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Introduction

The interplay between Physics and Biology has a long history of successes and has been
the driven force in the evolution of our quantitative understanding in life sciences.
Statistical Mechanics provides useful tools and concepts to deal with collective behavior
of many strongly interacting agents. Overlooking the detailed and the speci�c description
of the interactions to focus on the very key features allows to ask di�erent questions con-
cerning the global systemic properties of biological systems. The information processing
and statistical inference approach has became more urgent in the last decades due to the
large amount of data coming from the exploit of di�erent new experimental techniques.
Concepts such as entropy, phase transition and criticality has entered the unavoidable ter-
minology to describe the nature of biological systems at very di�erent level of complexity:
from the animal collective behaviour [1],the physiological apparatuses as nervous system
[2] and immune system [3] to the biochemical processes in cells [4]. The studies presented
in this thesis are placed in this interdisciplinary border context.

The thesis is divided in three main parts. The �rst is devoted to the more formal aspect
of statistical mechanics models of spin systems. We review brie�y, in the �rst chapter,
three milestone models of spin systems: the Curie-Weiss, the Sherrington-Kirkpatrick
and the Hop�eld model. These models constitute the paradigmatic examples of mean-
�eld Statistical Mechanics and will constitute the ground for the studies in biochemical
kinetics and immunology presented in the following parts. In the second chapter we report
a detailed study of a generalization of the Hop�eld model with diluted and correlated
patterns [5]. We investigate the topology of the emergent interactions network. We �nd
an exact expression of the coupling distribution that allows to distinguish di�erent regimes
varying the dilution parameter. Moreover we study the thermodynamic properties of
the model, obtaining explicitly the replica symmetric free-energy coupled with its self-
consistence equations. Considering the small overlap expansion of these self consistencies
equations we get the critical surface dividing the ergodic phase to the spin-glass one.

The second part of the thesis focus on the investigation of the cooperative behavior
in biochemical kinetics through mean �eld statistical mechanics [6]. Cooperativity is one
of the most important properties of molecular interactions in biological systems as it is
often invoked to account for collective features in binding phenomena. It constitutes a
fundamental tool that nature developed to modulate the chemical response of biological
systems to varying stimuli. Statistical mechanics o�ers a valuable approach as, from
its �rst principles, it aims to �gure out collective phenomena, allowing a uni�ed and
broader theory for complex chemical kinetics. In this way di�erent cooperative behaviors,
described by the related binding curves, can be analysed in an uni�ed framework. We
compare the theoretical curves predicted by the model with experimental data found in
literature, �nding an overall good agreement and extrapolating the values of the e�ective
interactions between the binding sites, which can be put in direct correspondence with the
standard coe�cient that measure cooperativity (Hill number). Moreover, an extension of



the model allows to take into account heterogeneity that can a�ect both the couplings
between the multiple active sites (allosteric regulation) and the chemical potentials in the
binding of the ligands.

The last part is dedicated to a statistical inference analysis on deep sequencing data
of an antibodies repertoire with the purpose of studying the process of antibodies a�nity
maturation [7]. A partial antibodies repertoire from a HIV-1 infected donor presenting
broadly neutralizing serum is used to infer a probability distribution in the space of se-
quences . The idea is to use the model to study the structure of the a�nity with an antigen
as a function of the antibody sequence. We test this strategy using neutralization power
measurements and the deposited crystallographic structure of a deeply matured antibody.
The work is still in progress, but preliminary results are encouraging and are presented
here.

The original part of the thesis is based on the following works:

• Elena Agliari, Lorenzo Asti, Adriano Barra, Ra�aella Burioni and Guido Uguzzoni
Analogue neural networks on correlated random graphs, J.Phys.A: Math. Theor. 45
365001 (2012)

• Elena Agliari, Adriano Barra, Ra�aella Burioni, Aldo Di Biasio and Guido Uguz-
zoni Collective behaviours: from biochemical kinetics to electronic circuits, Scienti�c
Reports 3 3458 (2013)

• Lorenzo Asti, Paolo Marcatili, Andrea Pagnani, and Guido Uguzzoni. Multivariate

Gaussian Modelling for Abs a�nity maturation. In preparation.
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Mean �eld statistical mechanics

models





Chapter 1

Generalities of some classical models

of spin systems

In this chapter we give a brief introduction to the equilibrium statistical mechanics of
some classical spin-systems models that constituted the ground �oor for the original stud-
ies described in the next parts of the thesis. In particular we'll introduce the Curie Weiss
model, the mean-�eld implementation of the Ising model, that will be used in the second
part for the description of cooperative behavior in biochemistry. Further, the Sherrington-
Kirkpatrick model, that is the paradigmatic example of disordered systems, allow to intro-
duce the main concepts that help the comprehension of the following parts of the thesis.
In particular, the disorder systems framework are used in the study of the heterogeneous
couplings extension of the model in the second part (section 4.4) and for a generalization
of the Hop�eld model in the second chapter. The Hop�eld model will be treated in the
last section of this introductory chapter. Our goal here is not an exhaustive presentation
of the subjects. Since there is an huge amount of studies and applications on each single
topic, we are going to illustrate basic concepts and results necessary to understand the
following sections. We refer for a review to standard textbooks [8, 9, 10].

The main aim of statistical mechanics is to compute the macroscopic properties of a
systems in thermal equilibrium, starting from the microscopic interaction law between its
component.
Introducing a microscopic law can be done picking from among all degrees of freedom
of the system a given number of variables that are relevant to the considered problem.
Ideally the e�ective Hamiltonian is obtained from the original one through integration
over the con�guration (C) at �xed value of the variables chosen (φ):

exp[−βHeff
β (φ)] =

∫
d[C]δ(φ(C)− φ) exp[−βH(C)] (1.1)

What happeneds in most of the cases is that the integration is hardly done and an e�ective
Hamiltonian is postulated , depending on a few parameters that can be �tted from the
experiments or computed in a microscopic way. The art of model building is subtle, the
model must be simple enough to be investigated and rich enough to reproduce the essential
properties of the systems under studies.

Once the model is de�ned by writing down the Hamiltonian, you assume that the
equilibrium properties of the systems are described by the averages taking over a proper
probability distribution of the microstates, ρ(σ). The equilibrium internal energy can be
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identi�ed with the ensemble average of the energy H(σ) over this distribution:

U = 〈H〉 =
∑
σ

ρ(σ)H(σ), (1.2)

while the entropy associated to the probability distribution is given by

S = −
∑
σ

ρ(σ) log ρ(σ). (1.3)

and loosely speaking can thought as the amount of information I which would be needed
to specify the micro-state of the body to a receiver who knows its probability distribution
[80].

It is reasonable to assume that the probability distribution describing the system at
equilibrium is the distribution that minimize the information I (maximize S) taking �xed
U = 〈H〉ρ and the normalization condition. So to choose the distribution that a priori

constrain less the model. Following the old principle that can be stated as �the best
explanation of the facts is the shortest�. Using the method of Lagrange multipliers, the
Boltzmann distribution is easily obtained:

ρ(σ) = exp [βH(σ)] /Z, (1.4)

where Z is called partition function and is �xed by the normalization condition,

Z =
∑
{σ}

exp [βH(σ)] , (1.5)

and β is the Lagrange multipliers �xed by the condition U = 〈H〉ρ. The link with ther-
modynamics is completed by identifying β = 1/T with the inverse of the absolute tem-
perature.
From this, it follows that the Helmoholtz free energy F is:

F = U − TS = −T logZ, (1.6)

and the following thermodynamics relations holds:

U = F +
∂

∂β
βF = − ∂

∂β
logZ (1.7)

S = β2∂F

∂β
. (1.8)

Another variational formulation that plays a important role is the principle of minimum
free energy functional Φ[ρ]:

Φ[ρ] = U [ρ]− S[ρ]

β
. (1.9)

The entropic term, thought as a functional of the distribution ρ, is maximized when the
latter is uniform and minimized when the distribution gives nonzero probability only to a
single state σ (we refer for simplicity to a discrete space of microscopic states), favoring
thus a disordered state. The equilibrium state, identi�ed by the Boltzmann distribution,
represents the distribution which minimizes the free energy Φ = F = U − TS, as it is the
best tradeo� between internal energy minimization and entropy maximization at a given
temperature T . The higher the temperature, then, the more important the relative role
of the disorder, encoded in S.
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From the partition function one can compute all the thermodynamic functions, and it
should be able to see, possibly, phase transitions.
For a �nite system, Z is a �nite sum of positive analytic functions of the temperature
(for T 6= 0), and consequently also the free energy density fN = −N−1T logZ is an ana-
lytic function of T . Since phase transitions correspond to singularities of thermodynamic
functions, it is necessary to go to the thermodynamic limit to see them.

1.1 Ising model

In many magnetic materials electrons responsible for magnetic behavior are localized near
the atoms of a lattice, and there is an exchange interaction that tend to orient the spins.
The Ising model describes this situation in a very simple way. To every point on a lattice,
a dicotomic variable σ = ±1 is associated that mimic the spin of the electron. The
Hamiltonian in presence of an uniform external �eld h is

H(σ;h) = −J

n. n.∑
i,k

σiσk − h
∑
i

σi, (1.10)

where the sum over i and k runs over all possible nearest neighbour of pairs in the lattice.
If the exchange constant J is positive the system is ferromagnetic and nearby spin tends
to stay parallel; if J is negative the system is antiferromagnetic and antiparallel spin are
energetically favoured.

Despite its simplicity the Ising model has been the paradigmatic example for the
statistical mechanics studies. A lot of fundamental ideas, such as spontaneous symmetry
breaking, order parameter, critical exponents have been formulated and discovered in its
framework.

The magnetization density associated with a given spin con�guration σ is

m(σ) =
1

N

N∑
i=1

σi (1.11)

Note that the average magnetization can be expressed through a derivative with respect
to h:

〈m〉 = 1

βN

∂

∂h
logZ = −∂f

∂h
(1.12)

In the trivial case of Hamiltonian (1.10) with J = 0, the partition function factorizes
in the sums over the single uncorrelated spins,

∑
{σ}

eβh
∑

i σi =
∏
i

( ∑
σi=±1

eβhσi

)
= (2 cosh(βh))N (1.13)

describing a paramagnetic system with magnetization

〈m〉 = tanh(βh). (1.14)

In absence of the external �eld a very important property of the energy (1.10) is the
invariance under reversal of all spins (σi → −σi, for all i), while the magnetization changes
sign under this operation. This symmetry, called gauge symmetry, is explicitly broken by
the external �eld term in the Hamiltonian.
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The minimization of the free energy F = U − TS requires the best compromise be-
tween minimal energy U (all spins aligned) and maximum entropy S (random spins). For
low temperatures it is more e�cient to minimize energies in order to minimize F , and
consequently the spins can become ordered giving rise to a spontaneous magnetization
(ferromagnetic phase). As the temperature increases, entropy plays a major role, so disor-
dered spins are favored (paramagnetic phase) and there is no spontaneous magnetization.
A phase transition between these two behaviors is then expected.

Note that, to apply the above energy-entropy argument, it is necessary to explicitly
break the spin reversal symmetry by applying, for example, an in�nitesimal external �eld,
since the spin reversal symmetry leads immediately to the absence of magnetization in
zero external �eld. The thermodynamic limit of the average magnetization per spin 〈m〉
should be then computed as

〈m〉0 = lim
h→0+

lim
N→∞

1

N

∑
i

〈σi〉. (1.15)

The order of the limits is crucial to obtain the appearance of spontaneous magnetiza-
tion (〈m〉0 6= 0), since if we reverse the order we always obtain zero. This situation, in
which the low temperature thermodynamic state has a lower degree of symmetry than
the Hamiltonian, is called spontaneous symmetry breaking and the magnetization m is the
order parameter.

Despite its simplicity in the formulation, the partition function Z with the Hamiltonian
(1.10) can be calculated exactly only for a regular lattice in one dimension and in two
dimensions with h = 0. In the general case approximate results must be considered, i.e.
in lattice with more dimensions or where the model is embedded in di�erent topologies
and the spin variable can be associate to vertices in a generic graph. The simplest of
these is the mean �eld approximations that consider each spin interacting with an average
of the other spins, a mean �eld, parametrized by the magnetization. This is essentially
equivalent to considered the probability distribution factorized over the spins:

ρ[σ] =
∏
i

ρi(σi) , ρi(σ) =
1 +mi

2
δσ,1 +

1−mi

2
δσ,−1 (1.16)

where δ is the Kronecker delta.

1.1.1 Curie-Weiss model

Instead of discussing the solutions of the mean �eld approximation, we introduce an Ising
model that have the same solution of the mean �eld approximation. This model have weak
long range interaction and is known as the Curie Weiss model. This model will constitute
the basis for modelling the cooperative systems in chapter (4).

H = − J

N

∑
i<k

σiσk − h
∑
i

σi (1.17)

The sum runs over all the pairs i, k of spins and the interactions are properly rescaled to
obtain an extensive internal energy as we are going to see.

The reason why this model recovers the mean �eld approximation is essentially due to
the decorrelation of spins that occur in the thermodynamics limit, where the two point
correlation became 〈σiσj〉 → mimj .
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The partition function Z can be recast introducing the magnetization m in the follow-
ing way:

Z =
∑
{σ}

exp

βJ
N

∑
i<j

σiσj + βh
∑
i

σi

 = (1.18)

'
∑
{σ}

∫
dmδ

(
Nm−

∑
i

σi

)
exp

[
βJ

2N
m2 + βhm

]
(1.19)

where in the last equality we neglect subdominant term in N. Using the integral expression
for the Dirac's delta, we rewrite

Z '
∑
{σ}

∫ i∞

−i∞
dt

∫
dm exp

[
N

(
tm− 1

N
t
∑
i

σi + βJ/2m2 + βhm

)]
=

=

∫ i∞

−i∞
dt

∫
dm exp

[
N
(
tm− log 2 cosh(t) + βJ/2m2 + βhm

)]
=

=

∫ i∞

−i∞
dt

∫
dm exp [NΦ] =

where we have sum over the spin con�guration {σ},
∑

{σ}
∏

i exp[−tσi] = 2 cosh(t)N . We
call NΦ the exponent in the integrals. Performing the thermodynamic limit, it is possible
to use the saddle point method to evaluate the integrals. We take the maximum of the
function Φ to consider the leading term in N :

∂Φ

∂t
= 0 → −m = tanh(t) (1.20)

∂Φ

∂m
= 0 → −t = βJm+ βh (1.21)

Substituting the last equation in (1.20) and in the expression of Φ we obtain the self
consistency equation or Curie Weiss equation and the free energy density f(m;β, J, h) =
− 1

βΦ :

m = tanh [β (Jm+ h)] (1.22)

f =
J

2
m2 − 1

β
log cosh [β (Jm+ h)]− 1

β
log 2 (1.23)

Equations such as (1.22) are known in statistical mechanics as self consistency relations.
Solving it, checking that the solution is stable, in the sense that it minimizes f(m), and
that it represents the absolute minimum of the free energy gives the physical value of
the order parameter, namely the one that is exponentially (in the system size) the most
probable to �nd by picking at random a con�guration of the system with the Boltzmann
probability.
Using the thermodynamics relations s = −β2 ∂f

∂β and f = e − 1
β s we obtain the densities

of the internal energy e and the entropy s:

e = −J

2
m2 − hm (1.24)

s = −βJm2 − βhm+ log cosh [β (Jm+ h)] + log 2 (1.25)
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We discuss brie�y the solutions of the self-consistency equation in the absence of the
external �eld (h = 0), expanding the self consistency equation (1.22) for small m gives

m = βJm− βJ

3
m3 . (1.26)

By studying the solution of this equation for di�erent values of the temperatures it is
possible to observe that two very di�erent thermodynamical regimes are separated by the
presence of a critical temperature Tc.
For β < βc = 1/J the only solution is m = 0 and it is stable. This correspond to
a high temperature (T > Tc = J) paramagnetic phase in which the system displays a
null magnetization and it is ergodic in the sense that all the con�gurations with a non-
null statistical measure are connected by the (local) operation of a single spin �ip. By
performing on a �nite system a dynamic that is consistent with the Boltzmann measure,
independently on the initial condition, after a transient, one should observe the system
exploring con�gurations where the �uctuations of the magnetization are small, namely
they vanish with the system size as δm → O(1/

√
N) → 0. In the paramagnetic phase the

free energy is simply f(β < βc, J) = − 1
β log 2.

For β > βc = 1/J the m = 0 solution is no longer stable and two symmetric stable
solution m = ±m∗ appear, each corresponding to the system being polarized in one of
the two possible directions, spontaneously breaking the symmetry of the Hamiltonian. As
the two solutions are mapped one into the other by the transformation under which the
Hamiltonian is invariant (the global spin �ip: m → −m), the two solutions give the same
value of the free energy. This phase is called ferromagnetic. In this phase the system
is no longer ergodic. In fact the Boltzmann measure displays two �peaks� in the phase
space that are not connected by local moves. In this regime a dynamics at �nite size
will show the system �uctuating around each of the two symmetric magnetization and
jumping between them. Increasing the system size N , �uctuations around one solution
vanish as δm → O(1/

√
N) → 0 and the time of permanence in one of the two state grows

exponentially as ∼ eN so that a very large system becomes trapped in one of the two state
and only one �peak� of the Boltzmann measure is explored: the system remains con�ned
to a restricted region of the phase space, being this region smaller as the temperature
is lower. This fact is know as ergodicity breaking and the (two, in this case) di�erent
sets of available con�gurations in which the system gets restricted are know in statistical
mechanics as pure states or ergodic components.

The presence of a positive external �eld explicitly breaks the symmetry of the Hamil-
tonian so that, in this case, in the low temperature phase, the two saddle points value
of the magnetization , m1 > m2, are no longer equivalent: the state corresponding to
the greater one has a lower free energy, f(m1) < f(m2), and so is the one that gives
the leading contribution to the free energy, while the contribution of the smaller one
vanishes exponentially. The model with external �eld h display a �st order phase tran-

sitions for h = 0 in which the order parameter displays a jump at the critical point,
limh→0+ m(β, J, h) 6= limh→0− m(β, J, h).

The consistent way to have a result with spontaneous symmetry breaking in case of
vanishing external �eld, h = 0 is to compute the free energy in the thermodynamic limit
at non zero �eld and then to send its value to zero:

f(β, J, h = 0) = lim
h→0

f(β, J, h 6= 0) = lim
h→0

lim
N→∞

f(β, J, h 6= 0, N) ; (1.27)

in this way, for example, in the low temperature phase 〈m({σ})〉 6= 0.
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The ferromagnetic phase transition at β = βc is a second order phase transition. In fact
a discontinuity appear, at the critical point in the susceptibility χ = ∂m/∂h = ∂2f/∂h2

that is the second derivative of the free energy with respect to the control parameter of
the system, the external magnetic �eld h.

1.1.2 Antiferromagnetic Ising model

The antiferromagnetic (AFM) Ising model is obtained from the Hamiltonian (1.10) by
simply changing J → −J . For many regular lattices (cubic, honey-comb, body-centered
cubic, etc.) it is possible to divide the lattice into two equal sublattices, labelled A and B,
in such a way that all the nearest-neighbor sites of any A-site are B-sites and vice versa.
The interaction graph is said to be bipartite. Here we consider the mean-�eld version
of the antiferromagnetic Ising model, assuming that each A-site interacts with the same
coupling J with all the B-sites (and vice versa). Then the Hamiltonian can be written as

H(σ;h) =
J

N

∑
i∈A, j∈B

σA
i σ

B
j − h

∑
i∈A,B

σi (1.28)

Note that for h = 0 this is the Hamiltonian of a ferromagnet with spin variable σA
i

and −σB
j and there is a one-to-one correspondence between microstates of equal energy

in the zero-�eld ferromagnet and antiferromagnet. In fact, reversing the spin on one
sublattice and taking J → −J , one can connect the microstates for the two cases. The
minimum energy for T = 0 is achieved in this case with an antiparallel ordering of all the
nearest-neighbor spin pairs.

The magnetizations for the two sublattice are de�ned by

mA(σA) =
2

N

∑
i∈A

σi, mB(σB) =
2

N

∑
j∈B

σj (1.29)

and the overall magnetization is given by their arithmetic average

m(σ) =
1

2
(mA(σA) +mB(σB)). (1.30)

An important role is played by the staggered magnetization

n(σ) =
1

2
(mA(σA)−mB(σB)), (1.31)

which corresponds to the order parameter for the antiferromagnet.

In presence of a not vanishing external �eld h 6= 0, the correspondence between the
states of the antiferromagnet and those of the ferromagnet is lost. However, if either the
magnetic �eld h or the thermal disorder are strong enough with respect to the antifer-
romagnetic interaction, the equilibrium state will be one in which 〈mA〉 = 〈mB〉 = 〈m〉,
so that 〈n〉 = 0 (paramagnetic state). On the contrary, for small �elds and temperature
one expects that the staggered magnetization 〈n〉 is di�erent from zero (antiferromagnetic
state). There will be a transition curve in the (T, h) plane, separating these two phases.
This curve should be symmetrical about h = 0 and meets the temperature axis at T = Tc.
Moreover, there exists a critical �eld hc on the T = 0 axis separing the two phase.
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The analogue of the free energy density f(m,h) introduced in the previous section
through equation (1.23), is given by the following expression

f(mA,mB, h) =T

(
1 +mA

4
log(1 +mA) +

1−mA

4
log(1−mA)

+
1 +mB

4
log(1 +mB) +

1−mB

4
log(1−mB)

)
+

J

4
mAmB − h

2
(mA +mB)

(1.32)

The �rst two rows correspond to the entropic term: in this case it is the sum of the entropies
of the two sublattices, evaluable for instance through the Stirling formula (observing that
NA = NB = N/2). Last row corresponds to the Hamiltonian (1.28) expressed in terms
of the two sublattice magnetizations. The equilibrium state corresponds to the minimum
condition of this expression with respect to mA and mB, which is achieved if the self-
consistence equations

mA = tanh(−βJmB/2 + βh) (1.33)

mB = tanh(−βJmA/2 + βh) (1.34)

are satis�ed. The paramagnetic state, where mA = mB, is stable for large values of
temperature and �eld. Imposing that the Hessian of f with respect to mA and mB is
positive in this minimum, one has the stability condition for the paramagnetic phase; the
borderline case of vanishing Hessian gives the critical line h(T ). We refer to [11] for a
detailed analysis.

1.2 The Sherrington-Kirkpatrick model

In the previous section we described the Ising model characterized by equals couplings
among the spins. An important generalization that was introduced around forty years ago
[12], has been the ground for the foundation of a training branch of the statistical physics
that is the theory of the disordered systems and in particular of the spin glass.
Abandoning the homogeneous framework, the extension considers heterogeneous cou-
plings. The natural way to take into account di�erent coupling values is to describe
these in a probabilistic way. The spins interact with a couplings J picked randomly from
a distribution P (J).

Originally the model was born to describe some magnetic alloys characterized by lack
of long range order and a non periodic arrangement of magnetic moments with a very long
scale dynamics at low temperatures, but nowadays the spin glass have a wide range of
applications, include optimization theory, computer science, biology, economy [13, 9, 14].

Introducing the average over the realizations of the disorder, one realize that there are
basically two way to compute it. One procedure is called annealing disorder, and considers
thermal �uctuation on the same time scale of the realizations one.

f = lim
N→∞

1/N logEZ(J) (1.35)

The other more interesting method is to considered the equilibrium states of the system
at �xed di�erent realizations of the couplings and to average over them. The random
parameters are collectively denoted as quenched or �frozen� disorder. From a physical
point of view, the word �frozen� means that we are modelling a disordered system whose
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impurities have a dynamics which is many orders of magnitude slower than the dynamics
of the spin degrees of freedom. Therefore, the disorder does not reach thermal equilibrium
on the time scales of the spin relaxation and can be considered as �xed.

f = lim
N→∞

1/NE logZ(J) (1.36)

This terminology comes from metallurgy and the thermal processing of materials: a
�quench� corresponds in this jargon to preparing a sample by suddenly bridging it from
high to low temperatures, so that atoms do not change their position apart from small
vibrations. In an �annealing� process, on the contrary, the cooling down is slower and
gradual, and atoms can move and �nd favorable positions.

The second key ingredient, following from disorder, is frustration, i.e., competition
between di�erent terms in the Hamiltonian, so that they can not all be satis�ed simul-
taneously. Frustration in the network gives rise to a complex energy (and free energy)
landscape with many metastable (locally minimizing the energy) con�gurations.

1.2.1 The replica symmetric solution

To perform the average over the disorder of logZ we introduce the so called replica trick

which makes use of the limit

E logZ = lim
n→0

EZn − 1

n
= lim

n→0

1

n
log[EZn] (1.37)

When the parameter n is considered as an integer, computing EZn corresponds to compute
the partition function for n independent copies of the system with the same realization
of the disorder and to average their product. The limit is then interpreted as an analyti-
cal continuation to real values of n. This procedure can be mathematically problematic.
Moreover, as we will see in practical cases, Zn is usually computed performing the thermo-
dynamic (N → ∞) limit before the n → 0 one. This exchange of the ordering of the limits
is usually not justi�ed. Nevertheless in some cases (as for instance for the Sherrington-
Kirkpatrick model that we are going to introduce, see [15]) the procedure is proven to give
the exact results by rigorous arguments.

The Sherrington-Kirkpatrick (SK) model is the paradigm for disordered spin systems
for the compactness of its de�nition and the richness of its phenomenology. It is a mean
�eld spin model de�ned through the Hamiltonian

HSK = − 1√
N

N∑
i<j

Jijσiσj , (1.38)

where the couplings Jij are independently thrown from a standard normal distribution:

dP (Jij) =
1√
2πJ

e−
(Jij−

J0√
N

)2

2J dJij and P (Jij , Jkl) = P (Jij)P (Jkl), ∀(i, j) 6= (k, l) ,

(1.39)
This choice is a matter of convenience. In fact any other symmetric probability distribution
with �nite moments could be chosen for Jij , without modifying the free energy of the
system, apart from error terms vanishing in the thermodynamic limit. The case Jij = ±1
with equal probability 1/2, for instance, is often considered in the literature.

The normalization factor 1/
√
N guarantees that HN (σ;J)/N and the free energy den-

sity are of order unity in the thermodynamic limit. In the Curie-Weiss model the correct
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factor is 1/N , but in this case the random signs of the couplings Jij produce cancellations
among the many terms of the Hamiltonian HN . The correctness of this choice can be
easily understood by considering a duplicated system with con�gurations σa and σb, but
with the same disorder, and computing the quantity

E(HN (σa; J)HN (σb; J)) =
1

N

1,N∑
i<j

1,N∑
k<l

E(JijJkl)σa
i σ

a
j σ

b
kσ

b
l

=
1

N

∑
1≤i<j≤N

σa
i σ

a
j σ

b
iσ

b
j =

N

2

(
1

N

N∑
i=1

σa
i σ

b
i

)2

− 1

2
.

