ)

end for

xp← x+ bias + dif

if f(xp) < f(x) then

x← xp

bias← 0.2× bias + 0.4× (dif + bias)

numSucess← numSuccess+ 1

numFailed← 0

else

xp← x− bias− dif

if f(xp) < f(x) then

x← xp

bias← bias− 0.4× (dif + bias)

numSucess← numSuccess+ 1

numFailed← 0

else

numFailed← numFailed+ 1

numSucess← 0

end if

end if

if numSucess > N+ then

18 Chapter 2. Background

ρ← 2ρ

numSucess← 0

else ifnumFailed > N− then

ρ← ρ/2

numFailed← 0

end if

numEval← numEval + 1

end while

end function

2.2. The Neocortex 19

2.2 The Neocortex

The cerebral cortex is the folded outer layer of the human andmammalian brains.

Anatomically, it is composed of a thin layer (2 to 4 millimeters in thickness) of neural

tissue, and covers the cerebrum, which is divided into two cortices, the left and right

cerebral hemispheres. It is usually referred to asgray matter, because of the neuronal

cell bodies and blood capillaries that run through it, making it darker than the underly-

ing white matterareas, that is the complex network of neuronal axon bundles,or nerve

cell endings, that connect parts of the cerebral cortex to each other, and other parts of

the central nervous system.

The neocortex, also called the isocortex and neopallium, isthe newest part of the

cerebral cortex to evolve (hence the Latin prefixneo). The ratio of the size of the neo-

cortex to the total size of the brain is thought to correlate to the intelligence of a species.

In humans, the neocortex is 90% of the cerebral cortex. It is involved in higher brain

functions, such as perception of sensory information, memory, spatial reasoning, lan-

guage, and conscious thought. The neocortex is divided intofrontal, parietal, occipital,

and temporal lobes, each performing a different function, see Figure 2.1.

Figure 2.1: The Neocortex lobes

20 Chapter 2. Background

The neocortex is made up of layers, interconnected with feedforward and feedback

connections. Lower-level layers detect simple features, passing them to higher levels

that build associations of those features forming invariant abstract representations of

a concept. For a more concrete example, let us consider the processing of visual in-

formation. In the primary visual cortex (part of the occipital lobe), the lowest level

of neurons, known as V1, respond to low-level visual features, such as horizontal and

vertical lines. Information from V1 is passed to higher levels (V2, V4, and V5), where

some levels are more linked to motion, while others are responsible for storing long-

term memory of object representations; this process is illustrated in Figure 2.2 for the

face recognition task. On the other hand, feedback connections from higher levels to

lower levels provide predictions for the currently sensed features based on previous

experience/memory.

Figure 2.2: Face Recognition in the Visual Cortex [14]

2.2. The Neocortex 21

Recent breakthroughs in the fields of neuroscience and functional magnetic reso-

nance imaging have drawn attention to the role of the retrosplenial cortex (part of the

temporal lobe) in recognizing the familiarity of a person, irrespective of the stimulus

modality [15]. In other terms, during the task of distinguishing people known to a

subject, the flow of information through the neocortex appear to be similar, whether

the subject is presented with either faces or voices. Expanding on these findings, Jeff

Hawkins proposed a computational model of the neocortex, the Memory-Prediction

Framework (MPF), for identifying, clustering, and predicting patterns in any modality

of temporal signals [16], (i.e. videos, audio, stock marketdata, etc...).

Memory Prediction Framework

The MPF is inspired by the structure explained in the previous section, where the

basic unit comprising each level should perform both spatial and temporal pooling or

clustering. Only the first level deals with the sensory information from the input signal,

effectively decoupling the model from the modality of the signal. On the practical side,

George and Hawkins describe their implementation of the MPF, the HTM [17], which

is a Bayesian network with layers arranged in a tree-shaped hierarchy (Figure 2.3),

based on the spatial correlations of the input data.

Figure 2.3: HTM Structure [18]

22 Chapter 2. Background

As shown in Figure 2.3, the lower-level layers of the HTM correspond to regions in

the neocortex (V1 in the visual cortex) while, at the top, HTMhas one output node, or

neuron, that may play a similar role to the task of the Hippocampus in the mammalian

brain. Although the time aspect is crucial in the MPF model theory, the HTM was

only tested for stationary binary object recognition. Also, HTM suffers from the lack

of feedback connections from higher to lower levels of its networks, which contradicts

with the biological and theoretical model of the neocortex,and deprive the HTM from

pattern-prediction capabilities. Moreover, the Bayesianbasis of the HTM complicates

dissecting and debugging the model during the training phase. In this work, we will

try to address these shortcomings or provide future solutions for them.

2.3 General-Purpose GPU Programming

Modern graphics hardware has gained an important role in thearea of parallel com-

puting. Graphic cards have been used in 3D graphics applications and gaming but, re-

cently, they have also been more and more frequently used to accelerate numeric com-

putation, in what is usually called general-purpose GPU (GPGPU) programming [19].

The main advantage of using GPUs lies in their structure: while standard CPUs usu-

ally contain a handful of complex computational cores, memory registers and large

cache memory, GPUs contain up to several hundreds of cores grouped into so-called

multiprocessors, organized such that each ALU of a multiprocessor executes the same

operations on different data, stored in registers or devicememory. In contrast with stan-

dard CPUs, which can reschedule operations (out-of-order execution), current GPUs

are an example of an in-order architecture, but this drawback can be overcome by their

massive parallelism, as described by Hager et al. [20], whenthe problem to be solved

fits their features well.

2.3. General-Purpose GPU Programming 23

NVIDIA GPU Architecture

From a hardware viewpoint, a GPU compatible with CUDA (Compute Unified Dis-

tributed Architecture) is made up of a scalable array of multithreaded Streaming Mul-

tiprocessors (SMs), each of which is able to execute severalthread blocks at the same

time. Each SM embeds eight scalar processing cores and is equipped with a number of

fast 32-bit registers, a parallel data cache shared among all cores, a read-only constant

cache and a read-only texture cache accessed via a texture unit that provides several

different addressing/filtering modes. In addition, SMs canaccess local and global

memory spaces which are (non-cached) read/write regions ofdevice memory: these

memories are characterized by latency times about two orders of magnitude larger than

the registers and texture cache. Only threads belonging to the same thread block can

share data in fast memory; different thread blocks may only share data allocated in

slow memory. CUDA’s scheduler allocates as many thread blocks at the same time

as possible, compatibly with available resources, which allows a CUDA program to

be run on any number of SMs. SMs can manage hundreds of threadsrunning differ-

ent code segments thanks to an architecture called SIMT (Single Instruction, Multiple

Thread) which creates, manages, schedules, and executes groups (warps) of 32 paral-

lel threads. Opposite to what happens in a SIMD (Single Instruction, Multiple Data)

architecture, the whole execution and branching behavior of threads is specified. This

way it is possible to manage parallel code for independent scalar threads as well as

code for parallel data processing, which is executed by coordinated threads.

CUDA Programming Model

CUDA is a GPGPU environment, that includes a parallel computing architecture and

programming model, developed by nVIDIA. This programming model requires the

problem under consideration be partitioned into sub-problems, that are solved indepen-

dently in parallel by blocks of threads. In turn, each sub-problem is also partitioned

into finer pieces, that can be solved cooperatively in parallel by all threads within the

same block. Blocks are organized into a one-dimensional, two-dimensional, or three-

24 Chapter 2. Background

dimensional grid of thread blocks, as illustrated in Figure2.4.

Figure 2.4: Grid of Thread Blocks [21]

Kernels

The programming language used within CUDA, CUDA-C, is an extension of the C

programming language which allows one to implement GPU-based parallel functions,

called kernels, which, when called, are executed N times in parallel by N different

CUDA threads. Kernels are run on the device (GPU), while the rest of the code runs

on the host (CPU), see Figure 2.5. It is also important to notice that, in CUDA, host and

devices have separate memory spaces and, in order to executea kernel, the programmer

needs to explicitly allocate memory on the device and, if needed, transfer data from and

back to the host. This is the main bottleneck which is encountered when optimizing

code for speed. The programmer should reduce as much as possible the amount of

these transfers.

2.3. General-Purpose GPU Programming 25

Figure 2.5: Kernel Execution [21]

Memory Hierarchy

The last thing to highlight is the memory hierarchy available to threads, and the per-

formance associated with the read/write operations to/from each of the memory levels.

Each thread has its own localregistersand all threads belonging to the same thread-

blocks can cooperate throughshared memory. Registers and shared memory are phys-

ically embedded inside SMs and provide threads with the fastest possible memory

access. Their lifetime is the same as the thread-block’s. All the threads of a kernel

can also accessglobal memorywhose content persists over all kernel launches [21], in

addition to read-onlyconstant memoryandtexture memory, which are located within

the same memory space as the global memory; however, read andwrite operations to

global memory are orders of magnitude slower than those to shared memory and reg-

isters, therefore access to global memory should be minimized within a kernel. The

nVIDIA memory hierarchy is shown in Figure 2.6.

In order to obtain the best from this architecture, a number of specific program-

26 Chapter 2. Background

Figure 2.6: Memory Hierarchy and Access [21]

ming guidelines should be followed, the most important of which are: (a) minimize

data transfers between the host and the graphics card; (b) minimize the use of global

memory: shared memory should be preferred; (c) ensure global memory accesses are

coalesced whenever possible; (d) avoid different execution paths within the same warp.

Moreover, each kernel should reflect the following structure: (i) load data from glob-

al/texture memory; (ii) process data; and (iii) store results back to global memory.

An in-depth analysis of the architecture and more detailed programming tips can

be found in [21, 22].

Chapter 3

Parallel Metaheuristics

Traditional optimization techniques, like the classical gradient search method, perform

effectively when the problems under consideration satisfytight constraints, such as

being differentiable, convex and well-defined functions. However, when the search

space is discontinuous, noisy, high-dimensional, and multimodal, then stochastic algo-

rithms have been found to consistently outperform classical methods [23]. Among the

stochastic approaches to continuous optimization, evolutionary and swarm intelligence

algorithms, as well as other metaheuristics [24], offer a number of attractive features:

no requirement for differentiable or continuous objectivefunctions, robust and reliable

performance, global search capability, virtually no need of specific information about

the problem to solve, easy implementation, and implicit parallelism.

Despite several limitations which have been highlighted and the availability of

other algorithms which perform better on global optimization benchmarks [25, 26],

PSO and DE have recently become very popular. The main reasonfor their success is

related to their associating good average performances with an easy implementation.

However, the feature which is most relevant to our work and isshared with other evo-

lutionary and swarm intelligence algorithms, is the fact that, being population-based

and featuring limited dependency between each individual’s operations, PSO and DE

can be easily parallelized.

28 Chapter 3. Parallel Metaheuristics

3.1 CUDA Particle Swarm Optimization

Parallel PSO seems to be the way to make practical use of this powerful search and opti-

mization algorithm viable, in spite of its high computationcost. During the last decade,

a considerable amount of literature about parallel PSO has been published. The first

parallel PSO implementations relied on multiprocessor parallel machines or cluster

computing systems [27, 28]. With the introduction of the GPUs, research shifted

towards parallel PSO on the GPUs to alleviate multi-processor and cluster systems

inefficiencies, such as network overhead, shared memory access, etc. Li et al. took ad-

vantage of GPU acceleration for developing parallel versions of PSO and GA through

texture manipulation using shaders which are mainly used for graphics rendering pur-

poses [29]. In 2009 de Veronese and Krohling developed the first implementation of

PSO using nVIDIA CUDA [30].

Now that PSO can run efficiently on consumer-level graphics cards, researchers

have experimented with new variants of the algorithm. Zhou and Tan extended the stan-

dard PSO to include the notion of ‘unhealthiness’ to describe swarms or sub-swarms

stuck at local optima, then applying random mutations to theunhealthy particles’ po-

sitions [31]. Also, Zhou and Curry created a hybrid between GPU PSO and pattern

search to enhance the convergence of PSO [32].

Almost all recent GPU implementations assign one thread to each particle [30, 31,

33, 34] which, in turn, means that fitness evaluations have tobe computed sequen-

tially in a loop within each particle’s thread. Since fitnesscalculation is often the most

computation-intensive part of the algorithm, the execution time of such implementa-

tions is affected by the complexity of the fitness function and the dimensionality of

the search domain. The speedup achieved by these implementations is evaluated with

respect to their sequential counterparts executing on the CPU.

In addition, state of the art research in GPU-based parallelization of PSO focuses

on the synchronous version of the algorithm, while it was shown, on distributed or

cluster systems, that asynchronous versions can achieve faster execution time without

sacrificing numerical accuracy [28, 35]. The asynchronous GPU PSO we present in the

3.1. CUDA Particle Swarm Optimization 29

following subsection overcomes the shortcomings of asynchronous PSO enforced by

the master-slave approach used in distributed systems implementations, while gaining

good speedup when compared to our synchronous GPU implementation [5] as well as,

obviously, to the standard sequential PSO implementation.

CUDA Asynchronous PSO

To achieve both the fastest execution time and the best performance, we designed a

parallel version of the algorithm, as fine-grained as possible, without introducing ex-

plicit synchronization mechanisms among the particles’ evolution processes [6]. A

main feature that affects the search performance of PSO is the strategy according to

which the social attractor is updated. In ‘synchronous’ PSO, positions and velocities

of all particles are updated one after another in turn duringa ‘generation’; this is ac-

tually a full algorithm iteration, which corresponds to onediscrete time unit. Within

the same generation, after velocity and position have been updated, each particle’s

fitness, corresponding to its new position, is evaluated. The value of the social at-

tractor is only updated at the end of each generation, when the fitness values of all

particles in the swarm are known. The ‘asynchronous’ version of PSO, instead, al-

lows the social attractors to be updated immediately after evaluating each particle’s

fitness, which causes the swarm to move more promptly towardsnewly-found optima.

In asynchronous PSO, the velocity and position update equations can be applied to

any particle at any time, in no specific order. Regarding the effect of changing the

update order or allowing some particles to be updated more often than others, Oltean

and coworkers [36] have published results of an approach by which they evolved the

structure of an asynchronous PSO algorithm, designing an update strategy for the par-

ticles of the whole swarm using a genetic algorithm (GA) and showing empirically

that the GA-evolved PSO algorithm performs similarly, and sometimes even better,

than standard approaches for several benchmark problems. Regarding the structure of

the algorithm, they also indicate that several features, such as particle quality, update

frequency, and swarm size, affect the overall performance of PSO [37].

30 Chapter 3. Parallel Metaheuristics

Figure 3.1: The three PSO topologies tested in this work. From left to right, global,
ring and star

Implementation

As reported in the previous section, GPU implementations ofPSO which assign one

thread per particle, despite being the most natural way of parallelizing the algorithm,

do not take full advantage of the GPU power in evaluating the fitness function in paral-

lel. The parallelization only occurs on the number of particles of a swarm and ignores

the dimensions of the function. In our parallel implementations we designed the thread

parallelization to be as fine-grained as possible; in other words, all independent sequen-

tial parts of the code are allowed to run simultaneously in separate threads.

Swarm intelligence techniques are intrinsically parallel, because every swarm mem-

ber has few dependencies on the others, so all operations aimed at adapting an individ-

ual’s values, like position update or fitness evaluation, can be executed with few (or

none at all) interactions with the other swarm members. Fromthis point of view, in

PSO the only data to be shared among particles is the global best positionBGP vis-

ited so far by any member of the swarm, or the local best positionBGPi reached by

the best fitness particle in the local neighborhood of particle i. Since the global best

positions is the only information shared between particles, it has to be stored in global

memory; the number of global memory reads within a block (representing a particle)

differs depending on the PSO topology used. Figure 3.1 depicts the topologies imple-

mented here: the global best topology, ring topology, and the star topology. In the

first and third, only one global memory read per dimension/thread is necessary, while

in the second, each particle compares its fitness to its two neighbors’ (left and right),

resulting in two global memory reads.

3.1. CUDA Particle Swarm Optimization 31

Figure 3.2: Block Diagram of the Synchronous CUDA PSO algorithm

CUDA kernels are executed sequentially, as shown in Figure 2.5, unless streaming

is used. Consequently, the number of kernels used to implement a parallel algorithm

greatly influences its performance. In Figure 3.2, we show the block diagram of the

CUDA Synchronous PSO algorithm. First, all swarm particlesare initialized to ran-

dom positions within the search domain, using the nVIDIA CUDA Random Number

Generation library (CuRAND) [38]. Then, a kernel evaluatesthe fitness of the random

positions, and fills the best fitnesses and best positions global memory arrays. The

main iteration loop of the algorithm consists of three kernels: particle positions up-

date following the equations provided in Chapter 2, parallel fitness evaluation (some

parts might be executed sequentially, depending on the nature of the fitness function),

and the last kernel deals with deciding personal, global, orlocal best fitness values

and positions, through a parallel reduction operation, which depends on the actual

PSO topology employed. Finally, after a termination criteria has been met, often the

generation/iteration maximum number, another kernel decides the final output of the

optimization, through a parallel reduction to minimum/maximum operation.