The term

qab = q(σa, σb) =
1

N

N∑
i=1

σa
i σ

b
i , (1.40)

which occurs in the previous equation, is a fundamental one, as we will see in the following,
and it is called overlap. In fact, it measures the resemblance between the con�gurations
of the two copies σa and σb, going from −1, when each spin of a system is opposed to
the corresponding one of the other copy, to +1, when they are perfectly aligned. It is
related with the Hamming distance d(σa, σb), which counts the number of non-aligned
spins: d(σa, σb) = 1/2(1− qab). So, taking two identical copies σa = σb, we note that

E (HN (σ; J))2 =
N

2
− 1

2
, (1.41)

showing that the normalization factor is correct.

Curiously, the title of the paper [16] where Sherrington and Kirkpatrick �rstly proposed
a solution was "Solvable Model of a Spin-Glass", but also if the authors, using the replica-
trick, found an explicit form for the free energy, they realized that their solution was only
valid above a certain temperature, and it took some years to understand which was the
valid solution, with the seminal works of Parisi [17, 18, 19], where he proposed a formula
for the free energy per site in the thermodynamic limit and a description of the pure states
of the system. The rigorous proof that the Parisi formula is in fact correct was established
only some years ago, split across two works by Guerra [20] and Talagrand [21].

Using the replica trick (1.37),

f̄(β) = lim
N→∞

− 1

βN
E logZ = lim

N→∞
− 1

βN
lim
n→0

logEZn . (1.42)

Performing the disorder average of the replicated systems involves just Gaussian integra-
tions so that

EZn =
∑

{σ1}...{σn}

∫ ∞

−∞

∏
ij

dJij exp

−(Jij − J0√
N
)2

2J
+

n∑
a

β

2
√
N

∑
i,j

Jijσ
a
i σ

a
j

(1.43)
=

∑
{σ1}...{σn}

exp

βJ0
2N

n∑
a

∑
i,j

σa
i σ

a
j +

β2J2

4N

N∑
ij

n∑
ab

σa
i σ

b
iσ

a
j σ

b
j

 . (1.44)

Now, using the de�nition of the overlap matrix qab({σ}) = 1/N
∑N

i σa
i σ

b
i and the mag-

netization ma = 1/N
∑N

i σa
i , calling the integration measures Dm ≡

∏n
a dm

a and Dq ≡
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∏n
ab dqab and neglecting the sub-dominant order term in N we get:

EZn =
∑
{σ}

∫
Dm

∫
Dqδ(Nma −

∑
i

σa
i )δ(Nqab −

∑
i

σa
i σ

b
i )e

βJ0N
2

∑n
a m2

a+
Nβ2J2

4

∑n
ab q

2
ab =

=
∑
{σ}

∫
Dm

∫
Dq

∫ i∞

−i∞
DΛ

∫ i∞

−i∞
Dγ exp

[
N
∑
a

γama −
∑
a

γa
∑
i

σa
i

]
⊗ (1.45)

⊗ exp

N∑
a,b

λabqab −
∑
a,b

λab

∑
i

σb
iσ

a
i +N

βJ0
2

n∑
a

m2
a +N

β2J2

4

n∑
ab

q2ab

 = (1.46)

=

∫
Dm

∫
Dq

∫ i∞

−i∞
DΛ

∫ i∞

−i∞
Dγ exp [−NβΦ] (1.47)

with

Φ(m, q, γ, λ) = − 1

β

∑
a

γama −
1

β

∑
a,b

λabqab −
J0
2

n∑
a

m2
a −

βJ2

4

n∑
ab

q2ab + (1.48)

− 1

βN
log

 ∑
{σ1}...{σn}

exp

−∑
a

∑
i

σa
i γa −

∑
a,b

∑
i

σa
i λabσ

b
i

 = (1.49)

that is symmetric under permutations of replica indexes. The physical value of the inten-
sive free energy is given for formula (1.42). Exchanging the orders of the limits in that
formula is the only way to compute the integrals over the measures Dq, Dm and Dγ,Dλ.
In that case, taking the thermodynamic limit before sending the number of replicas to
zeros allows to use the saddle point method. So the extremization of Φ(m, q, γ, λ) over m
and q allow to eliminate the additional variables λ and γ with

∂Φ

∂ma
= 0 → γa = −βJ0ma;

∂Φ

∂qab
= 0 → λab = −β2J2

2
qab , (1.50)

Substituting we get the expression Φ as a function of the magnetization and the overlap
matrix is

Φ(m, q;β) =
J0
2

∑
a

m2
a+

βJ2

4

∑
ab

q2ab−
1

β
log

∑
{σ}

eβJ0
∑

a σama+
β2J2

2

∑
ab σ

aqabσ
b

 . (1.51)

In last formula it is evident the e�ect of the replica trick: it has decoupled sites but
now replicas are coupled by the overlap matrix. Last expression has to be computed in
the saddle point and the limit n → 0 is still to be performed. In order to do this a
parametrization of the overlap matrix needs to be made explicit. A good parametrization
could permit to decouple replicas.

The simplest ansatz for the form of the matrix overlap is the one that respects the
symmetry of the f(q), so a matrix which has 1 on the diagonal and a parameter q0 on
all the entries out of the diagonal (and the magnetization of di�erent replica are equal
ma = m) i. e.

qab = q0 + (1− q0)δab . (1.52)
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This is known as the replica symmetric (RS) anstatz. With this parametrization the free
energy can be obtained as the limit n → ∞ ( we neglect terms order n2):

f(m, q0;β) = lim
n→0

1

n
Φ(qRS) = lim

n→0

J0
2
m2 +

βJ2

4
(1− q20) +

− 1

βn
log

∑
{σ}

enJ0βmσ+β2J2

2
q0

∑n
ab σ

aσb+β2J2

2
(1−q0)n

 =

=
J0
2
m2 − βJ2

4
(1− q0)

2 − lim
n→0

1

βn
log

∑
{σ}

enJ0βmσ+ 1
2(nβJ

√
q0σ)

2


Rewriting the last term in the exponential as the result of a Gaussian integration,

f(m, q0;β) =
J0
2
m2 − βJ2

4
(1− q0)

2 − lim
n→0

1

βn
log
∑
{σ}

∫
dµ(z)en(J0βm+zβJ

√
q0)σ =

=
J0
2
m2 − βJ2

4
(1− q0)

2 − lim
n→0

1

βn
log

∫
dµ(z) (2 cosh(J0βm+ zβJ

√
q0))

n

We can now use the replica trick relation (1.37) in the inverse sense, i.e. limn→∞ 1/n logEΦn =
E log Φ, so that we have the �nal result for the RS free energy of the SK model

f(m, q0;β) =
J0
2
m2 − βJ2

4
(1− q0)

2 − 1

β

∫
dµ(z) log (cosh(J0βm+ zβJ

√
q0))−

1

β
log 2 .

(1.53)
This expression has to be minimized with respect to the parameters m, q and this proce-
dure gives the self consistency relations:

m =

∫
dµ(z) tanh(J0βm+ zβJ

√
q0) (1.54)

q0 =

∫
dµ(z) tanh2(J0βm+ zβJ

√
q0) . (1.55)

By studying equations (1.55) and (1.54) it is possible to verify that for T > J0 only
the solution m = 0 is stable and for T > J0 and T > J the only solution is m = q0 = 0.
For T < J0 < J and for T < max{J0, J} a stable solution with q0 > 0 appears, giving the
scenario summarized in the following table, and showed in the phase diagram �gure (1.1):

at from to
J0 > J T = J0 m = q0 = 0 m 6= 0, q > 0
J0 < J T = J m = q0 = 0 m = 0, q0 > 0
T < max{J0, J} T = J0(1− q0) m = 0, q0 > 0 m 6= 0, q0 > 0

For the SK models the replica symmetric solutions is not exact and the scienti�c
community was suddenly aware of this as, in their paper [22], Sherrington and Kirkpatrick
pointed out that, at low temperatures, their solution gives a negative entropy (that is not
possible for discrete variables where the entropy is the logarithm of the number of available
con�gurations at temperature T , that is always greater than one and so its log greater
than zero). Studying the �uctuation of f(q,m) around the RS solution f(qRS ,mRS) is
possible to get the Almeida Thouless(AT) line that separate the phase where the ergodicity
is broken (spin glass phase). The Parisi solution [18] gives the correct structure of the low
temperature phase which is much more complex of the RS scenario.
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Figure 1.1: Phase diagram of the SK model obtain from the replica-symmetric solution. Solid
lines separated the paramagnetic phase (P) where m = q0 = 0 , the ferromagnetic phase (F) where
m 6= 0, q > 0 and the spin glass phase (SG) where m = 0, q > 0. Dashed line is the so called
Almeida Thouless(AT) line that separate the region of the parameter space where the RS ansatz
gives the right solution from the region in which it represents an approximation. Figure from [10].

As we have shown in Section 1.1.1 for the case of the mean �eld Ising model, in
interacting systems ergodicity can break in the low temperature phase where the phase
space can split into ergodic regions where the system remains trapped. Let us indicate
states with Greek letters. Pure states, in mean �eld systems (not at the critical point), at
equilibrium, have the clustering properties which states that spins are independent inside
a generic state α:

〈σiσj〉α = 〈σi〉α〈σj〉α . (1.56)

In �nite dimension systems, the property still holds for spins that are far apart in the
space structure, i.e. for |i− j| → ∞. Calling Zα =

∑
{σ∈α} e

−βH(σ) and wα = Zα/Z, such
that

∑
αwα = 1 and

∑
α Zα = Z, thermal average can be split into ergodic components

as
〈Φ(σ)〉 =

∑
{σ}

Φ(σ) e−βH(σ) =
∑
α

wα〈Φ(σ)〉α (1.57)

We can use the above identity to write the distribution P (m) and P (q) of the magne-
tization and the overlaps in equilibrium as

P (m) =
1

Z

∑
{σa}

e−βH(σa)δ(m−ma) =

=
∑
αβ

wαδ(m−mα) (1.58)

P (q) =
1

Z

∑
{σaσb}

e−βH(σa)−βH(σb)δ(q − qab) =

=
∑
αβ

wαwβ δ(q − qαβ) (1.59)

From this relation is possible to understand the role played by replicas in spin glasses:
they serves as probes to explore the structure of states of the system which, as we will see,
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can be very complex. So last quantity is of uttermost importance for spin glasses and in
fact the true order parameter of this kind of systems turns out to be the full average overlap
distribution EP (q). A hint that could justify this claim comes from the de�nitions of the
moments of the average overlap distribution that, by the use of the clustering property,
can be easily shown to be

q(k) =

∫
dq qk EP (q) =

1

Nk

∑
i1...ik

E〈σi1 . . . σik〉
2 . (1.60)

In particular the �rst moment is

q(1) =

∫
dq q EP (q) =

1

N

∑
i

E〈σi〉2 ≡ qEA . (1.61)

This quantity, also known as the Edward-Anderson order parameter, gives a very intuitive
information about the presence of an �ordered� phase in spin glasses. In fact as the
couplings are randomly distributed around zero, the naif idea about the broken phase
is that spins are frozen around random directions evenly distributed among sites. So in
spin glasses the global magnetization m = 1/N

∑
i〈σi〉 vanishes also if spins are frozen in

random directions and the local magnetizations mi =
∑

i〈σi〉 6= 0; while, thanks to the
presence of the power two in its de�nition, qEA is a global quantity that can distinguish
between the paramagnetic phase, where 〈σi〉 = 0, ∀i, and the spin glass phase 〈σi〉 6= 0
but with di�erent signs depending on the site. We stress anyway that, even if qEA can
give a very e�ective information on the presence of symmetry breaking, the true order
parameter of mean �eld spin glasses is the full distribution EP (q). In order to compute it,
the replica trick is needed. In fact it can be used in general to compute thermal averages
of a generic quantity Φ(σ) as

〈Φ(σ)〉 =

∑
{σ} e

βH(σ)Φ(σ)∑
{σ} e

βH(σ)
= lim

n→0

∑
{σ}

eβH(σ)Φ(σ)
[
eβH(σ)

]n−1
=

= lim
n→0

∑
{σ}

Φ(σ1) eβ
∑n

a H(σa) =

= lim
n→0

∑
{σ}

1

n

n∑
a

Φ(σa) eβ
∑n

b H(σb) . (1.62)

So the average overlap distribution can be computed as

EP (q) = E
∑
{σ}

2

n(n− 1)

∑
ab

δ(q − qab) e
−β

∑n
c H(σc) . (1.63)

Using the exchange of limits and the saddle point methods exactly as for the computation
of the free energy, the result is

EP (q) =
2

n(n− 1)

∑
ab

δ(q − qSPab ) , (1.64)

where qSPab stands for the overlap matrix computed at the saddle point.
The insertion of the RS ansatz give as a result

EP (q)RS = δ(q − q0) , (1.65)

where q0 = qEA and satis�es (1.54).
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1.3 The Hop�eld model

In this section, we will present the Hop�eld model, �rstly introduced by Pastur and Figotin
and independently considered by Hop�eld, in 1982, as a model for associative memory [23].
This model can be seen as generalization of the mean-�eld Ising model with many ground
states. Call the P ground states ξµ = {ξµ1 , .., ξ

µ
N} with µ = 1, .., P , the Hamiltonian of the

model is de�ned as

Hhopfield(σ; ξ) = − 1

2N

P∑
µ

(
N∑
i

ξµi σi

)2

= − 1

2N

N∑
i,j

(
P∑
µ

ξµi ξ
µ
j

)
σiσj −

1

2
P (1.66)

The couplings matrix Jij = 1/N
∑

µ ξ
µ
i ξ

µ
j is then a sum of projectors over the P vectors

ξµ. The con�gurations of spins that are parallel (or anti-parallel) to the vectors ξµ, are
local energy minimum for every µ. If some conditions are ful�lled [9], these con�gurations
are also the ground state of the energy landscape, for example if P � N and the patterns
are more or less orthogonal.

The interpretation as a model for associative memory comes from considering the
dynamics. Under some conditions, if the system has an initial con�guration that is similar
to one of the vectors, ξ1i for example, it will evolve to the con�guration σi = sign(ξ1i ), i.e.
the initial state is in the basin of attraction of the �rst vector. In this context, the P vectors
{ξ1, ..., ξP } are called memories (or patterns) that the (dynamical) model can retrieve
starting from similar input con�gurations as, for instance, in the visual identi�cation of
an object. As shown in [9] the system can retrieve up to αcN stored binary uncorrelated
patterns with αc = 0.138. The failing of the retrieval of the patterns is due to states that
are mixture of di�erent patterns that are metastable state where the dynamics can be
trapped at low temperature and can reduce their free energy for high temperature and for
correlation between patterns.

The Hamiltonian (2.22) can be rewritten using the patterns overlap mµ as:

Hhopfield(σ; ξ) = −N

2

P∑
µ

m2
µ, mµ =

1

N

∑
i

ξµi σi (1.67)

The simplest choice for the entries of patterns ξµi ∈ {−1, 1} is to randomly drawn it
according to a Bernoulli distribution, P (ξµi = ±1) = 1/2, in order to have uncorrelated
patterns, and the number of patterns P to remains �nite in the thermodynamic limits, so
that:

Φ(ξi) = 2−P
∑

ξi∈{−1,1}

Φ(ξi), 〈ξµi ξ
ν
i 〉 = δµν (1.68)

The free energy becomes

f(β) = − 1

Nβ
Eξ log

∫ +∞

−∞

p∏
µ=1

dmµ

∑
{σ}

δ
(
Nmµ −

N∑
i

ξµi σi
)
e

1
2
βNm2+p/2 (1.69)

where we introduce the vector m = {m1, ..,mµ}.
Following step by step the method used in Section 1.1.1, introducing the Fourier represen-
tation of the δ function and applying the saddle point method to evaluated the integral,
in the thermodynamic limit, the physical values taken by the order parameters are the
solutions of the P equations:

m = 〈ξ tanh(βm · ξ)〉ξ (1.70)
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that locally extremize the free energy

f(m) =
1

2
m2 − 1

β
〈log cosh(βm · ξ)〉ξ +

α

2
− 1

β
log 2 (1.71)

In order to discriminate between stable and non-stable, to get the pure state, we have to
select the solutions of the self consistency equation (1.70) that minimizes the free energy
(1.71), from the study of the spectrum of the Hessian matrix.

In this case, we can show that if β < 1, the only solution to the saddle-point equations
is mµ = 0, which corresponds to a paramagnetic phase, while for β > 1, non-trivial
solutions of (1.70) do exist. The solutions that are global minima of the free-energy are
the states where the magnetization over one pattern mµ is non-zero while the others are
zero, which correspond exactly to the thermodynamic states where one retrieves the µ-th
pattern. Dealing with the case of P = αN , for α �nite is considerably harder. It can be
however treated through a calculation similar to that we will see in Section 1.2 using the
replica trick [24]. In this case, the system has a ferromagnetic phase, where it retrieves one
of the patterns, a paramagnetic phase and a spin glass phase. In the solution of Amit et
al. [24], as in the Sherrington-Kirkpatrick model, one needs to make a replica-symmetric
hypothesis to solve the saddle-point equations of the problem. In the case of the Hop�eld
model, for all but the very lowest temperatures the replica-symmetric solution yields the
correct expression of the free energy. The phase diagram of the model is depicted in
Fig. 1.2. In the next chapter we are gone to see how to deal to a di�erent choice of the

Figure 1.2: Phase diagram of the Hop�eld model. P: paramagnetic state; SG: spin glass phase;
M: mixed phase; F: retrieval state. Figure from [10].

distribution of patterns in which the entries are biased and diluted giving rise to a not
trivial topology of the interactions network.



Chapter 2

Hop�eld model with gaussian and

diluted patterns

In this chapter we consider a generalization of the Hop�eld model, introduced previously
in section 1.3, where the entries of patterns are Gaussian and diluted. More precisely,
patterns entries are drawn from a normal distribution N [0, 1] with a probability (1+a)/2
or set equal to zero with probability (1− a)/2, where a ∈ [−1,+1] is a tunable parameter
controlling the degree of dilution of patterns. We focus on the high-storage limit, namely
the amount of patterns L is linearly diverging with the system size N , i.e. L = αN .

In the �rst part (section 2.1) we investigate analytically the topological properties
of the emergent network. We �nd that, by properly tuning the dilution in the pattern
entries, the network can recover di�erent topological regimes characterized by peculiar
scalings of the average coordination number with respect to the system size. Moreover,
even if the network is very sparse, it turns out to display a large degree of cliquishness due
to the Hebbian rule underlying its couplings. The coupling distribution is also explicitly
calculated and shown to be central and with extensive variance, as expected.

In the second part (section 2.2) we investigate the thermodynamic properties of the
model. We obtain explicitly the replica symmetric free-energy and the self-consistence
equations for the overlaps (order parameters of the theory), which turn out to be a weighted
sums of �sub-overlaps� de�ned on all possible sub-graphs. Finally, a study of criticality is
performed through a small-overlap expansion of the self-consistencies and through a whole
�uctuation theory developed for their rescaled correlations: both approaches show that
the net e�ect of dilution in pattern entries is to rescale accordingly the critical noise level
at which ergodicity breaks down. The study has been published in [5].

The model

Given N Ising spins σi = ±1, i ∈ (1, ..., N), we aim to study a mean-�eld model whose
Hamiltonian has the form

H̃ = − 1

D

N∑
ij

Jijσiσj , (2.1)

where the couplings are built in a Hebbian fashion [25][23] as

Jij =
L∑

µ=1

ξµi ξ
µ
j , (2.2)
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and D is a denominator whose speci�c form is discussed in Section 3. In fact, in general,
as the coordination number may vary sensibly according to the de�nition of patterns ξ, in
order to ensure a proper linear scaling of the Hamiltonian (2.1) with the volume, D has
to be a function of the system size N and of the parameters through which patterns ξ are
de�ned.

We consider the high-storage regime [10], such that, in the thermodynamic limit (i.e.
N → ∞), the following scaling for the amount of stored memories (patterns) is assumed

lim
N→∞

L

N
= α ∈ R+, (2.3)

even though we use the symbol α for the ratio between the number of patterns and the
system size also at �nite N , bearing in mind that the thermodynamic limit has to be
performed eventually.

The quenched entries of the memories ξµi are Gaussian and diluted, namely they are
set to zero with probability (1 − a)/2, while, with probability (1 + a)/2, they are drawn
from a standard Gaussian distribution:

P (ξµi ) =

(
1− a

2

)
δ(ξµi ) +

(
1 + a

2

)
N[0,1](ξ

µ
i ) . (2.4)

The parameter a can in principle be varied in the range a ∈ [−1, 1], and, in general, small
values correspond to highly diluted regimes. As proved in Section 2.1.2, a scaling law for
this parameter has to be introduced in order to avoid the topology to become trivial in
the thermodynamic limit. Thus, we consider the following scaling

a = −1 +
γ

N θ
, (2.5)

where θ determines the topological regime of the network, while γ plays the role of a �ne
tuning within it. Notice that �xing θ = 0 and γ = 2 yields to a = 1, corresponding to the
standard analogical Hop�eld model [26]. In general, due to constraint on a, γ ∈ [0, 2N θ],
and, of course, for γ = 0 we get P (ξµi ) = δ(ξµi ), that is, there is no network, so we discuss
only the case γ > 0.

2.1 Topological analysis

2.1.1 Coupling distribution

Let us consider the de�nition of the coupling strength in Equation (2.2): the probability
p that the µ-th term ξµi ξ

µ
j is zero corresponds to the probability that at least one between

ξµi and ξµj is zero, which is

p ≡
(
1− a

2

)2

+ 2

(
1− a

2

)(
1 + a

2

)
=

3− a2 − 2a

4
, (2.6)

while its complement is the probability that a Gaussian number is drawn for both entries,
that is (1− p) = [(1 + a)/2]2. Thus, the probability that the link connecting i and j has
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strength Jij can be written as

P (Jij) = pLδ(Jij) +

L∑
k=1

pL−k(1− p)k
(
L

k

)
Pk

( k∑
ν

ξνi ξ
ν
j = Jij

)
= (2.7)

= pLδ(Jij) +

L∑
k=1

f(k) Pk(

k∑
ν

ξνi ξ
ν
j − Jij) =

= pLδ(Jij) +

L∑
k=1

f(k)

∫ +∞

−∞

dl

2π

e−ilJij

(1 + l2)k/2
, (2.8)

where Pk

(∑k
ν ξ

ν
i ξ

ν
j = Jij

)
is the probability that k pairs of Gaussian entries, pairwise

multiplied, sum up to Jij , namely

Pk

( k∑
ν

ξνi ξ
ν
j = Jij

)
=

∫ ∞

−∞

k∏
ν=0

dξνi dξ
ν
j P (ξνi )P (ξνj ) δ

( k∑
ν=0

ξνi ξ
ν
j − Jij

)
=

=

∫ +∞

−∞

dl

2π

k∏
ν=0

dξνi dξ
ν
j

e−
(ξνi )2

2

√
2π

e−
(ξνi )2

2

√
2π

eil(ξ
ν
i ξ

ν
j −Jij) =

∫ +∞

−∞

dl

2π

e−ilJij

(1 + l2)k/2
. (2.9)

From Equation (2.8) one can easily specify the characteristic function of the coupling
distribution

F (l) ≡
∫ +∞

−∞
eilJP (J)dJ = pL +

L∑
k=1

f(k)

(1 + l2)k/2
, (2.10)

where we dropped the indices i and j, due to the arbitrariness of the couple of nodes
considered. From F (l) it is possible to obtain all the momenta by simple di�erentiation.
For instance, �rst and second moments read respectively as

E[Jij ] = (−i)
∂F (l)

∂l

∣∣∣∣
l=0

= 0, (2.11)

E[J2
ij ] = (−i)2

∂2F (l)

∂l2

∣∣∣∣
l=0

= L(1− p) = L

(
1 + a

2

)
=

αγ

2
N1−θ . (2.12)

Now, for �xed a and α, we expect that J , being a sum of Gaussian variables, is also
normally distributes (except the point J = 0), at least for large N . Indeed, numerical
simulations con�rm that the distribution P (J) converges in the thermodynamic limit
(L → ∞) to a Gaussian distribution with zero mean and variance given by Equation
(2.12) (see Figure 2.1), except for the point J = 0 which will be discussed in the following
section.

2.1.2 Link Probability and topology regimes

Let us consider the bare topology. The quantity of interest is the average link probability
Plink:

Plink = 1− P (J = 0) . (2.13)

Looking at Equation (2.7), in principle P (J = 0) has two contributions: one from the
delta function and one from the sum over k random numbers, but the latter has a null
measure in the limit L → ∞. To show this, we consider the second term in Equation (2.7)
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Figure 2.1: Coupling distribution P (J) for L = 10 (left panel, blue), L = 20 (left panel, red),
L = 30 (left panel, green) and L = 1000 (right panel). Circles represent the coupling distribution
calculated according to Equation2.7, while the continuous lines represent normal distributions with
momenta given by Equation2.11 and Equation2.12: as the thermodynamic limit is approached, the
agreement gets better and better. Notice that, when L grows, the divergence in J = 0 becomes
weaker. Only the positive values of J are considered due to the symmetry.

and we calculate its measure over the interval Jij ∈ [−ε,+ε], highlighting for clarity the
term k = 1:∫ ε

−ε
dJij

L∑
k=1

f(k) Pk(
k∑
ν

ξνi ξ
ν
j − Jij) =

= pL−1 (1− p)

∫ ε

−ε
P1(r)dr +

L∑
k=2

(
L

k

)
pL−k (1− p)k

∫ ε

−ε
Pk(r)dr . (2.14)

In the �rst term P1(r) has a weak divergence in r = 0 and its integral scale as ∼ ε log(ε),
so that the divergence is suppressed by the prefactor in the limit L → ∞. As for Pk>1(r),
its integral is non-diverging and can be upper bounded 1 to show that the second term is
negligible in the limit L → ∞.

Hence, in the thermodynamic limit, Jij = 0 only if, in ξµi ξ
µ
j = 0, for any µ, namely

P (Jij = 0) = pL =

(
3− a2 − 2a

4

)L

. (2.15)

Now, looking at (2.13) and (2.15) in the thermodynamic limit, it is clear that, if we
consider a as �nite and constant, only two trivial topologies can be realized. In fact, if
a = −1, Plink is zero and the system is fully disconnected, while, with a > −1, Plink tends
to one exponentially fast with the system size, and the graph becomes fully connected.

Nevertheless, with the scaling (2.5),

Plink = 1−
(
1− γ2

4N2θ

)αN

' 1− e
− αγ2

4N2θ−1 , (2.16)

1from the the two inequalities
∫ ε

−ε
Pk(r)dr < 2εPk(0), Pk(0) < C log(k)

k
(with C a constant) follows

P̃2 =
L∑

k=2

(
L

k

)
pL−k(1− p)k

∫ ε

−ε

Pk(r)dr < 2εC
L∑

k=2

(
L

k

)
pL−k (1− p)k

log(k)

k

that goes to zero in the L → ∞ limit .
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where the last expression holds for large N . Now, by tuning the value of θ, we realize
di�erent topological regimes; within each regime the parameter γ acts as a �ne tuning.
Following a mean-�eld approach we can distinguish:

• θ = 0 : Plink = 1− e−
αγ2

4
N → 1. Fully Connected graph, with average degree equal

to the system size (z̄ = N − 1).
The coupling distribution converges to the Gaussian one with Var[J ] ∝ N , as in the
with Sherrington-Kirkpatrick model.

• 0 < θ < 1/2: Plink = 1 − e−
αγ2

4
Nk → 1 (where 0 < k < 1). Fully Connected graph,

with average degree equal to the system size (z̄ = N − 1).
The coupling distribution converges to the Gaussian one with Var[J ] ∝ N q , where
0 < q < 1.

• θ = 1/2: Plink ' αγ2

2 = const. The link probability is �nite and the average coordi-

nation number is linearly diverging with the system size, namely z̄ = αγ2(N − 1) =
O(N).

• 1/2 < θ < 1: Plink = 1− e−
αγ2

4
N−k ' αγ2

4Nk → 0 (where 0 < k < 1). Extreme Diluted
Graph, characterized by a sublinearly diverging average coordination number, z̄ =
O(N1−k).

• θ = 1: Plink = 1 − e−
αγ2

4N ' αγ2

4N → 0. Finite Coordination Regime with z̄ = αγ2/4.
When αγ2 > 4(< 4), then z > 1(< 1) and the graph, within a mean-�eld approach,
is expected to be overpercolated (underpercolated).

• θ > 1: Plink = 1− e−
αγ2

4
N−k ' αγ2

4Nk → 0 (where k > 1). Fully Disconnected Regime
with coordination number vanishing for any choice of α and γ.

Finally, we notice that, recalling the variance for the coupling distribution
Var[J ] = E[J2

ij ] =
αγ
2 N1−θ, we have that it is vanishing - and correspondingly P (J) =

δ(J) - for θ > 1, consistently with the picture above. A contour plot of Plink as a function
of γ and θ is shown in Figure 2.2.

2.1.3 Small-world properties

Small-world networks are characterized by two main properties: a small diameter and a
large clustering coe�cient, namely, the average shortest path length scales logarithmical
(or even slower) with the system size and they contain more cliques than what expected
by random chance [27]. The small-world property has been observed in a variety of real
networks, including biological and technological ones [28].

First, we checked that, in the overpercolated regime, the structures considered here
display a diameter growing logarithmically with N , as typical for random networks [29].

As for the clustering coe�cient C, it is basically de�ned as the likelihood that two
neighbors of a node are linked themselves, that is, for the i-th node,

ci =
2Ei

zi(zi − 1)
, (2.17)
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Figure 2.2: The main �gure represents the contour plot of Plink (see Equation 2.16) as a function
of γ and of log θ. The dashed, vertical line corresponds to θ = 0.5 and demarcates the onset
of a disconnected regime. The inset represents the degree distribution P (z) as a function of the
normalized number of nearest neighbors; three values of θ are considered as speci�ed. Notice that,
as expected, larger values of θ yields to sparser graphs. Both �gures refer to systems made up of
N = 6000 nodes, with α = 0.05 and γ = 1.

Figure 2.3: Inset: Mean clustering coe�cient C (continuous line) for di�erent choices of the
parameter θ, while N = 1600, γ = 2 and α = 0.5 are kept �xed; the mean has been performed over
all nodes making up the graph and over 102 realizations. An analogous ER random graph is also
considered and the related clustering coe�cient CER (dashed line) is shown for comparison. Notice
the qualitative di�erent behaviors of C and CER. Main �gure: contour plot for the logarithm of
the ratio C/CER, as a function of N and θ. Notice that, although for θ close to 1 both graphs
are sparse, C � CER. On the other hand, for θ > 1, both coe�cient converge to zero, in the
thermodynamic limit; the non-null values appearing in the �gure are due to �nite-size e�ects.
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where zi is the number of nearest neighbors of i and Ei is the number of links connecting
any couple of neighbors; when Ei equals its upper bound zi(zi − 1)/2 the neighborhood
of i is fully connected. The global clustering coe�cient then reads as

C =
1

N

N∑
i

ci. (2.18)

A clustering coe�cient close to 1 means that the graph displays a high cliquishness, while
a value close to 0 means that there are few triangles.

It is easy to see that for the Erd®s-Rényi graph, where each link is independently
drawn with a probability P , the average clustering coe�cient is CER = P . Therefore, for
our network, we measure C and we compare it with the average link probability Plink;
results obtained for di�erent choices of θ are shown in Figure 2.3.

First, we notice that, for a given system size N , the behavior of C and of CER, with
respect to θ, is markedly di�erent (see the inset): the latter decreases monotonically due
to the analogous decrease of the link probability, while the former exhibits two extremal
points at a relatively large degrees of dilution. In fact, as long as the networks are highly
connected, the disappearance of a few links yields, in both cases, a modest drop in the
overall cliquishness. On the other hand, when dilution is signi�cant, the intrinsic structure
of the �Hebbian graph� matters: as patterns get sparser and sparser, surviving links are
those connecting nodes whose related patterns display matching non-null entries. In this
way, the neighbors of a node are also likely to be connected [30, 31, 32] and the clustering
coe�cient grows. Finally, at a very large degree of dilution, the system approaches the
fully-disconnected regime and the clustering coe�cient decreases.

In order to compare more e�ectively our graph and an analogous ER graph, we also
considered the ratio C/CER (see the main �gure). Interestingly, for θ relatively large, as
N gets larger this ratio grows con�rming that the few links remaining are very e�ective
in maintaining the cliques. This can be understood as follows: to �x ideas let us take
θ = 1, so that the average number of non-null entries in a string is Lγ/(2N) which equals
γα/2 in the high-storage regime under investigation. For simplicity, let also assume that
γα/2 ≈ 1, and that this holds with vanishing variance for all nodes. Therefore, if the node
i has k neighbors, its (local) clustering coe�cient is either 0 (if k ≤ 2) or 1 (if k > 2).
Hence, the expected local clustering coe�cient can be estimated as the probability for a
node to display k > 2 nearest neighbors, namely 1 − (1 − q)N−1 −Nq(1 − q)N−2, where
q = γ/(2N) is the probability that the pattern of an arbitrary node j 6= i has the non-null
entry matching with the one of ξi. With some algebra we get ci ≈ 1 − e−γ/2(1 + γ/2),
which remains �nite also in the thermodynamic limit, in agreement with results from
simulations. For θ > 1, q = γN1−θ/2 and ci converges to zero.

2.2 The statistical mechanics analysis

In this section, we study the thermodynamic properties of the system introduced: At
�rst, we show its equivalence to a bipartite spin-glass and �gure out the order parameters
of the theory, then we de�ne an interpolating free-energy which generalizes the multiple
stochastic stability developed in [26]; this technique allows to obtain the replica-symmetric
solution in form of a simple sum rule. As a last step, we extremize the free energy �nding
self-consistencies for the order parameters, whose critical behavior is also addressed.
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2.2.1 The equivalent diluted bipartite spin-glass

As we deal with a structure whose average coordination number may range in [0, N ], from
a statistical mechanics perspective, we aim to de�ne the normalization constant D for the
Hamiltonian in Equation (2.1), in such a way that its average (which de�nes the extensive
energy of the system and is denoted symbolically with the brackets) is linearly diverging
with the system size, namely 〈H̃〉 ∝ N .

By a direct calculation, it is possible to show that this condition is ful�lled by

D = N1−θ, (2.19)

so that, using the explicit de�nition for the couplings, we can write

H̃ = − 1

N1−θ

N∑
i<j

L∑
µ

ξµi ξ
µ
j σiσj = − 1

N1−θ

N∑
i<j

Jijσiσj , (2.20)

For a single realization of the disorder encoded in the memories, the partition function
reads o� as:

Z̃N,L(β; ξ) =
∑
{σ}

exp

 β

2N1−θ

N∑
i,j

L∑
µ

ξµi ξ
µ
j σiσj

 . (2.21)

Note that, as usual in the Hop�eld model, the diagonal term gives an extensive contribution
to the partition function. In the above expression, we neglected this diagonal term, directly
by adding it as a term αβ

2 (1+a
2 ) = αβγ

4Nθ to the �nal expression of the free energy [33] (see
Equation (2.41)).

Now, we can introduce another party made up of L soft spins {zµ}, namely i.i.d.
variables with an intrinsic standard Gaussian distribution N [0, 1], that interact only with
the original party of dichotomic spins {σi} via the couplings {ξµi }; the related partition
function is

ZN,L(β; ξ) =
∑
{σ}

∫ ∏
µ

dµ(zµ) exp

{√
β

N1−θ

N∑
i

L∑
µ

ξµi σizµ

}
, (2.22)

with dµ(zµ) standard Gaussian measure for all the zµ. By applying Gaussian integrations
as usual [31], it is easy to see that Z̃N,L(β; ξ) and ZN,L(β; ξ) are thermodynamically
equivalent. The advantage of the expression (2.22) is that it is linear with respect to the
memories ξµi so that the bare topology is simply that of a bipartite random graph with
link probability plink = (1 + a)/2, like in [30].

Taken O as a generic observable, depending on the spin con�gurations {σ, z}, we de�ne
the Boltzmann state ωβ(O) at a given level of (fast) noise β as

ωβ(O) = ZN,L(β; ξ)
−1
∑
{σ}

∫ ∏
µ

dµ(zµ)O({σ, z})e
√

β

N1−θ

∑N
i

∑L
µ ξµi σizµ , (2.23)

and we introduce a product space on several replicas of the system asΩs = ω1
⊗

ω2
⊗

...
⊗

ωs

[26].
For a generic function of the memories F (ξ), the quenched average will be de�ned by

the symbol E and performed in two steps: �rst, we �x the number l of links between the
two parties and we perform the average over the Gaussian distribution of the memories:

E(l)
ξ [F (ξ)] ≡

∫ +∞

−∞

l∏
(i,µ)=1

dξµi√
2π

e−
(ξ

µ
i
)2

2 F (ξµi ) =

∫
F (ξ) dµl(ξ) ≡ f(l) ; (2.24)
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then, we perform the average over the binomial distribution for the number of links,

El[f(l)] ≡
NL∑
l=0

(
NL

l

)(
1 + a

2

)l (1− a

2

)(NL−l)

f(l) , (2.25)

so that E ≡ ElE
(l)
ξ . Indeed, for example, E[ξµi ] = 0 and E[(ξµi )2] = (1 + a)/2.

Moreover, as we will see, for a natural introduction of the order parameters, it is useful
to de�ne the number of links, l, as the product of two independents binomial variables

l =̇ lηlχ , (2.26)

where the symbol =̇ stands for the equality in distribution and

P (lη) =

(
N

lη

)√
1 + a

2

lη√
1− a

2

N−lη

, (2.27)

P (lχ) =

(
L

lχ

)√
1 + a

2

lχ√
1− a

2

L−lχ

. (2.28)

Of course, a product of two binomial variables is not a binomial variable itself, so at �nite
size this de�nition is not consistent; nevertheless, in the thermodynamic limit, the central
limit theorem ensures that only the �rst two momenta of the distributions survive so that
the de�nitions become consistent.

We also use the symbol 〈·〉 to mean 〈·〉 = EΩ(·) and 〈·〉G = E(l)
ξ Ω(·).

The main thermodynamical quantity of interest is the intensive pressure de�ned as

A(α, β) = lim
N→∞

AN (α, β) = −βf(α, β) = lim
N→∞

1

N
E logZN,L(β, ξ) . (2.29)

Here f(α, β) = u(α, β)− β−1s(α, β) is the free-energy density, u(α, β) the internal energy
density and s(α, β) the entropy density.

Finally, we de�ne two in�nite (in the thermodynamic limit) sets of order parameters,
the restricted overlaps, as

q
lη
12 =

1

lη

lη∑
i

σ1
i σ

2
i ,

p
lχ
12 =

1

lχ

lχ∑
µ

z1µz
2
µ , (2.30)

which de�ne the overlaps (restricted on sub-networks) between two replicas made up by
parties with lη and lχ nodes, respectively.

2.2.2 Free energy interpolation and general strategy

In what follows, we assume that no real external �elds (as magnetic inputs or partial
information submission for retrieval) act on the network, but �elds insisting on each spin
are strictly generated by other spins. Thus, the overall �eld felt by an element of a given
party is the sum (weighted through the couplings), of the states of the spins in the other
party. Note that spins are connected in loops using the other party as a mirror, therefore,
the equivalent analogical neural network is a recurrent network.
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In this section, we show that the free-energy can be calculated in speci�c cases (e.g.
at the replica symmetrical level) by using a novel technique that has been developed in
[26] for fully connected spin-glass models and extended in [30] to diluted ferromagnetic
models. This technique introduces an external �eld acting on the system which "imitates"
the internal, recurrently generated input, by reproducing its average statistics. While the
external, �ctitious input does not reproduce the statistics of order two and higher, it
represents correctly the averages. These external inputs are denoted as η and χ (one for
each spin in each party) and are distributed following the Gaussian distributions with zero
mean and whose variances scale according to the underlying topology (as a function of
α, θ, γ) and coherently approaches zero when the network topology disappears.

In order to recover the second order statistics, the free-energy is interpolated smoothly
between the case in which all �elds are external, and all high order statistics is missing,
and the case in which all �elds are internal, describing the original network: Following
the original Guerra's schemes [15, 26, 34, 35], this allows a powerful sum rule. We use an
interpolating parameter t ∈ [0, 1] for this morphing, such that for t = 0 the �elds are all
external and the calculation straightforward, while for t = 1 the original model is fully
recovered.

In what follows, for the sake of clearness, we allow ourselves in writing A = AN (α, β)
even though α should be introduced only once the thermodynamic limit has been per-
formed. The interpolating quenched pressure ÃN (α, β, t) at �nite N is then de�ned as

ÃN (α, β; t) =
1

N
E log

∑
{σ}

∫ ∏
µ

dµ(zµ) exp

√
t

√
β

N1−θ

N,L∑
i,µ

ξµi σizµ

 ·

· exp

(
b
√
1− t

N∑
i

σiηi + c
√
1− t

L∑
µ

zµχµ +
d

2
(1− t)

L∑
µ

z2µθµ

)
. (2.31)

We assume trough the paper that the limitA(α, β) = limN→∞AN (α, β) = limN→∞AN (α, β, t =
1) exists. The �interpolating �elds� distributions are chosen to mimic the local �elds be-
havior, so that ηi, χµ and θµ have zero value with probability

√
(1− a)/2, while, with

probability
√

(1 + a)/2, are normally distributed, except for θµ which assumes value one
2. So the number of active �elds follows Equation (2.27). While the constant b, c, d have
to be chosen properly, as shown in the following.

The strategy for the evaluation of the pressure of the original model, Ã(α, β, t = 1),
is to compute the t-streaming of it, namely ∂tÃ(α, β, t = 1), and use the fundamental
theorem of calculus to obtain

AN (α, β) = ÃN (α, β; t = 1) = ÃN (α, β, t = 0) +

∫ 1

0
dt′
(

d

dt
ÃN (α, β; t)

)
t=t′

(2.32)

When evaluating the streaming ∂tÃ, we get the sum of four terms, each comes as a
consequence of the derivation of a corresponding exponential term appearing into Equation
(2.31). The explicit computation is reported in the appendix A.1, the �nal expression for

2Indeed, the presence the �eld θµ has much less physical meaning but simpli�es the calculations.
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the t streaming is

dÃN (α, β, t)

dt
=

[
αβ

2
N θ

(
1 + a

2

)
− αc2

2

(
1 + a

2

) 1
2

− αd

2

(
1 + a

2

) 1
2

]
〈z2〉+

−αβ

2
N θ

(
1 + a

2

)
〈qlη12p

lχ
12〉+

b2

2

(
1 + a

2

) 1
2

〈qlη12〉+
c2

2

(
1 + a

2

) 1
2

〈plχ12〉+

−
(
1 + a

2

) 1
2 b2

2
. (2.33)

2.2.3 Replica symmetric approximation and �uctuation source

As it is, this streaming encodes the whole full replica-symmetry-breaking complexity [36,
37] of the underlying glassy phase and it is intractable. Our plan is to split this derivative
in two terms, one dealing with the averages of the order parameters and one accounting
for their �uctuations. To this aim, we introduce the source of �uctuations, S(α, β, t), as

S(α, β, t) = −αβ

2

(
1 + a

2

)
N θ〈(qlη12 − q)(p

lχ
12 − p)〉, (2.34)

with

q ≡ Elηq
lη , p ≡ Elηp

lη . (2.35)

Notice that the main order parameters q and p sum every overlap, each with its relative
weight, on every possible subnetwork of the whole network according to the approaches
[38, 39] and that they recover the standard order parameters of the Hop�eld model when
dilution is neglected [10, 26].

In order to relate Equation (2.34) to Equation (A.5), let us remember that we still
have free parameters that can be chosen as 3

b =

√
αβ

(
1 + a

2

) 1
2

N θp =
√

αβp
(γ
2

) 1
4
N

θ
4 ,

c =

√
β

(
1 + a

2

) 1
2

N θq =
√

βq
(γ
2

) 1
4
N

θ
4 ,

d = βN θ

(
1 + a

2

) 1
2

(1− q) = β
(γ
2

) 1
2
N

θ
2 (1− q) , (2.36)

so to have

dÃ(α, β; t)

dt
= S(α, β, t) +

αβ

2

(
1 + a

2

)
N θ p(q − 1) = S(α, β, t) +

αβγ

4
p(q − 1) . (2.37)

In the replica symmetric approximation, the order parameters do not �uctuate with
respect to their quenched average in the thermodynamic limit as they get delta-distributed
over their replica symmetric averages q, p, which have been denoted with a bar. As
a consequence, within this approximation, we can neglect the �uctuation source term
S(α, β, t) and keep only the replica symmetric overlap averages in the expression (2.37)
such that its integration is trivially reduced to a multiplication by one.

3in particular we choose d to cancel the 〈z2〉 terms appearing in the �rst line of equation (A.5).
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In order to get an explicit expression of the sum rule (2.32), we can then proceed
to analyze the starting point for the �morphing�, namely Ã(α, β; t = 0), which can be
calculated straightforwardly as it involves only one-body interactions:

ÃN (α, β, t = 0) = (2.38)

=
1

N
E log

∑
{σ}

∫ ∏
µ

dµ(zµ) exp

(
b

N∑
i

σiηi + c

L∑
µ

zµχµ +
d

2

L∑
µ

θµz
2
µ

)
=

=

√
γ

2
N− θ

2 log 2 +

√
γ

2
N− θ

2

∫
dµ(η) log cosh(

√
αβp

(γ
2

) 1
4
N

θ
4 η) +

+
γαβq̄

4

1

1− β
(γ
2

) 1
2 N

θ
2 (1− q)

− α

2

(γ
2

) 1
2
N− θ

2 log

(
1− β

(γ
2

) 1
2
N

θ
2 (1− q)

)
,

where we used

1

N
ElηE

lη
η log

∑
{σ}

exp

(
b

N∑
i

σiηi

)
=

=
1

N
ElηE

lη
η

N∑
i

log 2cosh(b ηi) =
1

N
Elη lη Eη log 2cosh(b η) =

=

(
1 + a

2

) 1
2

log 2 +

(
1 + a

2

) 1
2
∫

dµ(η) log cosh(b η), (2.39)

and

1

N
ElχE

lχ
χ log

∫ ∏
µ

dµ(zµ) exp
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zµχµ

)
exp
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2
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2
µ
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=
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)
.(2.40)

Now, substituting the expression for ÃN (α, β, t = 0) of Equation(2.38) into (2.32), we
obtain the replica-symmetric free energy (strictly speaking the mathematical pressure) of
the network as

ÃRS
N (α, β) = ÃN (α, β, t = 0) +

dÃRS
N (α, β, t

dt

∣∣∣∣∣
t=0

=

=

√
γ

2
N− θ

2

[
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∫
dµ(η) log cosh
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αβp
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) 1
4
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+

+
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2
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2
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2 log

(
1− β
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) 1
2
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θ
2 (1− q)

)
+

+
αβγ

4
p(q − 1) +

αβγ

4
N−θ . (2.41)
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Despite the last expression is meant to hold in the thermodynamic limit, with a little
mathematical abuse, we left the explicit dependence size to discuss some features of the
solution: Equation (2.41) may look strange due to the strong presence of various powers
of the volume size N , which in principle are potentially unwanted divergencies. We start
noticing that, in the limit of zero dilution θ = 0 and homogeneous distribution of �elds γ =
2, the expression for the free-energy recovers the replica symmetric one of the analogical
Hop�eld model [26] (or digital one without retrieval [9]). Moreover, remembering the
various topological regimes outlined in Section 3, we see that when the network changes
the topological phase, for instance moving from a fully connected topology to a sparse
graph the coordination number may scale with the volume size or be kept constant. These
situations are deeply di�erent from a thermodynamical viewpoint because, in order to have
no negligible contributions to the free-energy, �elds obtained by an extensive number of
(�nite) terms in the fully connected scenario must be (possibly) turned into �elds obtained
by a �nite number of (in�nite) terms in the dilute regime. As the topology changes, the
�elds must follow accordingly, which is equivalent to a (fast) noise rescaling with the
volume size that is another standard approach to diluted network [40, 41, 42].

The physical free-energy is then obtained by extremizing this expression with respect
to the order parameters; we only stress here that, as a general property of these neural
networks/bipartite spin-glasses, the free-energy now obeys a min-max principle, which
will not be deepened here (because it does not change the following procedure and it has
been discussed in [26]). As a consequence, the following system de�nes the values of the
overlaps (as functions of α, β) that must be used into Equation (2.41)

∂Ã

∂q
=

αβ(γ2 )

2

(
p−

(γ2 )
1
2N

θ
2βq

(1− β(γ2 )
1
2N

θ
2 (1− q))2

)
= 0

∂Ã

∂p
=

αβ(γ2 )

2

[
q −

∫
dµ(η) tanh2(

√
αβp

(γ
2

) 1
4
N

θ
4 η)

]
= 0 , (2.42)

by which

q =

∫
dµ(η) tanh2

( √
αqβ(γ2 )

1
2N

θ
2

1− β(γ2 )
1
2N

θ
2 (1− q)

η

)
. (2.43)

All the related models (e.g. Viana-Bray [43], Hop�eld [23], Sherrigton-Kirkpatrick
[22]) display an ergodicity breaking associated with a second order phase transition and
presence of criticality. If we assume the same behavior even for the model investigated here,
the self-consistence equation (2.43) can give hints on the critical line (in the parameter
space) where ergodicity breaks down. In fact, when leaving the ergodic region (implicitly
de�ned by q = 0, p = 0) the order parameters start growing (implicitly de�ning the critical
line as the starting point) and, as continuity is assumed through the second order kind of
transition, we can expand the r. h. s. of Equation (2.43) for low q and obtain a polynomial
expression at both terms. Then, due to the principle of identity of polynomials, we can
equate the two sides term by term obtaining

βc =
1(γ

2

) 1
2 N

θ
2 (1 +

√
α)

, (2.44)

which is the critical surface of the system.
Mirroring the discussion dealing with the free energy, we note that this result too is

clearly a consequence of the choice (2.19) for the normalization factor that gives us an
extensive thermodynamics. If we normalize choosing D = N , as it is usual in the Hop�eld
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model [9], we obtain (turning to T = 1/β which is most intuitive) Tc = N−θ/2(1 +√
α)
√

2/γ (and recover the AGS line for θ = 0 and γ = 2), such that the overall e�ect of
increasing dilution is to reduce the value of the critical temperature because the couplings
on average becomes weaker. In particular, in the �nite connectivity regime (θ = 1), the
network is built of by N links instead of N2 which, roughly speaking, implies a rescaling
in the temperature proportional to

√
N (coherently with a spin-glass behavior), as in the

ferromagnetic counterpart its rescale is ruled by N instead of
√
N [40] because the latter

is a model de�ned through the �rst momentum, while the former by the variance.

Furthermore, we stress that the system displays only one critical surface splitting the
ergodic region from the spin glass and there are no further �weak-transitions� for each
sub-overlap, coherently with the scenario discussed in [44] for the similar case of the
Viana-Bray model [43].

2.3 Fluctuation theory and critical behavior

The plan of this section is studying the regularity of the rescaled (and centered) overlap
correlation functions.
The idea is as follows: If the system undergoes a second order phase transition, on the
critical surface (2.44), the (extensive) �uctuations of its order parameters should diverge
there, hence they should be described by meromorphic functions, whose poles detect the
critical surface itself. As a consequence, an explicit knowledge of these functions would
con�rm (or neglect) the critical picture we obtained through the small overlap expansion
of the previous section. However, obtaining them explicitly is not immediate and we sketch
in what follows our strategy: At �rst, we de�ne the (rescaled and centered) �uctuations
of the order parameters as

Q
lη
ab =

√
N
(
q
lη
ab − qlη

)
,

P
lη
ab =

√
L
(
p
lχ
ab − plη

)
, (2.45)

such that, while q
lη
ab ∈ [−1,+1], p

lη
ab ∈ [−1,+1], Q

lη
ab ∈ R, P

lη
ab ∈ R, hence, the square of

the latter may diverge as expected for second order phase transitions.

Nevertheless, obtaining them explicitly from the original Hamiltonian is prohibitive
and we use another procedure, originally outlined in [35]: We evaluate these rescaled over-
lap �uctuations weighted with the non-interacting Hamiltonian in the Maxwell-Boltzman
distribution, hence 〈Q2

lη12
〉t=0, 〈Qlη12Plχ12〉t=0, 〈P 2

lχ12
〉t=0, then we derive the streaming of

a generic observable O (function in principle, both of the spins of the parties and of the
quenched memories), namely ∂t〈O〉t such that we know how to propagate 〈O〉(t=0) up to
〈O〉(t=1) (which is our goal), and �nally we use this streaming equation (which turns out
to be a dynamical system) on the Cauchy problem de�ned by 〈Q2

lη12
〉t=0, 〈Qlη12Plχ12〉t=0,

〈P 2
lχ12

〉t=0, obtaining the attended result. Once the procedure is completed, the simple

analysis of the poles of 〈Q2
lη12

〉t=1, 〈Qlη12Plχ12〉t=1, 〈P 2
lχ12

〉t=1 will identify the critical
surfaces of the system.