To better understand the difference between synchronous and asynchronous PSO,

the pseudo-code of the sequential versions of the algorithms are presented in Table 3.1.

The synchronous 3-kernel implementation of CUDA-PSO, while allowing for virtually

any swarm size, requires synchronization points where all the particles data have to

be saved to global memory to be read by the next kernel. This frequent access to

global memory limits the performance of synchronous CUDA-PSO and is the main

32 Chapter 3. Parallel Metaheuristics

justification behind the asynchronous implementation.

Synchronous PSO Asynchronous PSO
<Initialize positions/velocities of all particles>
<Set initial personal/global bests>
for (int i = 0; i < generationsNumber; i++)
{

for (int j = 0; j < particlesNumber; j++)
{

<Evaluate the fitness particle j>

}
<Update the position of all particles>
<Update all personal/global bests>

}
<Retrieve global best information to be returned

as final result>

<Initialize positions/velocities of all particles>
<Set initial personal bests>
for (int i = 0; i < generationsNumber; i++)
{

for (int j = 0; j < particlesNumber; j++)
{

<Evaluate the fitness of particle j>

<Update the position of particle j>
<Update personal bests of particle j>

}
}
<Calculate global best information to be returned

as final result>

Table 3.1: Pseudo-code for the sequential versions of PSO

The design of the parallelization process for the asynchronous version is the same

as for the synchronous one, that is: we allocate a thread block per particle, each of

which executes a thread per problem dimension. This way every particle evaluates its

fitness function and updates position, velocity, and personal best for each dimension

in parallel.

The main effect of the synchronization constraint removal is to let each particle

evolve independently of the others, which allows it to keep all its data in fast-access lo-

cal and shared memory, effectively removing the need to store and maintain the global

best in global memory. In practice, every particle checks its neighbours’ personal best

fitnesses, then updates its own personal best in global memory only if it is better than

the previously found personal best fitness. This can speed upexecution time dramat-

ically, particularly when the fitness function itself is highly parallelizable. This is a

feature which often characterizes fitness functions which are commonly used in sev-

eral applications, such as the squared sum of errors over a data set in classification

tasks, or other fitness functions which can be expressed as a vector dot product or

matrix multiplication.

In contrast to the synchronous version, all particle threadblocks must be executing

simultaneously, i.e., no sequential scheduling of thread blocks to processing cores is

employed, as there is no explicit point of synchronization of all particles. Two dia-

3.1. CUDA Particle Swarm Optimization 33

Figure 3.3: Asynchronous CUDA-PSO: particles run in parallel independently (left).
Synchronous CUDA-PSO: particles evaluate fitness in parallel but have to wait the
end of the generation before updating positions, velocities, and personal/global bests
(right). Blocks represent particles and white arrows represent threads for each dimen-
sion of the search space.

grams representing the parallel execution for both versions are shown in Figure 3.3.

Having the swarm particles evolve independently not only makes the algorithm more

biologically plausible, as it better simulates a set of veryloosely coordinated swarm

agents, but it also does make the swarm more ‘reactive’ to newly discovered mini-

ma/maxima. The price to be paid is a limitation in the number of particles in a swarm

which must match the maximum number of thread blocks that a certain GPU can main-

tain executing in parallel. This is not such a relevant shortcoming, as one of PSO’s

nicest features is its good search effectiveness; because of this, only a small number

of particles (a few dozens) is usually enough for a swarm search to work, which com-

pares very favorably to the number of individuals usually required by evolutionary

algorithms to achieve good performance when high-dimensional problems are tackled.

This consideration makes the availability of swarms of virtually unlimited size and the

deriving potential in terms of search capabilities less appealing than it could seem at

first sight, while increasing the relevance of the burden imposed, in terms of execution

time, by the sequential execution of fitness evaluation. On the other hand, currently,

34 Chapter 3. Parallel Metaheuristics

parallel system processing chips are scaling according to Moore’s law, and GPUs are

being equipped with more processing cores with the introduction of every new model.

3.2 CUDA Differential Evolution

The earliest CUDA implementation, up to our knowledge, of DEwas presented in

2010 by [39]. After that, other implementations have been developed [32, 40], ad-

dressing problems with that first parallel version. In [39],the fitness evaluation, which

is usually the most time consuming process, is performed in part sequentially, in the

form of loops inside the device code (nested in case of mutation and crossover). Our

fitness evaluation scales the number of working threads to the number of dimensions,

calculating every dimension in parallel. We also use one block per solution/individual,

eliminating the need for loops. Another problem with [39] isthat they generate and

store random numbers on the CPU for mutation, while we generate them on the fly

on the GPU using the nVIDIA CuRAND library. In another DE implementation [41],

four kernels are executed sequentially limiting the method’s parallelization, while we

implement one kernel for generating the trial vectors, and another for their fitness eval-

uation and migration. In addition, we offer three differentmutations strategies and two

kinds of crossovers, while early GPU-based DE considered only one mutation strategy

(DE/rand/1) and one kind of crossover.

Implementation

PSO is divided into three kernels described in the previous section, while DE, as men-

tioned earlier, can be implemented as two kernels. Each thread of the first kernel

performs the following instructions:

• generate two or three distinct random numbers on the GPU, according to the

mutation strategy;

3.3. CUDA Scatter Search 35

Figure 3.4: Block Diagram of the CUDA DE algorithm

• calculate an element of the donor vector from the populationmembers randomly

selected in the previous step;

• decide whether to include the donor or the parent element in the trial vector,

based on the type of crossover and the crossover rate,Cr.

The second DE kernel evaluates all trial vectors simultaneously in shared memory

and, if the fitness has improved, it replaces the parent with the offspring. In the cases

of mutation ”to-best” strategies, a third reduction kernelis needed to find the best

individual, as highlighted in Figure 3.4.

3.3 CUDA Scatter Search

To the best of our knowledge, ours is the first parallel implementation of this meta-

heuristic. Since Scatter Search is only a template for combining a global search method

with an additional step of local search solution refinement [42], there are many variants

of the algorithm, differing in the building blocks of this template. The most notable one

is presented in [43], where the authors chose the Tabu Searchlocal search method [44]

for the refinement phase, mainly because of its adaptive memory capabilities, that

are employed in order to remember previously visited/evaluated solutions in the local

36 Chapter 3. Parallel Metaheuristics

neighborhood of a candidate solution to be refined.

Implementation

Clearly, SS is not as inherently parallel as the two other metaheuristics (see Figure 3.5).

In SS a diverse population is first initialized and evaluated; diversity is simulated by

generating uniform random values for each dimension over the whole search space.

Then, to build the reference setR, a parallel sort operation is required to findR1, fol-

lowed by another kernel that calculates pairwise Euclideandistances between solutions

in P − R andR, sequentially adding the solutions that are farthest from the reference

set for|R2| iterations. As for selection and crossover, a kernel selects all solution pairs

in the reference set for mating, and combines them through the BLX-α crossover [45],

generating two distinct solutions chosen withα set to(0.5 + λ) and(0.5− λ), respec-

tively. The combined solutions make up thepool, to which a parallel implementation

of the Solis & Wets search method [13] is then applied as an improvement method. For

the last step, we compared two methods for updating the reference set, one of which

considers both quality and diversity as in [46], while the other updates the reference

set with the best|R| solutions in(R ∪ pool). The latter yielded better results in terms

of both speed and accuracy.

Figure 3.5: Block diagram of the Scatter Search Algorithm.

3.4. libCudaOptimize 37

3.4 libCudaOptimize

libCudaOptimize [47] is an open source library which implements some metaheuristics

for continuous optimization: presently Particle Swarm Optimization (PSO), Differen-

tial Evolution (DE), Scatter Search (SS), and Solis&Wets local search. This library

allows users either to apply these metaheuristics directlyto their own fitness function

or to extend it by implementing their own parallel optimization techniques. The library

is written in CUDA-C to make extensive use of parallelization, as allowed by Graphics

Processing Units.

The main idea behind the library is to offer a user the chance to apply metaheuris-

tics as simply and fast as possible to his own problem of interest, exploiting the par-

allelization opportunities offered by modern GPUs as much as possible. To the best

of our knowledge, there are no software tools in which the entire optimization pro-

cess, from exploration operators to function evaluation, is completely developed on

the GPU, and allows one to develop both local and global optimization methods.

Implementation

libCudaOptimize is entirely written in C++ and CUDA-C and relies on two classes:

IOptimizer andSolutionSet (see Figure 3.6). The former is an abstract class

that includes all methods used for evolving a set of solutions (or population/swarm,

where every particular solution is an individual/particle, depending on the used termi-

nology), for setting evolution parameters and a reference to the set (it can evolve more

than one set in parallel), represented by an instance of the classSolutionSet. Ev-

ery different metaheuristic is implemented as a sub-class of IOptimizer. All these

classes (see some examples at the bottom of Figure 3.6) have methods that allow a user

to set the parameters of the metaheuristic. Moreover, most of the relevant parameters

can be passed to the optimizer at the moment of its instantiation.

The classSolutionSet represents one or more sets of solutions and can be

accessed in the user-defined fitness function, where it is used to access the elements

38 Chapter 3. Parallel Metaheuristics

���������	

���������	�
�

���	���������	��

����
��

�����	
�����������	�

�������
�

���	���

���������
�

���
��
���	����	�

���
��
�����	
���

���
��
���������	�

���������	
�

���
��������	�

���
��������
��

���
����

���
���

���������	
�

���
����

���
�� �

���
�!	
�����

���������	

���
�	��"�#���
��#$�

���
�%
�
�
	#
�
����
�

���
����

���
�� �

���
�"�#���
��#$!�
�����	��

���
�&�
'��
����(�

��������	
�

���
���)��##
��
��

���
���)������

���������	
�

�������
�

���
�*�
��#
+$���,-������	��

���
�*�
��#
+$���,���	
��
��

���
�*�������	+��
�,.��/
��

Figure 3.6: UML diagram. For every class, the most importantmethods are shown

of the population and to update their fitnesses after evaluation. There are methods

that allow users to access the solutions, and their corresponding fitnesses, both on the

device and the host. In this way, the user can employ these information both on C++

and CUDA-C function easily.

Usage

libCudaOptimize allows users to run their methods in parallel to optimize a fitness

function, introduce a new optimization algorithm, or easily modify/extend existing

ones. In the first case, the only thing one needs to do is to write the new fitness func-

tion in C++ or CUDA-C, while in the second and third cases, onecan take advantage

of the framework offered by the library to avoid the need to godeep into basic imple-

mentation issues, especially regarding parallel code.

libCudaOptimize is expected to be used by users who have, at least, a basic knowl-

edge of C++. Although no explicit understanding of CUDA-C oreven of metaheuris-

tics is required it is very useful anyway; nonetheless, one can use this library just by

3.4. libCudaOptimize 39

writing a C++ fitness function and launching one of the optimization techniques al-

ready implemented (to date PSO, DE, SS and Solis&Wets local search (SW)). This

allows one to:

• implement commonly successful techniques with limited efforts;

• easily compare the results obtained by running different techniques on different

functions;

• analyze the effects of changing values of the parameters which regulate the be-

havior of the optimization techniques on user-defined problems;

• run high-dimensional optimization experiments on consumer-level hardware, thanks

to the efficient CUDA-C parallel implementation.

Basically, there are two ways to use this library. The first and most direct one is

just to apply the included heuristics to optimize a user-defined fitness function. All

one needs to do, in this simplest case, is to write a function in C++ or, to fully exploit

the parallelization potentiality of the package, in CUDA-C. Then, one must select the

heuristic, pass it the fitness function pointer, set its parameters, run it, and retrieve the

solution(s) found.

The second purpose of the library is to allow the user to design and implement

an optimization technique, taking advantage of the structure of the algorithms imple-

mented in libCudaOptimize. Since several EAs share a similar structure, one can

extend the superclassIOptimizer or one of its children in order to create a new

optimizer. To do so, a mandatory step is to implement the fourprotected functions of

IOptimizer shown in Figure 3.6:

• initSolutions randomly initializes the candidate solutions within the search

space;

• step defines how the optimizer generates new potential solutionsfrom the cur-

rent population;

40 Chapter 3. Parallel Metaheuristics

• fitnessEvaluation calls the user’s fitness function;

• update is called after fitness evaluation and should update the population ac-

cording to the results obtained: replace current individuals, update personal best

locations, check constraints, . . .

It is important to note that the user does not have to handle memory allocations and

releases nor grid and kernels configuration, since these operations are taken care for

by the library core.

3.5 Testing and Results

The parallel metaheuristics discussed in this chapter weretested against many theoret-

ical and real-world applications. In [48, 49], both CUDA PSOand DE were success-

fully used to localize histological brain structures, in this case the hippocampus, and

to estimate human body posture from multi-view video sequences, respectively. They

were also the tool used in [50] for real-time traffic sign detection in sequences taken

from a camera mounted on-board a car, and achieved good results in terms of quality

and speed. This section will focus on the tests performed on benchmark functions, and

consider the human body pose estimation problem as a case study on the usage of GPU

metaheuristics in real-world applications.

Speedup Results

We compared the performance of the different versions of ourparallel PSO imple-

mentation and of one sequential implementation based on theso-called Standard PSO

(SPSO) [51] on a ‘classical’ benchmark which comprised a setof functions which are

often used to evaluate stochastic optimization algorithms. Our goal was to compare

different parallel PSO implementations with one another, and with a sequential im-

plementation, in terms of speed. Since there is only a Standard version of PSO, in

these tests we only focused on PSO. So we kept all algorithm parameters equal in

3.5. Testing and Results 41

all tests, setting them to the ‘standard’ values suggested in [51]: w = 0.729844 and

C1 = C2 = 1.49618. Also, for the comparison to be as fair as possible, we adapted the

SPSO by substituting its original stochastic-star topology with the same ring topology

adopted in the parallel GPU-based versions and we downgraded it to ‘float’ precision

to match the GPU-based algorithms’ precision.

The following implementations of PSO have been compared: (1) the sequential

SPSO version modified to implement a two nearest-neighbors ring topology; (2) the

synchronous three-kernel version ofCUDA-PSO; (3) CUDA-PSOimplemented asyn-

chronously with only1 kernel as in [6]. Values were averaged over the98 best results

out of100 runs.

Figures 3.7 compares average execution times obtained for problem dimension

D ranging from2 to 128 in optimizing fitness functions from typical test-beds for

function optimization. We tested our code on the following functions: (a) the simple

Sphere function within the domain[−100, 100]D, (b) Rastrigin function, on which

PSO is known to perform well, within the domain[−5.12, 5.12]D, (c) the Rosenbrock

function, which is non-separable and thus hard to solve by PSO, within the domain

[−30, 30]D, and (d) the Griewank function within the domain[−600, 600]D.

In general, the asynchronous version was much faster than the synchronous ver-

sion, at the price of being able to run swarms of sizes up to27 or 32 depending on the

graphics card. It is also worth noticing that the execution time graphs are virtually iden-

tical for the functions taken into consideration, which shows that GPUs are extremely

effective at computing arithmetic-intensive functions, mostly independently of the set

of operators used, and that memory allocation issues are prevalent in determining per-

formance. Taking speed-up values into consideration, one can also notice that the best

performances were obtained on the Rastrigin and Griewank functions. This is probably

due to the presence of complex math functions in their definition. In fact, GPUs have

internalfast mathfunctions which can provide good computation speed at the cost of

slightly lower accuracy, which causes no problems in this case.

42 Chapter 3. Parallel Metaheuristics

Sphere Function

 10

 100

 1000

 10000

 20 40 60 80 100 120

m
ea

n
ex

ec
ut

io
n

tim
e

(m
s)

problem dimension

SPSO-Ring
1K-GTS450
1K-GTX260
3K-GTS450
3K-GTX260

 0

 20

 40

 60

 80

 100

 120

 140

 160

 20 40 60 80 100 120

ac
hi

ev
ed

 s
pe

ed
 u

p

problem dimension

SPSO-Ring
1K-GTS450
1K-GTX260
3K-GTS450
3K-GTX260

Rastrigin Function

 10

 100

 1000

 10000

 20 40 60 80 100 120

m
ea

n
ex

ec
ut

io
n

tim
e

(m
s)

problem dimension

SPSO-Ring
1K-GTS450
1K-GTX260
3K-GTS450
3K-GTX260

 0

 50

 100

 150

 200

 250

 300

 20 40 60 80 100 120

ac
hi

ev
ed

 s
pe

ed
 u

p

problem dimension

SPSO-Ring
1K-GTS450
1K-GTX260
3K-GTS450
3K-GTX260

Rosenbrock Function

 10

 100

 1000

 10000

 20 40 60 80 100 120

m
ea

n
ex

ec
ut

io
n

tim
e

(m
s)

problem dimension

SPSO-Ring
1K-GTS450
1K-GTX260
3K-GTS450
3K-GTX260

 0

 5

 10

 15

 20

 25

 30

 20 40 60 80 100 120

ac
hi

ev
ed

 s
pe

ed
 u

p

problem dimension

SPSO-Ring
1K-GTS450
1K-GTX260
3K-GTS450
3K-GTX260

Griewank Function

 10

 100

 1000

 10000

 100000

 20 40 60 80 100 120

m
ea

n
ex

ec
ut

io
n

tim
e

(m
s)

problem dimension

SPSO-Ring
1K-GTS450
1K-GTX260
3K-GTS450
3K-GTX260

 0

 50

 100

 150

 200

 250

 20 40 60 80 100 120

ac
hi

ev
ed

 s
pe

ed
 u

p

problem dimension

SPSO-Ring
1K-GTS450
1K-GTX260
3K-GTS450
3K-GTX260

Figure 3.7: Average execution times (left column) and speed-ups (right column) vs.
problem dimension for the Sphere, Rastrigin, Rosenbrock and Griewank functions (top
to bottom). Experiments were performed running one swarm of32 particles (GTS-450)
or 27 (GTX-260) for10000 generations. Plotted values were averaged over the best98
results out of100 runs.