Starting with the study of the structure of the derivative, our aim is to compute the
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t-streaming for a generic observable Os of s replicas. Calling

Hs =
s∑

a=1

{
√
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√
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lη ,lχ∑
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√
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+
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χµz
a
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2
θµ

lχ∑
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(zaµ)
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}
(2.46)

such that

〈O〉t =
∫ ∏L

µ dµ(zµ)
∑

σ O exp (−βHs)∫ ∏L
µ dµ(zµ)

∑
σ exp (−βHs)

,

its t-streaming is

d〈Os〉t
dt

=
d

dt
E
∑

{σ}
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µ dµ(zµ)Ose
Hs∑

{σ}
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µ dµ(zµ)e
Hs

= E
[
Ω

(
Os

dH
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)]
−E

[
Ω(Os)Ω

(
dH

dt

)]
. (2.47)

In the last equation eight terms contribute. The explicit computation is reported in the
appendix A.2. Merging all the terms together we get the streaming:

d

dt
〈Os〉t = β

√
α
γ

2

(
s∑

a<b

〈OQ
lη
abP

lχ
ab 〉t − s

s∑
a

〈OQ
lη
a,s+1P

lχ
a,s+1〉t+

+
s(s+ 1)

2
〈OQ

lη
s+1,s+2P

lχ
s+1,s+2〉t

)
. (2.48)

In order to control the overlap �uctuations, namely 〈Q2
lη12

〉t=1, 〈Qlη12Plχ12〉t=1, 〈P 2
lχ12

〉t=1,
..., noting that the streaming equation pastes two replicas to the ones already involved
(s = 2 so far), we need to study nine correlation functions. It is then useful to introduce
them and refer to them by capital letters so to simplify their visualization:

〈Q2
lη12〉t = A(t), 〈Qlη12Qlη13〉t = B(t), 〈Qlη12Qlη34〉t = C(t), (2.49)

〈Qlη12Plχ12〉t = D(t), 〈Qlη12Plχ13〉t = E(t), 〈Qlη12Plχ34〉t = F (t), (2.50)

〈P 2
lχ12〉t = G(t), 〈Plχ12Plχ13〉t = H(t), 〈Plχ12Plχ34〉t = I(t). (2.51)

Let us now sketch their streaming. First, we introduce the operator �dot� as

Ȯ =
2

β
√
αγ

dO

dt
,

which simpli�es calculations and shifts the propagation of the streaming from t = 1 to
t = β

√
αγ/2. Using this we sketch how to write the streaming of the �rst two correlations

(as it works in the same way for any other):

Ȧ = 〈Q2
lη12Qlη12Plχ12〉t − 4〈Q2

lη12Qlη13Plχ13〉t + 3〈Q2
lη12Qlη34Plχ34〉t,

Ḃ = 〈Qlη12Qlη13

(
Qlη12Plχ12 +Qlη13Plχ13 +Qlη23Plχ23

)
〉t −

− 3〈Qlη12Plχ13

(
Qlη14Plχ14 +Qlη24Plχ24 +Qlη34Plχ34

)
〉t + 6〈Qlη12Plχ13Qlη45Plχ45〉t.(2.52)
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By assuming a Gaussian behavior, as in the strategy outlined in [35], we can write the
overall streaming of the correlation functions in the form of the following di�erential system

Ȧ = 2AD − 8BE + 6CF,

Ḃ = 2AE + 2BD − 4BE − 6BF − 6EC + 12CF,

Ċ = 2AF + 2CD + 8BE − 16BF − 16CE + 20CF,

Ḋ = AG− 4BH + 3CI +D2 − 4E2 + 3F 2,

Ė = AH +BG− 2BH − 3BI − 3CH + 6CI + 2ED − 2E2 − 6EF + 6F 2,

Ḟ = AI + CG+ 4BH − 8BI − 8CH + 10CI + 2DF + 4E2 − 16EF + 10F 2,

Ġ = 2GD − 8HE + 6IF,

Ḣ = 2GE + 2HD − 4HE − 6HF − 6IE + 12IF,

İ = 2GF + 2DI + 8HE − 16HF − 16IE + 20IF. (2.53)

As we are interested in discussing criticality and not the whole glassy phase, it is possible
to solve this system starting from the high noise region, once the initial conditions at
t = 0 are known. As at t = 0 everything is factorized, the only needed check is by the
correlations inside each party. Starting with the �rst party, we have to study A,B,C at
t = 0. As only the diagonal terms give non-negligible contribution, it is immediate to
work out this �rst set of starting points as

A(0) = 〈Q2
lη12〉 = N(〈(qlη12)
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θ
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B(0) = 〈Qlη12Qlη13〉 = N(〈qlη12q
lη
13〉 − q2) =

√
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θ
2 q −Nq2, (2.55)
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)
−Nq2. (2.56)

For the second party we need to evaluate G,H, I at t = 0. The only di�erence with
the �rst party is the lack of dichotomy of its elements such that z2µ 6= 1 as for the σ's.

G(0) = 〈P 2
lχ12〉 = N(〈(plχ12)

2〉 − 2Elχp
lχ〈plχ12〉+ Elχp

2
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= N
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α
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)− 1
2N θ/2 ω2(z2)−Np2, (2.57)

H(0) = 〈Plχ12Plχ13〉 = N(〈plχ12p
lχ
13〉 − p2) =

(
α
γ

2

)− 1
2N θ/2 ω(z) ω(z2)−Np2,(2.58)

I(0) = 〈Plχ12Plχ34〉 = N(〈plχ12p
lχ
34〉 − p2) =

(
α
γ

2

)− 1
2N θ/2 ω2(z)−Np2. (2.59)
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ω(z2) and ω(z) are Gaussian integrals and can be explicitly calculated as

ω(z) =

∫
dµ(z)z exp

(
bzχ+ d

2z
2
)∫

dµ(z) exp
(
bzχ+ d

2z
2
) =

b〈χ〉
1− d

= 0, (2.60)

ω(z2) =

∫
dµ(z)z2 exp
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2
)∫

dµ(z) exp
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2
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1− d+ b2〈χ2〉
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= (2.61)

=
1− β

√
γ
2N

θ/2(1− q + αp)(
1− β

√
γ
2N

θ/2(1− q)
)2 .

Finally, we have obviously D(0) = E(0) = F (0) = 0, because at t = 0 the two parties
are independent. As we are interested in �nding where ergodicity becomes broken (the
critical line), we start propagating t (from 0 to 1) from the annealed region (high noise
limit), where q̄ ≡ 0 and p̄ ≡ 0. It is immediate to check that, for the only terms that
we need to consider, A,D,G (the other being strictly zero on the whole t ∈ [0, 1]), the
starting points are:

A(0) =

√
2

γ
N

θ
2 =

1

r
, (2.62)

D(0) = 0, (2.63)

G(0) =
N

θ
2√

γ
2 (1− β

√
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θ
2 )2

=
1

rs2
. (2.64)

Where we have de�ned r =
√

γ
2N

− θ
2 , s = 1− β

√
γ
2N

θ
2 .

The evolution is ruled by 
Ȧ = 2AD

Ḋ = AG+D2

Ġ = 2GD

(2.65)

Noticing that Ȧ
Ġ
= 0 by substitution, and that A(0)

G(0) = s2 we obtain immediately :

A(t) = G(t)s2 = G(t)
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2
N

θ
2

)2

. (2.66)

The system then reduces to two di�erential equations; calling Y = D + Gs, we have
Ẏ = Ḋ + Ġs = G2s2 + D2 + 2GDs = Y 2 with solution Y (t) = Y (0)

1−tY (0) , and Y (0) =

D(0) +G(0)s = 1
rs by which we get

Y (t =
√
αβ

γ

2
) =

1

rs

1

1−
√
αβ γ

2 (rs)
−1

=
1√

γ
2N

−θ/2

(
1− β

√
γ
2N

θ/2(1 +
√
α)

) , (2.67)

i.e. there is a regular behavior up to

βc =
1√

γ
2N

θ
2 (1 +

√
α)
) , (2.68)
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which con�rms the result obtained in Equation (2.44). Now we can consider separately
the evolution equation for G and D:

Ġ = 2G(t)

(
Y (t)− sG(t)

)
=

2

rs− t
G(t)− 2sG(t), (2.69)

where we used Y (t) = (rs− t)−1. Dividing both sides by G2 and calling Z = G−1 we get

−Ż(t) = 2Y (t)Z(t)− 2s =
2

rs− t
Z(t)− 2s. (2.70)

Namely, an ordinary �rst order di�erential equation for Z(t), that have the solution, for
the initial condition Z(0) = rs2:

Z(t) = 2s(rs− t)− 1

r
(rs− t)2. (2.71)

From Z(t) we obtain G(t) that is:

G(t) =
1

(rs− t)(s+ t
r )
. (2.72)

Using Equation (2.66) and remembering that D(t) = Y (t) − G(t)s we obtain the other
overlap �uctuations.

〈Q2
lη12〉 =

(
1− β

√
γ
2N

θ/2
)2√

γ
2N

−θ/2

(
1− β

√
γ
2N

θ/2(1 +
√
α)

)(
1− β

√
γ
2N

θ/2(1−
√
α)

) ,(2.73)

〈Qlη12Plχ12〉 =
√
αβ(

1− β
√

γ
2N

θ/2(1 +
√
α)

)(
1− β

√
γ
2N

θ/2(1−
√
α)

) , (2.74)

〈P 2
lχ12〉 =

1√
γ
2N

−θ/2

(
1− β

√
γ
2N

θ/2(1 +
√
α)

)(
1− β

√
γ
2N

θ/2(1−
√
α)

) .(2.75)

A simple visual inspection at the formula above allows to con�rm that the poles are found
at

β

√
γ

2
N θ/2 (1 +

√
α) = 1,

con�rming the heuristic result previously obtained. We can easily see furthermore that in
the fully connected limit (γ = 2 and θ = 0) we �nd out the result of [9].

2.4 Conclusions

In this chapter, we introduced and solved, at the replica symmetric level, a disordered
mean-�eld system provides a generalization of the Hop�eld model by introducing dilution
into its patterns encoding the memories, the latter drawing form a Gaussian distribution.

We focused on the topological properties of the emergent weighted graph of the inter-
actions. We found an exact expression for the coupling distribution, showing that in the
thermodynamic limit it converges to a central Gaussian distribution with variance scaling
linearly with the system size N . We also calculated the average link probability which, as
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expected, depends crucially on the degree of dilution introduced. More precisely, by prop-
erly tuning it, the emergent structure displays an average coordination number z̄ which
can range from z̄ = N (fully-connected regime) to z̄ = O(N) (constant link probability),
to �nite with z̄ > 1 (overpercolated network) or z̄ < 1 (underpercolated network).

Then, we moved to the thermodynamical analysis, where, through an interpolation
scheme recently developed for fully connected Hebbian kernels [26], we obtained explic-
itly the replica symmetric free-energy coupled with its self-consistence equations. The
overlaps, order parameters of the theory, turn out to be classical weighted sums of sub-
overlaps de�ned on all possible sub-graphs (as for instance discussed in [30][39]). Both a
small overlap expansion of these self-consistencies, as well as a whole �uctuation theory
developed for their rescaled correlations, con�rm a critical behavior on a surface (in the
α, β, γ, θ iperplane) that reduces to the well known of Amit-Gutfreud-Sompolinsky when
the dilution is sent to zero [9]. On the other hand, the net e�ect of entry dilution in bit-
strings (which weakens the coupling strength) is to rescale accordingly the critical noise
level at which ergodicity breaks down, as expected.

Without imposing retrieval through Lagrange multipliers (as for analogical patterns
it is not a spontaneous phenomenon, see [26]) the system displays only two phases, an
ergodic one (where all overlaps are zero) and a spin-glass one (where overlaps are non-
zero), split by the second order critical surfaces (over which overlaps start being non-zero)
which de�nes criticality.
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Part II

Mean �eld approach to cooperativity

in biochemical reactions





Chapter 3

Cooperative behaviour in

biochemistry

In this chapter, we introduce the background material for describing and understanding
the cooperative behaviour in biochemistry. This chapter covers the concepts of solution
thermodynamics and chemical equilibrium, in particular we will focus on the concept of
cooperativity, a widespread phenomenon in biochemical reactions involving the binding
of ligand molecules to larger biopolymers. As we are going to see, positive cooperativity
gives to a system more sensitivity over a narrower range of stimulus, whereas negative
cooperativity gives a less sensitive response over a much broader range, and both constitute
a fundamental tool that nature developed to modulate the chemical response of biological
systems to varying stimuli. We refer to standard textbooks for an extensive account of
the topic (see for instance [45] and [46]).

3.1 Thermodynamics of reactions in solutions

A fundamental tool for understanding biochemical reactions is the thermodynamic study
of solutions. Generally speaking, a solution is a single-phase system with more than one
component, thought as an independently variable chemical substance. Note that, whenever
chemical equilibria exist in the solution, there are usually more molecular species than the
ones de�ned as components. For instance, let us consider a solution containing water,
hemoglobin (Hb), and dissolved oxygen. Each hemoglobin molecule can bind one to four
oxygen molecules, so we could possibly consider the species H2O, Hb,O2, HbO2, Hb(O2)2,
Hb(O2)3, Hb(O2)4. Yet, if the binding reactions are in equilibrium at a given temperature
T and pressure P , it is su�cient to specify three independent components (solvent plus
any two of the others), since equilibrium relationships allow us to determine the others.

The appropriate thermodynamic potential to study process occurring in a cell is the
Gibbs free energy G, which is the quantity that is minimized for a system at equilibrium
with constant temperature T and pressure P .

It is related to the enthalpy H and the entropy S via the Legendre transform G =
H − TS. The contribution of the component i of the solution to the total free energy
depends on its chemical potential µi, also called partial molar Gibbs free energy, de�ned as
the increment of G with respect to the change in the number of moles ni of the component
i:

µi =

(
∂G

∂ni

)
T,P,nj 6=i

. (3.1)
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This is an intensive quantity, hence depending on T and P , but not on the size of the
system, and its name comes from the fact that di�erences in its values for di�erent com-
ponents are the driving potentials for chemical reactions.

The total free energy of the solution can be then expressed in terms of the µi's as

G =

k∑
i=1

niµi. (3.2)

If the state of the system undergoes an in�nitesimal change the corresponding change in
G is

dG =

(
∂G

∂T

)
P,ni

dT +

(
∂G

∂P

)
T,ni

dP +
∑
i

(
∂G

∂ni

)
T,P,nj 6=i

dni, (3.3)

which becomes, using standard thermodynamic relationships for entropy S, volume V ,
and chemical potential µi

dG = −SdT + V dP +
∑
i

µidni, (3.4)

and, if temperature and pressure are kept constant,

dG =
∑
i

µidni. (3.5)

The chemical potential of a substance A in a mixture depends on its concentration,
and this dependence is particularly simple in ideal solutions, where

µA = µ0
A +RT logχA. (3.6)

Here χA is the mole fraction of component A (that is the ratio between the number of
molecules of solvent A and the total number of solute molecules), R is the gas constant,
and T the absolute temperature. For χA = 1 we have µA = µ0

A, hence the chemical
potential µ0

A, which represents the chemical potential in a standard state, equals the molar
free energy of pure component A.

To be called ideal, a solution should have two properties: �rst, there should be no
di�erence in interaction energy between solute and solvent molecules, so that the enthalpy
change ∆Hm in the solution is zero; second, the entropy change should be the entropy of
non-interacting particles mixing, that is,

∆Sm = −R
∑
i=k

ni logχi. (3.7)

In fact, from these two conditions it follows that the free energy for the mixing of a solution
is

∆Gm = ∆Hm − T∆Sm = RT
∑
i

ni logχi. (3.8)

On the other hand, the free energy of ni moles of a particular pure component is given by
niµ

0
i , so, using (3.2), we also have

∆Gm = G(solution)−
∑
i

Gi(pure components) =
∑
i

ni(µi − µ0
i ). (3.9)

Equating last two equations, and observing that the components ni are independent vari-
ables, we obtain (3.6).
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Instead of mole fraction that is an inconvenient quantity to deal with, since experiments
usually measure concentrations, thus equation (3.6) for component A is often written in
terms of the concentration [A]. Thus, we may equally write, for the solute in dilute ideal
solutions,

µA = µ0
A +RT log[A]. (3.10)

Where [A] and µ0
A is intended measured respect to a reference concentration.

To take care of deviations from ideal behavior, is usually substitutes in Eq. (3.10)
the concentration [A] with an e�ective concentration (or activity) aA = yA[A], writing a
formally analogous equation:

µA = µ0
A +RT log aA. (3.11)

The activity is a unit-less quantity and the coe�cient yA has units of inverse concentration.
The latter will be in general a function of T, P , and all the solute concentrations. In
practice, is usually considered a virial expansions of the chemical potential, consisting in
power series expansions in terms of the termodynamic parameters, around the ideal values.
The higher order coe�cients give a measure of the non-ideal behavior. We expect that,
in general, solutes will approach an ideal behavior (yA = 1) if the solution is very dilute.

3.1.1 Equilibrium in chemical reactions

Let us consider now a generic chemical reaction

aA+ bB + ... → pP + qQ+ ... (3.12)

in which a moles of molecule A, b moles of B, and so forth, react and form p moles of P ,
q moles of Q, and so forth, at molar concentrations [A], [B], ..., [P ], [Q], ... We stress that
we are not assuming equilibrium here, but we simply take many moles of the reactants
and convert them to the corresponding moles of products, under some given arbitrary
conditions (temperature, pressure and concentrations). The driving force of the reaction
is the free energy change ∆G, and, if the reaction occurs at constant temperature and
pressure, Eq. (3.2) gives

∆G = pµP + qµQ + ...− aµA − bµB − ... (3.13)

whence, using (3.11),

∆G =(pµ0
P + qµ0

Q + ...− aµ0
A − bµ0

B − ...)

+RT log
[P ]p[Q]q

[A]a[B]b
+RT log

yP
pyQ

q

yAayBb
.

(3.14)

Here the �rst term on the r.h.s, involving µ0
i values, is called the standard-state free energy

change, and it is indicated with ∆G0. It represents the free energy change that would
be observed if a moles of A, and so forth, in the standard state, formed p moles of P ,
and so forth, also in the standard state. In the second term, the actual concentrations
of reactants and products are taken into account, and the third term, involving only the
activities coe�cients, can be neglected, assuming that all the components behave ideally.
In this case we may write Eq. (3.14) as

∆G = ∆G0 +RT log
[P ]p[Q]q

[A]a[B]b
, (3.15)
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and at equilibrium (∆G = 0) we �nd

∆G0 = −RT log

(
[P ]p[Q]q

[A]a[B]b

)
eq

= −RT logK (3.16)

where we have de�ned the equilibrium constant K as

K =

(
[P ]p[Q]q

[A]a[B]b

)
eq

(3.17)

This constant tells us what are the relative concentrations of reactants and products at
equilibrium, and will depend on temperature and pressure. The values of ∆G0 are known
for many reactions, and we can also rewrite last equation as

K = e−∆G0/RT . (3.18)

To have an idea near room temperature we have RT ' 2.5 kJ/mol, and if we consider
as essentially irreversible a reaction with K > 104, the corresponding free energy change
should be about ∆G0 < −23 kJ/mol, which is a condition satis�ed for many biological
reactions.

For a reaction beginning at arbitrary concentrations [A], [B], [P ], [Q], ..., the second
term, if there is not a refuelling of components, will gradually change in time until the
concentrations are equal to the equilibrium values and ∆G = 0. Note that the concentra-
tions of reactants and products in many biochemical reactions correspond to values out of
equilibrium, in physiological conditions. For example, at the concentrations maintained
in most cells, the hydrolysis reaction

ATP +H2O → ADP + phosphate (3.19)

gives to the cell an energy −∆G ' 40 kJ/mol, while the equilibrium value would be
∆G0 ' −31 kJ/mol.

3.2 Small ligand binding on macromolecules

Many biological functions involve the interactions of small molecules, acting as metabo-
lites, regulators and signals, with speci�c sites on larger macromolecules, involved in cellu-
lar processes. Some typical examples include enzymes, which bind substrates and e�ector
molecules accelerating the kinetics of reactions, transport proteins such as hemoglobin,
which binds oxygen molecules, as well as the many proteins that act as bu�ers by binding
hydrogen ions. Such binding mechanisms involve, in most cases, the formation of some
kind of non-covalent bond between the small molecule or ion, called the ligand, and a
speci�c region, the binding site (or docking site), on or near the surface of the macro-
molecule. A single macromolecule can possess binding sites of varying degrees of strength
and speci�city for di�erent ligands. Enzymes, for instance, usually have a very speci�c
key-lock mechanism to bind a molecule. Sometimes, one of the consequences of the act
of binding a ligand on a site can be a conformational change in the biopolymer, which
may in�uence the binding on other sites (allosteric mechanism), and in general binding
a�nities can be interdependent, allowing di�erent metabolites, for instance, to interact
indirectly.
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In principle, except the case of covalent bonds, there is always an appreciable con-
centration of free ligands [S] in equilibrium with bound ligands [Sb] under physiological
conditions. The total ligand concentration [ST ] is obviously the sum

[ST ] = [S] + [Sb] (3.20)

and the total molar concentration on macromolecules will be designated by [PT ]. The
equilibrium process is dynamic, and at any instant di�erent macromolecules P will host
di�erent numbers of ligands. The measure of the number of moles of S bound per mole
of P is then an average

ν̄ =
[Sb]

[PT ]
, (3.21)

which increases monotonically with [S] and should approach the limiting value n, equal to
the total number of binding sites of P for molecule S, as the concentration [S] increases.
The fraction saturation is the correspondent normalized quantity

θ =
ν̄

n
(3.22)

and the curve describing its functional dependence on [S] is called binding curve, or binding
isotherm.

Among the many aspects in the investigation of such phenomena, it is often interesting
to try to understand what is the maximum number of moles of ligands that can be bound
for mole of the macromolecule, or, in other words, the number of binding sites, and the
possible in�uence of the binding of a ligand on the other binding sites. This question is
directly related with the phenomenon of cooperativity.

3.2.1 Fraction saturation curve

Needless to say, the simplest case to analyse is that of a macromolecule P with a single
binding site for a molecule S, and no other species which can bind on it. The reaction
describing the equilibrium process is then

[S] + [P] −−⇀↽−− [PS] (3.23)

where [PS] denotes the concentration of hosting molecules with an occupied site, and
[P ] and [S] are the concentration of free ligands and macromolecules, respectively. The
equilibrium constant for this reaction is then

K =
[PS]

[S][P ]
. (3.24)

Since there is only one site per hosting molecule, the measurable parameter ν̄ equals in
this case the fraction saturation, and can be written as

θ = ν̄ =
[PS]

[P ] + [PS]
, (3.25)

or, using (3.24),

θ =
[S]

K−1 + [S]
. (3.26)

This corresponds to a simple hyperbolic dependence, as shown in �gure 3.1, where the
inverse equilibrium constant K−1 gives the concentration [S] at half saturation (θ =



46 Cooperative behaviour in biochemistry

1/2), and so the scale of concentrations involved. Note that K−1 = [P ][S]/[PS] is the
equilibrium constant for the dissociation reaction

[PS] −−⇀↽−− [S] + [P]. (3.27)

When we consider the general case, that is a macromolecule P which can bind more
than a single ligand (n > 1), the expression for ν̄ becomes more complicated, as there can
be some molecules binding one ligand, some binding two, and so on, up to n. Let us now
formalize such behavior by considering a hosting molecule P that can bind N identical
molecules S on its structure; calling Pj the complex of a molecule P with j ∈ [0, N ]
molecules attached, the reactions leading to the chemical equilibrium are the following

S + Pj−1 
 Pj ,

hence the time evolution of the concentration of the unbounded protein P0 is ruled by

d[P0]

dt
= −K

(1)
+1 [P0][S] +K

(1)
−1 [P1], (3.28)

where K
(1)
+1 ,K

(1)
−1 are respectively the forward and backward rate constants for the state

j = 1, and their ratios de�ne the association constant K(1) = K
(1)
+1/K

(1)
−1 and dissociation

constant K̃(1) = K
(1)
−1/K

(1)
+1 . Focusing on the steady state we get, iteratively,

K(j) =
[Pj ]

[Pj−1][S]
.

Unfortunately, measuring [Pj ] is not an easy task and one usually introduces, as a conve-
nient experimental observable, the average number Ā of substrates bound to the protein
as

Ā =
[P1] + 2[P2] + ...+ n[Pn]

[P0] + [P1] + ...+ [Pn]
=

K(1)[S] + 2 ·K(2)[S]2 + ...+N ·K(N)[S]N

1 +K(1)[S] +K(1)K(2)[S]2 + ...+K(1) ·K(n)[S]N
,

(3.29)
which is the well-known Adair equation [47], whose normalized expression de�nes the
saturation function θ = Ā/N .

In a non-cooperative system, one expects independent and identical binding sites, whose
steady states can be written as

0 = −NK+[P0][S]−K−[P1], (j = 1), (3.30)

0 = −(N − 1)K+[P1][S] + 2K−[P2], (j = 2), (3.31)

where K+ and K− are the rates for binding and unbinding on any arbitrary site.
Being K ≡ K+/K− the intrinsic association constant, we get

K =
[P1]

N [P0][S]
=

K(1)

N
, (j = 1), (3.32)

K =
2[P2]

(N − 1)[P1][S]
=

2K(2)

(N − 1)
, (j = 2), (3.33)

and in general K(j) = (N − j + 1)K/j. Plugging this expression into the Adair equation
we get

Ā =
NK[S]

1 +K[S]
⇒ θ =

K[S]

1 +K[S]
, (3.34)
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which is the well-known Micaelis-Menten equation [47].

If interaction among binding sites is expected, the kinetics becomes complex. Let us
�rst sketch the limit case where intermediates steps can be neglected, hence

[P0] +N [S] 
 [PN ],

then

Ā =
N [PN ]

[P0] + [PN ]
=

NK[S]N

1 + [S]N
, (3.35)

θ̄ =
θ

N
=

K[S]N

1 + [S]N
. (3.36)

More generally, one can allow for a degree of sequentiality and write

θ =
K[S]nH

1 + [S]nH
, (3.37)

which is the well-known Hill equation [47], where nH , referred to as Hill coe�cient, rep-
resents the e�ective number of substrates which are interacting, such that for nH = 1
the system is said to be non cooperative and the Micaelis-Menten law is recovered, while
for nH > 1 it is cooperative, for nH � 1 it is ultra sensitive, while for nH < 1 it is anti
cooperative.
From a practical point of view, from experimental data for θ([S]), one measures nH as the
slope of log(θ/(1− θ)) versus [S].

3.2.2 Cooperative binding

Consider a macromolecule with n binding sites: if the binding of a ligand to one site
in�uences the a�nity of other sites for the same kind of ligand, the binding is said to be
cooperative. If the a�nity of other sites increases after a ligand has bound, cooperativity
is positive; the a�nity could be also decreased, and in this case cooperativity is said to be
negative. In the case of a protein with a number of binding sites, the mechanism causing
this a�nity change is usually a small change in the tertiary structure, after the binding
of a molecule. Such e�ects are classi�ed as a part of the general phenomenon of allostery.
Here and in all the �rst part of this thesis, we will focus exclusively on homeoallostery,
which refers to the in�uence on the binding a�nities due to ligand of the same species,
but it should be mentioned that many binding phenomena are heteroallosteric, that is,
the binding of a ligand on a site can in�uence the binding of other species of ligands on
di�erent sites.

The di�erent behaviors of positively and negatively cooperating sites are re�ected in
di�erent binding curves (ν̄ or θ vs. [A], see �gure 3.1). The Michaelis-Menten curve (3.26)
for noncooperative systems corresponds to a rectangular hyperbola, as we have seen. If
there is positive cooperativity the curve has usually a sigmoidal shape (this is not strictly
true, since when cooperativity is weak the binding isotherm has a form similar to the
Michaelis-Menten curve, see section...). On the contrary, if cooperativity is negative, the
remaining non-occupied sites become weaker as the others are �lled, and a typical binding
curve, compared with the non-cooperative and positively cooperative case, is shown in
�gure 3.1.
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Figure 3.1: Binding curves for noncooperative (black), positively (red) and negatively (blue) co-
operative binding sites. Note that the case of positive cooperativity corresponds to a sigmoidal
curve.

The typical example of positive cooperativity is Hemoglobin, which has four binding
sites for oxygen molecules. The quaternary structure of this protein consists of four sub-
units arranged in a roughly tetrahedral form, each containing a heme group (a iron charged
atom held in a heterocyclic ring, known as porphyrin), the binding site for oxygen (see
Fig. (3.2(b)) ). More precisely, the molecule contains two copies of two kinds of similar
subunits (α and β), therefore it can be considered a dimer of α-β copies. Roughly speak-
ing, when oxygen binds to the heme complex, it causes the iron atom to move backward
into the heme which holds it, and this induces a series of modi�cations in the structure,
such that binding of oxygen to the other three sites becomes easier. At low concentrations
of oxygen the binding is very weak, because the molecule is in a weakly binding state,
and the �rst ligands bound tend to bind to di�erent molecules. When the �rst one or
two sites are �lled on any molecule, a�nity on the remaining sites has increased, so that
binding becomes stronger and the curve turns upward, in the typical sigmoidal shape (see
Fig. 3.2(a)). This makes the hemoglobin a very e�cient carrier for oxygen molecules in
the blood, since it easily binds oxygen in the lungs, where the concentration is high, and
can release it in the tissues of the body where the concentration is low.

3.2.3 Experimental measurements

In most cases, experimental measurements do not allow to observe directly the single lig-
ands and binding sites, but they rather focus on the measure of the total fraction of ligand
molecules that are bound, or the fraction of occupied binding sites (this is not strictly true,
since some single-molecule techniques, such as atomic force microscopy, allow sometimes
observation of certain dynamic interactions under physiologic conditions). An example is
equilibrium dialysis, a technique based on membrane equilibrium, in which one places the
macromolecule solution inside a semipermeable membrane bag, suspended in a solution
containing the small ligands. In a nutshell, since the macromolecules cannot pass through
the membrane, at equilibrium the excess of ligands in concentration inside the membrane
should correspond to the bound molecules. Hence, measuring the concentrations of the
smaller molecules inside and outside the bag gives the requested value.

Other methods are based on the change of some physical measurable properties (light-
absorption spectra, �uorescence, nuclear magnetic resonance, and so forth) of the macro-
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molecules when a molecule binds. Surface plasmon resonance (SPR), for instance, allows
to detect the fraction of occupied sites by measuring the change in refractive index of a
dielectric layer of biopolymers attached to a metallic surface, when they bind molecules
from a solution. The problem of these methods is that they assume the same linear change
in the physical parameter for all the binding sites, which is sometimes inaccurate. More-
over, if the number of sites n is not known a priori, it can be di�cult to extrapolate its
value from experimental measurements at high concentration of ligands, unless binding is
particularly strong. Using a combination of several techniques, however, can give in most
cases very accurate measurements.

3.3 Model of cooperative binding

A large number of models have been proposed in the past, in order to have a quantitative
description of cooperative binding on proteins. The most important, introduced for oxygen
binding by hemoglobin, are probably the Monod-Wyman-Changeux (MWC) model [48],
and the Koshland-Nemethy-Filmer (KNF) model [49], which in a certain sense lay at two
extreme descriptions, among the many proposed.

The MWC model is based on the concept of concerted conformational transitions in
the subunits of the protein. It is assumed that each subunit contains a binding site:
this exists in two states (T and R), with di�erent a�nities, but all the subunits undergo
the transition in concert. For low concentrations of ligands the T state is favored, while
the R form, with a larger a�nity for ligands, is more favored at high concentrations.
Without going into details, as the concentration of ligands increases from small values,
the proportion of unoccupied sites in the R conformation will increase, and they will
bind ligands with greater a�nity. This model, with all its variants, predicts the behavior
observed in homeoallosteric molecules with positive cooperativity, but it cannot describe
negative cooperativity.

In the KNC model, on the contrary, it is assumed that the subunits change one at
a time from a weak-binding to a strong-binding form, and the interactions between the
di�erent pairs of subunit depends on the relative states. This model can describe also
negative cooperativity, and can take into account speci�c topologies for the interactions
among binding sites. The model we are going to introduce later has more to do with this
approach, as we shall see.

As for the sequential binding of O2 molecules by hemoglobin, experimental measure-
ments have shown that it has features in common with both the models depicted above,
but agrees exactly with neither. In fact, individual α and β subunits can bind O2 with
individual tertiary conformational shifts, as described by KNC model, and a quaternary
T→R change can occur, but only after at least one of the sites on each α-β pair is occupied
[50, 51].
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(a) Curves describing the binding of oxygen by myo-
globin and hemoglobin. Myoglobin has a single
binding site for O2 molecules, and the resulting
curve is hyperbolic. Hemoglobin, on the other hand,
has four binding sites to which oxygen binds coop-
eratively, with a sigmoidal shape for the binding
isotherm.

(b) Structure of human hemoglobin.
The red and blue subunits represent
respectively α and β helices, while
the four heme groups, containing the
atom charged atoms to which oxy-
gen bind, are in green. From Protein
Data Bank.

Figure 3.2: Hemoglobin binding curve confronted with myoglobin, and hemoglobin structure.



Chapter 4

Mean-�eld model for cooperativity

In this chapter, we introduce a mean-�eld model for cooperative systems, developing the
analogy with the Curie-Weiss model described before. We will show how di�erent be-
haviours, in the binding of small molecules to homeoallosteric biopolymers with multiple
docking sites, can be reconstructed and described in this framework. In particular, di�er-
ent cooperative phenomena, such as positive and negative cooperativity, can be interpreted
in terms of an e�ective interaction between sites, and the observables commonly used to
describe such phenomena, like the Hill coe�cient (see section 3.2.1), are easily related to
these interactions. A �rst study exploiting this framework was previously reported in [52]
while the original contribution of the work has been published in [6].

It is important to point out that adopting a mean-�eld perspective implies the as-
sumptions that the interactions among the system constituents are not limited by any
topological or spatial constraint, but are implicitly taken to be long-ranged, as in a sys-
tem that remains spatially homogeneous. This approach is naturally consistent with the
rate-equation picture, typical of chemical kinetics investigations and whose validity is re-
stricted to the case of vanishing correlations [53, 54] and requires a su�ciently high spatial
dimension or the presence of an e�ective mixing mechanism. In general, in the mean-�eld
limit, �uctuations naturally decouple from the volume-averaged quantities and can be
treated as negligible noise. The consequence is to abandon a direct spatial representa-
tion of binding structures and we introduce a renormalization of the e�ective couplings.
The reward lies in a resulting unique model exhibiting a rich phenomenology (e.g. phase
transitions), yet being still feasible for an exact solution. In particular, we obtain an an-
alytical expression for the saturation function which is successfully compared with recent
experimental �ndings, taken from di�erent (biological) contexts to check robustness. Fur-
thermore, from this theory basic chemical kinetics equations (e.g. Michaelis-Menten, Hill
and Adair equations) are recovered as special cases.

Consider a macromolecule, like for instance an enzyme, which can bind to its N sites
some smaller ligand molecules. We will focus in the following on homeoallosteric binding,
that is binding of the same ligand molecules on sites with the same a�nities. We will
see in the section 4.4 a possible extension to heterogeneous binding sites. The formal
description of the global binding state of the macromolecules with the ligands is encripted
in a vector of length N :

σ = {σ1, σ2, ..., σN}.

where the elements assume the two values σi = ±1, respectively when the site is occupied
or empty. In section (3.2.1) we point out that the experimentally interesting macroscopic
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quantity is the fraction saturation, that can be expressed as

θ(σ) =
1

N

∑
i

1 + σi
2

. (4.1)

In terms of m(σ) =
∑

i σi/N this becomes

θ(σ) =
1 +m(σ)

2
. (4.2)

The probability of a con�guration P (σ) at a given temperature will be in�uenced, in
general, by the total concentration of ligands α and by the possible cooperative e�ects
among sites. The distribution P (σ) determines the average fraction of occupied sites

〈θ(σ)〉 =
∑
σ

P (σ)θ(σ) (4.3)

which is the quantity measured by experiments.

4.1 Independent binding sites

In this section, we introduce the formal bridge between the binding of ligands to macro-
molecules and the Statistical Mechanics. For this purpose, we start with the simplest
scenarios where the binding sites are independent, there is no interaction between them
and the total probability factorizes in the single probabilities for the occupation of a site:
P (σ) =

∏
i p(σi). In this case, cooperativity doesn't arise and we know that the binding

curve obeys the Michaelis-Menten law (3.26).
Now, since σ2

i = 1, the most general function of σi is a linear function, but, without losing
generality, we can also express it as an exponential

p(σi) =
1

Z
ehσi (4.4)

where Z is a normalization factor, which for the constraint p(+1) + p(−1) = 1 is equal to
Z = 2 coshh, and h is a parameter that will depend on the total concentration of ligands,
here designated by α. The average fraction of occupied sites from (4.3) can be compute

〈θ〉 =
∑
σ

P (σ)
1

N

∑
i

1 + σi
2

=
1

2
+

1

2N

∑
i

( ∑
σi=±1

p(σi)σi

)

=
1

2
[1 + tanh(h)] (4.5)

This probability also correspond to the distribution of a paramagnetic spin in an external
�eld h, at unitary temperature in which the microscopic energy of a con�guration of sites
is given by:

E(σ, h) = −h

N∑
i

σi (4.6)

What is missing here is the link between the concentration of ligands and the probability
distribution. From eq. (4.4) we know that the external �eld is related to the ratio of the
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probability of having the site occupied to the probability for an empty site and this can
be set proportional to the concentration α

p(+1)

p(−1)
= e2h =

α

α0
, (4.7)

with the proportionality constant α0 that set a reference concentration. When α > α0

this energetic term is positive and tend to favor binding of molecules on sites. On the
contrary, if α < α0 the logarithm is negative so that empty sites (σi = −1) are energetically
favorable. (1/2) logα0 corresponds to a sort of standard-state chemical potential.

With this simple assumption the average fraction of occupied sites (4.5) as a function
of the concentration α is given by

〈θ〉 = α

α0 + α
, (4.8)

which describes, as expected, a Michaelis-Menten behavior, with an equilibrium constant
K = α−1

0 , coherently with (3.18).

4.2 Two-sites interactions

The model above can be easily extended to cooperative system, adding a two-sites inter-
actions that gives an Ising-like form for the microscopic energy.

E({σ}|J,h) = −
N∑

i,j=1

Jijσiσj −
N∑
i=1

hiσi. (4.9)

The �rst term represents an interaction energy between couples of sites: the couplings Jij
are assumed positive in the case of a cooperative system and the structure of these cou-
plings will depend on the particular macromolecule considered. In any case, one obviously
expects that the stronger the couplings, the stronger the cooperative e�ects.

In general, we could adapt this model to di�erent proteins and enzymes, using a
suitable couplings interaction Jij , a paradigmatic example is the case of the haemoglobin
considered in [55].

However, if we are interested in a uni�ed picture more than an highly accurate model
for speci�c case (with increasing number of parameters), a natural step is to consider a
more simple mean-�eld approach, with an unique parameter for the interactions among
couples of sites. This simple model is able to capture in a quantitative way several behav-
iors occurring in the binding of small ligands to macromolecules, without considering the
detailed microscopic structure.

As we have seen in section 1.1.1, the mean �eld formulation of the Ising model is the
Curie-Weiss model, where the energy of a con�guration is

E(σ) = − J

N

∑
1≤i<j≤N

σiσj − h
∑
i

σi (4.10)

The interaction is again between couples of sites, but there is no topology, and every
site interacts in the same way with all the others, also if they are localized on di�erent
macromolecules. In the previous section, we considered the interactions between sites
on a single macromolecule. However, if the concentration of macromolecules is large, we
may expect that binding on less �lled molecules will be more likely, since there is a large
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number of free sites, and the system as a whole can manifest cooperative e�ects. These
e�ects may be treated at a �rst stage as mean-�eld interactions among all the couples of
sites, which �feel� the e�ective presence of molecules bound to the other sites, due to the
high concentration of macromolecules. Hence, in the following we may consider N as the
total number of binding sites, localized on di�erent macromolecules, for a ligand.

As an example of the e�ect of high macromolecules concentration, consider the oxygen
binding curves for di�erent concentration of hemoglobin, shown in �gure 4.1. For low Hb
concentration the binding a�nity is higher, but the cooperative e�ects are more strong
when the concentration is higher. The energy (4.10) can be considered as an e�ective

Figure 4.1: Oxygen-binding curves for hemoglobin at di�erent concentrations (decreasing from
right to left). For diluted solutions the equilibrium between αβ dimers and (αβ)2 tetramers is
shifted toward dimers,and this is the prevailing form. The leftmost solid curve is for dissociated
α1β1 dimers (D), with nH = 1.0, while the rightmost curve pertains to tetramers (T), with nH =
3.3. The concentration of hemoglobin for intermediate curves ranges form 4×10−8M to 1×10−4M .
Note the di�erent cooperative e�ects (and a�nities). Figure from [50].

microscopic interaction energy, and the coupling J , as we will see, can be directly re-
lated to the Hill number, giving an e�ective number for the interacting sites. The general
interaction parameter we introduce is certainly not su�cient to reproduce correctly the
complex mechanisms acting at the elementary level, but it encodes some of the most rel-
evant features observed in binding curves. The main point in our analysis is the e�ective
microscopic pictures that allow for a clear interpretation of a wide range of macroscopic
cooperative behaviors and the cooperativity measures as the Hill coe�cients in terms of
the e�ective structural properties. Valid descriptions of binding phenomena in terms of
this mean-�eld model are dependent on there being a very large number of solute particles
in the sample observed, so that macroscopic �uctuations in properties will be very un-
likely. As for biopolymers, we can consider an extreme example: in a solution containing
0.01 mg/ml of a virus of molecular weight 100 million, we still �nd approximately 1010
particles per milliliter. This is a number that is large enough that we don't need to worry
about �uctuations in macroscopic volumes. It is only when we begin considering volumes
comparable to that of a single cell that some problems can arise.

Seeking for a general scheme, we replace the fully-connected network of the original
Curie-Weiss model by a complete bipartite graph: sites are divided in two groups, referred
to as A and B, whose sizes areNA andNB (N = NA+NB), respectively. Each site in A (B)
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is linked to all sites in B (A), but no link within the same group is present. The justi�cation
to the introduction of this bipartite scheme relies in the uni�cation of the positive and
negative cooperativity cases as it will be clear in section 4.2.2. With this structure we
mirror dimeric interactions 1, where a ligand belonging to one group interacts in a mean
�eld way with ligands in the other group (cooperatively or competitively depending on the
sign of the coupling, see below), and they both interact with the substrate. As a result,
given the parameters J and h, the energy associated to the con�guration {σ} turns out
be

E({σ}|J, h) = − J

(NA +NB)

NA∑
i=1

NB∑
j=1

σiσj − h

NA+NB∑
i=1

σi. (4.11)

Some remarks are in order now. This two-groups model can mimic both cooperative and
non-cooperative systems but, while for the former case bipartition is somehow redundant
as qualitatively analogous results are obtained by adopting a fully-connected structure,
for the latter case the underlying competitive interactions intrinsically require a bipartite
structure.

The order parameter can be trivially extended as

mA =
1

NA

NA∑
i=1

σi, mB =
1

NB

NB∑
j=1

σj , (4.12)

and, according to statistical mechanics prescriptions, we minimize the free energy coupled
to the cost function (4.11) and we get in the thermodynamic limit, the following self-
consistencies, has it is shown in the previous chapter

〈mA〉 = tanh [JρB〈mB〉+ h] , (4.13)

〈mB〉 = tanh [JρA〈mA〉+ h] .

where ρA,B = NA,B/N . Through equations (4.13), the number of occupied sites can be
computed as

nA({σ}) =
NA∑
i=1

1

2
(1 + σi) = NA

1 + 〈mA〉
2

, nB({σ}) =
NB∑
j=1

1

2
(1 + σj) = NB

1 + 〈mB〉
2

,

(4.14)
from which we get the overall binding isotherm

θ(α) =
〈nA(α)〉+ 〈nB(α)〉

N
. (4.15)

We are now going to study separately the two cases of positive (J > 0) and negative
(J < 0) cooperativity.

4.2.1 Ferromagentic interactions

When the couplings are positive, J > 0, interacting units tend to �imitate� each other.
In this ferromagnetic context one can prove that the bipartite topology does not induce

1Note that for the sake of clearness, we introduced the simplest bipartite structure, which naturally
maps dimeric interactions, but one can straightforwardly generalize to the case of an n-mer by an n-partite
system and of course values of ρA 6= ρB can be considered too. We did not perform these extensions because
we wanted to recover the broader phenomenology with the smaller amount of parameters, namely J, α
only.
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any qualitative e�ects: results are the same (under a proper rescaling) as for the Curie
Weiss model; indeed, in this case one can think bipartition as a particular dilution on
the previous fully-connected scheme and we know that (pathological cases apart), dilution
does not a�ect the physical scenario.

The solution of the statistical mechanics problem trivially generalizes results from
previous sections, assuming an equal number of elements in the two sets (ρA = ρB=1/2),
one has obviously 〈mA〉 = 〈mB〉, and we get the following self-consistence equation for
the magnetization,

〈mA〉 = tanh

[
J

2
〈mA〉+

1

2
log(α/α0)

]
(4.16)

while the overall binding curve 1
2(1 + 〈mA〉) ful�lls the following self-consistence equation

(here we drop the brackets to have a more readable expression):

θ(α; J, α0) =
1

2
+

1

2
tanh

[
J

2
(2θ − 1) +

1

2
log(α/α0)

]
(4.17)

This expression returns the average fraction of occupied sites corresponding to the equi-
librium state for the system. Di�erently from low-dimensional systems such as the linear
Ising-chains, the Curie-Weiss model admits sharp (eventually discontinuous in the ther-
modynamic limit) transitions from an empty (〈mA〉 = 〈mB〉 = 0) to a completely �lled
(〈mA〉 = 〈mB〉 = 1) con�guration as the �eld h is tuned. This means that the fraction sat-
uration vanishes when the substrate concentration vanishes and it saturates to one when
the substrate concentration is large, as expected. It should be clear that θ(α) is the value
corresponding to the average value 〈θ〉 with respect to the Gibbs distribution with energy
(4.10). The resulting fraction saturation is continuous for J < Jc, while for J = Jc we
have the scenario, previously depicted, corresponding to a second order phase transition
(see �gure 4.2). Conversely, when J > Jc and α = α0, transition is �rst order, that is
the fraction saturation θ becomes discontinuous, taking a value smaller than 1/2 when
α → α−

0 and greater than 1/2 when α → α+
0 . This picture holds rigorously just in the

thermodynamic limit (N → ∞); for �nite systems, beyond O(1/N) corrections, we recall
that the discontinuous functions are mildly smoother, accordingly with the experimental
counterparts. For clearance in the notation in the following, we will use α instead of α/α0

and we will often drop the dependence on α and J (and the brackets) but it should be
clear, from the context, that we are talking about this average value.

When couplings vanish, J → 0, no cooperativity is expected (as the model reduces to
a one-body theory) and, coherently, we recover the MM binding curve. In fact, eq. (4.17)
can be equivalently expressed as

θ(α, J) =
α exp [2J(2θ(α, J)− 1)]

1 + α exp [2J(2θ(α, J)− 1)]
(4.18)

which properly gives, for J = 0

θ(α, J)|J=0 =
α

1 + α
. (4.19)

From equation (4.19), we see that when J > 0 the fraction saturation for a given concen-
tration is smaller than the corresponding value for a non interacting system when α < 1,
and becomes greater when α > 1. In fact, the greater the interaction and the steeper
the sigmoidal shape of the curve. The fraction saturation curves resulting from eq. 4.19
are plotted in �gure 4.2 versus α, for several values of J . Interestingly, a global change
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Figure 4.2: Di�erent binding curves obtained by varying the coupling J . For J = 0 (blue line)
the hyperbolic Michaelis-Menten law represents the curve for a non-interacting system; for J =
0.2 (green) the system has a weakly cooperative behavior; for J = 0.6 (red) strong cooperativity
manifests itself with the typical sigmoidal shape; J = 1(light green) is the critical regime: the
derivative in the in�ection point which gives the Hill coe�cient is in�nite; J = 1.8 (purple)
represents the discontinuous case, with an extremely strong cooperativity.

in the system considered, e.g. concerning ph or temperature, may lead to variations in
the a�nity between binding sites and ligands as well as in the coupling strength between
binding sites themselves, giving rise to a curve θ(α) displaying a di�erent steepness.

Now, the derivative2 of θ with respect to α, which is strictly related to the Hill co-
e�cient and, consequently, to the cooperativity of the system, can be computed from
(4.17):

∂θ

∂α
=

1

4α

1− (2θ − 1)2

1− J [1− (2θ − 1)2]
. (4.21)

This is always positive and �nite for J < 1, meaning that θ is an increasing function of α,
as we expected. In the limit of low concentration of ligands we obtain

∂θ

∂α

∣∣∣∣
α=0

= exp(−2J) (4.22)

so the binding at very low concentration is governed by the two-bodies interaction J : the
greater J and the �atter the fraction saturation curve. When J = 0, ∂αθ|α=0 = 1 and

2Note that in the frame of the Curie-Weiss model this is strictly related to the generalized susceptibility

χ =
∂m(h)

∂h

which measures the response of the system to a change in the �eld h. In fact, we have

∂θ

∂α
=

1

2

∂m(h(α))

∂α
=

1

2

∂h

∂α
χ(h(α)) =

1

4α
χ(h(α)) (4.20)
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one properly recovers the same trend as that of the MM curve, which has a �rst order
behavior with the same coe�cient for small concentrations.

Finally, to recognize the sigmoidal shape typical of cooperative systems, we have to
study the second derivative, which can be easily computed and expressed in terms of the
�rst one:

∂2θ

∂α2
= − 1

α

∂θ

∂α

[
1 +

2θ − 1

(1− J [1− (2θ − 1)2])2

]
. (4.23)

When α ranges in (1,∞), this is always negative, so that θ is a concave function of α in
that range, for any value of J . For α = 1 we have ∂2

αθ = −(1/4)/(1− J), so that θ is still
concave there. For α ∈ (0, 1) we can compute numerically the second derivative: it comes
out, not surprisingly, that it is not su�cient to have a positive coupling J between binding
sites to see a sigmoidal curve. In fact, if this interaction is small, the second derivative is
negative for all concentration, and the hyperbolic form will resemble the MM curve.

As explained in section 3.2.1, an usual way to de�ne in a quantitative manner the
cooperativity of a system is by the Hill coe�cient nH , obtained from the maximum slope
of log[θ/(1 − θ)] vs. logα. If binding on di�erent sites is an independent process, one
simply �nds nH = 1, while in the extremum case in which sites are either all empty or all
occupied nH = N . We call a system cooperative (non cooperative) if nH > 1 (nH = 1),
while the cooperativity is said to be negative, meaning that binding is reduced if there
are occupied sites, for nH < 1. This number gives then a lower bound for the number of
interacting sites, and it is possible to see that it is related to the variance of the mean
number of occupied sites, in our model.

The Hill coe�cient for our general model depends, as expected, on the interaction J ;
in particular for J < 1 we �nd

nH ≡ ∂ log [θ/(1− θ)]

∂ logα
= 4

∂θ

∂α

∣∣∣∣
α=1

= 1/(1− J). (4.24)

Being the derivative of θ for α = 1, the Hill coe�cient is �nite (and greater than one)
for J < 1 and it diverges for J → 1− when the discontinuity appears. An in�nite Hill
coe�cient may seem unrealistic, however it is not an unavoidable feature of our modeling:
in fact h scales with the connectivity of the underlying network of interactions and, while
the latter diverges in this minimal fully connected representation, diluted mean �elds can
still work �nely. The equation above gives a new interpretation of the Hill number nH , in
terms of microscopic e�ective interactions among sites. On the other hand, the coupling
J can be related in this way to the e�ective number of interacting sites.

From those considerations on the solutions of the self-consistence equation (4.10) we
can individuate three regimes that we are going to described.

J<1/4: Weak cooperativity. The values of the coupling for which the curve is hy-
perbolic are the ones below the value J ≤ 1/4. In fact, expanding θ to the �rst order in
α one �nds

∂2θ

∂α2

∣∣∣∣
α=0

= −2(1− 4J) exp(−4J) (4.25)

so for this value of the interactions the binding curve θ is everywhere concave, tending,
for J → 0, to the hyperbolic MM form (whose second derivative −2(1 + α)−3 is always
negative). Note that when J = 0 the expression (4.25) gives, correctly, the MM value −2.
The absence of an in�ection point in the region J ∈ [0, 1/4] allows us to de�ne it as a weak
cooperativity region: the shape of the binding isotherm is practically indistinguishable
from that of a non-cooperative system.
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We can expand the solution of the self-consistency eq. obtaining polynomials at all
the desired orders, more typical of the standard route of chemical kinetics. In particular,
expanding eq. 4.13 at the �rst order in J we obtain

θ(α) ≈ (1− J)α+ α2

1 + 2(1− J)α+ α2
, (4.26)

which is nothing but the Adair equation (eq. 2) as far as we set J = (1− k
3/2
1 k

1/2
2 /2) and

we rescale α → α/
√
k1k2.

1/4 < J < 1: Strong cooperativity From Eq. 4.23 it comes out that when 1/4 < J <
1, there is a unique in�ection point α∗ (whose value increases with J), which separates
the region where θ is convex (small concentration), to the one where it is concave. For
J = 1/4 this point corresponds to α∗ = 0, while it is shifted towards unitary concentrations
(α = 1) when J is close to 1. As a sigmoidal curve has necessarily an in�ection point, we
may talk about strong cooperativity in this interval, in contrast to the weak cooperativity
previously introduced. These very simple de�nitions have the advantage of being directly
related to an e�ective microscopic interaction J , so that the experimental behavior of a
system could allow one to reconstruct this interaction strength and interpret the binding
curve in terms of the mean-�eld model.