3.5. Testing and Results 43

Benchmark Functions

After establishing the superiority of parallel algorithmsto their sequential counterparts,

the subsequent experiments were run using methods implemented by means of libCu-

daOptimize, whiose results are reported in [52]. We evaluate both quality and speed

of the parallel versions, analyzing their accuracy achieved in a limited amount of time,

to assess the degree of parallelization that each of them allows to reach.

The algorithms we compared have a number of parameters that affect both accu-

racy and parallelism. “Manual” parameter tuning is time consuming and may intro-

duce a bias in comparing an algorithm with a reference, due tobetter knowledge of

the algorithm under consideration and to possible different time spent tuning each of

them. Therefore, the automatictuningof all three algorithms was performed using the

irace software package [53], to find the configurations that yielded the best results

in a given time: we set this time to one second, since it is generally short enough to

avoid reaching full convergence with all three methods, allowing one to compare their

short-term performances.

DE PSO SS
Cr = 0.879 c1 = 1.862 |P | = 140
F = 0.520 c2 = 1.881 |R1| = 9, |R2| = 1

Exponential Crossover w = 0.494 λ = 0.220
Random Mutation Population Size = 125 Solis & Wets iterations =85

Size = 48

Table 3.2: Automatically-tuned parameter values used to test different optimization
techniques.

The tuner was run on all20 functions with a budget of30000 experiments, each

being one run of one configuration on one function with a termination criterion of

one second. Since the functions have different fitness ranges, a rank-based test is

preferable to a test based on the solutions’ mean values. Accordingly, the Friedman

test was used to discard significantly worse configurations.We tuned the parameters

for 30-dimensional problems, and assumed that such configurations are good also for

lower-sized ones. Table 3.2 displays the parameters that have been tuned for each

44 Chapter 3. Parallel Metaheuristics

algorithm, and the best corresponding values.

We compared our results to the values that are most commonly used in literature.

For instance, the authors in [9] suggestF ∈ (0.4, 0.95) andCr ∈ (0.9, 1) for mul-

timodal separable functions (the most common ones in our benchmark); we obtained

similar results. Regarding PSO, in most papers,c1 = c2 = 2.0 [54], while our auto-

matic tuning set them to slightly smaller values.

Name Range Formula
f0 Sphere [−100, 100]n

∑n−1
i=0 x2

i
U S

f1 Elliptic [−100, 100]n
∑n−1

i=0 (106)
i−1

D−1 x2
i

U S

f2 Sum of Squares [−1, 1]n
∑n−1

i=0 ix2
i

U S
f3 HyperEllipsoid [−1, 1]n

∑n−1
i=0 i2 · x2

i
U S

f4 Schwefel 2.22 [−10, 10]n
∑n−1

i=0 |xi|+
∏n−1

i=0 |xi| U S

f5 Zakharov [−10, 10]n

(

∑n−1
i=0 xi

2
)

+
(

∑n−1
i=0 0.5 · i · xi

2
)2

+

+
(

∑n−1
i=0 0.5 · i · xi

2
)4 U S

f6 Schwefel 1.2 [−100, 100]n
∑n−1

i=0

(

∑i
j=0 xj

)2
U NS

f7 Schwefel 2.6 [−100, 100]n
max {Aix−B} ,
i = 0, . . . , n− 1,x = [x0, . . . , xn−1],
Ai,B defined in [55].

U NS

f8 Dixon-Price [−10, 10]n (x0 − 1)2 +
∑n−1

i=1

(

i ·
(

2xi
2 − xi−1

)2
)

U NS

f9 Rastrigin [−5.12, 5.12]n
∑n−1

i=0

{

x2
i − 10 · cos(2πxi) + 10

}

M S

f10 Schwefel 2.26 [−500, 500]n 418.9829 · n+
∑n−1

i=0

(

xi · sin
√

|xi|
)

M S

f11 Katsuura [−1000, 1000]n
∏n−1

i=0

(

1 + (i + 1)
∑d

k=1 round(2
kxi)2

−k
)

− 1 M S

f12 Griewank [−600, 600]n
∑n−1

i=0
x2

i

4000
−

∏n−1
i=0 cos(xi

√

i
) + 1 M NS

f13 Rosenbrock [−100, 100]n
∑n−1

i=0 100(xi − x2
i−1)

2 + (1− xi−1)2 M NS

f14 Ackley [−32, 32]n −20e
−0.2

√

1

n

∑n−1

i=0
x2

i − e
1

n

∑n−1

i=0
cos(2πxi) + 20 + e M NS

f15

Griewank
+

Rosenbrock
[−5.12, 5.12]n fgriewank(frosenbrock) M NS

f16 Scaffer [−100, 100]n

∑n−1
i=0 F (xi, xi+1), xn = x0

whereF (x, y) = 0.5 +
sin2

(√
x2+y2

)

−0.5

1+0.0001(x2+y2)

M NS

f17 Schwefel 2.13 [−π,π]n
∑n−1

i=0 (Ai −Bi(x))
2 ,x = [x0, . . . , xn−1]

Ai,Bi(x) defined as in [55].
M NS

f18 Salomon [−10, 10]n − cos

(

2π
√

∑n−1
i=0 xi

2

)

+ 0.1
√

∑n−1
i=0 xi

2 + 1 M NS

f19 Levy [−10, 10]n
sin2(πy0) +

∑n−2
i=0

[

(yi − 1)2
(

10 sin2(πyi + 1)
)]

+
(yn−1 − 1)2

(

1 + 10 sin2(2πyn−1)
)

whereyi = 1 + xi−1
4

, i = 0, . . . , n− 1

M NS

Table 3.3: Benchmark functions. For every function, the table shows the name, the
range of the search space, the formula, the multimodality (multimodal, unimodal) and
the separability (separable, non separable). All minima are in{0}n.

3.5. Testing and Results 45

To evaluate both the effectiveness and the efficiency of the three parallel implemen-

tations, tests on20 numerical benchmark functions (see Table 3.3) were run on a 64-bit

Intel(R) Core i7 CPU running at 2.67GHz using CUDA v. 4.1 on a nVIDIA GeForce

GTS450 graphics card with 1GB of DDR memory and compute capability 2.1 [21].

Table 3.4 reports the results obtained executing100 runs per function (6000 indepen-

dent runs) and setting 1 second as the only termination criterion. The first column is

the function under consideration. The following ones are divided into two blocks ac-

cording to the number of dimensions (10 and30). Within each block, the mean best

fitness and the standard deviation over all runs are reportedfor each method. Results

reported on a grey background highlight those cases in whichthe median over 100

runs obtained by the method is significantly better than the other methods, according

to the Kruskal-Wallis test, with a confidence level of0.01.

The results reported in Table 3.4 and Figure 3.8 allow one to draw some conclu-

sions about the behaviour of the three parallel metaheuristics. Conforming with pre-

vious results obtained by sequential implementations, DE obtained the best results,

sometimes tied with some other method, in 35 out of the 40 experiments performed,

while PSO was the best method, sometimes tied with some othermethod, in 20 out of

40 functions, its main drawback being its tendency to stagnate and find sub-optimal

solutions more often than DE, even if a higher number of function evaluations is run.

Regarding SS, whose first parallel implementation is presented here, it obtained the

best result in 11 out of 40 problems; however, this metaheuristic, which is not as par-

allelizable as the other methods, as reflected by the number of kernels, has achieved

better performance over multimodal non-separable problems and time-consuming fit-

ness functions, like Katsuura.

All tests were run with a temporal limit of one second, a shorttime in which all

three methods can generally obtain results close to the optima without reaching full

convergence. Figure 3.8 shows that PSO requirqes almost three times as many fitness

function evaluations as DE to converge on 30-dimensional problems. It is important

to notice that the population size in PSO is also almost threetimes as large as in DE,

which justifies the larger number of fitness evaluations.

46 Chapter 3. Parallel Metaheuristics

 1e-050

 1e-045

 1e-040

 1e-035

 1e-030

 1e-025

 1e-020

 1e-015

 1e-010

 1e-005

 1

 100000

 100 200 300 400 500 600 700 800 900 1000

m
ea

n
fit

ne
ss

time(ms)

Sphere
DE

PSO
SS

 1e-030

 1e-025

 1e-020

 1e-015

 1e-010

 1e-005

 1

 100000

 100 200 300 400 500 600 700 800 900 1000

m
ea

n
fit

ne
ss

time(ms)

Zakharov

DE
PSO

SS

 100

 1000

 10000

 100000

 100 200 300 400 500 600 700 800 900 1000

m
ea

n
fit

ne
ss

time(ms)

Schwefel 2.6
DE

PSO
SS

 1e-050

 1e-040

 1e-030

 1e-020

 1e-010

 1

 1e+010

 100 200 300 400 500 600 700 800 900 1000

m
ea

n
fit

ne
ss

time(ms)

Schwefel 1.2

DE
PSO

SS

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 100 200 300 400 500 600 700 800 900 1000

m
ea

n
fit

ne
ss

time(ms)

Ackley
DE

PSO
SS

 1000

 10000

 100000

 1e+006

 100 200 300 400 500 600 700 800 900 1000

m
ea

n
fit

ne
ss

time(ms)

Schwefel 2.13
DE

PSO
SS

 0

 500000

 1e+006

 1.5e+006

 2e+006

 2.5e+006

 3e+006

 3.5e+006

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10
f11

f12
f13

f14
f15

f16
f17

f18
f19

av
er

ag
e

nu
m

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns

DE
PSO

SS

Figure 3.8: Mean fitness vs time (up to 1 second) for six representative functions (uni-
modal separable, unimodal non-separable and multimodal non-separable), and number
of function evaluations performed in 1 second by every method for each function on
30-dimensional problems.

3.5.
Testing

and
R

esults
47

10 dimensions 30 dimensions
DE PSO SS DE PSO SS

Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std
f0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
f1 0.0 0.0 0.0 0.0 2.5e-03 9.2e-03 0.0 0.0 0.0 0.0 2.2e-06 6.3e-06
f2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.1e-44 8.6e-44
f3 0.0 0.0 0.0 0.0 7.0e-45 2.9e-44 0.0 0.0 0.0 0.0 6.7e-05 3.0e-04
f4 0.0 0.0 0.0 0.0 1.1e-25 1.7e-25 0.0 0.0 0.0 0.0 5.1e-24 2.7e-24
f5 0.0 0.0 0.0 0.0 0.0 0.0 2.5e-28 3.4e-28 1.8e-28 2.2e-28 1.2e-05 1.7e-05
f6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.7e-012 9.9e-012 2.5e-03 3.3e-03
f7 9.8e-06 6.9e-05 1.0e-03 4.0e-04 2.7e-04 3.5e-04 2.1e+02 3.3e+02 3.8e+03 1.1e+03 9.9e+02 3.4e+02
f8 5.0e-01 5.0e-08 3.5e-02 1.3e-01 2.9e-01 2.5e-01 5.0e-01 0.0 4.2e-01 1.9e-01 5.0e-01 2.1e-05
f9 0.0 0.0 5.2e-01 7.8e-01 6.9e-01 9.1e-01 0.0 0.0 7.2e+01 1.6e+01 3.5e+01 9.7e+00
f10 5.9e+00 3.1e+01 1.2e+02 1.2e+02 8.1e+01 1.1e+02 1.7e+01 4.8e+01 2.9e+03 4.1e+02 2.4e+03 9.0e+02
f11 1.2e-03 4.9e-06 1.2e-03 2.9e-05 1.2e-03 2.4e-18 1.2e-02 5.1e-05 1.2e-02 1.8e-04 1.2e-02 8.7e-18
f12 0.0 0.0 1.1e-02 1.0e-02 1.1e-03 2.9e-03 7.4e-05 7.4e-04 6.3e-10 6.0e-09 1.5e-03 4.3e-03
f13 0.0 0.0 3.9e-07 4.8e-07 5.9e-01 3.3e+00 0.0 0.0 2.1e-01 7.2e-01 2.2e+01 2.6e+01
f14 0.0 0.0 6.7e-07 1.1e-06 0.0 0.0 1.1e-06 1.2e-06 4.5e-06 9.4e-07 9.3e-03 9.3e-02
f15 0.0 0.0 1.2e-03 6.5e-03 6.3e-31 4.4e-30 0.0 0.0 1.5e-28 1.2e-27 1.1e-27 2.7e-27
f16 3.3e-02 2.9e-02 1.0e-01 2.4e-02 7.3e-01 5.4e-01 3.2e-01 3.0e-02 8.5e+00 8.6e-01 8.7e+00 1.2e+00
f17 4.5e+01 2.2e+02 1.3e+00 5.1e+00 4.7e+00 8.5e+00 2.8e+04 6.1e+03 3.1e+04 1.8e+04 5.2e+03 5.6e+03
f18 1.0e-01 2.8e-17 1.0e-01 2.8e-17 9.8e-02 1.4e-02 1.9e-01 3.1e-02 2.0e-01 1.7e-02 2.4e-01 5.1e-02
f19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.3e-02 1.0e-01

Table 3.4: Results on the 20 benchmark functions.

48 Chapter 3. Parallel Metaheuristics

Real-World Application

Moving more towards the application side, this section describes a real-world problem

to which metaheuristics were applied, to both solve the problem and compare the effec-

tiveness of DE and PSO as global optimization methods withinthis framework. The

problem addressed here is that of the three-dimensional human body pose estimation.

3D human body pose estimation from video is the problem of extracting an accurate es-

timate of the posture of a human body, along with its locationin space, from an image

or a frame within a video stream. This is a complex problem that has been invariably

formulated as a high-dimensional space search problem, dueto the complexity of the

human body pose parameterization. The problem has been tackled by trying to reduce

the complexity of the search while also relying on effectivesearch schemes.

The search complexity can be reduced based on local predictions, e.g., using parti-

cle filters [56, 57], or by partitioning the search space intosmaller, more manageable

subspaces [56, 58]. The use of machine learning techniques to define specific motion

models for particular actions from training data collectedin advance has also been con-

sidered [59, 60]. These approaches suffer from various setbacks. The particle-filtering

solutions critically rely on a high number of particles to adequately represent the pos-

terior distribution, which increases their computationalcomplexity beyond practical

use when considering a wide variety of motion. As well, relying on pre-trained mo-

tion models causes the human body tracking approaches to lose their generalization

abilities, which points to methods that can reliably provide motion estimates without

depending on much prior knowledge [61].

In [62, 63], an effective search algorithm was proposed, which is capable of re-

covering the pose without any prior knowledge of the nature of motion. The main

drawback of the method is its huge computational complexity, which makes the time re-

quired for execution of a standard sequential implementation hardly acceptable. How-

ever, relying on the parallel nature of both the search algorithm and the multi-view

pose estimation problem by implementing the approach on a graphical processing unit

(GPU), the authors showed that they could reach execution times acceptable for prac-

tical purposes [49].

3.5. Testing and Results 49

Model Formulation

The input consists ofN views of the body, taken from different angles. From each

image, we extract the silhouette of the body, i.e., a binary image in which all pixels

belonging to the body are set to1. The set of silhouettes represents the target to be

matched to the silhouettes generated by a transformation ofthe model, according to

the following steps:

• a pose estimation is generated by the search algorithm;

• a 3D rendering of the body, in such a pose, is made;

• a set ofN images, corresponding to the projections of the rendered body (silhou-

ettes) on the image planes of the input cameras, is computed.

The body model consists of two layers, the skeleton and the skin. The skeleton

layer is defined as a set of homogeneous4 × 4 transformation matrices which encode

the information about the position and orientation of everyjoint with respect to its

parent joint in the kinematic tree hierarchy. The skin layer, which represents the second

layer in the model, is connected to the skeleton through the joints’ local coordinate

systems. Each joint controls a certain area of the skin. Whenever a joint or limb

moves, the corresponding part of the skin moves and deforms with it. As the skin is a

subdivision surface, only the base mesh has to be specified inthe corresponding joint

coordinate system. After the joint configuration has been specified, the base mesh is

subdivided by repeatedly applying the Catmull-Clark subdivision operator [64] until

the desired smooth shape of the body is obtained.

Considering the body composed of head, torso, and a three-joint kinematic chain

for each limb, the model has32 degrees of freedom, represented by real-valued pa-

rameters: three of them represent the global body position in space, while the other

29 represent relative angles, in space, between consecutive segments of the kinematic

chains, i.e., joint orientations. These are subject to anatomical constraints which limit

both their number and possible value range. A more detailed description of the model

can be found in [49].

50 Chapter 3. Parallel Metaheuristics

Fitness Function

The fitness function compares the silhouettes extracted from the original images to the

silhouettes generated by the model in its candidate pose. Let the images containing the

original silhouettes be denoted asIoi , i = 1...N . Similarly, letImi , i = 1...N denote

the images of themodelsilhouettes. The cost function can then be written as follows:

E =

N
∑

i=1

1

Zi

row
∑

1

col
∑

1

(Ioi & Imi), (3.1)

whererow andcol denote the number of image rows and columns, respectively,

and& denotes the bitwiseAND operation. CoefficientsZi are the normalization con-

stants obtained by counting the number of silhouette pixelsin every original image.

Therefore, the fitness value that can be obtained for each view ranges from 0 to 1, with

0 corresponding to the absence of overlapping between the two silhouettes, and 1 to a

perfect overlap. Thus, the overall fitness value (E) ranges from 0 toN .

Experiments and Results

Tests were run on a computer equipped with a 64-bit IntelR© Core i7 CPU running at

2.80 GHz with 6 Gb of RAM using CUDA v. 4.1 on a nVIDIA GeForce GTS450

graphics card with 1GB of DDR memory and compute capability 2.1.

DE PSO
Cr = 0.9 c1 = 2.0
F = 0.5 c2 = 2.0

Uniform Crossover w = 2.0/ex

Mutation: DE/rand/1
Population Size = 10 Population Size = 10

Table 3.5: Parameters used for human body pose estimation. Regarding the inertia
factorw, we setxinitial = 2.0; x = x + 0.05 if, at the end of a generation, the global
best has not improved. For the very first framexinitial was set to1.0 to increase the
algorithm’s exploration ability, when it is required to recover the initial pose from
scratch.

3.5. Testing and Results 51

We compared the results obtained by our CUDA implementations of DE and PSO.

The parameter values used in the tests were set starting fromthe most commonly used

values reported in literature, and refined during the development of the system. The

values we set for the most relevant parameters are shown in Table 3.5.

Our algorithms were tested on a set of4 test sequences, kindly made available

by the CVSSP, University of Surrey. They were acquired in a dedicated multi-camera

acquisition studio and consist of10 synchronized videoclips with resolution720×576,

and a frame rate of25 fps.

Since these sequences come with no ground truth, we decided to create a “syn-

thetic” sequence to statistically estimate the error made by our system in recovering

the pose of the body. To do so, we took the sequence containingthe most complex

(and fastest) movements, which represents a man performinga karate kick, and let our

system optimize it multiple times for a very high number of generations. After collect-

ing the best results (highest fitness values) for each frame,we rendered the silhouette

images of our model in those very same positions. This way we obtained an artifi-

cially created sequence of which the articulated model we employ exactly matches all

the silhouettes available and for which we know, frame by frame, the actual pose of

each joint of the model. In other words, we created a synthetic sequence which comes

with “ground truth” values for all the parameters we need to optimize. After this, we

compared the three-dimensional position of every joint of the model in the reference

sequence and the values obtained as output by the test runs ofour method.

It is important to remark that, in the final tests, instead of setting a fixed number of

iterations/generations as in most iterative algorithms, we used the value of the decreas-

ing inertia parameter defined in Table 3.5 as a stopping criterion for both DE and PSO,

ending our process whenw fell below0.1.

Average StdDev Worst Best Median Wilcoxon
DE 6.41 6.60 41.42 0.36 3.76 < 1.0E − 10
PSO 4.32 4.47 32.71 0.22 2.40 -

Table 3.6: Results of human body pose estimation: average distance values (in cm) to
the joints obtained processing the reference sequence in ten independent runs.

52 Chapter 3. Parallel Metaheuristics

Average StdDev Worst Best Median Wilcoxon
DE 8.21 0.11 8.06 8.42 8.91 < 1.0E − 10
PSO 8.24 0.13 8.05 8.45 8.98 -

Table 3.7: Results of human body pose estimation: average fitness values obtained
processing the reference sequence in ten independent runs.

Average StdDev Worst Best Median Wilcoxon
DE 8.30 0.11 8.13 8.49 8.89 < 1.0E − 10
PSO 8.34 0.12 8.15 8.52 8.94 -

Table 3.8: Results of human body pose estimation: average fitness values obtained
processing all the “real” video sequences in ten independent runs.

The first two tables refer to the results obtained processingthe reference sequence.

In particular, in Table 3.6 we show the results obtained by PSO and DE, expressed as

distances, and in Table 3.7 as fitness values (higher fitness values are associated with

better solutions). In Table 3.8 we show the global results asfitness values computed

on the other four sequences.

The first column in all tables is the mean value of the measure under consideration

over all runs and frames. For example, in Table 3.7, the valuein the first row and first

column is the fitness obtained by DE averaged over the500 executions of the algorithm

(50 frames and10 runs). The second column reports the mean of the average standard

deviations obtained for every joint in the model. The third and fourth columns report

the mean of the worst and best values, respectively, averaged over all frames in each

run. The fifth column is the mean of the median values for each run. Finally, the last

column in all tables reports the p-value obtained with the Wilcoxon Signed-Rank test

[65] with a significance level of0.001.

The null hypothesis used in Table 3.6 was that the median of distances obtained by

PSO is greater or equal than the median of the distances obtained by DE. In Tables 3.7

and 3.8 the p-value refers to the following null hypothesis:the median fitness obtained

by PSO is less or equal than the median fitness obtained by DE.

In Figures 3.9 and 3.10, all the results obtained, per joint and per frame respectively,

are plotted.

3.5. Testing and Results 53

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

di
st

an
ce

 (
cm

)

joint

distances
mean values

(a) DE

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

di
st

an
ce

 (
cm

)

joint

distances
mean values

(b) PSO

Figure 3.9: Body pose estimation: per-joint performance onthe reference video se-
quence. Scatter plot of the distances (in cm) of each joint from the ground truth esti-
mated over all frames over 10 runs. Means are represented by lighter bullets.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 5 10 15 20 25 30 35 40 45 50

di
st

an
ce

 (
cm

)

frame

distances
mean values

(a) DE

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 5 10 15 20 25 30 35 40 45 50

di
st

an
ce

 (
cm

)

frame

distances
mean values

(b) PSO

Figure 3.10: Body pose estimation: per-frame performance on the reference video
sequence. Scatter plot of the distances from the ground truth of all joint estimates over
10 runs for each of the 50 frames. Means are represented by lighter bullets.

54 Chapter 3. Parallel Metaheuristics

0 100 200 300 400 500
Generations

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

Fi
tn
es
s

DE
PSO

Figure 3.11: Average fitness values vs number of generationsfor PSO and DE in the
body pose estimation problem for the first frame of the 5 sequences. Full optimization
of the whole body.

In the first frame, the initialization of the swarm is completely random, while in

the subsequent ones the swarm is initialized in a vicinity ofthe best pose found in

the previous frame, thereby implementing some sort of tracking. As the pose changes

only slightly between two consecutive frames, performing the optimization over the

whole search space is both unnecessary and time consuming. However, to investigate

the general localization ability of DE and PSO, the optimization was allowed to run

for more iterations,500 in this case, and the hierarchical optimization steps, described

in [49], were also removed to increase the complexity of the problem. Results are

reported in Figure 3.11, showing how fitness values improve during the optimization

process. As explained before, only the results obtained processing the first frame are

actually representative of the global search ability of themethod used.

As the tables show, the results obtained by PSO in this problem using the hierar-

chical optimization are better than the ones obtained with DE, in terms of fitnesses

and distances. However, if we increase the complexity of theproblem by removing

the hierarchical strategy and the time constraints, optimizing all the parameters at the

same time, DE obtains better results than PSO (see Figure 3.11). This behavior can be

3.5. Testing and Results 55

Figure 3.12: Example pose results shown as skeletons overlaid on the corresponding
input image. The examples shown are taken from different sequences (JonWalk, Tony
Kick, Tony Punch and Tony Stance) and different camera views(10 views were used
for each sequence), hence the difference in person size as well as orientation.

explained, in first place, taking into account that DE is one of the best-performing meth-

ods for large-scale continuous optimization problems [9];therefore, the more complex

the environment the better the expected performance with respect to other methods. A

second explanation can be the evolutionary nature of DE; since the scaled differences

of randomly selected and distinct population members are combined to create new

solutions, the weighted combination of good partial solutions can produce very good

global results.

It is also important to notice that the best results are obtained using the hierarchical

approach, in which, whenever a good position for one part of the body is found, all

other joints are constrained to this newly found best position (i.e. they cannot explore

other orientations and positions that are inconsistent with it). With respect to execution

time, the hierarchical version of the human body pose estimation using DE takes on

average4677.60 ms per frame, while the corresponding version based on PSO takes

4810.33ms. Figure 3.12 shows examples of estimated poses for different camera views

and different sequences.

56 Chapter 3. Parallel Metaheuristics

3.6 Final Remarks

In this chapter the rationale behind parallel metaheuristics was given, along with the

details of our GPU implementations of some popular optimization techniques on the

nVIDIA CUDA platform. The gains of parallel implementations of metaheuristics are

manifold: exploiting the inherently parallel nature of those algorithms, which, in turn,

allows the use of such powerful global optimizers on consumer level hardware in a

fraction of the computing power and time required to run their CPU/sequential coun-

terparts. We mainly implemented three methods: PSO, DE, and, SS, with two distinct

variants of PSO: synchronous, and asynchronous PSO. The GPU-based asynchronous

version of the PSO algorithm was able to significantly reduceexecution time with re-

spect to the synchronous one, imposing limitations on the number of particles which

seemed not to affect performances significantly, at least onthe benchmark we used

for tests. Depending on the degree of parallelization allowed by the fitness functions

we considered, the asynchronous version of CUDA-PSO could reach speed-ups of up

to about 300 (in the tests with the highest-dimensional Rastrigin functions) with re-

spect to the sequential implementation, and often of more than one order of magnitude

with respect to the corresponding GPU-based 3-kernel synchronous version, some-

times showing a limited, possibly only apparent, decrease of search performances.

The development of libCudaOptimize, in addition to the automatic tuning abili-

ties ofirace, allowed us to make a fair comparison of our implemented GPU-based

methods, chiefly due to the common code base that was abstracted by the library. The

results reported in the tests comparing the performance of the implemented parallel

metaheuristics, although conforming with the No Free Lunchtheorem [1], did in fact

prove the superiority of one of the methods, DE, in attainingthe best overall results

over the set of benchmark functions used in the experiments.However, the main pur-

pose of the experiments was not to prove the superiority of one algorithm over the other

in terms of general applicability, but rather in terms of howwell the parallel version

performs, under the given time constraint. Ultimately, theforeseen goal of libCudaOp-

timize is to expose the power of GPU metaheuristics to researchers and users from

different fields of science.

3.6. Final Remarks 57

Finally, we described a parallel approach to articulated human body pose estima-

tion from multi-view video sequences, based on the CUDA architecture. The results

show that the execution time can be cut down noticeably by formulating the algorithm

on the GPU, without sacrificing the pose estimation accuracy, thereby exploiting the

vast computational resources available on an ordinary desktop PC. The current imple-

mentation still combines the computational power of the CPUand GPU, for example,

for the purpose of camera projection, which induces a computational overhead when

passing data between the two processing units. Additional speedup is therefore possi-

ble by deploying the complete algorithm on GPU in order to avoid the communication

bottleneck. This would also allow us to increase the size of the swarm, which is likely

to lead to better performance. A further improvement is anticipated from exploiting

the parallelism in the kinematic structure of the human body. Both improvements have

been left as future work.

Chapter 4

Hierarchical Quilted Self Organizing

Maps

The HQSOM was introduced in [66] mainly to model the vision part of the neocor-

tex, and achieve biological similarity to a considerable extent. It builds upon previous

computational models such as the Neocognitron [67], NeuralAbstraction Pyramid[68],

and VisNet [69]. However, it improves upon those models and HTM in several aspects.

Firstly, it uses the same simple algorithm for both spatial and temporal clustering, the

Self Organizing Map (SOM), and the Recurrent Self Organizing Map (RSOM), respec-

tively. Furthermore, unlike the HTM, it employs online learning through the training

and testing phases, thus adapting to new inputs and increasing generalization. Finally

and more importantly, it uses temporal associations to forminvariant representations

of causes and patterns in spatio-temporal sequences, whilemodels like the Neocogni-

tron are more suited to recognition tasks from a single image, ignoring the time aspect

that humans and animals rely on to evolve their sophisticated vision systems.

Much like the HTM, HQSOM tries to exploit the spatial correlations between pix-

els of an input image to form transformation invariant representations. Figure 4.1

shows a HQSOM configuration with a two dimensional grid as input, as is the case

when working with pixels of an image or a video frame. As described earlier, each

layer is composed of a number of units or nodes running exactly the same procedure;

60 Chapter 4. Hierarchical Quilted Self Organizing Maps

in the case of HQSOM this unit is denoted as theSOM-RSOM pair. The input feature

vector can be divided into overlapping or non-overlapping receptive fields, and fed to

a single SOM-RSOM pair. This subdivision of the input space ensures that every pair

only responds to features in its corresponding field, thus emulating the shift invariance

property of biological vision.

Our HQSOM implementation follows the description above to an extent. However,

as it stands, this system can not cope with real world applications. In fact, in the orig-

inal paper, HQSOM was only tested with synthetic sequences of 7×7 binary images.

To address these limitations, this work amends the model, assessing and comparing

the effect of each variant of the algorithm. To further explain the limitations, a short

description of all the implemented variants is needed.

Figure 4.1: HQSOM structure, taken from [66]

4.1. Self-Organizing Maps 61

4.1 Self-Organizing Maps

The self-organizing map, sometimes referred to as the Kohonen map [70], is perhaps

the most popular unsupervised clustering algorithm. It performs a type of dimension-

ality reduction from the input space dimensions, to the map spaceVo (usually two-

dimensional). The output of each map is a discrete representation of the training sam-

ples input space. The SOM has the unique property of preserving the topology of the

input space, meaning that samples that are close to each other in feature space remain

close in map space. Maps in the SOM consist of a grid of nodes orelements each

representing an input instance by a set of weightswi for every elementi of Vo. At

every iteration of the training phase, a distance metric is calculated between all the

map weights and the input vectorx(t), then a best matching unit (BMU)b is found

according to the following equation:

||x(t)− wb|| = min (||x(t)− wi||) (4.1)

where|| ∗ || is a distance measure which, in our case, is the Euclidean distance. Then

all the weights of a neighborhood of the BMU are shifted towards the input, using the

update rule:

wi(t+ 1) = wi(t) + γhib(t) (x(t)− wi(t)) (4.2)

γ is the learning rate and ranges between 0 and 1, and is often decreased over the

course of training. Note that weights are shifted based on the neighborhood function,

hib, which in turn depends on the distance (in map space) betweenelementsi and the

BMU b, and it is typically defined as a Gaussian:

hib(t) = exp

(

−||Ii − Ib||
2

µb(t)σ2

)

(4.3)

whereIb andIi are the indices of the BMUb and elementi in map space,σ(t) is a

neighborhood scaling constant, andµb(t) is the mean square error of comparing the

input x(t) to wb. Using the main square error dynamically adjusts the neighborhood

size of the update, in effect, adjusting to new inputs even inthe testing phase.

62 Chapter 4. Hierarchical Quilted Self Organizing Maps

Recurrent Self Organizing Maps

For temporal clustering, the RSOM is used [71] mainly because of its robustness, sim-

plicity, and the elegance of using one algorithm for both spatial and temporal cluster-

ing. The input for the RSOMA(t) is obtained from an activation vector defined by the

following equation:

A(t) = exp

(

−||Ii − Ib||
2

2ρ2

)

(4.4)

whereρ is the standard deviation of a Gaussian function centered around the BMU

index in map space. Lower values ofρ result in a dense representation of the spatial

input, while higher values are useful for better generalization, especially for larger

training sets. As for the RSOM weights update, the SOM updateequation is modified

as follows:

yi(t+ 1) = (1− α)yi(t) + α (A(t)− wi(t)) (4.5)

wi(t+ 1) = wi(t) + γhib(t)yi(t) (4.6)

whereyi(t) is considered to be the recursive difference between the input and the

previous weights of the mapwi(t−1), and is controlled by the parameterα, 0 ≤ α ≤ 1,

specifying the responsiveness of the map to inputs from earlier iterations. Whenα

tends to zero, the RSOM maintains a longer-term memory, while whenα is equal to

one, the RSOM update is equivalent to that of the SOM, ignoring the temporal aspect.