J >1: Ultra-sensitivity This region corresponding in the original Ising model to the
�ferromagnetic� phase, the binding curve is still increasing with α, and the expressions
(4.22-4.25) remain valid for α 6= 1. In this point the curve is discontinuous and the jump
is given by θ+(J)− θ−(J), where

θ±(J) = lim
α→1±

θ(α, J).

These two limits depend on J : they are both equal to 1/2 for J = 1, when the curve
is still continuous, and their di�erence increases smoothly with the square root of J − 1
when J > 1 (see Figure 4.2). This means that, starting from vanishing concentration,
the system has less sites occupied, for a given α, than the corresponding non interacting
one, until the concentration reaches the reference value. Here, it is su�cient to increase
in�nitesimally the number of free molecules to obtain a large �lling (depending on J).
After that value, the number of occupied sites is always greater than the corresponding
value for MM. Note that, in principle, if the concentration varies slowly one could observe
metastability, with a curve which continues growing continuously up to values of α > 1.
The entire out of equilibrium features of the model are ruled out in this treatment as we
deal with equilibrium statistical mechanics, however -as a second step- the bridge could
be extended in that direction. If J → ∞ this discontinuity increases, while its derivative
in zero vanishes, so that in the large volume limit we obtain a step function. This kind
of discontinuous behavior can be observed, for example, in the binding isotherms of small
surfactants onto a polymer gel [56]

When J → 1 a second order phase transition appears. This indicates that the corre-
lation between binding sites becomes stronger and the typical trend of thermodynamical
observables is a power law. These scalings, in particular those related to the reaction rate,
can be used to suggest some new measures for almost discontinuous reaction curves [52].
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4.2.2 Anti-ferromagnetic interactions

An interesting aspect of the model under investigation is the property to o�er an unify
scheme for the description of positive and negative cooperativity. The negative cooper-
ativity is achieved by simply consider the parameter J negative. In this last case the
bi-partite form of the energy in (4.10) is essential and constitute the justi�cation for its
introduction.

E({σ}|J, h) = − J

(NA +NB)

NA∑
i=1

NB∑
j=1

σiσj − h

NA+NB∑
i=1

σi. (4.27)

When J < 0 we get the antiferromagnetic mean-�eld model, in which the long range
ordering at low temperatures is quite di�erent from that in the ferromagnet, and the
correct order parameter for the study of the system is the staggered magnetization mA −
mB. For large values of temperature and �eld the stable state is paramagnetic (mA = mB),
but lowering these parameters the system goes through a second-order phase transition in
an antiferromagnetic state, with a staggered magnetization di�erent from zero (see also
Sec 1.1.2 ). In this state there is an asymmetry between the two subsets, as one of the two
is more magnetized. The magnetization, as we have seen, are obtain from the solution of
the following equations:

〈mA〉 = tanh (−JρB〈mB〉+ h) , (4.28)

and equivalently for 〈mB〉. We recast J → −J for outline the negative value of the
parameter. We consider the case of the two parties with the same size, NA = NB,
ρA = ρB = 1/2 The corresponding self-consistence equations for the two average partial
fraction saturations are then:

〈θA〉 =
1

2
tanh

(
−J

2
(2〈θB〉 − 1) +

1

2
logα/α0

)
, (4.29)

〈θB〉 =
1

2
tanh

(
−J

2
(2〈θA〉 − 1) +

1

2
logα/α0

)
. (4.30)

The binding energy logα, as usual, acts on the same way on the two subsets, as it tends
to keep both kind of sites empty when α is small, and �lled when α is large. Just like for
the antiferromagnetic counterpart, it is possible to check (see also Sec. 1.1.2) that there
are two possible behaviors for the system, depending on the interaction strength J , and
on the concentration of ligands α: if J is below a critical value Jc, the two partial fractions
are always equal, for any concentration of external ligands (Fig. 4.3(a)). However, when
the interaction is larger than this value, the two partial fractions are di�erent, in a region
of chemical potential log(α) around zero, as shown in Fig. 4.3(b). Due to the strong in-
teraction and the small chemical potential, it is more convenient for the system to �ll sites
on one of the subsystems and keep less molecules of ligands on the other subsystem. This
region where the two fractions are di�erent corresponds, in the magnetic models, to the
anti-ferromagnetic phase, where the staggered magnetization, measuring the long range
order of the system, assumes a non-zero value. In this case, starting from low concentra-
tions, there is a critical value αc < α0 (and, consequently, of the chemical potential logα),
above which 〈θA〉 − 〈θB〉 start increasing with the concentration, reaches a maximum in
α = α0 and then start decreasing, until, from α = α−1

c on, it is again always equal to
zero. This value of αc, and the corresponding interval width (αc, α

−1
c ) where 〈θA〉 6= 〈θB〉,

depends on the interaction strength J ; when the average interaction equals Jc, we are in
the limiting condition αc = α0 and, increasing the coupling, this interval of concentrations
becomes wider.



4.2 Two-sites interactions 61

If measurements do not discriminate the subsystem to which a site belongs, we have
seen that the total fraction saturation is simply given by 〈θ〉 = (〈θA〉 + 〈θB〉)/2. Thus,
if the interaction is such that 〈θ〉A 6= 〈θ〉B for a given range of concentrations, the total
fraction of occupied sites will assume an intermediate value between the two. In all cases,

(a) (b)

Figure 4.3: Theoretical binding curves (fraction saturations) predicted by the model. (a) Theoret-
ical curve for J = 1.5 (blue line) confronted with the non-cooperative case (in black). In this case
the fraction saturations of the two parties coincide for any value of the concentration of ligands,
and the total fraction saturation coincide with them. (b) Fraction saturations of the two subsys-
tems (red and blue lines) for J = 2.5 ; note that in this case there is a di�erence in the two values
for a given range of concentrations, and in this range the total fraction saturation is the average
of the two (dashed line). The black line represents the non-cooperative case. In both cases α0 = 1.

the binding curves stay above the value of the corresponding non-cooperative curve for a
concentration below the scale α0 (which we have assumed to be equal to one for simplicity),
and below the non-cooperative curve for larger concentrations (Fig. 4.4). This is typical
of negatively cooperative systems, which can thus respond to concentrations on a broader
range with respect to non-cooperative macromolecules, which can be a useful mechanism in
biological systems. On the contrary, we have seen that the e�ect of positive cooperativity
is to trigger a response in the system with small variations of concentrations [57]. Note
that we can express the extent of negative cooperativity in terms of a Hill coe�cient by
generalizing equation (4.24) for negative J , as in this case the resulting number satis�es
nH = 1/(1− J) < 1, which is a common feature of negatively cooperative systems.

(a) (b)

Figure 4.4: Theoretical binding curves (blue lines) for the total fraction saturation versus the
concentration in log scale, confronted with the non-cooperative case (in black). Binding curve for
a negatively cooperative system with (a)J = 2 (b) J = 3.5. Note that here, unlike the other case,
there is a range of concentrations around α = 1 for which the steepness of the curve, coming from
lower concentrations, decreases and then start increasing again for a while.In both cases α0 = 1.
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Binding isotherms are often plotted taking a logarithmic scale for the concentration
of ligands, and in �g. 4.4 we show some theoretical binding curves with the total fraction
saturation plotted as a function of the logarithm of ligands concentration. Figure 4.4(a)
shows the binding curve predicted for a system with interaction strength J = 2. Here the
partial fraction saturations coincide over all concentrations, with negative cooperativity
manifesting itself in the reduced steepness of the curve with respect to the non-cooperative
counterpart (black line). In �g. 4.4(b) we show an analogous plot with J = 3.5 (in blue).
In this case the trend of the curve is more complicated, as in the central region, where
the interaction among sites manifests mostly, privileging the occupation of a subsystem
with respect to the other (〈θA〉 6= 〈θB〉), the steepness of the curve decreases coming
from low concentrations and then starts increasing for a while for α > 1, until it start
decreasing again for larger concentrations. Interestingly, this e�ect can only be seen on
a logarithmic scale of concentrations (compare with �g. 4.3(b)). For low concentrations,
the sites of the two subsystems are equally �lled with ligands, but then, if the negative
interaction strength among sites is su�ciently strong, at a certain concentration one of
the two subsystems begins binding more ligands than the other. The strong e�ect of
mutual negative cooperativity (with respect to the smaller e�ect of the chemical potential
logα in that range) decreases the steepness of the global fraction saturation in a range of
concentrations around unity, but, when the concentration start increasing over that values,
its e�ect becomes more important, and the steepness of the binding curve starts increasing
again, until the partial fraction saturations are re-equilibrated at high concentrations,
where it becomes decreasing towards the total saturation of sites.

This particular behaviour is usually �nd in experimental data (see for instance Fig.
4.11), but while in literature the standard way to handle this experimental data is usu-
ally to �t with an interpolation between two Hill functions, in the mean-�eld model this
behavior comes out naturally as a consequence of the antiferromagnetic phase.
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Figure 4.5: Theoretical predictions of typical binding isotherms obtained from SM models. Di�er-
ent colors refer to di�erent behaviors, as explained by the legend. In particular, as the interaction
strength J is varied, qualitative di�erent outlines emerge: discontinuous or ultra-sensitive (US)
for J = 6, cooperative for J = 2 (CP), anti-cooperative for J = 0.5 (AC), non-cooperative for
J = 1 (NC).

4.3 Fit with experimental data

We have shown in the previous section the versatility of the model in reproducing di�erent
qualitative behaviour of cooperative systems. In this section, we use the model to quan-
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titative modelling experimental data. Before passing to describe the experiments and the
biological systems we brie�y describe the �tting methods used. The �tting parameters
of the model are the coupling strength J , that is another measure of the degree of coop-
erativity and the reference value of the concentration of the free ligand that rescale the
external �eld α0 that can be obtain form the location of the curve in the midpoint usually
known from the experiment.

4.3.1 Fitting procedure

To �t the model, we used a least squared method, where the �tted parameters are chosen
minimizing the di�erence between the observed values and the �tted values provided by
the model. The function to minimize is therefore the sum of the squared residuals, namely:

S =
1

M

M∑
i

(θi − di)
2 (4.31)

where di is the M experimental data relative to the log-concentration hi, θi is the solution
of the self-consistency equations (4.13) calculated in hi.
The algorithm used to minimize the function is the gradient descent of S, since we have
tested that the function is su�ciently smooth. We implement the algorithm with the
software Mathematica. More in detail the algorithm consists in three major steps:

• solving the self-consistency equations (4.13) for the di�erent values of hi, for this
purpose we used the built-in function FindRoot ;

• calculating the sum the squared residuals S, and minimizing with respect to the
renormalized data d′i obtained from the original ones by d′i = basal +maximum di
changing the zero value basal and maximal value maximum, using the built-in func-
tion Minimize. This normalization is necessary for di�erent experimental de�nitions
of the saturation function.

• updating the parameters, the interaction strength J and the mid-values concentra-
tion h0 =

1
2 logα0.

• repeat the previous steps until convergence and calculate the errors on the parame-
ters with standard methods for non-linear �tting as shown in Appendix (B.1).

We describe brie�y the experimental cases of cooperative systems we have considered.
We select in literature three experiments on positive cooperative systems and four exper-
iments on negative cooperative systems in di�erent context (from neurobiology and RNA
riboswitch to colloidal nanoparticles). We show in �gures (4.6)-(4.11) the comparison of
the experimental data and the theoretical prediction of the �tted model.

4.3.2 Positive cooperative cases

1. CaM kinase II
The Calcium-calmodulin-dependent protein kinase II (CaMKII) is one of the most
important transducers of Ca2+ signals in a variety of cell types and is highly
conserved across animal species; in post-synaptic regions, CaMKII is involved in
many signaling cascades and is thought to be an important mediator of learning
and memory. CaMKII displays 12 kinase domains organized into large symmetrical
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holoenzymes. When inactive, CaMKII forms tightly packed auto-inhibited assem-
blies, which, upon activation, convert into clusters of loosely tethered and indepen-
dent kinase domains. The activation is prompted by Ca2+/CaM which, binding
to CaMKII, removes an auto-inhibitory regulatory segment and this releases the
catalytic activity of the enzyme and makes accessible a regulatory residue, namely
Thr−286. Then phosphorylation of Thr−286 by another kinase domain within the
oligomeric holoenzyme can take place. Phosphorylation of Thr−286 keeps CaMKII
active in the absence of Ca2+/CaM by preventing the rebinding of the regulatory
segment to the kinase domain.

In the experiments performed by Chao and coworkers [58], the binding of calcium-
saturated calmodulin to the CaMKII holoenzyme shows clear evidence for positive
cooperativity with a Hill coe�cient nH 3.0. This suggests that the binding of one
molecule of Ca2+-calmodulin to a kinase subunit, which is expected to activate it,
also potentiates adjacent kinase subunits for binding to Ca2+-calmodulin. In the
experiment reported in [58] the velocity of substrate phosphorylation at varying
calmodulin concentrations is measures and since the velocity of substrate phospho-
rylation is proportional to the fractional saturation, once normalized those data, we
�tted them with Eq. 30 and we show the result in Fig. (4.6). The �tting parameters
are discussed in the caption.

2. mRNA riboswitch
In molecular biology, a riboswitch is a part of an mRNA molecule that can directly
bind a small target molecule, and whose binding of the target a�ects the gene's activ-
ity. Thus, an mRNA that contains a riboswitch is directly involved in regulating its
own activity, in response to the concentrations of its target molecule. The discovery
that modern organisms use RNA to bind small molecules, and discriminate against
closely related analogs Most known riboswitches occur in bacteria, but functional
riboswitches of one type (the TPP riboswitch) have been discovered in plants and
certain fungi.

Mandal and coworkers [59], identi�ed a riboswitch class in bacteria that is selectively
triggered by glycine. These riboswitches integrate two ligand-binding domains that
function cooperatively to more closely approximate a two-state genetic switch (�ip-
�op). The authors measured the ligand occupancy of two di�erent RNA constructs,
i.e. VCI-II and VC-II, versus the concentration of glycine, showing that a change
from ∼ 10% to ∼ 90% ligand-bound VCI RNA occurs over a ∼ 100-fold increase in
glucine concentration, while for VC I-II the same change in ligand occupancy occurs
over only a ∼ 10-fold increase in glycine concentration. The related Hill coe�cients
turn out to be nH = 0.97 and nH = 1.64, respectively. In the Fig. (4.6) we show
the comparison with the �tted model, see caption for the details.

3. CaM kinase II, (ultra-sensitivity case)
In the experiment performed by Bradshaw and coworkes [60], it is evidenced that
there can be several issues by which CaMKII responds cooperatively to Ca2+. In
particular, one factor is the cooperative binding Ca2+/CaM to CaMKII and another
factor is the requirement that Ca2+/CaM bind two di�erent CaMKII subunits for
Thr−286 auto-phosphorylation to occur. When both this factors are present, great
sensitivity (nH ∼ 5) is measured from titration curves. This enhanced sensitivity is
referred to as ultra-sensitivity and make CaMKII exhibits an intriguing switch-like
activation that, as the authors notice, likely is important for changes in synaptic
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strength. At the synapse, CaMKII auto-phosphorylation is regulated by the action
of phosphatase, particularly protein phosphatase 1 (PP1). The switch-like response
of a CaMKII−PP1 system suggests that CaMKII and PP1 may function together
as a simple molecular device that speci�cally translates only strong Ca2+ signals into
all-or-none potentiation of individual hippocampal synapses. Experimental data and
inferred model are shown in Fig. (4.7).
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VC II 0± 0.6 1.0± 0.7 0.97

VC I-II 0.3± 0.1 1.4± 0.2 1.64

CaMKII 0.67± 0.03 3.0± 0.3 3

Figure 4.6: The plots show data from recent experiments (symbols) concerning non cooperative
and cooperative binding and �ts through our model (Eq. (4.10)). Here θ stands for the fraction
saturation and the horizontal axis is logarithmic to the scale 10, with concentrations of ligands α
expressed in mol. ( ) represent fraction saturation measurements of CaM binding on CaMKII, for
which an original Hill �t revealed a coe�cient nH = 3.0 (hence positive cooperativity) [58]. Red
continuous line is the best �t with our model, predicting nH = 2.94± 0.06, in complete agreement
with the literature. The green and blue experimental data (squares and triangles) represent the
binding of glycine molecules by the VC I-II RNA ((N), cooperative) and the VCII RNA ((�),
non-cooperative) [59]. The line for the VC II is a Michaelis-Menten curve with α0 = 7.5 × 10−5

mol (J ≡ 0 in our theory) while, the line for the VC I-II is the best �t within our cooperative
model, giving nH = 1.66 ± 0.03. This value is in agreement with the one found in [59] with a
Hill �t, which is nH = 1.64. Note that the MM curve has a sigmoidal form, due to the log scale.
All the �tted values of the interaction parameter, the inferred Hill number, using (4.24), and the
comparison with the Hill number obtain with a �t with the Hill function nlit

H are reported in the
table below the �gure.
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Figure 4.7: Data taken from [60] are still regarding Ca2+ -calmodium-dependent protein kinase II,
which exhibits a switch-like activation (with a Hill number nH 5) when coupled with PP1 (protein
phosphatase I) at various concentration (5µM (N) ,1µM (�), and 0.2µM (�), as reported in the
legend). Continuous line is our best �t over the whole data, whose prediction is nH = 4.89± 0.18,
in total agreement with the literature.

4.3.3 Negative cooperative cases

1. Neuroreceptors mGlu and GABA
The metabotropic glutamate receptors (mGlu) and the GABAB receptors are G-
protein-coupled receptors, which play essential role in the central nervous system
by regulating fast excitatory and inhibitory transmissions. These receptors are ho-
modimers and each subunit is composed of a ligand binding (V FT ) domain and of
a heptahelic domain (HD) responsible for G-protein activation. Structural studies
identi�ed three states for the dimeric VFT domain: open-open (1, 1), closed-open
(0, 1) and closed-closed (1, 1), which, if connected to the HD, give no, partial, and
full activity, respectively. In the experiment reported in [61], the authors used the
puri�ed soluble VFT dimer of mGlu1 as a model, and glutamate as ligand; the Hill
analysis of the titration curve showed negative cooperativity.

Coherently, the experimental results in [61], as also theoretically con�rmed in [62],
evidence an anti-cooperative behavior. As shown in �g. (4.8), the binding isotherms
nicely �t the experimental data and the �t parameters are in agreement with the
discussion [62].
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Figure 4.8: Anti-cooperative behavior, experimental data are taken from the �gure (5) in [62]
( ) representing the fractional response f de�ned as the fraction of receptors concentration in
the active form. The fractional response f is related to the observables nA and nB in the model
by the relation f = (fmax − fmin)(pnA + (1 − p)nB) + fmin, where p = 0.3, fmin = 0.41 and
fmax = 0.89 are �xed parameters taken from [62]. The �tting values of the model parameters are
J = 4.10± 0.05, α0 = 1.09105 ± 103.



4.3 Fit with experimental data 67

2. Metabotropic glutamate receptor, mGluR
Glutamate is a major neurotransmitter in the excitatory synapses of the central
nervous system; in particular, the metabotropic glutamate receptor (mGluR) is a
G-protein-coupled receptor (GPCR), which induces various cellular responses to
glutamate stimulation. Because these cellular responses modulate the degree of
synaptic neurotransmission, mGluRs are believed to be involved in higher order
neuronal activities such as memory, learning, and so on Metabotropic glutamate
receptor (mGluR) has a large N-terminal extracellular ligand binding domain that
forms a homo-dimer. Using the intrinsic tryptophan �uorescence change as a probe
for ligand binding events, Suzuki and coworkers [63] the authors examined whether
allosteric properties exist in the dimeric ligand binding domain of the receptor. A Hill
analysis of the saturation binding curves revealed the strong negative cooperativity
of glutamate binding between each subunit in the dimeric ligand binding domain.

It is worth stressing here a possible explanation for the role of negative-cooperativity.
In fact, bio-chemists stress that negative cooperativity can extend the ligand con-
centration range over which the protein can work [64]. Thus one possible role for
the negative cooperativity is to extend the glutamate concentration range to which
the receptor can respond. This mechanism will be useful in the situations where
continuous stimulation takes place at the synapse. Even in such a situation, the
receptor will be able to respond, because the ligand binding sites of the receptors
on the cell surface would not be completely saturated by glutamate. This mech-
anism will be useful in the situations where continuous stimulation takes place at
the synapse. Even in such a situation, the receptor will be able to respond, because
the ligand binding sites of the receptors on the cell surface would not be completely
saturated by glutamate. The other advantage for the negative cooperativity is a
greater sensitivity for low ligand concentration.
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Figure 4.9: Example of negative cooperativity. Data are taken by Suzuki et al. [63] (�g.7 C in
their paper), showing titration curves for glutamate ( ) and quisqualate (S)-MCPG (�) binding
to the I120ALBD.

3. Colloidal nano-particles
Nano-particles, when exposed to biological �uid, become coated with proteins and
other biomoleculer. In [65] the author have explored this phenomenon by consid-
ering as a model protein the human serum albumin (HAS), which is a major solu-
ble constituent of human blood plasma, and the their absorption is tested against
small polymer-coated FePt and CdSe/ZnS nano-particles negatively charged, whose
matching is tested through �uorescence correlation spectroscopy.

In the experiment, they extracted the hydrodynamic radius RH and used it to es-
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timate the increasing nano-particle size due to protein binding to its surface. The
radius RH is therefore proportional to our saturation function θ and plotted versus
ligand concentration α in the �gure (4.10).
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Figure 4.10: Experimental data ( ) taken from Figure 3 in [65] for the anti-cooperative binding of
human serum albumin onto small (10 - 20 nm) polymer-coated FePt and CdSe/ZnS nanoparticles.
The blue line is the best �t within our model (for a = 1), with J = 1.29± 0.05 and α0 = 5.0± 0.3
mol.

4. Vitreoscilla hemoglobin-like molecule, VHb
The bacterium Vitreoscilla sp. synthesizes a soluble hemoglobin-like molecule (VHb)
in response to hypoxic environments. Vitreoscilla hemoglobin is involved in oxygen
metabolism of this bacterium. Ligand binding isotherms for cyanide, azide, thio-
cyanate and imidazole association to ferric Vitreoscilla Hb are shown displaying
anti-cooperative behavior as monoligation renders thermodynamically unfavorable
the ligand association to the second heme site. Ferric Vitreoscilla HB displays an an-
ticooperative ligand binding behavior in solution. This very unusual feature can only
be accounted for by assuming ligand-linked conformational changes in the monoli-
gated species. There is an interest in Vitreoscilla biotechnology as a means for
improving the e�ciency of cell and plant growth processes on industrial scale. More-
over, Vitreoscilla is capable of inducing the synthesis of a homodimeric hemoglobin.
The thermodynamics and kinetics for cyanide, azide, thiocyanate and imidazole
binding to recombinant ferric vitreoscilla sp homodimeric hemoglobin (Vitreoscilla
Hb) have been determined ot pH 6.4 and 20.0 C. Ferric Vitreoscilla HB displays
an anticooperative ligand binding behavior in solution. This very unusual feature
can only be accounted for by assuming ligand-linked conformational changes in the
monoligated species. Error bars non available.

In Figure (4.11)we show the ligand binding isotherms for ferric VHb in solution:
data were taken from [66] and �t is accomplished via eq. (4.30) �nding a good
agreement. This values of coupling is compatible with a feature of anti-coperativity
in agreement with [66].

4.4 Heterogeneous interactions

One assumption that we have done since the beginning of our analysis is that the a�nity
with ligands of the di�erent binding site and the interaction between them are the same.
This homogeneity in the chemical potentials of the binding sites and in the interactions
between them is related in our model to the description by a single parameter J for the
interactions and α0 for the chemical potentials.

The model can be extended to take into account a relaxation of these assumptions.
The heterogeneity can be introduced in both the coupling parameters and the external
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Figure 4.11: Anti-cooperative behavior, experimental data taken from Figure 1 in [66] for the
binding of di�erent ligands to the recombinant homodimeric ferric Vitreoscilla Hemoglobin in
solution at pH 7.0 and temperature 293 Kelvin(θ stands for the fraction saturation). Comparisons
among the �tted solutions of our theory (solid line) and the experimental data (symbols) are shown
for the ligand binding isotherms for azide(H), thiocyanate ( ) , cyanide (�) and imidazole (�).
The �tting values of the parameters are (with a = 1): (a) cyanide J = 3.05± 0.05, α0 = 3.6 104 ±
102, (b) azide J = 2.9± 0.05, α0 = 1.0 102 ± 1, (c)thiocyanate J = 2.9± 0.05, α0 = 5.9 105 ± 103

and (d) imidazole J = 2.9± 0.05, α0 = 5.8 102 ± 1.

�elds. The two choices account for di�erent chemical property. In the �rst case, the
bound of the ligand to an active site can module di�erently the a�nities of the other sites
(through conformational change of the protein for example). In the homogeneous case,
the e�ect of the bound to a site is the same on all the other, as for the MWC model, while
in this heterogeneous generalization can been di�erent as for the KNF model (see section
(4.2.2). Otherwise, the heterogeneity on the external �elds, introduce di�erent a�nities
in the binding of the ligands by the multiple active sites of the macromolecule. This
can have an e�ect in the global cooperativity of the systems. Indeed recent experimental
�ndings [67, 68] have highlighted, chemical heterogeneity play a crucial role in determining
cooperative e�ects. Modern single-molecule methods show that heterogeneity exists in
many instances: the a�nities for a ligand, for example, can also vary in a ensemble of
macromolecules which have the same binding cooperativity [67]. One of the consequences
of this property is that summing up the individual binding curves, to obtain the overall
curve for the ensemble, can lead to a measure of cooperativity (Hill number, for instance)
which is less than the cooperativity parameter of single macromolecules (see Fig. 4.13).
In the next part of the section, we take into account an extension of the model introducing
the heterogeneity among the couplings. We introduce for this aim a formal description of
each active site i = 1, .., N by a string ξµi of length P , µ = 1, .., P .

Each element of the strings encode a physical-chemical features of the particular bind-
ing sites (for instance: polar or non-polar, containing or not a given subgroup, etc.). We
introduce a functional, which associates to any couple of strings (ξi, ξj) a proper measure
of their coupling strength Jij = J(ξi, ξj). We assume the strings to be binary, i.e. for any
entry µ = 1, ..., P , ξµi ∈ {0,+1}. To simulate heterogeneous couplings, the entries in the
strings are supposed to be random, and the probability distribution is chosen, seeking for
simplicity, as

P (ξµi = 0) =
1− a

2
, P (ξµi = 1) =

1 + a

2
, (4.32)

where the parameter a ∈ [−1,+1] tunes the similarity between strings: for a = ±1 all
the strings coincide and inhomogeneity in couplings is lost, and the coupling assumes its
maximum value; for a = 0 strings are purely random and the inhomogeneity is maximum.
For the choice of the couplings, we focus on a similarity-based interaction which enhances
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the interaction between similar strings, such that

Jij = J0
1

P

P∑
µ=1

(ξµi ξ
µ
j + ξ̄µi ξ̄

µ
j ), (4.33)

where we de�ned ξ̄ = 1− ξ and J0 is a tuning parameter that regulates the importance of
the couplings (Fig. 4.12).