Parameter-less Self Organizing Maps

In the HQSOM model, as was introduced in [66], a single SOM-RSOM pair has eight

parameters to set. There is little theoretical basis on which one can set the values

of those parameters. Moreover, the number of parameters increases dramatically in

the case of the HQSOM, where there are several layers each consisting of multiple

SOM-RSOM pairs. This requirement alone makes the use of HQSOM practically im-

possible, as tuning all these parameters manually would be extremely time-consuming.

We amend the model by employing a parallel implementation ofthe improved Pa-

4.1. Self-Organizing Maps 63

rameterless SOM (PLSOM2) [72], which automatically adaptsthe learning rates and

neighborhood functions of the model, effectively reducingthe number of parameters to

two per SOM-RSOM pair: the responsiveness parameterα, and the generalization pa-

rameterρ. Both parameters are data/problem dependent. The first specifies the RSOM

sensitivity to inputs from earlier iterations, and should be set based on the length of

the input sequence for a specific class, while the second parameter is directly related to

the size of the dataset and the dimensions of the SOM. It controls the SOM output ac-

tivation vectorA(t), and its ability to associate variations in the spatial input between

instances of the same class.

The PLSOM2 is an improvement on the original parameterless SOM (PLSOM) [73],

in the sense that the PLSOM uses the maximum error encountered during training, to

scale the weight update functions, while the PLSOM2 achieves the same scaling but

based on the range of the inputs observed so far in the training samples. Thus, the

PLSOM2 effectively overcomes the drawbacks of its predecessor, which are: the over-

sensitivity to extreme outliers, and the dependence on the SOM node weights initial

value distribution. PLSOM2 has two stages. First, it calculates the input space size

S(t), based on the training samples encountered up to this iteration t. Then, it updates

every map node weight vectorwi, but instead of using the learning rateγ and the neigh-

borhood functionhib, PLSOM2 computes a single scaling factor from the previously

computed input space size. The input space size is defined as the dataset diameter at

time t.

S(t) = maxi,j

(

||xi − xj ||
2
)

, i, j ≤ t (4.7)

Sincexi is the input at timei, therefore the above equation calculates the maximum

distance between all the training samples processed up tot. However, this calculation

requires the storage and the diameter calculation of almostthe entire training dataset,

which in turn is naturally very time and memory consuming. For this reason, in [72]

the authors of the PLSOM2 propose an approximation for determining S(t). The

algorithm proceeds as follows:

64 Chapter 4. Hierarchical Quilted Self Organizing Maps

k ← n+ 1

A← ∅

S ← −1

for every training samplex do

s← diam(A ∪ x)

if s > S then

S ← s

while size(A) ≥ k do

A← A− findNearest(x)

end while

A← A ∪ x

end if

end for

wheren is the number of dimension of the input sample vectors, the function

diam(∗) calculates the diameter of a set, that is the largest distance between any two

set members, and the functionfindNearest(∗) computes the distance between an in-

put and a set, returning the member that is nearest to the input. Here we use also the

Euclidean distance measures for both functions. The above algorithm works indepen-

dently of the timet, approximating the calculation ofS to a great extent to the value

found by equation 4.7, inO(k(k − 1)) complexity, as reported in [72].

The main power of the PLSOM2 algorithm lies in the map weight update function,

that is, unlike the original SOM update, independent of the iteration number. PLSOM2

scales the weight update with the factord(t) that is defined as:

d(t) = min

(

err(t)

S
, 1

)

(4.8)

Whereerr(t) is the distance between the input at timet and the BMU or, in other

words, the error of the map, andS is the input space size calculated using the approx-

imation algorithm above. Then, a new neighborhood functionis defined usingd(t)

as:

4.2. Multi-modal Pattern Recognition with HQSOM 65

ω(d(t)) = β ln (1 + d(t)(e− 1)) (4.9)

ln is the natural logarithm,e is the Euler number, andβ is the only parameter of

the algorithm and is referred to as the neighborhood range. The neighborhoodrange

parameterβ is an upper bound to the neighborhoodsizeparameterσ, and is usually set

to the radius of the map. The new neighborhood functionω(d(t)) is then substituted

in equation 4.3 forming the following equation:

hib(t) = exp

(

−||Ii − Ib||
2

ω(d(t))2

)

(4.10)

As for the learning rateγ, the scaling factord(t) is used instead, turning equa-

tion 4.2 into:

wi(t+ 1) = wi(t) + d(t)hib(t) (x(t)− wi(t)) (4.11)

The following section provides some details about the parallel implementations of

the above mentioned versions of the SOM algorithm.

4.2 Multi-modal Pattern Recognition with HQSOM

Introducing time into the training phase of Self OrganizingMaps (SOM) has been

addressed by many researchers. The father of self organizing maps, Teuvo Kohonen,

introduced a new time-normalized distance operator based on Dynamic Time Warp-

ing (DTW), to compute differences between entire sequencesof feature vectors with

variable length [74]. Training is not performed one featurevector at a time, but the

whole sequence is merged into a single matrix, then evaluated against the existing map

weights using DTW. It was successfully demonstrated in offline speech recognition

of Finnish words. However, it requires batch processing andthe prior knowledge of

the length of the sequence. Moreover, temporal versions of the Kohonen map were

66 Chapter 4. Hierarchical Quilted Self Organizing Maps

devised in order to implement some sort of neural feedback, or leaky integrators from

previous time step inputs. The Temporal Kohonen Map (TKM) [75], the Recurrent

Self Organizing Map (RSOM) [71], and the Recursive Self Organizing Map (Rec-

SOM) [76] are the best-known methods. An excellent comparison of those temporal

versions can be found in [77]. Finally, the model explained in [78] is very close to the

model presented in this work, where the model is made up of a spatial and a temporal

SOM on top of each other, with a leaky integrator in between. The authors used it for

sequence and sub-sequence classification of musical notes.It improves over previous

models, especially the Kangas’ model [79], in terms of computational efficiency, also

for not requiring a window to be applied over the input sequences. However, the model

does not have the potential of being multi-layered or even truly hierarchical, making it

biologically implausible.

The HQSOM tries to a great extent to mimic the parallel hierarchical isocortical

processing in the brain, using the previously explained pyramid/layered structure. The

real power of the model lies in its independence from the modality of the dataset.

By subjecting the lower level spatial poolers (the bottom layer of SOMs) to various

sensory domains, while the higher levels extract the temporal associations, the model

is able to form invariant representations of patterns and objects in spatiotemporal data

sequences. This ability, along with the real-time GPU implementation, makes the

HQSOM ideal for several applications, especially since it does not require anya priori

domain knowledge, or data preprocessing. In fact, the modelwas validated on both

raw sensory data and extracted feature vectors, achieving good recognition rates.

Implementation

Apart from the data flow between different layers, which has to be done sequentially,

the steps executed by each SOM-RSOM pair are completely independent from the

other pairs. Moreover, within a single pair, the BMU search and the maps weight

updates can also be easily parallelized for every SOM/RSOM map element. First, we

calculate the Euclidean distance between the input vector and the weight vector of

4.2. Multi-modal Pattern Recognition with HQSOM 67

every element, along each dimension, simultaneously in onekernel. Then, the BMU

index is found via a minimum parallel reduction kernel, as inequation 4.1. Using the

BMU index, the neighborhood function and the map weight update are both performed

in parallel by a single kernel. Following this, depending onthe learning algorithm

employed, if the PLSOM2 method is used we first have to find the input space sizeS(t),

and the scaling factord(t) to be used in the weight update equations. A parallel version

of Algorithm 13 has been devised, where the functionsdiam(∗) andfindNearest(∗)

were each implemented as a CUDA kernel, with as many threads as the input vector

dimensions. Either equation 4.6 or equation 4.11 is used forthe SOM and RSOM

weight updates, where for the SOM the value of theα parameter is always set to

1. Lastly, the activation vectorA(t) is created from the BMU of the SOM, using

equation 4.4, also in parallel. A CUDA stream is specified forevery SOM-RSOM

pair, which is useful to execute more than one pair simultaneously if there are enough

available resources on the GPU chip.

There are many modes of operation of the HQSOM, one for onlinelearning, where

the SOM-RSOM pair node weights are updated in both the training and testing phases.

Another mode, which is employed in the case of offline learning (classical SOM equa-

tions), in which the maps are updated only in the training phase, while in the testing/-

validation step, the activation vectorA(t) is formed from the accumulated activation of

all the instances of a given sequence, and only moves to a higher level at the end of the

whole input validation sequence. The final mode, which is used in the following tests,

is based on the PLSOM2 learning algorithm, mainly because the PLSOM2 is relatively

slower than the other two learning variants (online and offline). In this mode, only the

bottom layer SOMs are trained first, to fully converge to the input dataset, and since we

use the parameterless version, the bottom layer can clusterand represent the data with-

out any tuning of the model. After the bottom layer SOMs’ convergence, the training

is repeated for the higher level SOM-RSOM pairs normally. This effectively reduces

the tuning time significantly, providing more robustness tothe activation vectors gener-

ated directly from the dataset cluster centers (the bottom layer SOMs), and formalizes

the training process for different data modalities, where first the model learns the spa-

tial topology of the data, then finds the temporal sequences/patterns of the previously

68 Chapter 4. Hierarchical Quilted Self Organizing Maps

learned spatial cluster centers. Validation in this mode follows the same procedure as

the offline mode testing phase.

Testing and Results

The results of two experiments are presented in this section. In the first, the model is

exposed to simulated data of gray scale images, representing a simple moving arrow,

while in the second, a public dataset for gesture recognition is presented to the model.

For the simulated dataset, the model learns directly from the raw input sequences with-

out any preprocessing; in fact, it is able to successfully classify the patterns even in

the presence of noise. On the other hand, the gesture recognition experiment dataset

required some preprocessing imposed by the nature of the dataset. This public dataset

was acquired from a Microsoft Kinect depth sensor, and is composed of one training

instance per gesture, along with multiple validation sequences, each containing one or

more test gestures. Hence, the validation set needed to be temporally segmented to

extract the input test sequences; moreover, because of the length of the sequences, the

training and validation sequences were reduced to have exactly ten frames per gesture.

Although this preprocessing is not necessary for the model to learn, it facilitates the

manual tuning process of the model parameters, an issue thatwill be addressed in the

following chapter.

Synthetic Sequences

In order to validate the model, a simple simulated time series sequence is employed.

The data consists of gray-scale images that are of size7 × 7-pixels. There are 3 se-

quences, each composed of 5 images, representing a horizontally moving arrow, a

period of no movement, and a vertically moving arrow, respectively. The arrow is rep-

resented by black pixels on a white background, where black has the value of0 and

white 1, the actual dataset is shown in Figure 4.2. Gaussian noise having standard de-

viation 0.001 was added to all the image pixels while keeping the pixel values within

the gray-level[0, 1] range, which means that the random noise values were subtracted

4.2. Multi-modal Pattern Recognition with HQSOM 69

Figure 4.2: Simulated moving arrow sequences

from white pixels and added to the black ones. Each image was introduced to the HQ-

SOM for1000 iterations, with the noise recomputed at every iteration. Since there are

only 11 distinct images, 5 (horizontal arrow) + 1 (blank) + 5 (vertical arrow), the SOM

size was set to 16 (a 2D grid of4 × 4 nodes), while for the RSOM, its size was set to

4 (2 × 2 grid), as the output classes represent 3 sequences. The restof the parameters

are specified in Table 4.1.

SOM RSOM
Learning Algorithm PLSOM2 PLSOM2

Grid Size 4× 4 2× 2
Neighborhood Range (β) 2.5 1.75

Memory (α) 1.00 0.45
Activation Sensitivity (ρ) 0.2 -

Table 4.1: Parameters used for the SOM-RSOM pair in the moving arrows classifica-
tion.

70 Chapter 4. Hierarchical Quilted Self Organizing Maps

Results

Figure 4.3 shows the SOM-RSOM pair node weights after training. It is clear from the

figure the SOM nodes converged correctly to the input samples, where almost every

node is directly correlated to a statistical cluster centerof the dataset, apart from the

five nodes at the top-right of the 2D grid, which are associated with noise or cluster

center interpolations. Similarly, RSOM nodes successfully converged to the input se-

quences, represented as a sequence of cascaded firing of SOM nodes. For instance,

looking at the RSOM map, black pixels represent no SOM node activity at the same

index as the pixel. On the other hand, higher intensity pixels signify higher occurrence

of firing SOM nodes also at the same pixel locations. Thus, through visual inspection,

one can infer that node 1 corresponds the the vertically moving arrow sequence. In ef-

fect, the HQSOM reduce the dimensionality of the problem from 49 (7×7) dimensions

to only 1 single integer output, representing the overall output class RSOM index. It

is now enough to examine the output of the model to know the sequence presented at

the bottom level of it. However insightful the visual inspection is, a quantification of

the results is still necessary. The Probability of Correct ClassificationPCC is adopted

here, which is defined as:

PCC =

∑

i

maxj (vij)

∑

i,j

vij

WhereV is a two dimensional matrix with the correct label given by the row index

i, the unsupervised HQSOM output given by the column indexj, and each valuevij

in the matrix representing the number of times that outputj was given for the input

corresponding to labeli. This finds the simplest mapping from outputs to labels and

calculates the likelihood that, using such a mapping, a given input would be matched

with its correct label. For 100 independent runs, in each of which the HQSOM was

reinitialized, and the noise applied to both training and testing samples, the overall

achievedPCC is 99%.

4.2. Multi-modal Pattern Recognition with HQSOM 71

Figure 4.3: (left) 4×4 SOM weights after training from a sample run. (right) 2×2
RSOM weights after training, representing activity/firingsequence of the SOM nodes.
Higher pixel intensity signifies SOM nodes that fire togetherin a given sequence.

Video Sequences

The system was tested on the ChaLearn gesture dataset [80] intended for one-shot

learning. This dataset contains video sequences of around 500 batches, each including

100 recorded gestures performed by the same user. We randomly chose a batch for

classification, which contains 9 gesture classes, each withonly one training example,

and 91 test gestures. Two video streams are provided for every gesture sequence, a

depth stream acquired by the Kinect sensor along with its synchronized RGB color

stream, see Figure 4.4. The main advantages of using the Kinect sensor is that it con-

siderably facilitates user segmentation. To start, we generate motion feature vectors

for every frame, by computing the difference between the current frame and the pre-

vious one, only from the depth video. Then we automatically choose ten frames per

sequence that are representative of the gesture transitions, based on the average total

amount of change in the motion feature image. The feature vector/image is then re-

sized to32 × 32 pixels. In effect, each feature vector has 1024 dimensions,which is

the maximum number of threads that our GPU can currently run in parallel. The exper-

72 Chapter 4. Hierarchical Quilted Self Organizing Maps

Figure 4.4: Training input example: (top) raw depth and RGB frames, (bottom) five
samples of the significant 32x32 rescaled feature frames

iment was run on a 64-bit Intel(R) CoreTM i7 CPU running at 2.67GHz using CUDA

v. 4.1 on a nVIDIA GeForce GTS450 graphics card with 1GB of DDRmemory and

compute capability 2.1.

As a proof of concept, we used a single SOM-RSOM pair. The SOM total size was

set to100 (10 × 10 2D grid), since, having9 gesture classes each with10 significant

frames, the total number spatial clusters can not be less than 90. Similarly, the RSOM

size was set to25 (5 × 5 2D grid), which is sufficient to accommodate the number of

output classes. The complete set of parameters, obtained through manual tuning, is

summarized in Table 4.2. Since the training set is only composed of one sequence for

every gesture class, it is not enough to achieve convergenceduring training. Therefore,

the same training set is introduced to the HQSOM for100 iterations.

4.2. Multi-modal Pattern Recognition with HQSOM 73

SOM RSOM
Learning Algorithm PLSOM2 PLSOM2

Grid Size 10× 10 5× 5
Neighborhood Range (β) 5.65 4.75

Memory (α) 1.00 0.152
Activation Sensitivity (ρ) 0.8 -

Table 4.2: Parameters used for the SOM-RSOM pair in the ChaLearn gesture recogni-
tion system.

Results

After training, the K-Means algorithm is run on the trained RSOM node weights with

k = 9, to find the RSOM cluster centers corresponding to 9 gesture sequence classes.

Then the training set is used once more but as a validation set, in order to assign an

RSOM node index to a gesture class ID. This should not be confused with supervised

learning, in the sense that the class labels are not used in the learning process, but

merely to find correspondence between them and the RSOM output nodes. Since

the class labels/annotations are not used in the training phase, the HQSOM can be

considered as an unsupervised method.

The SOM and RSOM weights were randomly initialized from a uniform distribu-

tion. Thus, the results are dependent on this initial weightdistribution. Overall results

were obtained from100 independent runs of the training and validation phases, andare

reported in Table 4.3. Moreover, Figure 4.5 shows the SOM-RSOM pair after training

from a sample run, along with the overall classification confusion matrix. From the

confusion matrix shown, it is apparent that gesture class 4 and 6 are strongly associ-

ated. This is due to the fact that those two gestures are performed with the same arm,

with the only difference being in the number of fingers shown to the camera. Such

a subtle change can not be captured by our motion feature image. Also, the training

frames for gesture class 9 were not representative of the gesture pose transitions, hence

the performance degradation. It is also important to note that the manual tuning of the

model parameters introduces some bias in the results. To obtain the optimal results, an

unbiased automatic tuning or model evolution method is crucial.

74 Chapter 4. Hierarchical Quilted Self Organizing Maps

Average StdDev Worst Best Median
Accuracy 69.08% 9.03 41.76% 87.91% 69.23%

Levenshtein Distance 0.3132 0.0865 0.5714 0.1319 0.3187

Table 4.3: Results of ChaLearn gesture classification: average accuracy percentage
values, and Levenshtein distances over 100 independent runs.

Figure 4.5: (top) 10×10 SOM weights after training from a sample run, showing all
the clustered gesture significant frames. (bottom left) 5×5 RSOM weights after train-
ing, representing activity/firing sequence of the SOM nodes, higher pixel intensity
signify SOM nodes that fire together in a given sequence. (bottom right) A sample
classification confusion matrix of the 9 gesture classes

4.3. Final Remarks 75

4.3 Final Remarks

The HQSOM model has the ambitious goal of extracting, classifying, and predict-

ing causes and patterns in temporal sequences. The model should be able to achieve

these goals in realtime, thanks to the GPU implementation, while maintaining biolog-

ical equivalence. Currently, we are working on adding feedback connections, to con-

form with the MPF. We are also investigating activity recognition from Kinect skeleton

datasets, where the full power of the method is needed, and the hierarchical approach

maps well to the joint hierarchy found in the data. Also, a more extensive testing of the

implemented variants is needed, and experiments with different modalities. Finally, a

comparison with HTM and the state of the art in temporal classification will shed more

light on the advantages of this method.

Chapter 5

Automatic Configuration of the

HQSOM

5.1 Parameter Tuning

Very few methods or models claim to be truly parameterless, and even those are usu-

ally domain specific and lack the generalization ability of parameterized techniques.

Parameters are considered a part of the problem and the solution at the same time. On

one hand, an algorithm’s parameters can exhibit its flexibility to a multitude of distinct

problems and datasets while, on the other hand, finding the best values of those param-

eters that yield the best algorithm performance is a challenging problem on its own. In

most cases, this problem is addressed empirically through trial and error, or what is

usually termed manually tuning the algorithm parameters. As it has been mentioned

earlier, manual parameter tuning is a time consuming task, and usually does not lead to

the optimal values for the parameters under consideration.Manual tuning is performed

by systematically changing the value of one parameter whilekeeping all the other pa-

rameter values fixed, until a certain performance criteria crosses a given threshold.

This is usually an ad-hoc procedure that in most cases does not guarantee optimality,

even more so with an increasing number of parameters, due to the aforementioned

78 Chapter 5. Automatic Configuration of the HQSOM

curse of dimensionality issue. Obviously, the more parameters a method has, the more

difficult manual tuning becomes. Therefore, there has been aconsiderable amount of

interest and research in automatic tuning of algorithm parameters.

In [52], we used theirace package to automatically tune the GPU methods im-

plemented in libCudaOptimize to achieve the best minimization performance over 20

mathematical benchmark functions. Theirace package implements the iterated rac-

ing algorithm, which is an extension of the Iterated F-race procedure, that is based

on a statistical approach for selecting the best configuration out of a set of candidate

configurations under stochastic evaluation. Its main purpose is to automatically con-

figure optimization algorithms by finding the most appropriate settings given a set of

instances of an optimization problem. The scenario usuallyaddressed byirace is

described as offline configuration [81]. In a preliminary tuning phase, given a set of

tuning instances representative of a particular problem, an algorithm configuration is

chosen, and in a subsequent production (or testing) phase, the chosen algorithm con-

figuration is used to solve unseen instances of the same problem. The goal is to find,

during the tuning phase, an algorithm configuration that minimizes some cost measure

over the set of instances that will be seen during the production phase. In general

terms, this tuner has been used to solve combinatorial problems [82, 83, 84], but there

are also examples of its use in the optimization of metaheuristics for global continuous

optimization problems [85].

5.2 HQSOM Tuning via Real Parameter Optimization

The use of optimization methods for automatically tuning algorithm parameters has

been studied extensively. In [23], the authors used a Genetic Algorithm (GA) to find

the best variants of GA methods given a set of numerical optimization problems, and

also given an image registration task. Moreover, [86] used GA’s and simulated an-

nealing to automatically tune the scale of the kernel and theregularization parameter

of the popular Support Vector Machine (SVM) classification method. Similar to the

work in [87], we presented a framework for to estimate the best parameters of PSO

5.2. HQSOM Tuning via Real Parameter Optimization 79

on typical global optimization problems, but using our parallel metaheuristics for this

purpose, GPU PSO and DE namely [88].

In the previous chapter it was pointed out that to achieve true data independence

in the HQSOM model two main concerns have to be addressed. Thefirst lies in the

stimulus sensing layer of the HQSOM, i.e. the SOM part of the first or lowest layer

of SOM-RSOM pairs. Since those SOMs are the only part in the model that deal with

raw input data, in contrast with the rest of the model which mainly processes SOM

and RSOM activations, therefore, tuning their corresponding parameters will have to

depend on the input sample sequences value ranges. For this reason, it makes sense to

use the PLSOM2 algorithm for the SOM part of the sensing layerlearning, effectively

eliminating any parameters to tune for this part of the layer, except maybe for the size

of the map parameter. As for the rest of the model layers, the PLSOM2 algorithm is

both computationally expensive and unfitting. The activation vectors that propagate

from lower level layers to the higher ones, also between SOMsand RSOMs of the

same layer, vary greatly based on the learning parameters ofhigher RSOM pairs, the

activation density parameterρ of lower SOMs, and on the RSOM memory parameter

α. Those parameters in turn depend on the size of the maps, the number of input

sequences, and the sequence length of the input sequences. It is now clear that to

adhere more to the biological base of the HQSOM model, and decouple the model’s

classification ability from the sensory information, thosedata-dependent parameters

have to be automatically estimated or, in other words, evolved based on the fitness of

the model, simulating the evolution of our own brains.

Model Formulation

In order to attain the automatic parameter estimation of theHQSOM through function

optimization, the optimized model needs to be properly defined first. LibCudaOpti-

mize metaheuristics are used to optimize variants of the HQSOM model, where each

candidate solution is equivalent to a complete run of the training and testing phases of

the HQSOM classification algorithm. The fitness of a run/candidate solution is calcu-

80 Chapter 5. Automatic Configuration of the HQSOM

lated from metrics of the testing phase overall performance. Training phase metrics

were not considered in the fitness function, because preliminary tests showed the PL-

SOM2 learning algorithm to be more effective than automatically tuned parameters in

adapting the SOM/RSOM weights to the training samples.

Fitness Function

Three performance metrics are taken into accaount as terms of the fitness function

used in the automatic HQSOM parameter estimation. The first was employed in the

previous chapter in the results section, as an alternative to the classification accuracy

percentage. The Levenshtein distance [89], sometimes referred to as the edit distance,

is a distance measure between two string sequences, and represents the minimum num-

ber of single-character edits (insertion, deletion, substitution) required to change one

string into the other. The Levenshtein distance∆lev(|A|, |B|) between two string se-

quencesA = a1a2 · · · aN andB = b1b2 · · · bN is mathematically defined as:

∆lev(i, j) =

max(i, j), if min(i, j) = 0

min

∆lev(i− 1, j) + 1

∆lev(i, j − 1) + 1

∆lev(i− 1, j − 1) + [ai 6= bi]

(5.1)

From the above definition it seems that the Levenshtein distance can be computed

recursively, where the first element in the minimum corresponds to the cost of deleting

ai, the second to the cost of insertingbj , and the third to a the cost of replacingai with

bj . In practice, the Levenshtein distance is computed using a dynamic programming

solution, which involves filling a(N + 1) × (N + 1) matrix T . The computation is

done according to the base-case rules given byT [x, 0] = T [0, y] = 0, and the rest of

T [x, y] values are filled according to∆lev(i, j) defined in equation 5.1.

To assess the HQSOM classification accuracy using the Levenshtein distance, we

5.2. HQSOM Tuning via Real Parameter Optimization 81

consider the output classification label sequence and the ground truth label classifica-

tion sequence as the two stringsA andB to be compared. Here,N is the number of

testing samples in the dataset, and eachai represents the HQSOM output class label

for the testing samplei.

The second performance metric used in the fitness evaluationis the total temporal

error of the HQSOM,errtemp. This metric conveys how well the RSOMs of the model

have converged to the training sample sequences, in terms ofthe whole sequence of

lower level SOM firing indexes. It is given by:

errtemp =

N
∑

i=1

L
∑

j=1

Uj
∑

k=1

||xi − wb
j,k|| (5.2)

whereN is the number of testing samples,L the number of HQSOM layers, and

Uj the number of SOM-RSOM pairs in layerj. The aggregated error is the Euclidean

distance between testing input sequencexi and the BMU weightswb
j,k of thekth RSOM

in thejth layer of the HQSOM. This metric provides an indication of howfar or similar

the trained weights, represented by the matching RSOM BMUs,are similar to the input

sequences.

Finally, the third metric is a simple ratio of the number of unrepresented class labels

to the total number of classesRclass. This metric is used mainly as a constraint on the

fitness function, to prevent the highest classification SOM-RSOM unit from converg-

ing to represent multiple classes with one RSOM map element.As described in the

previous chapter, the top SOM-RSOM pair is responsible for the overall classification

model output, with each RSOM element or cluster center representing a distinct input

class. In certain cases, the HQSOM learning algorithm tendsto represent more than

one input class with a single top RSOM element, sometimes even all the input classes.

This behavior is directly affected by the memory parameterα; incorrect values of this

parameter makes it difficult for the HQSOM to distinguish between one training se-

quence and the preceding and following others. Notice that the learning mechanism

in this model is unsupervised, meaning no hints were given tothe model on when an

input training sequence begins or ends. TheRclass is calculated asRclass =
|φ|
K

, where

82 Chapter 5. Automatic Configuration of the HQSOM

φ is the set of data classes that have no matching top RSOM elements representing

them, andK is the total number of classes in the dataset.

Each of those three fitness metrics provides a different measure: i. on the overall

classification performance given by∆lev; ii. on the model convergence to the input

sequences as described byerrtemp and controlled by the learning rate (γ) and neigh-

borhood (σ) parameters of the RSOM from equation 4.2 and equation 4.3 respectively,

andiii. the class representation measured by the ratioRclass, which is affected by both

theα memory parameter and the SOM activation densityρ shown in equation 4.6 and

equation 4.4 respectively. Thus, the fitness function used is composed of the sum of

those metrics:

f = ∆lev + errtemp +Rclass (5.3)

Testing and Results

Experiments were run on the same Kinect ChaLearn gesture recognition dataset, using

the same batch as the experiments from the previous chapter.Testing with the same

dataset and application as the manually tuned HQSOM makes itpossible to make a

fair comparison between the parameters set manually, thoseset by our parallel meta-

heuristics, and also the ones found by a state-of-the-art tuner,irace. PSO and DE

were employed here for the automatic estimation of the HQSOMparameters, again

to compare their optimization performance, but this time ona fitness function that is

nondeterministic in its nature. This might create a problemfor the search procedure of

PSO and DE, as the same candidate solution (HQSOM parameter values) might give

better or worse fitness values (classification performance)in a subsequent optimization

generation/iteration, depending on the stochastic initialization of the model. For this

reason, fitness values will not be always decreasing, in caseof function minimization,

during the course of the optimization algorithm, as has always happened throughout

the previous experiments.

The PSO and DE parameters used in the experiments are summarized in Table 5.1.

5.2. HQSOM Tuning via Real Parameter Optimization 83

DE PSO
DE/Rand/1 Mutation C1 = 1.49618
Binomial Crossover C2 = 1.49618

F = 0.9 w = 0.729844
Cr = 0.2 Global Best Topology

Population Size = 20
Number of Generations = 100

Table 5.1: Parameters of DE/PSO tuners.

Those PSO parameters are set to the ‘standard’ values suggested in [51] by the creator

of PSO, while the parameters for DE are set to the values used in most of our experi-

ments, including the automatic parameter tuning experiment of PSO itself [48, 50, 88].

Of course, another automatic tuner can be used to tune the parameters of the PSO and

DE tuners, but then we may fall into an endless loop of automatic tuners. Notice that

the population size and number of generations were set to lowvalues, because they

greatly affect the computation time of one run of the optimizer. Despite the HQSOM

and the tuners’ GPU implementations, each particle in the PSO swarm, or member in

the DE population, represents a whole run of the HQSOM training and testing stages,

which saturates the hardware resources of our single GPU testing machine. For the

sake of comparison fairness, the experiment budget forirace was also set to2000 to

match the number of HQSOM runs performed by PSO and DE (20 particles/solutions

×100 generations).

Given that the interaction between the particles/elementsand the PSO/DE equa-

tions themselves are still executed in parallel, in this case, for every generation, each

particle fitness has to be computed on the host side, then the fitnesses array transferred

to the device side through device global memory, which is a time-consuming opera-

tion. The execution time could have been reduced significantly if a multi-GPU system

had been available, where the fitness function could have been also executed in paral-

lel, with a single GPU per particle. CUDA version 5.0 introduced the Unified Virtual

Address (UVA) ability [90], which will be very useful in thiscase, where the fitnesses

array can be mapped across multi-GPU address spaces, facilitating the memory shar-

ing after every generation.

84 Chapter 5. Automatic Configuration of the HQSOM

As stated earlier, the main objective of the optimization isestimating parameters

for the higher HQSOM layers RSOM nodes, since the lower layerSOM units are being

trained using the PLSOM2 algorithm, virtually requiring noparameters, except for the

PLSOM2 neighborhood range parameter,β, which is usually set equal to the radius of

the map, or half the map size, as suggested in [72]. Therefore, the SOM parameters of

the SOM-RSOM pair used for gesture recognition from the ChaLearn dataset were not

adapted during the optimization experiments. The trained SOM weights were loaded

from saved values to allow a fair comparison between the manual and automatic tun-

ing of the HQSOM parameters. Table 5.2 summarizes the HQSOM parameters under

optimization, along with the allowed ranges for every parameter. Those parameters

represent the dimensions of the problem optimized by our GPUoptimizers, with the

upper and lower bounds of the candidate solution positions per dimension. There are

two things to notice from Table 5.2; first, the map size parameter is an integer value,

while the implemented metaheuristics are real-valued continuous optimization tech-

niques; for this reason, the rounded integer value of the solution position is set in the

model instead of the real valued one. Secondly, the SOM activation density parameter

is considered as a parameter of the optimization problem, despite being a parameter

of the SOM part of the SOM-RSOM pair. This happens because this parameter does

not affect the learning process and the actual weight updates of the SOM, rather, it

controls the output vector content passed from a SOM to the corresponding RSOM in

a specific pair.

Parameter Range
RSOM Size [3, 32]

RSOM Neighborhoodσ [1.5, 32000]
RSOM Learning Rateγ]0.0, 1.0]

RSOM Memoryα]0.0, 1.0]
SOM Activation Densityρ]0.0, 1.0]

Table 5.2: HQSOM parameters to be automatically estimated,and their value ranges.

Tests were run on a 64-bit Intel(R) Core i5 CPU running at 2.5GHz using CUDA

v5.0 on a nVidia GeForce GT630M graphics card with 1GB of DDR memory and

compute capability 2.1. Performance results are reported in Table 5.3 and Table 5.4,

5.2. HQSOM Tuning via Real Parameter Optimization 85

obtained after 100 independent runs of the HQSOM with the best parameter values

found by each optimizer, along with the results of the manually tuned parameters used

in the experiments of the previous chapter.

Average StdDev Worst Best Median Holm–Bonferroni
Manual 69.08% 9.03 41.76% 87.91% 69.23% < 1.0E − 10

PSO 78.55% 8.02 52.75% 91.21% 81.32% -
DE 77.53% 7.42 59.34% 91.21% 76.92% -

irace 77.07% 8.87 49.45% 90.11% 79.12% -

Table 5.3: Gesture classification accuracies of each parameter set, calculated over 100
runs.

Average StdDev Worst Best Median Holm–Bonferroni
Manual 0.3132 0.0865 0.5714 0.1319 0.3187 < 1.0E − 10

PSO 0.2127 0.0793 0.4725 0.0879 0.1868 -
DE 0.2200 0.0725 0.4066 0.0879 0.2198 -

irace 0.2275 0.0869 0.4945 0.0989 0.2088 -

Table 5.4: Levenshtein distances of of each parameter set, calculated over 100 runs.

Two statistical tests were performed to study the existenceof pairwise statistical

differences among the results of the four methods used for setting the parameters of

the HQSOM: pairwise Friedman tests with Dunn-Sidak correction [91] to thep values,

and also, the Holm–Bonferroni correction [92] for multipleWilcoxon signed rank tests.