The choice of the interactions resemble very close the hebbian rule in the hop�eld
model (see section 1.3 ), indeed is the same recasting the strings φ = 2ξ − 1 apart for a
constant term:

Jij = J0
1

P

P∑
µ=1

1

2
(φµ

i φ
µ
j + 1), (4.34)

Figure 4.12: Couplings between elements in di�erent parties.

(a) Bipartite couplings: every element
of A interacts with elements in B, and
viceversa.

(b) The coupling is determined by the
number of overlapping bits between two
strings.

The string entries ξµi are all independent and �quenched3� and we denote with E
the expectation with respect to their random values. The resulting average interaction
strength is given by EJij = J0(1 + a2)/2 with variance σ2

J = J2
0 (1 − a4)/4P , so that for

a large number of bits P , the coupling distribution approaches to a delta peaked at J̄4.
As a consequence of the coupling rule of Eq. 4.34, the larger the similarity shared by the
two strings ξi and ξj , the stronger the interaction between sites i and j. In particular,
for the positively cooperative system, i.e. J0 > 0, the higher the magnitude 〈Jij〉 and the
higher the probability of �nding sites i and j both occupied; viceversa, for the negatively
cooperative system, i.e. J0 < 0, the higher the magnitude 〈Jij〉 and the higher the
probability of �nding one site occupied and the other empty. Finally, the particular choice
J0 = 0 recovers again Michaelis-Menten behavior. Clearly, the introduction of the strings
associated to the sites is not the only possible approach to bring in heterogeneity among
couplings. The parameter we are interested in is, in the end, the heterogeneity tuning
parameter a.

As we have seen before, it is possible to associate an e�ective energy to a system whose

3See also part II for a detailed analysis of the meaning of this assumption.
4We stress that, whatever the possible scaling between P and N , e.g. P ∼ Nγ , γ > 0, due to CLT

convergence, the distribution of the couplings, hence of the inhomogeneity among ligands, becomes a
Gaussian, according with [67].
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sites interact with such couplings, and with a concentration of ligands α:

H(σ, α; ξ) = −J0
N

∑
i∈A

∑
j∈B

 1

P

P∑
µ=1

(ξµi ξ
µ
j + ξ̄µi ξ̄

µ
j )

σiσj −
1

2
log(α)

N∑
i

σi. (4.35)

We remind here that the concentration (and consequently the chemical potential) can be
rescaled by taking α → α/α0, with suitable α0. The probability in this case depends also
on the random strings, and is given by

P (σ; ξ) =
1

Z

∑
σ

exp (−H(σ, α; ξ)) , Z =
∑
σ

P (σ; ξ). (4.36)

One can associate to this a free energy F = − 1
N logZ and compute, for instance, the

fraction saturation of a given system in presence of the �disorder� due to the random bits,
by properly deriving F with respect to log(α). This would be a value depending on the
particular choice of the strings, and one should then take its average E with respect to ξ,
which will be denoted by the brackets 〈.〉. Note that in this case there is a double process
of averaging.

We show here only the solution of the statistical problem, for the details of the compu-
tation see the appendix B.2. The equilibrium state of the system is a simply generalization
of the homogeneous case, we have two coupled self-consistence equations for the magneti-
zation in the two parties:

〈mA〉 = tanh

(
J0ρB

1 + a2

2
〈mB〉+ h

)
(4.37)

〈mB〉 = tanh

(
J0ρA

1 + a2

2
〈mA〉+ h

)
(4.38)

(4.39)

while as usual the saturation function is obtained by θ = (1 + ρA〈mA〉+ ρB〈mB〉)/2.
This expression, which returns the average fraction of occupied sites corresponding to

the equilibrium state for the system, is analogous to Eq. (4.17), discussed in section 4.2.1.
The only di�erence is in the coupling term in the argument of the hyperbolic tangent,
which is replaced here with the average coupling divided by two, since in this case each site
interacts with only N/2 sites. The resulting fraction saturation is continuous for J < Jc =
J0(1 + a2)/4, while for J = Jc we have the scenario, previously depicted, corresponding
to a second order phase transition. Conversely, when J > Jc and α = αc = 1, transition
is �rst order, that is the fraction saturation θ becomes discontinuous. The parameter a,
introduced for the distribution of bits in the strings that regulate the couplings, acts as
a heterogeneity parameter for the interactions: as we have seen, inhomogeneity in the
strings is maximum for a = 0 and the couplings assume their minimum value in this case,
vice versa for increasing |a| the interactions increase, and |a| = 1 corresponds to the less
homogeneous situation, with maximum coupling. Moreover, the distribution of couplings
assumes a Gaussian form for a large number of bits codi�ed in the strings, and the width
of this distribution (as well as the average value) depends on the heterogeneity parameter
a: the more its absolute value is near to one, the less is the width (but the larger is the
average interaction strength), while for small |a| the width of the distribution, and so
heterogeneity, is maximum (with the minimum value of the average interaction).

Indeed the e�ect of the heterogeneity encoded in the parameter a is to rescale the
interaction. At �xed interaction parameter J0, it changes the global cooperativity of the
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system. For |a| approaching zero the inhomogeneity increases and the systems is less
cooperative. As shown in the positive cooperative case by the rescaling of the Hill number
:

nhet
H =

1

1− J
(
1+a2

2

) (4.40)

Figure 4.13: (a) Simulated distribution of ligand-binding chemical potentials ∆G0, with a het-
erogeneity parameter H. (b) Theoretical Hill binding isotherms (blue lines) with Hill coe�cient
n = 3. The resulting bulk cooperativity parameter for the best Hill �t to the bulk binding curve
(red line) is nbulk = 1.6 for this example. (c) Reduction of the bulk Hill coe�cient as a function
of the heterogeneity parameter. From [67]

.

4.5 Conclusion

In this second part of the thesis we described a mean �eld statistical mechanics approach
to model cooperativity in biochemistry.

Cooperative behavior is a widespread phenomenon in biochemical reactions involving
the binding of ligand molecules to larger biopolymers with multiple docking sites. The
reason of such ubiquity is that it constitute a fundamental tool to regulate and adapt the
chemical response of biological systems.

Statistical mechanics o�ers a valuable approach as, from its basic principles, it aims
to �gure out collective phenomena, possibly overlooking the details of the interactions
to focus on the very key features. Indeed, a statistical mechanics description of reaction
kinetics has already been paved through theoretical models based on linear Ising chains
[55], spin lattices with nearest neighbors interactions [69], transfer matrix theory [55, 69]
and structural probabilistic approaches [70].

We expand such statistical mechanics picture toward a mean-�eld perspective [52] by
assuming that the interactions among the system constituents are not limited by any topo-
logical or spatial constraint, but are implicitly taken to be long-ranged, as in a system
that remains spatially homogeneous. Neglecting the details of the interaction mechanism
and taking into account only the essential ingredients for the description of the collective
phenomena, an e�ective strength among sites and the chemical potential, we achieved two
goals.
First unifying the collective behaviors previously described by di�erent phenomenological
law into a clear, uni�ed, theoretical scheme. All cooperative behaviors are recover by
varying the parameters as di�erent phases of the model. Showing di�erent qualitatively
regimes in the cooperative and in the anti-cooperative case. Second, we get an analytical
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expression for the saturation function which is successfully compared with recent experi-
mental �ndings, taken from a plethora of di�erent contexts to check robustness.

Furthermore, recent experimental �ndings, due to modern single-molecule methods,
highlight the importance of heterogeneity in determining cooperative e�ects. We showed
how to exploit this model strategy to extend the study to the e�ect of heterogeneity in
the couplings and in the chemical potential of the single molecules.

Moreover, this approach permits to code collective behavior of biosystems into a cy-
bernetical framework. In fact, cybernetics, meant as the science dedicated to the under-
standing of self-organization and emergent communication among the constituents of a
system, can be naturally described via (mean-�eld) statistical mechanics [9]. Thus, the
latter provides a shared formalism which allows to automatically translate chemical kinet-
ics into cybernetics and vice versa.
In particular, as showed detailed in [6], saturation curves in chemical kinetics mirror
transfer functions of di�erent fundamental electronic devices. A conceptual and practical
mapping between kinetics of ultra-sensitive, cooperative and anti-cooperative reactions,
with the behavior of analog-to-digital converters, saturable ampli�ers and �ip-�ops re-
spectively, highlight how statistical mechanics can act as a common language between
electronics and biochemistry.
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Chapter 5

Elements of the biology of antibodies

This chapter is devoted to a short overview on the basic biology of the antibodies. In
particular, we focus on the process of a�nity maturation, that is the ensemble of processes
that occurs in immune system to produce high responsive antibodies. The aim is to give
to the reader unaware of this topics the necessary information to understand the following
section. For an extensive account of the topic, we refer to standard textbooks, see for
instance [71] and [72]. Finally, it is important to point out that many aspects of the
a�nity maturation are not clear and undergoes to an intense research and debate [73].

5.1 Adaptive immune system

The immune system is a system of integrated biological structures and processes within
an organism that protects against disease. To function properly, an immune system must
detect a wide variety of agents, from viruses to parasitic worms, and distinguish them
from the organism's own healthy tissue. This task, that is one of the most intriguing
and elaborate, is called the self/non-self discrimination. Pathogens can rapidly evolve
and adapt, and thereby avoid detection and neutralization by the immune system. One
strategy, for instance, is to mimic organism self molecular features to escape the radar of
the immune system. The unavoidable function of detecting agents potentially dangerous
for the organism needs a careful regulation that involved a huge number of cells and
process.

Adaptive immune system is composed by all the process and cells involved in a re-
sponse that requires the recognition of speci�c �non-self� antigens (small fragments of the
pathogen) during a process called antigen presentation. Antigen speci�city allows for the
generation of responses that are tailored to speci�c pathogens or pathogen-infected cells.
The ability to mount these tailored responses is maintained in the body by �memory cells�.
In case a pathogen infect the body more than once, these speci�c memory cells are used
to quickly eliminate it.

The major functions of the acquired immune system include:

• the recognition of speci�c �non-self� antigens in the presence of �self�, during the
process of antigen presentation.

• the generation of responses that are tailored to maximally eliminate speci�c pathogens
or pathogen-infected cells.

• the development of immunological memory, in order to quickly eliminate a pathogen
if subsequent infections occur.
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The cells of the adaptive immune system are special types of white blood cells (leuko-
cyte), called lymphocytes. B cells and T cells are the major types of lymphocytes and are
derived from hematopoietic stem cells in the bone marrow.

Both B cells and T cells carry receptor molecules that recognize speci�c targets.
T cells recognize a �non-self� target, such as a pathogen, only after antigens have been
processed and presented in combination with a �self� receptor called a major histocom-
patibility complex (MHC) molecule. There are two major subtypes of T cells: the killer T
cell and the helper T cell. Killer T cells only recognize antigens coupled to Class I MHC
molecules, while helper T cells only recognize antigens coupled to Class II MHC molecules.
These two mechanisms of antigen presentation re�ect the di�erent roles of the two types
of T cell.
In contrast, the B cell (BCs) antigen-speci�c receptor is an antibody molecule on the
B cell surface, and recognizes whole pathogens without any need for antigen processing.
Each lineage of B cell expresses a di�erent antibody, so the complete set of B cell antigen
receptors represent all the antibodies that the body can manufacture.

A B cell identi�es pathogens when antibodies on its surface bind to a speci�c foreign
antigen. This antigen/antibody complex is taken up by the B cell and processed by
proteolysis into peptides. The B cell then displays these antigenic peptides on its surface
MHC class II molecules. This combination of MHC and antigen attracts a matching helper
T cell, which releases lymphokines and activates the B cell. As the activated B cell then
begins to divide, its o�spring (plasma cells) secrete millions of copies of the antibody that
recognizes this antigen. These antibodies circulate in blood plasma and lymph, bind to
pathogens expressing the antigen and mark them for destruction by complement activation
or for uptake and destruction by phagocytes. Antibodies can also neutralize challenges
directly, by binding to bacterial toxins or by interfering with the receptors that viruses
and bacteria use to infect cells.
This response is called the humoral immune response, whereas T cells are involved in
cell-mediated immune response.

5.2 Antibody

As we have seen, the antibodies are key elements in the immune response. An antibody
(Ab) is a protein produced by B-cells, also known as an immunoglobulin (Ig), on surface
as membrane receptor or on solution.

Antibodies contribute to immunity in two main ways:

• neutralizing antigen, they prevent pathogens from entering or damaging cells by
binding to them and interfering in the infection process ;

• targeting for e�ector cells and processes, they stimulate removal of pathogens by
macrophages and other cells by coating the pathogen and they trigger destruction of
pathogens by stimulating other immune responses such as the complement pathway.

All these functions depends on the speci�city and the high a�nity of the binding with
the antigen. This two features are accomplished by the presence of a big variability in the
repertoire of antibodies and by selective pressure to bind the antigen.

The structure of the immunoglobulins achieve two main tasks: to have a modular
organization to permits the genetic recombination mechanism, that is the main source of
the variability in the repertoire, and to maintain the stability gives this huge variations



5.2 Antibody 79

of parts of the sequence. Flexibility to structural change on one side, maintaining folding
stability for di�erent sequence arrangements on the other side.

The immunoglobulin is a large Y-shaped glycoproteins, composed by four polypeptide
chains: two identical light chains (L) of length around 210-220 amino acid (can be di�erent
from di�erent antibodies) and two identical heavy chains (H) of length around 450-550
a.a.. Every light chain is bind to a heavy chain by a disolphour bond (that link strongly
two polypeptides) and others non-covalent bonds. Similar combination of disolphour bond
and non-covalent interactions link the two couples (H-L) of light and heavy chains together
(see �gure 5.1).

The �rst around 110 a.a. of the amino terminal region are very di�erent for di�erent
antibodies and constitutes the variable region, region V (for light chain VL and VH for
heavy chain). The speci�city in the antigenic recognition are due to di�erences in this
part. In the variable region (in human) there are three regions called CDR (complementary
determine region) in which are accumulated the di�erences between di�erent monoclonal
antibodies and in which usually lie the binding regions with the antigen, surrounding by
three framework region with a rate of variability lower.

The other part of the chain are called constant region, or region C, the constant part
of the heavy chain are divide in �ve di�erent classes called isotypes (called µ, γ, α, δ and
ε), while the constant region of the light chain are of two types κ and λ.

Figure 5.1: On the right, a schematic representation of the structure of an antibody. Are visible
the two light chains (L) and the heavy chains (H) connected by the disolphour bonds, in both are
highlighted the separation between the variable region (V) and the constant one (C) On the left,
is shown the quaternary structure, the division in the subunits and the the typical position of the
CDRs and the antigen binding sites. Images taken from [72].

5.2.1 Genetic of antibody

In the DNA of a germline there are di�erent genetic segments codifying for di�erent por-
tions of light and heavy chain. This genetic segment of light and heavy chains can't
transcript and traduced in polypeptide unless they are rearranged in functional genes.
During the maturation of the lymphocyte one genetic segment per family is casually se-
lected and reorganized in a dynamic genetic process that can generate a huge number of
di�erent combinations. The mature B lymphocyte presents only one single functional se-
quence for the variable region of heavy chain and one for the light chain. The chromosomic
DNA of the mature B cell is not any more the DNA in the germline con�guration.

The light and heavy chains are codi�ed by di�erent multi-gene families localize in
di�erent chromosomes. Each family contains di�erent coding sequences (gene segments)
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separate by non-coding regions. The families of the light chains are V,J and C while for
the heavy are V,D,J and C. The V,D and J are codifying for the variable region (V,J for
the light case) while the D for the constant. In human, there are 51 gene segments in the
V family, 27 in D and 6 in J, while for the κ(λ) light chain there are 40(30) in V and 5(4)
in J.

The process of production of one coding sequence for the antibody from the rearrange-
ment of the segment of the DNA of the germline is called V(D)J recombination. It is a
very complex molecular process, highly regulate and involve a collection of enzymes some
are lymphocyte speci�c, and some are expressed in many cell types. What happened is
that one gene segment for each family is casually selected and cut, after they are joined
together sequentially to form a coding sequence for the chain.

A diverse human antibody repertoire is a key element of the acquired immune response
and is critical to the e�ective prevention and clearance of microbial infections. As we have
seen, vast diversity in the antibody repertoire is generated initially through a process
of combinatorial rearrangement in which gene segments are assembled into a complete
immunoglobulin sequence. This initial variability is increased through the use of antigen-
driven somatic hypermutation. These a�nity maturation processes result in the creation
of distinct memory populations that contain only antigen-experienced B cells. The main
sources of variability in the repertoire of a B cells during the lymphocyte maturation are:

• V(D)J recombination

� junctional �exibility

� adds of �P� and �N� nucleotides

• association between light and heavy chains

The combinatorial genetic process and the association between light and heavy chains
alone give rise to a variability of order of 1011 of possible immunoglubilins.

Not all the sequences create by the V(D)J recombination correctly codify for antibody,
indeed during the process could occur errors that insert stop codon, giving rise to a not-
productive rearrangement. In addition for productive antibodies could be unstable or
recognize for self-protein and has too be eliminate. These processes that involved also
some intriguing features of immune system like the self-nonself distinction, occur in thymus
during the maturation process of the lymphocyte and give rise to a �ltering or negative
selection of the antibodies repertoire.

5.2.2 A�nity maturation process

While VDJ recombination attributed the initial generation of Ig diversity to the com-
binatorial rearrangement of gene segments, clonal selection account for the subsequent
expansion of B cell clones whose surface Ig �recognized� speci�c antigens led to the pro-
duction of serum antibodies.

In fact, after immunization the a�nity of the antibodies in serum increased dramati-
cally with time, in a phenomenon known as a�nity maturation. This is the consequence of
iterative rounds of Darwinian-like selection of high-a�nity mutants generated by somatic
hypermutation (SHM).

During this process B cell receptor locus undergoes an extremely high rate of somatic
mutation that is at least 105 − 106 fold greater than the normal rate of mutation across
the genome. Variation is mainly in the form of single base substitutions, with insertions
and deletions being less common. These mutations occur mostly at �hotspots� in the
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DNA, known as hypervariable regions. These regions correspond to the complementarity
determining regions (CDR).

The combination of SHM and a�nity-based selection thus provides the �ne-tuning
of low-a�nity germline VDJ rearrangements, greatly expanding the range of antigenic
determinants to which Igs can bind with high a�nity.

A�nity maturation takes place in structures known as germinal centers (GCs). These
are developed in the secondary lymphoid organs such as spleen and lymph nodes contain
primary follicles . When a B cell recognizes an antigen, migrate from the primary focus of
infection into the primary follicles and begin monoclonal expansion give rise to a germinal
center.

During proliferation, the B cell receptor locus undergoes an extremely high rate of
somatic mutation that is at least 105 − 106 fold greater than the normal rate of muta-
tion across the genome. Variation is mainly in the form of single base substitutions, with
insertions and deletions being less common. These mutations occur mostly at �hotspots�
in the DNA, known as hypervariable regions. These regions correspond to the comple-
mentarity determining regions (CDR); the sites involved in antigen recognition on the
immunoglobulin.

B cells that have undergone SHM must compete for limiting growth resources, includ-
ing the availability of antigen. The follicular dendritic cells (FDCs) of the germinal centers
present antigen to the B cells. B cells in this stage are in a state of activated apoptosis
and compete for survival signals from FDCs that present the antigen, meaning the cells
will die unless �rescued� by these survival signals. This rescue process is dependent on
the a�nity of the antibody to the antigen. That is, if a B cell has mutated to have an
antibody with more a�nity to an antigen, it will be more likely to survive.

The functional B-cells then have to interact with helper T cells to get �nal di�er-
entiation signals. The interaction with T cells is believed to prevent the generation of
autoreactive antibodies.

Over several rounds of proliferation, mutation and selection, the resultant secreted
antibodies produced will have e�ectively increased a�nities for antigen.
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Figure 5.2: Overview of the events occurring in the germinal center. GC is divided in two zones
that have di�erent functional roles. A dark zone where the activated B cell proliferates and un-
dergoes somatic hypermutation and a light zone where FDCs present the antigen and the B cell
compete for the binding and the rescue signal from apoptosis. Selected BCs return in the dark
zone for other turns of mutation and selection or di�erentiate in memory cell or plasma cell and
di�use in the organism. Image from [72].



Chapter 6

Multivariate Gaussian modeling for

the repertoires of antibodies

6.1 Multivariate Gaussian Modeling for protein families

A central problem in structural biology is predicting the tridimensional structure of a
protein from the only knowledge of its amino acid sequence. A general recipe for the
approach of the problem is still far to be found [74]. Nevertheless, several strategies have
been followed in order to restrict the problem. For example in [75], a phenomenological
model for the folding of the primary structure is solved through replica method. Here we
focus on the research �eld that deals with the statistical study of correlated substitutions
within multiple sequence alignments (MSAs) of sequences classi�ed in protein families.

A protein family is de�ned as a group of evolutionary related proteins that share a
common ancestor. Proteins in a family are said to be homologous and usually have the
same functional role in di�erent species. So, despite the di�erences in sequence, that can
emerge from evolutionary noise, homologous proteins have, in general, rather convergent
tridimensional structures.

The main idea beyond correlation analysis is that correlation patterns can be related
to structural ones. In particular, contacts between pairs of residues in the native structure
could be related to the presence of strongly correlated substitutions in two columns in the
MSA of the protein family. Quoting [76], �the basic hypothesis connecting correlated sub-
stitution patterns and residue-residue contacts is very simple: If two residues of a protein
or a pair of interacting proteins form a contact, a destabilizing amino acid substitution at
one position is expected to be compensated by a substitution of the other position over the
evolutionary timescale, in order for the residue pair to maintain attractive interaction�.

The �rst attempts to use simple covariance analysis to predict residue-residue contacts
([77], [78]) partially succeeded in identifying some of them but presented a high false
positive rate. As often happens in correlation analysis, the main reason beyond this
mediocre performance is related to the di�culties in disentangling correlations caused by
direct interactions from those produced by indirect ones.

Strategies to overcome the above cited problem have been developed. In particular,
a method called Direct Coupling Analysis (DCA) has been proposed in [79] and [76].
The main idea beyond DCA is that of inferring a probabilistic graphical model from the
alignments so to analyze the inferred interactions instead of the empirical correlations,
disentangling direct and indirect contributions to covariances. In the above cited works,
the choice of the probabilistic model to infer is based on maximum entropy principle

[80], according to whom the least constrained model that reproduce single and pair sites
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Figure 6.1: DI-ranking-based sensitivity-speci�city curves (blue and red) and MI-ranking-based
curves (light blue and magenta), averaged over 53 di�erent protein families. The speci�city as
a function of the rank is de�ned as the fraction of true positive over the pairs with rank smaller
than the indicated one. Gaussian and mean-�eld Potts method are found, up to small �uctuations,
to perform equally well, with a signi�cant and systematic improvement over MI-based methods.
Figure from [81].

amino acids frequencies in the alignment is the Inverse Potts model. This model allows
to de�ne a scalar quantity called Direct Information (DI) that is characteristic of every
pair of positions in the alignment and that is correlated to the magnitude of the inferred
interaction between them. High DI couples are in fact a good predictor of native contacts.

In [79] a message passing approach is used in order to solve the inference problem
paying the price of slow computational times; in [76] the inference is performed within a
mean �eld approximation that would be exact only in the limit of very weak interactions.
Both works represented a breakthrough for the performances of contact predictions based
on residues coevolution.

Starting from the ideas of the above cited works, some of the authors propose an even
simpler probabilistic approach to the problem. That consists of identifying the relevant
(real) variables with the fraction of times a given amino acid is present in a given position of
an alignment of homologous proteins and to hypothesize that they �uctuate according to a
simple multivariate Gaussian distribution. This (strong) assumption permits to completely
solve the inference problem by exact analytical computations. This method, that will
be soon published in [81] under the name of Multivariate Gaussian Modeling (MGM),
allows to achieve competitive performances for contact prediction. The �delity of the
method is highlighted in Figure 6.1 where the average True Positives rate (TP-rate, or
speci�city) of the Direct Information computed with both MGM and mean �eld Inverse
Potts model is compared with that of the Mutual Information (MI) that represents a naïve
pairs covariance analysis.

In the next Section, we expose the mathematical details of MGM [82].

6.1.1 The mathematical method

In a MSA of P , sequences (whose length after the alignment is indicated with N) are
formed by the 20 letters coding for the di�erent amino acids, and may contain alignment
gaps (�−�), such that the total alphabet size is q = 21.

A MSA can be mapped in a binary data set composed by a P×N×(q−1) object (xai )
µ

where the subscript i ∈ {1, . . . , N} runs over di�erent amino acid residues, the superscript
a ∈ {1, . . . , q − 1}, runs over di�erent symbols and the superscript µ ∈ {1, . . . , P} runs



6.1 Multivariate Gaussian Modeling for protein families 85

over di�erent sequences. For example, if for protein µ, site i displays the a − th letter,
then ~xµi = (0, . . . , 0, 1, 0, . . . , 0) will be the unitary vector having only the a− th non null
component equal to 1. As in a MSA in every position a symbol (letter or dash) is present,
while encoding it in a vector ~xµi of length q = 21, so one symbol is can be eliminated and
the vector of length q−1 ~xµi = (0, . . . , 0) will indicate a dash in the position i of the µ− th
aligned sequence. The symbol that is eliminated while passing from the MSA to the x
representation is arbitrary and we choose conventionally it to be the dash. We will refer
to this freedom in the parametrization of the data as gauge invariance.

Furthermore, we promote the variable x to be real numbers (x ∈ R) and we assume
that the sequences (xai )

µ are drawn from a Multivariate Gaussian distribution:
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where we expressed the Gaussian distribution in the parameters {J,H} related to the
mean vector µ and the covariance matrix Σ̂ through the relations: Ĵ = −Σ̂−1 and Hi =
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In this framework we are interested in implementing a Maximum Likelihood (ML)
approach to infer the sets of the model parameters. This standard method selects the set
of values of the model parameters that maximizes the likelihood function. The likelihood
of a set of parameter values, {J,H}, given the data x, is equal to the probability of
those observed outcomes given those parameter values, that is L(J,H|x) = P (x|J,H).
Intuitively, this maximizes the �agreement� of the selected model with the observed data,
maximizing the probability of the observed data under the resulting distribution. In
practice it is often more convenient to work with the logarithm of the likelihood function,
the log-likelihood. See [80] for an extensive discussion on the topic.
Considering this, the log-likelihood of our model parameters {J,H} given the data can be
written as:
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where we show both vectorial and component-wise notation and 〈O〉D := 1
P

∑P
µ=1O

µ is
the empirical average of a generic observable O over the di�erent experiments. Upon
combining together Equations 6.1 and 6.2, we �nally obtain up to irrelevant constants:
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Maximum likelihood estimation of the parameters

Let us de�ne the usual covariance matrix as

Cab
ij = 〈xai xbj〉D − 〈xai 〉D〈xbj〉D . (6.4)

We note that, while 〈xai 〉D represents the fraction of times the a − th symbol is present
in position i in the MSA, while the second one gives informations about the correlated
variation of residues in the same (i = j) or di�erent (i 6= j) positions.