The last column in Table 5.3 and Table 5.4 reports the corrected p-value, setting the

significance level to 0.05. The statistical tests found there are statistical differences

between the results of the three automatic tuner results andthe manual one; on the

other hand, the tests found no pairwise significant statistical differences among PSO,

DE, irace. Figure 5.1 provides another way to visualize the results. Although the

results of the automatic tuning using three different methods are very similar, it is clear

from the plots that PSO achieves the best results, even surpassing the state-of-the-art

in automatic parameter estimation, in terms of both accuracy and distance values, and

also in terms of the standard deviation of the obtained results. This, in turn, translates

into efficient and robust pattern recognition and classification.

86 Chapter 5. Automatic Configuration of the HQSOM

40

45

50

55

60

65

70

75

80

85

90

Manual PSO DE irace

A
cc

ur
ac

y
%

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Manual PSO DE irace

Le
ve

ns
ht

ei
n

di
st

an
ce

Figure 5.1: Box plots representing the overall performanceof each parameter set. (top)
Classification accuracy percentages, higher values are better. (bottom) Levenshtein
distances between classification output lables and ground truth, lower values are better.

RSOM Size RSOMσ RSOMγ RSOMα SOMρ
PSO 32 32000.0 0.790 0.136 0.689
DE 28 32000.0 0.543 0.117 0.778

irace 27 8935.59 0.760 0.130 0.680

Table 5.5: Parameter sets found by both PSO, andirace.

5.2. HQSOM Tuning via Real Parameter Optimization 87

Table 5.5 summarizes the automatic parameters estimated bylibCudaOptimize,

and those found byirace. An interesting observation from the table is that the values

found by each of the three methods share a lot of similarities. The automatic parameter

estimation process provided insight on the effect of the HQSOM parameters that was

not obvious from the manual tuning. For instance, all methods set the RSOM map size

to near the maximum size allowed (32×32 nodes), with PSO setting it to the maximum,

which can be understood as increasing the generalization ability of the time sequence

matching units, with RSOM units effectively representing all SOM node index trajec-

tories found in the training data, and compensating for a missing trajectory link in any

of the test samples. It can be foreseen that increasing the limits for the RSOM size

and neighborhood scaling constant (σ) will result in enhancing the performance of the

automatic parameter estimation search. Also worth noting are the values of the SOM

activation density parameterρ, and the RSOM memory parameterα, which are set to

almost identical values by PSO andirace, meaning the HQSOM has successfully

adapted to the input dataset variables, especially the sequence length variable which is

affected by theα parameter, all in an unsupervised manner.

0 10 20 30 40 50 60 70 80 90 100

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Generations

F
itn

es
s

PSO
DE

Figure 5.2: Fitness values vs number of generations for PSO and DE in the automatic
HQSOM parameter estimation.

Studying the best fitness updates along a metaheuristic course of action, or through

its generations, can shed some light on where a specific metaheuristic excels, stagnates,

88 Chapter 5. Automatic Configuration of the HQSOM

converges, or prematurely converges. Figure 5.2 shows a plot of the fitness values for

the PSO and DE runs. It is obvious that PSO achieves better fitness values than DE

throughout its execution course, keeping in mind that the standard parameter values

used for PSO are far more well studied than those used in DE. Moreover, PSO appears

to have a higher resistance to the nondeterministic nature of the fitness function, which

is probably because of the global best topology employed in this experiment, where

the swarm is always trying to converge to the best particle position, preserving the best

fitness results found so far. It is also noticeable from the plot that both PSO and DE

have not yet converged to the global optimum, as the fitness values are still improving

up to the last generation. In this case, increasing the number of generations should

give the optimizers a chance to converge. Finally, we believe a complete study of the

effects of PSO and DE parameters, self or auto-tuning of these parameters, will also

result in a better comparison of those optimization methodsfor the task of automatic

parameter estimation.

5.3 Final Remarks

This chapter investigated the use of GPU-based metaheuristics, implemented using

libCudaOptimize, to automatically tune the parameters of the HQSOM model, for the

ChaLearn gesture recognition application. The parameterswere set over a dataset

of training and testing video sequence samples of a human subject performing a ges-

ture. The classification/recognition task was formulated as an optimization problem,

where the optimizer is trying to minimize an error/fitness function representing the

overall performance of our bio-inspired parallel classifier. Since this classifier uses

SOMs as its building blocks, the final classification output of the model is nondeter-

ministic, based on the random initialization of the SOM weights. libCudaOptimize

proved efficient in solving this optimization problem, without any domain specific (a

priori) knowledge, apart from the fitness function itself, which isindependent from

the optimizer implementations. To verify the quality of theresults obtained by our

tuners, we compared the results they obtained with those obtained using the manu-

5.3. Final Remarks 89

ally tuned parameters, and the ones obtained by another state-of-the-art tuning method

(irace). The results achieved by the algorithm tuned using DE and PSO were gen-

erally better than the ones acquired manually, and slightlybetter than those achieved

by irace. Keeping in view thatirace was designed specifically to statistically

compare different parameter configurations of stochastic and evolutionary algorithms,

repeating a single configuration multiple times to verify the effects of its parameter

values, while metaheuristics are general optimization methods that through our im-

plementation proved also to be effective in the automatic parameter estimation of a

stochastic classification method.

Based on the statistical tests, we can conclude that all the three metrics in the fit-

ness function, defined in equation 5.3 and used by all the automatic tuners, have a

positive effect on guiding the search process to the global optimum of the complicated

fitness landscape of the HQSOM parameter values search space. It is important to note

that the optimization performance is upper-bounded by the number of particles and

generations, which, as was stated earlier, were set to low values because of the com-

putational complexity incurred by increasing those numbers. Moreover, the overall

gesture classification accuracy still suffers from the problems arising from resizing the

feature vectors to 1024 dimensions, to be processed by 1024 threads simultaneously,

see Figure 4.4. It is clear that all the algorithm limitations are hardware based, and are

expected to be overcome with the newer, more powerful GPUs, and GPU clusters.

Chapter 6

Further Work

All the methods that were demonstrated in this thesis have been implemented using the

nVIDIA CUDA framework, thus, other interesting developments may be offered by the

availability of OpenCL, which will allow owners of different GPUs (as well as multi-

core CPUs, which are also supported) than nVIDIA’s to implement parallel algorithms

on their own computing architectures. The availability of shared code which allows

for optimized code parallelization even on more traditional multi-core CPUs will make

the comparison between GPU-based and multi-core CPUs easier (and, possibly, fairer)

besides allowing for a possible optimized hybrid use of computing resources in modern

computers.

Regarding libCudaOptimize future developments, several aspects can be improved

or extended. Our next efforts will mainly be concerned about: the realization of some

visualization and statistical tools in order to help behavioral and performance anal-

ysis of metaheuristics; more support for multiple solutionsets, like allowing differ-

ent sets to have independent termination criteria; the possibility to evolve solutions

of data types other than floats; and the parallel implementation of other well-known

optimization methods like Genetic Algorithms, Evolution Strategies or Evolutionary

Programming as well as further expansions of the methods already present. Also, the

library needs extensive documentation and a user manual. Finally, it needs support for

combinatorial optimization problems, and a way to represent constrained optimization

92 Chapter 6. Further Work

problems.

As for the HQSOM, currently we are testing a full hierarchy ofSOM-RSOM

pairs on public datasets like the Microsoft Research Cambridge-12 (MSRC-12) ges-

ture dataset [93], which consists of sequences of human skeletal body part movements

(represented as body part locations) and the associated meaning that needs to be rec-

ognized by the model. For this dataset, we have a HQSOM that iscomposed of three

layers: the bottom sensory layer has five SOM-RSOM cells, each processing differ-

ent body part information, namely, right arm, right leg, left arm, left leg, and torso

3D skeletal joint positions. The mid layer consists of threecells, each grouping the

features and sequences extracted by the lower layer into right, left, and middle body

movements. Lastly, the top layer consists of a single SOM-RSOM cell, that is re-

sponsible for forming invariant representations of the whole body movements through

time, again based on the features clustered by the second layer. The Australian Sign

Language signs (AUSL) Data Set [94] is another dataset against which the HQSOM

is being verified. The AUSL dataset consists of sample of Auslan (Australian Sign

Language) signs. 27 examples of each of 95 Auslan signs were captured from a na-

tive signer using high-quality position tracker gloves. The HQSOM employed for this

dataset, has two layers: the sensory layer has two cells, onefor the left hand and the

other for the right hand, each processing an eleven dimension feature vector of the

following format: (3D hand position, 3 axial rotation angles, and 5 finger bend val-

ues). Similarly, the top layer is composed of one SOM-RSOM cell, whose input is the

RSOM element index output of the lower layer (left hand cell +right hand cell), and its

output the top RSOM sequence index representing an Auslan sign class. Preliminary

results of HQSOM training on both those datasets exhibits the potential of using such

a model to detect and recognize patterns in spatio-temporaldata, in an unsupervised

way, as the model’s building block, the SOM, is able to preserve and make use of the

data’s spatial topology, while, on the other hand, the RSOM is designed to cluster the

detected spatial patterns through time. Ultimately, we would like to release the source

code of the HQSOM model to the public, as an open-source library, as we did with

libCudaOptimize. However, this will involve extensive documentation and refactoring

of the source code.

93

Finally, as was mentioned in the previous chapter, the use oflibCudaOptimize to

automatically tune the HQSOM parameters suffers from some limitations, mainly per-

taining to the computational complexity resulting from thefitness function being a

complete run of another GPU-based method. Therefore, one can not make use of the

fine-grained parallelization, because of GPU resource limitations. This hardware con-

straints can be addressed by using a multi-GPU system, or a large CPU cluster, which

would make it possible to run the parameter estimation optimization with larger pop-

ulations for more iterations, achieving better results, and even allowing the automatic

tuning of the libCudaOptimize parameters itself. Another alternative would be to cal-

culate the fitness of a HQSOM parameter set ‘online’, or during the execution time

of the training phase, using some sort of performance metric, most likely computed

from the mean square error between the inputs and the BMUs of the corresponding

SOM-RSOM pair. The goal here is to decouple the model from thedata being pro-

cessed, which can be enhanced by also estimating the parameters of the lowest level

SOM (the sensory layer), including the size of the receptivefields of this layer’s cells,

effectively removing the need for the parameter-less training algorithm (PLSOM2),

which is also another time consuming stage. Once the experiments with the MSRC-12

and the AUSL datasets are complete, it would be certainly interesting to optimize a

full HQSOM with many layers, verifying whether the estimated parameters can detect

and adapt to the spatial boundaries found in the input signals, forming appropriate re-

ceptive fields, akin to the early development of neuronal layers in the primary visual

cortex.

Chapter 7

Summary and Conclusions

Bio-inspired models and methods tend to be intrinsically parallel. This thesis inves-

tigated the benefits of such parallel models in terms of efficiency and accuracy. It

started by the implementation of a GPU version of the Asynchronous Particle Swarm

Optimization (PSO), using the nVIDIA CUDA platform on consumer-level Graphics

Processing Units (GPU), then comparing it in terms of execution time and accuracy

to the existing parallel synchronous PSO algorithm. Also, it detailed the implementa-

tion of a parallel version of the Differential Evolution (DE) and Scatter Search (SS)

optimization algorithms, and their integration into a common framework that enabled

the comparison between DE, PSO, SS, and any other populationbased optimization

method. The comparison was in terms of the fitness values achieved by the GPU

methods over a benchmark of 20 popular mathematical functions, specifying execu-

tion time as a termination criterion, effectively assessing the parallelization potential

of each optimization method.

While implementing those parallel techniques, similarities between the designs of

the population based optimization algorithms appeared. Realizing this, we managed

to abstract the core of the GPU algorithms to create an open source library (libCu-

daOptimize), to be used by the community or anyone with a continuous parameter

optimization problem. The library is a C++ API that handles all the GPU thread and

memory allocation, the parallel optimization method, and the statistics for comparing

96 Chapter 7. Summary and Conclusions

one method to the other. Users have only to provide their own optimization prob-

lem (fitness function). Using the GPU-based PSO and DE we managed to address

real-world problems like road sign detection and classification, and human body pose

estimation. Also, the libCudaOptimize library enabled theresearchers in the IBIS lab

to easily compare two popular metaheuristics (PSO and DE) inthe context of object

detection in 2D images and videos. We formulated object detection as a continuous

optimization problem, where the parallel optimization method generates candidates of

a deformable model, specifying the object to be detected, while the fitness of these can-

didates is the degree of overlap between the model and the input media (images/video).

The experiments for this comparison were run for two real world applications. First,

the Hippocampus localization in histological images, and second, the human body

pose estimation from multi-view video sequences.

Afterwards, the thesis focused on Kinect gesture recognition using a parallel model

of the neocortex, namely the Hierarchical Quilted Self Organizing Maps (HQSOM).

Since all neural based models are also inherently parallel,a parallel version of this neo-

cortex model was implemented on the GPU, and expanded by using a new kind of Self

Organizing Maps (SOM), called the Parameter-less Self Organizing Map (PLSOM2).

This choice was motivated by the HQSOM requirement of many levels of interacting

SOMs, arranged in a tree structure. Therefore, decreasing the number of model param-

eters is paramount to applying the model to real-world classification problems. The

model was verified on the Microsoft ChaLearn Kinect gesture dataset, achieving good

classification results. Lastly, merging the two main parts of our research, the HQSOM

model parameters were set to be optimized by libCudaOptimize, more specifically

by PSO, essentially achieving automatic adaptation of the model parameters based on

overall classification performance. This, in essence, prepares the model to find, predict,

and classify patterns in any temporal signal from differentmodalities.

In summation, we proved the parallel approach to implementing computational

models is able to leverage the increasing processing power of multi-core architectures

to solve real-world problems, while injecting the specific domain intelligence through

the distributive collaboration of nature-inspired model elements. Our own brains have

97

evolved to tune this very same parallel approach. Therefore, simulating this process,

through evolutionary computation and swarm intelligence,along with the parallel pro-

cessing capabilities of modern supercomputers, will eventually lead to general meth-

ods that can adapt to the different data requirements of current scientific questions.

Bibliography

[1] D.H. Wolpert and W.G. Macready. No free lunch theorems for optimization.

Evolutionary Computation, IEEE Transactions on, 1(1):67–82, 1997.

[2] J. Kennedy and R. Eberhart. Particle Swarm Optimization. In Proc. IEEE Inter-

national Conference on Neural Networks, volume 4, pages 1942–1948, 1995.

[3] Riccardo Poli. Analysis of the publications on the applications of Particle Swarm

Optimisation.J. Artificial Evolution and Applications, pages 1–10, 2008.

[4] Alec Banks, Jonathan Vincent, and Chukwudi Anyakoha. A review of Particle

Swarm Optimization. Part I: background and development.Natural Computing,

6:467–484, 2007.

[5] Luca Mussi, Fabio Daolio, and Stefano Cagnoni. Evaluation of parallel particle

swarm optimization algorithms within the CUDATM architecture. Information

Sciences, 181(20):4642–4657, 2011.

[6] Luca Mussi, Youssef S. G. Nashed, and Stefano Cagnoni. GPU-based asyn-

chronous particle swarm optimization. InProc. 13th annual conference on

Genetic and Evolutionary Computation, GECCO ’11, pages 1555–1562. ACM,

2011.

[7] R. Storn and K. Price. Differential Evolution - a simple and efficient adaptive

scheme for global optimization over continuous spaces. Technical report, Inter-

national Computer Science Institute, 1995.

100 Bibliography

[8] J. Vesterstrom and R. Thomsen. A comparative study of differential evolution,

particle swarm optimization, and evolutionary algorithmson numerical bench-

mark problems. InProc. IEEE Congress on Evolutionary Computation, pages

1980–1987, 2004.

[9] S. Das and P.N. Suganthan. Differential Evolution: A Survey of the State-of-the-

Art. IEEE Transactions on Evolutionary Computation, 15(1):4–31, 2011.

[10] Ferrante Neri and Ville Tirronen. Recent advances in differential evolution: a

survey and experimental analysis.Artif. Intell. Rev., 33:61–106, 2010.

[11] Fred Glover. Heuristics for integer programming usingsurrogate constraints.De-

cision Sciences, 8(1):156–166, 1977.

[12] Rafael Marti, Manuel Laguna, and Fred Glover. Principles of scatter search.

European Journal of Operational Research, 169(2):359–372, 2006.

[13] Francisco J. Wets and Roger J.B. Solis. Minimization byrandom search tech-

niques.Mathematics of Operations Research, 6(1):19–30, 1981.

[14] Tomaso Poggio and Emilio Bizzi. Generalization in vision and motor control.

Nature, 431(7010):768–774, 2004.

[15] N.J. Shah, J.C. Marshall, O. Zafiris, A. Schwab, K. Zilles, H.J. Markowitsch, and

G.R. Fink. The neural correlates of person familiarity.Brain, 124(4):804–815,

2001.

[16] J. Hawkins and S. Blakeslee.On intelligence. Owl Books, 2005.

[17] Dileep George and Jeff Hawkins. A hierarchical bayesian model of invariant

pattern recognition in the visual cortex. InNeural Networks, 2005. IJCNN’05.

Proceedings. 2005 IEEE International Joint Conference on, volume 3, pages

1812–1817. IEEE, 2005.

[18] Saulius J Garalevicius. Memory-prediction frameworkfor pattern recognition:

Performance and suitability of the bayesian model of visualcortex. InFLAIRS

Conference, pages 92–97, 2007.

Bibliography 101

[19] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krüger,

Aaron E. Lefohn, and Timothy J. Purcell. A survey of general-purpose computa-

tion on graphics hardware.Computer Graphics Forum, 26:80–113, 2007.

[20] G. Hager, T. Zeiser, and G. Wellein. Data access optimizations for highly

threaded multi-core cpus with multiple memory controllers. In IEEE Interna-

tional Symposium on Parallel and Distributed Processing, IPDPS 2008., pages

1–7, april 2008.

[21] nVIDIA Corporation.nVIDIA CUDA Programming Guide v. 4.0, May 2011.

[22] nVIDIA Corporation.CUDA C Best Practices Guide v. 4.0, 2011.

[23] J Grefenstette. Optimization of control parameters for genetic algorithms.IEEE

Trans. Syst. Man Cybern., 16(1):122–128, 1986.

[24] Sean Luke. Essentials of Metaheuristics. Lulu, 2009. Available at

http://cs.gmu.edu/∼sean/book/metaheuristics/.

[25] Nikolaus Hansen, Steffen Finck, Raymond Ros, and Anne Auger. Real-

Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions

Definitions. Research report, INRIA, 2009.

[26] Nikolaus Hansen, Raymond Ros, Nikolas Mauny, Marc Schoenauer, and Anne

Auger. PSO facing non-separable and ill-conditioned problems. Research Report

RR-6447, INRIA, 2008.

[27] J. F. Schutte, J. A. Reinbolt, B. J. Fregly, R. T. Haftka,and A. D. George. Parallel

global optimization with the particle swarm algorithm.Journal of numerical

methods in engineering, 61:2296–2315, 2003.

[28] Gerhard Venter and Jaroslaw Sobieszczanski-Sobieski. A parallel particle swarm

optimization algorithm accelerated by asynchronous evaluations. journal of

aerospace computing, information, and communication, 2005.

102 Bibliography

[29] J. Li, D. Wan, Z. Chi, and X. Hu. An efficient fine-grained parallel particle

swarm optimization method based on GPU-acceleration.International Journal

of Innovative Computing, Information and Control, 3(6 B):1707–1714, 2007.

[30] L. de P. Veronese and R.A. Krohling. Swarm’s flight: Accelerating the particles

using C-CUDA. InIEEE Congress on Evolutionary Computation (CEC), 2009,

pages 3264–3270, May 2009.

[31] Y. Zhou and Y. Tan. Particle swarm optimization with triggered mutation and

its implementation based on GPU. InProceedings of the 12th Annual Genetic

and Evolutionary Computation Conference (GECCO), 2010, pages 1007–1014,

2010.

[32] Weihang Zhu. Massively parallel differential evolution–pattern search optimiza-

tion with graphics hardware acceleration: an investigation on bound constrained

optimization problems.Journal of Global Optimization, 50(3):417–437, 2011.

[33] J. St.Charles, T.E. Potok, R. Patton, and X. Cui. Flocking-based document clus-

tering on the graphics processing unit.Studies in Computational Intelligence,

129:27–37, 2008.

[34] Weihang Zhu and Yaohang Li. GPU-accelerated differential evolutionary markov

chain monte carlo method for multi-objective optimizationover continuous space.

In Proceeding of the 2nd workshop on Bio-inspired algorithms for distributed

systems, BADS ’10, pages 1–8, New York, NY, USA, 2010. ACM.

[35] B-I. Koh, A. D. George, R. T. Haftka, and B. J. Fregly. Parallel asynchronous

particle swarm optimization.International Journal for Numerical Methods in

Engineering, 67:578–595, 2006.

[36] L. Dioşan and M. Oltean. Evolving the structure of the particle swarm opti-

mization algorithms. InEuropean Conference on Evolutionary Computation in

Combinatorial Optimization, EvoCOP’06, pages 25–36. Springer Verlag, 2006.

Bibliography 103

[37] L. Dioşan and M. Oltean. What else is evolution of PSO telling us? Journal of

Artificial Evolution and Applications, 1:1–12, 2008.

[38] nVIDIA Corporation.CUDA Toolkit 4.0 CURAND Guide, 2011.

[39] L.P. de Veronese and R.A. Krohling. Differential evolution algorithm on the GPU

with C-CUDA. In Proc. IEEE Congress on Evolutionary Computation, pages 1–

7, 2010.

[40] Pavel Krömer, Václav Snåšel, Jan Platoš, and Ajith Abraham. Many-threaded im-

plementation of differential evolution for the CUDA platform. In Proc. 13th an-

nual conference on Genetic and Evolutionary Computation, GECCO ’11, pages

1595–1602. ACM, 2011.

[41] Pavel Krömer, Václav Snåšel, Jan Platoš, and Ajith Abraham. A comparison of

many-threaded differential evolution and genetic algorithms on CUDA. InNature

and Biologically Inspired Computing (NaBIC), 2011 Third World Congress on,

pages 509 –514, 2011.

[42] Fred Glover. A template for scatter search and path relinking. InArtificial evolu-

tion, pages 1–51. Springer, 1998.

[43] Fred Glover, Manuel Laguna, and Rafael Martı́. Fundamentals of scatter search

and path relinking.Control and cybernetics, 39(3):653–684, 2000.

[44] Fred Glover. Tabu search - Part i.ORSA Journal on computing, 1(3):190–206,

1989.

[45] L. J. Eshelman and J. D. Schaffer. Real-coded genetic algorithms and interval-

schemata. In Darrell L. Whitley, editor,Foundation of Genetic Algorithms 2,

pages 187–202, 1993.

[46] Abraham Duarte, Rafael Martı́, Fred Glover, and Francisco Gortázar. Hybrid

scatter tabu search for unconstrained global optimization. Annals of Operations

Research, 183(1):95–123, 2011.

104 Bibliography

[47] Youssef S. G. Nashed, Roberto Ugolotti, Pablo Mesejo, and Stefano Cagnoni.

libcudaoptimize: an open source library of GPU-based metaheuristics. InPro-

ceedings of the fourteenth international conference on Genetic and evolutionary

computation conference companion, pages 117–124. ACM, 2012.

[48] Roberto Ugolotti, Youssef S. G. Nashed, Pablo Mesejo,Špela Ivekovič, Luca

Mussi, and Stefano Cagnoni. Particle swarm optimization and differential evolu-

tion for model-based object detection.Applied Soft Computing, 2012.

[49] Luca Mussi, Spela Ivekovic, Youssef S. G. Nashed, and Stefano Cagnoni. Multi-

view human body pose estimation with CUDA-PSO.International Journal of

Adaptive, Resilient and Autonomic Systems (IJARAS), 3(4):51–65, 2012.

[50] Roberto Ugolotti, Youssef S. G. Nashed, and Stefano Cagnoni. Real-time GPU

based road sign detection and classification. InParallel Problem Solving from

Nature-PPSN XII, pages 153–162. Springer Berlin Heidelberg, 2012.

[51] J. Kennedy and M. Clerc, 2 2006. http://www.particleswarm.info/StandardPSO2006.c.

[52] Youssef S. G. Nashed, Pablo Mesejo, Roberto Ugolotti, Jérémie Dubois-Lacoste,

and Stefano Cagnoni. A comparative study of three GPU-basedmetaheuristics.

In Parallel Problem Solving from Nature-PPSN XII, pages 398–407. Springer

Berlin Heidelberg, 2012.

[53] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Thomas Stützle, and Mauro Bi-

rattari. The irace package, iterated race for automatic algorithm configuration.

Technical Report TR/IRIDIA/2011-004, IRIDIA, Universit´e Libre de Bruxelles,

Belgium, 2011.

[54] Riccardo Poli, James Kennedy, and Tim Blackwell. Particle swarm optimization.

Swarm Intelligence, 1(1):33–57, 2007.

[55] P N Suganthan, N Hansen, J J Liang, K Deb, Y Chen, A Auger, and S Tiwari.

Problem definitions and evaluation criteria for the CEC 2005special session on

real-parameter optimization.Natural Computing, pages 1–50, 2005.

Bibliography 105

[56] Jan Bandouch, Florian Engstler, and Michael Beetz. Evaluation of hierarchical

sampling strategies in 3D human pose estimation. InProceedings of the 19th

British Machine Vision Conference (BMVC), 2008.

[57] Jonathan Deutscher and Ian Reid. Articulated body motion capture by stochastic

search.Int. J. Comput. Vision, 61:185–205, February 2005.

[58] John Maccormick and Michael Isard. Partitioned sampling, articulated objects,

and interface-quality hand tracking, 2000.

[59] Fabrice Caillette, Aphrodite Galata, and Toby Howard.Real-time 3-d human

body tracking using learnt models of behaviour.Comput. Vis. Image Underst.,

109:112–125, February 2008.

[60] Raquel Urtasun, David J. Fleet, Aaron Hertzmann, and Pascal Fua. Priors for

people tracking from small training sets. InProceedings of the Tenth IEEE Inter-

national Conference on Computer Vision (ICCV’05) Volume 1, pages 403–410,

Washington, DC, USA, 2005. IEEE Computer Society.

[61] Juergen Gall, Bodo Rosenhahn, Thomas Brox, and Hans-Peter Seidel. Optimiza-

tion and filtering for human motion capture.Int. J. Comput. Vision, 87:75–92,

March 2010.

[62] Špela Ivekovič, Emanuele Trucco, and Yvan R. Petillot. Human body pose esti-

mation with particle swarm optimisation.Evol. Comput., 16:509–528, December

2008.

[63] Vijay John, Emanuele Trucco, andŠpela Ivekovič. Markerless human articulated

tracking using hierarchical particle swarm optimisation.Image Vision Comput.,

28:1530–1547, November 2010.

[64] J. Warren and S. Schaefer. A factored approach to subdivision surfaces.Com-

puter Graphics and Applications, 24(3):74–81, 2004.

[65] Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics Bul-

letin, pages 80–83, 1945.

106 Bibliography

[66] J.W. Miller and P.H. Lommel. Biomimetic sensory abstraction using hierarchical

quilted self-organizing maps. InProceedings-SPIE the International Society for

Optical Engineering, 2006.

[67] K. Fukushima. Neocognitron: A self-organizing neuralnetwork model for a

mechanism of pattern recognition unaffected by shift in position. Biological cy-

bernetics, 36(4):193–202, 1980.

[68] S. Behnke and R. Rojas. Neural abstraction pyramid: A hierarchical image under-

standing architecture. InIEEE World Congress on Computational Intelligence,

volume 2, pages 820–825. IEEE, 1998.

[69] S.M. Stringer and E.T. Rolls. Invariant object recognition in the visual system

with novel views of 3d objects.Neural Computation, 14(11):2585–2596, 2002.

[70] T. Kohonen. The self-organizing map.Proceedings of the IEEE, 78(9):1464–

1480, 1990.

[71] M. Varstal, J. Millán, and J. Heikkonen. A recurrent self-organizing map for

temporal sequence processing.Artificial Neural Networks ICANN’97, pages 421–

426, 1997.

[72] E. Berglund. Improved plsom algorithm.Applied Intelligence, 32(1):122–130,

2010.

[73] Erik Berglund and Joaquin Sitte. The parameterless self-organizing map algo-

rithm. Neural Networks, IEEE Transactions on, 17(2):305–316, 2006.

[74] P. Somervuo and T. Kohonen. Self-organizing maps and learning vector quanti-

zation for feature sequences.Neural Processing Letters, 10(2):151–159, 1999.

[75] G.J. Chappell and J.G. Taylor. The temporal kohønen map. Neural Networks,

6(3):441–445, 1993.

[76] M. Strickert, B. Hammer, and S. Blohm. Unsupervised recursive sequence pro-

cessing.Neurocomputing, 63:69–97, 2005.

Bibliography 107

[77] M. Varsta, J. Heikkonen, J. Lampinen, and J.D.R. Millán. Temporal kohonen map

and the recurrent self-organizing map: Analytical and experimental comparison.

Neural processing letters, 13(3):237–251, 2001.

[78] O.A.S. Carpinteiro. A hierarchical self-organizing map model for sequence

recognition.Neural Processing Letters, 9(3):209–220, 1999.

[79] J. Kangas.On the analysis of pattern sequences by self-organizing maps. PhD

thesis, J. Kangas, 1994.

[80] ChaLearn gesture dataset (CGD 2011), ChaLearn, California, 2011.

[81] Mauro Birattari. Tuning Metaheuristics: A Machine Learning Perspective.

Springer, 2nd edition, 2009.

[82] Jérémie Dubois-Lacoste, Manuel López-Ibáñez, and Thomas Stützle. A hybrid

TP+PLS algorithm for bi-objective flow-shop scheduling problems. Computers

& Operations Research, 38(8):1219–1236, 2011.

[83] Jérémie Dubois-Lacoste, Manuel López-Ibáñez, and Thomas Stützle. Improving

the anytime behavior of two-phase local search.Annals of Mathematics and

Artificial Intelligence, 61(2):125–154, 2011.

[84] Manuel López-Ibáñez and Thomas Stützle. Automatic configuration of multi-

objective ACO algorithms. InProc. of the 7th international conference on Swarm

Intelligence, ANTS’10, pages 95–106, 2010.

[85] Marco Antonio Montes de Oca, Dogan Aydin, and Thomas St¨utzle. An incremen-

tal particle swarm for large-scale continuous optimization problems: an exam-

ple of tuning-in-the-loop (re)design of optimization algorithms. Soft Computing,

15(11):2233–2255, 2011.

[86] F Imbault and K Lebart. A stochastic optimization approach for parameter tuning

of support vector machines. InPattern Recognition, 2004. ICPR 2004. Proceed-

ings of the 17th International Conference on, volume 4, pages 597–600. IEEE,

2004.

108 Bibliography

[87] Nobuhiro Iwasaki, Keiichiro Yasuda, and Genki Ueno. Dynamic parameter tun-

ing of particle swarm optimization.IEEJ Transactions on Electrical and Elec-

tronic Engineering, 1(4):353–363, 2006.

[88] Roberto Ugolotti, Youssef S. G. Nashed, Pablo Mesejo, and Stefano Cagnoni.

Algorithm configuration using gpu-based metaheuristics. In Proceeding of the

fifteenth annual conference companion on Genetic and evolutionary computation

conference companion, pages 221–222. ACM, 2013.

[89] Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions

and reversals. InSoviet physics doklady, volume 10, page 707, 1966.

[90] nVIDIA Corporation.nVIDIA CUDA Programming Guide v. 5.0, July 2012.

[91] O. J. Dunn. Multiple comparisons among means.Journal of the American Sta-

tistical Association, 56:52–64, 1961.

[92] Sture Holm. A simple sequentially rejective multiple test procedure.Scandina-

vian journal of statistics, pages 65–70, 1979.

[93] Simon Fothergill, Helena M. Mentis, Pushmeet Kohli, and Sebastian Nowozin.

Instructing people for training gestural interactive systems. In Joseph A. Konstan,

Ed H. Chi, and Kristina Höök, editors,CHI, pages 1737–1746. ACM, 2012.

[94] Mohammed Waleed Kadous.Temporal classification: Extending the classifica-

tion paradigm to multivariate time series. PhD thesis, The University of New

South Wales, 2002.

	Acknowledgements
	Abstract
	Introduction
	Background
	Metaheuristics
	Particle Swarm Optimization
	Differential Evolution
	Scatter Search

	The Neocortex
	Memory Prediction Framework

	General-Purpose GPU Programming
	NVIDIA GPU Architecture
	CUDA Programming Model

	Parallel Metaheuristics
	CUDA Particle Swarm Optimization
	CUDA Asynchronous PSO
	Implementation

	CUDA Differential Evolution
	Implementation

	CUDA Scatter Search
	Implementation

	libCudaOptimize
	Implementation
	Usage

	Testing and Results
	Speedup Results
	Benchmark Functions
	Real-World Application

	Final Remarks

	Hierarchical Quilted Self Organizing Maps
	Self-Organizing Maps
	Recurrent Self Organizing Maps
	Parameter-less Self Organizing Maps

	Multi-modal Pattern Recognition with HQSOM
	Implementation
	Testing and Results

	Final Remarks

	Automatic Configuration of the HQSOM
	Parameter Tuning
	HQSOM Tuning via Real Parameter Optimization
	Model Formulation
	Fitness Function
	Testing and Results

	Final Remarks

	Further Work
	Summary and Conclusions
	Bibliography