We are now ready to maximize component-wise the log-likelihood L with respect to
the model parameters J and H:

0 = − ∂L
∂Jab

ij

= 〈xai xbj〉D −
∑
k,l,c,d

Hc
k

(
J−1

)ca
ki

(
J−1

)bd
jl
Hd

l − J−1
ij , (6.5)

0 =
∂L
∂Ha

i

= 〈xai 〉D −
∑
j,b

(
J−1

)ab
ij
Hb

j . (6.6)

After inserting Equations 6.5 into Eq. 6.6, we get the �nal relation that gives the maximum
likelihood (ML) estimation of the parameter J and H as a function of the data: De�ning
the usual empirical covariance matrix as

Cab
ij = 〈xai xbj〉D − 〈xai 〉D〈xbj〉D , (6.7)

we get

Jab
ij = (C−1)abij , Ha

i =
∑
j,b

Jab
ij 〈xbj〉 (6.8)

Direct Information

Once the parameters of the model have been inferred, one scalar quantity for every couple
of positions i, j in the alignment can be determined in order to quantify the interaction
strength of the sites. With this aim, the Direct Information (DI) has been developed in
order to be invariant under gauge transformations.

In order to do that, in the same spirit of what we have done in the previous sections,
one could try to infer the ML model in a simpli�ed setting where no interaction is present
between variables. In this latter case, the analogous of Equation 6.1 would be

L({K,L}|DATA) = P

[
−1

2

∑
i

〈~xi · K̂i · ~xi〉D +
∑
i

~Li · 〈~xi〉D − 〈logZ(K,L)〉D

]
=

= P

−1

2

∑
i,a,b

Kab
i 〈xai xbj〉+

∑
i,a

La
i 〈xai 〉D − 〈logZ(K,L)〉D

 , (6.9)
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where the model parameter K is the analogous of J and L of H, and from the functional
structure of the Likelihood function. The statistical independence among the di�erent
proteins is evident. After some simple algebra, one gets that the ML estimation for
{K,L} is given by (

K−1
)ab
i

= 〈xai xbi〉D − 〈xai 〉D〈xbi〉D , (6.10)

La
i =

∑
b

Kab
i 〈xbi〉D , (6.11)

which are the analogous of Equations 6.5 and 6.6 respectively. Given the ML estimators
K,L, we can de�ne the probability of a protein state x given K,L as

P ind(x|K,L) ∝
∏
i

exp

(
−1

2
~xi · K̂i · ~xi + L̂i · ~xi

)
. (6.12)

In a nutshell, the idea is to compare an e�ective two-interacting-sites model whose in-
teraction matrix is the J computed in Equation 6.5 with P ind. Let us de�ne the probability
distribution of the e�ective two-interacting-sites model as

P dir
ij (~xi, ~xj |Ĵij , Ŵi, Ŵj , ~Gi, ~Gj) ∝ (6.13)

∝ exp

(
−~xi · Ĵij · ~xj −

1

2
(~xi · Ŵi · ~xi + ~xj · Ŵj · ~xj) + (~Gi · ~xi + ~Gj · ~xj)

)
∝ exp

(
−
∑
ab

Jab
ij x

a
i x

b
j −

1

2

∑
ab

(W ab
i xai x

b
i +W ab

j xajx
b
j) +

∑
a

(Ga
i x

a
i +Ga

jx
a
j )

)
,

where the parameters Ŵi, ~Gi are chosen such that the single sites marginal of P dir match
the single sites probabilities P ind. We do this in two steps by imposing: (i) the equality of
the connected second moment, (ii) the equality of the �rst moment. Let us note that the
second connected component in a Gaussian measure is just the inverse of the covariance
matrix:

Σdir := 〈xai xbj〉dir − 〈xai 〉dir〈xbj〉dir =

(
Ŵi Ĵij
Ĵ

′
ij Ŵj

)−1

(6.14)

Σind = 〈xai xbj〉ind − 〈xai 〉ind〈xbj〉ind =

(
K̂i 0

0 K̂j

)−1

=

(
K̂−1

i 0

0 K̂−1
j

)
(6.15)

note that in this representation Σdir and Σind are 2(q − 1) × 2(q − 1) matrices. We can
now impose the equality of the diagonal part of the two matrices:

K̂−1
j =

(
Ŵj − Ĵ

′
ij · Ŵ−1

i · Ĵij
)−1

, (6.16)

K̂−1
i =

(
Ŵi − Ĵij · Ŵ−1

j · Ĵ ′
ij

)−1
. (6.17)

Such equations can be decoupled w.r.t. the variables Ŵi e Ŵj :

Ŵj = K̂j + Ĵ
′
ij

(
K̂i + ĴijŴ

−1
j Ĵ

′
ij

)−1
Ĵij , (6.18)

Ŵi = K̂i + Ĵij

(
K̂j + Ĵ

′
ijŴ

−1
i Ĵij

)−1
Ĵ

′
ij ; (6.19)
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and, after some manipulation, one obtains two matricial equations:

A2 −A−M = 0 (6.20)

A = K̂−1
i Ŵi

M = K̂−1
i ĴijK̂

−1
j Ĵ

′
ij ,

B2 −B −N = 0 (6.21)

B = K̂−1
j Ŵj

N = K̂−1
j Ĵ

′
ijK̂

−1
i Ĵij .

Solutions to Eq. 6.20 and Eq. 6.21 can be obtained by diagonalizing matrices M and N
and solving 2(q − 1) independent equations. We are now ready to express the Direct
Information as the Kullback-Leibler (KL) divergence of the two Gaussian measures P dir

and P ind:

DI(J,K)ij ≡ KL(P dir||P ind) =

=
1

2

{
tr(Σ−1

indΣdir) + (〈X〉ind − 〈X〉dir)TΣ−1
ind(〈X〉ind − 〈X〉dir) +

− log

(
detΣdir

detΣind

)
− 2(q − 1)

}
= −1

2
log

(
detΣdir

detΣind

)
(6.22)

since in our case 〈X〉ind = 〈X〉dir and tr(Σ−1
indΣdir) = 2(q − 1).

Data regularization (pseudocounts)

For the maximum likelihood estimations 6.5 and 6.6 of the parameters to be possible, the
covariance matrix needs to be full rank in order to be inverted. As �uctuation in MSAs
are generally limited, usually the experimental covariance matrix is rank de�cient. To
overcome this problem a regularization procedure has to be implemented. The simplest
method for that is adding to the sample a number λ of �ctitious sequences in which
symbols in every site are fairly drawn from a �at distribution. This reduces to manipulate
the data as:

〈xai 〉D −→ (1− π)〈xai 〉D + π
1

q
, (6.23)

〈xai xbj〉D −→ (1− π)〈xai xbj〉D + π
1

q2
(6.24)

where the parameter

π ≡ λ

P + λ
(6.25)

that is referred to as pseudocount parameter, naturally interpolates between the empirical
(π = 0) and completely random (π = 1) data.

In [81] it is clari�ed how the use of a pseudocount based regularization in MGM is
equivalent to the choice of a normal inverse Wishart prior (the conjugate prior of the
multivariate Gaussian distribution) over the parameters of the MGM.
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6.1.2 Multivariate Gaussian Modeling for antibodies diversity: the gen-

eral idea

The possibility of studying the features of the a�nity (or of the neutralization power) of
antibodies directed towards a certain antigen as a function of the sequence of the variable
region is a fundamental issue in structural immunology.

Unfortunately, the size of the available sets of antibodies, for which both the sequence
and the neutralization power toward an antigen is known, is, at the moment, as large as
some tenth of antibodies. The typical size of an antibody's variable region is of order
N ∼ 102 amino acids; as the contributions of the amino acids to the neutralization power
are not independent, the least structured function to describe it would contain at least
(Nq)2 ∼ 106 parameters. So up to now, there is no possibility to estimate the parameters
of such a function with the size of the available data sets.

Nevertheless, the recent developing of sequencing techniques (Deep Sequencing, Next
Generation Sequencing), that are able to produce in parallel up to ∼ 106 sequence reads,
have opened the possibility of extensive experimental studies of the Abs repertoires in
di�erent living organisms. This kind of research is known under the the name of Rep-
Seq (Repertoire Sequencing) experiments (see [83] for a review on the argument). These
techniques have permitted for example to study the complete Igs repertoire of simple
organisms such as the zebra�sh, whose immune system has only ∼ 300000 Abs producing
B cells, hence determining its complete antibodyome (see [84] and [85] for the maximum
entropy analysis of the data). In human, the latter amount to ∼ 109−10 cells, so that
only limited samples of the entire repertoires are available up to now (see for example [86]
for Rep-Seq experiment of Igs in human or [87] for a maximum entropy analysis of TCR
repertoire in human).

As explained in more detail in the previous chapter, the features of the populations of
B cells in host bodies are determined by the processes of genetic recombination, negative
selection that eliminate self-directed antibodies, clonal expansion in response to di�erent
antigens that are or were present in the host body, random mutations (somatic hypermu-
tation) and positive selection of antibodies that have an high a�nity to antigens (a�nity
maturation). All these mechanisms interact in a complex manner to determine the B cell
population present in a body.

In some cases, it should be possible to manipulate Rep-Seq data sets in order to disen-
tangle the processes described above with the aim of obtaining a sample whose evolution
is mainly driven by a�nity maturation and clonal expansion toward a speci�c antigen so
that the resulting data set is highly correlated with the a�nity (or neutralization power)
of the antibodies. Once that this step is ful�lled, a probability distribution that is con-
sidered to have generated the sample can be inferred. If this probability distribution is
indeed observed to be correlated with the a�nity (or neutralization power), then it could
be used as a proxy to study the features of the neutralization power as a function of the
sequences and in principle to propose sequences of high neutralization power.

Moreover, as pointed out in the previous chapter, the a�nity maturation is an evolu-
tionary process in which di�erent B cell clones compete for the antigen in the germinal
centers. The study of the statistics of the population of sequences could also unveil in-
teresting features of the �tness function in the space of sequences related to this process
and in general of the evolutionary dynamics of the B cells. That could be of interest for a
statistical population genetics analysis of the a�nity maturation process, for example in
the spirit of [88].

Within the above described scenario MGM is a useful tool as it interprets the x rep-
resentation of the MSA as a (discrete) sampling from a Gaussian distribution whose pa-
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rameters can be inferred following the procedure outlined above. This distribution over
the real x variable is of the form

P (x|J,H) =
1

Z(J,H)
e−E(x|J,H) (6.26)

where the energy of the model is de�ned as

E(x|J,H) = −1

2

∑
ij

~xµi · Ĵij · ~xµj +
∑
i

~Hi · ~xµi (6.27)

which is the log-likelihood apart from the normalization factor Z(J,H) de�ned in Equation
(6.2).

6.2 Focused evolution of HIV-1 neutralizing antibodies re-

vealed by structures and deep sequencing: a review of

the experimental work

The general idea that guides this work is to use the probability distribution inferred
over a Rep-Seq dataset as a proxy for the a�nity function. This approach has been tested
using the experimental data published in [89], where the Rep-Seq experiment is performed
together with a�nity measurements.

In this Section, the experimental work is reviewed, while the preliminary results of our
analysis are exposed in Section 6.3.

HIV-1 displays an enormous genetic diversity and in this resides a great part of the
infection's strength. Despite this fact, from 10% to 25% of the patients develop cross-
reactive neutralizing antibodies after several years of infection. These individuals are said
to have a broadly neutralizing serum.

In a previous work [90], the authors of [89] isolated VRC01, VRC02 and VRC03, three
similar broadly neutralizing antibodies (bnAbs) from a patient (donor 45) presenting a
broadly neutralizing serum. This VRC01-like Abs have been seen to be bind gp120, a
membrane glycoprotein used by the virus to attach the CD4 receptor on T lymphocytes,
HIV target cells. To avoid neutralization by gp120 directed Abs, during evolution, the
virus has developed a complex structure for gp120: Highly variable domains hide the site
of attachment gp120-CD4 which is the only part of the protein that is under evolutionary
pressure and that, for this reason, has relativley low freedom to mutate. There are struc-
tural experimental evidences that VRC01-like bind exactly this particular site on gp120
([90] and [89]).

VRC01 neutralizes 90% of virus isolates with an average neutralization power IC50 ∼
0.3µg/ml while its predicted unmutated germline ancsestor has low a�nity for the antigen
(dissociation constant in the millimolar range). All VRC01-like Abs display an high level
of mutation (∼ 30% that has to be compared with the 5-15% of mutations in average
Abs) from the inferred germilene. This underlines that, for this kind of antibodies, the
improvement of the neutralization power due to a�nity maturation is substantial. This
fact leads us to the idea that this could be a good system to study the a�nity maturation
process.

In [89], the authors isolated other VRC01-like antibodies from another donor (donor
74). An example of them is VRC-PG04. Couples of such bnAbs with the same unmu-
tated germiline ancestor, from which they are mutated at about 30% and that come from
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di�erent patients (for example VRC-PG04 from donor 74 and VRC-01 from donor 45),
are observed to be very di�erent in sequence (∼ 50%); this underlines the fact that the
(relatively) optimal sequence to bind the gp120-CD4 attachment site is not unique and
that the evolutionary histories of populations of antibodies under analogous evolutionary
pressures may be very di�erent.

The authors performed a crystallographic study on VRC-PG041 in complex with the
gp120. Comparing this with analogous studies on others VRC01-like Abs, they argue that
the most important region for the neutralization are the CDR2 on the heavy chain and
the CDR3 on the light chain of the Ab.

All these facts underline that VRC01-like antibodies are an interesting system to study
both on the fundamental and practical level. Indeed the authors decided to perform Rep-
Seq experiments on donor 45 and donor 74 blood samples with the aim of sampling a part
of the antibodies repertoires on these donors depending on the choice of the primers.

The authors choose 454-pyrosequencing as deep sequencing technique as it allow to
sequence reads up to a length of 700 bp and so to sequence the whole variable region
of both light and heavy chain. The side e�ect of this choice is that 454-pyrosequencing
has a relatively high error rate (1/1000 bp on average) and errors are concentrated on
homopolymers.

Moreover, light and heavy chains are translated into di�erent mRNAs molecules; as
the sequencing technique capture the mRNA in the sample and mRNAs belonging to
di�erent cells are mixed during the procedure, it is only possible to reconstruct separately
the light and heavy chains repertoire and there is no way to match the light and heavy
chains belonging to the same antibody (B-cell clone).

Data of sequencing experiments on light and heavy chains for donor 45 and two ex-
periments on heavy chains of donor 74 have been deposited to NCBI database2.

The authors select a set of antibodies highly mutated and close in sequence to VRC-
PG04. Then they measured the neutralization power IC50 3 of 45 successfully produced
(out of 70 tried for production) chimeric Abs, in which VRC-PG04 light chain was coupled
with heavy chains selected from the highly mutated ones in the sequenced set. The result
of the neutralization measurements of 20 HIV-1 isolates, belonging to the clades A,B and
C, is that heavy chains that are more similar to VRC-PG04 are in general prone to be
(broadly) neutralizing, con�rming that several VRC01-like antibodies are present in the
sample and that they share some features with the known ones. C50 is not a direct
indicator of a�nity although the two can be related at least for competitive agonists and
antagonists by the Cheng-Pruso� equation.[4] For enzymatic reactions, this equation is:

To summarize, the experimental data available from [89], that we are going to use in
the following analysis are:

• Deep sequencing of the heavy chains repertoire (of donor 74). In the sequencing
procedure a set of primers are chosen in order to select the germline of the bnAbs

1Structure factors and coordinates for antibodies VRC03 and VRC-PG04 in complex with HIV-1 gp120
have been deposited with the Protein Data Bank under accession codes 3SE8 and 3SE9, respectively.

2Reference to sequencing data can be found in the Acknowledgment of [89] or at
http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?study=SRP006992.

3IC50 is not a direct indicator of a�nity although the two can be related at least for competitive
agonists and antagonists by the Cheng-Pruso� equation. For enzymatic reactions, this equation is:

Ki =
IC50

1 + [S]/KM

with Ki the binding a�nity, [S] the concentration of the substrate (the antigen in this case) and Km is
the Michaelis constant.
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VRC-PG04.

• Crystallography of the complex VRC-PG04 antibody and the gp120 protein.

• Measures of neutralization power of 45 chimeric antibodies (with VRC-PG04 light
chain) highly mutated against 20 strains of the virus of di�erent clades.

6.3 The Multivariate Gaussian Modeling analysis: prelimi-

nary results

In the following, we describe the analysis performed on sequencing data of the repertoire
of heavy chains variable region of donor 74 from [89] . This donor has been observed to
produce the broadly neutralizing antibody VRC-PG04. The work is still in progress and
the result presented here are meant to be preliminary.

The germline of origin of the VRC-PG04 antibody has gene IGHV1-2*02 coding for
heavy chain V part and IGHJ2*01 for the region J. As the sequence presents as much as
∼ 30% of mutation from the inferred germline, the D gene of origin is too short to be
determined.

For our scopes, from the deposited raw data we have to perform a bioinformatic analysis
that will be described in details in [7]. Here we just underline that, starting form the one
strand nucleotide sequences, our bioinformatic analysis selects the productive ones and
returns a set of amino acid sequences each provided with its multiplicity, i.e. the number
of times a nucleotide sequence coding for the same amino acid sequence is present in the
set. We point out that, di�erently from [89], we only retain productive sequences, i.e.
sequences for which the V and J genes are in frame and that do not present stop codons.
This analysis generates a set 383267 productive amino acid sequences (which reduce to
191661 unique sequences) for the variable part of the heavy chain, provided with the
inferred V and J gene of origin. According to the authors of [89], the sequencing primers
have been chosen in such a way that, in principle, for all the sequenced reads, the inferred
V gene of origin is in the family IGHV1.

Selecting the sequences whose V gene of origin is (one of the alleles of) IGHV1-2 gives
a set of 72649 sequences (37839 unique), while the set of sequences that have IGHV1-2
and IGHJ2 as germline genes of origin consist of 6820 sequences (3258 unique).

It has to be kept in mind that sequences and relative proportions of their abundances
are strongly a�ected by sequencing errors and PCR biases. Moreover, despite the fact
that the selection of the productive sequences reduces the number of sequences presenting
errors, this procedure a�ects the relative proportions of sequences in the population. So
we claim that systematic experimental errors are present and out of our control.

We want to select the antibodies that e�ectively undergoes a�nity maturation against
the HIV virus. For this task two consideration are helping us. Almost all the sequences
that display a divergence from the germline higher than 25% belong to the set that has
IGHV1-2 and IGHJ2 as allelic origin. The broadly neutralizing antibodies individuated
by Wu et al. in the blood sample of donor 74 are remarkably highly mutated from the
same inferred germline, IGHV1-2 and IGHJ2 genes (that are the same of the VRC-PG04
antibody).

In Figure 6.2 we show the identity/divergence analysis for all the sequence with this
germline (see caption for details). In this way is clearly displayed the presence of a cluster
of highly mutated sequences more similar to the broadly neutralizing antibody VRC-PG04.
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Figure 6.2: Identity/divergence analysis of Rep-Seq experiment for heavy chains in donor 74 per-
formed in [89]. On the horizontal axis the divergence from the IGHV1-2*02 germline gene of
origin is reported while the identity to VRCPG-04 sequence is indicated on the vertical axis. Both
quantities are computed at the nucleotides level.

This cluster is well separated from the cluster of typically mutated sequences, more similar
to the V and J germline genes. Remarkably, the same does not happen for Abs with a
di�erent IGHV inferred germline gene.

The e�ective presence of this clustering structure with this two clusters was indeed
veri�ed though clustering algorithms as described in the following of this Section.

Clustering algorithms

The set of sequences with inferred germline in the families of IGHV1-2 and IGHJ2 has been
submitted to a clustering algorithm that has been proposed in [91]. With this algorithm, it
is possible to determine the number of well de�ned clusters: In fact, varying the parameter
λ in the algorithm, the number of clusters in the output develops a plateau exactly when
sequences are optimally separated. Figure 6.3 gives the indication that there are two well
separated clusters.

Using this last information, we performed a clustering analysis on the same set of
sequences (with IGHV1-2 and IGHJ2 allelic origin) by submitting di�erent alignments
to the Matlab algorithm kmeans, �xing at 2 the input parameter corresponding to the
number of clusters.

The consensus sequence of the two clusters were compared with the germline sequence
(i.e. to the concatenated sequences of IGHV1-2*02 and IGHJ2*01 genes) and with the
VRC-PG04 sequence. As shown in Figure 6.4, the consensus sequence of the normally
mutated cluster is similar to the germline genes while for the highly mutated cluster the
consensus sequence is similar to that of VRC-PG04. The size of the two obtained clusters
are respectively of 3471 sequences (1874 unique) and 3349 sequences (1338 unique). In the
following, we will indicate with clusterVJ and clusperPG04 respectively these two sets of
sequences.

The di�erent sets in which the sequences have been divided are resumed in Table 6.1.
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set description size size (unique)

Productive IGHV1 origin 383267 191661

Productive IGHV1-2 origin 72649 37839

Productive IGHV1-2 and IGHJ2 origin 6820 3258

Productive IGHV1-2 and IGHJ2 origin - clusterVJ 3471 1874

Productive IGHV1-2 and IGHJ2 origin - clusterPG04 3349 1338

Table 6.1: Di�erent sets in which sequences have been divided.
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Figure 6.3: Number of clusters as a function of the parameter λ, see [91] for details.
The plateau at 2 indicates that an optimal clustering is obtained with two clusters.

Figure 6.4: Alignment of the consensus sequences of the two clusters with the sequences of VRC-
PG04 (upper case) and the germline (lower case) .
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6.3.1 Comparison between the inferred probability distribution and

neutralization power measurements

As already pointed out, in the work of Wu et al. 70 sequenced heavy chains, mostly
originating from IGHV1-2, were used to construct chimeric antibodies with the light chain
of VRC-PG04. 45 of those have been successfully produced and tested for neutralization
power against 20 HIV-1 virus belonging to clades A (6 viruses), B (8 viruses) and C (6
viruses). Although the neutralization power is a complex function of both light and heavy
chain sequences (see [89], Figure 4A), these measurements can be used as an approximation
of the contribution of the heavy chain to the neutralization power.

The above cited neutralization power measurements (the data relative to which are
in Table S19 and S20 in the Supporting Information of [89] ) can be compared with the
statistical properties of the set. To do this, the highly mutated clusterPG04 has been
selected and a MGM has been inferred on this set considering each sequence with its
relative multiplicity. For the 45 Abs that were tested for neutralization power, the IC50

4

has been compared with the sequence energy gives by the inferred model, using equation
(6.27).

Inference performed with di�erent values of the pseudocount parameter π display a
signi�cant Pearson correlation coe�cient between the inferred energy and the neutraliza-
tion power of single viruses and their average or minimum (see �gure 6.5 and �gure 6.6 -
continuous lines). The viruses in clade A show a better correlation due probably to the
infection of the considered patient by a recombinant A/D HIV virus, for the same reason
the minimum display a greater correlation then the average 5.

This result is very promising and it indicates that the MGM energy inferred on a
proper Rep-Seq dataset could, in general, provides informations about the a�nity function
landscape in sequences space.

To have a deeper understanding of these correlations, we check that the models inferred
from di�erent datasets, in particular the ones depicted in table 6.1, doesn't show the same
correlations (see �gure 6.7).

Moreover, we repeated the above procedure with a factorized MGM (equation (6.12))
on the same clusterPG04 set. In order to see if the single site frequency of the residues
are enough to provide correlations with the measures of the a�nity with the antigen or
it's needed the two point correlations (contained in the complete MGM). The result is
that the correlation of the energy inferred with the factorized model is less (and less
signi�cantly) correlated with the neutralization power then the energy learned with the
complete correlated Gaussian model (see Figure 6.6, dashed lines).

The message that should be learned out of the above result is that, as expected, not
only single mutations but at least correlated pairs of mutation in the variable region
sequence are needed in order to achieve a�nity maturation. Special directions in the
space of sequences (arising from combinations of the single aligned amino acids) that are
more relevant for the a�nity can be considered by learning a correlated MGM over the
considered set.

Starting from this result we'll investigate, in next sections, the reasons for which
the MGM seems to correlate the inferred probability distribution with the neutraliza-
tion power. Which structural features of the Igs that are important for the neutralization
power are captured by MGM? In particular, is it possible to predict the internal con-
tacts through DCA, using the Rep-Seq datasets as it has been done for protein families?

4In [89] is not reported the values of IC50 greater than 50 and for the following analysis we have
considered to �x these values equal to 50.

5The minimum of the IC50 values reside in viruses of the clade A.
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Furthermore, are the inferred model containing information on the interaction of these
antibodies with the antigen gp120? Can we infer the residue in contact with the antigen?
Next Sections try to answer these questions.

6.3.2 Recovering the internal contacts

Direct couplings analysis have been developed in order to recover internal native contacts
in proteins by analysing multiple sequences alignments of homologous protein families,
a natural question is whether it is possible to predict internal contacts of Igs variable
domains through coevolution analysis in an individual's repertoire, so by performing DCA
treating sets of sequenced Igs as a protein families.

We compare the distance map between internal residues extract from the crystallog-
raphy study of VRC-PG04 antibody with the DCA predictions of internal contacts.

As shown in �gures 6.8 and 6.10, sequences of clusterPG04 weighted with the related
multiplicities are not a good set for the prediction of the internal contacts.

Further attempt can be done on other sets of sequences. As a result, as shown in �gures
6.9 and ??, the best result has been obtained with the largest set, i.e. all sequenced reads
without any regards to the inferred germline, other, of course, than the constraint due to
the selection of the primers that, as explain select Igs with inferred V gene in the family
IGHV1. 6 In any case, also with this larger set, the method doesn't provide a satisfactory
performance in recovering the internal contacts of IGs variable domains. This is probably
due to the relatively too low degree of variability that is present in the set that does not
leave space for covariation of residues in contact.

6where is used a reweighting procedure that eliminates the e�ect of the sequences multiplicity, method
described in [76].
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Figure 6.5: An example of the comparison between the energy of the MGM inferred on clusterPG04
and the minimum (Panel (a)) and the average (Panel (b))of the neutralization IC50 titer. In
both showed examples, the MGM is learned with pseudocount π = 0.5. The Pearson correlation
coe�cient is 0.78 for the minimum ( p-value 5E-6) and 0.69 (p-value 1.2E-5) for the average.
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Figure 6.6: Panel (a): Scaling with the pseudocount of the Pearson correlation coe�cient between
the energy of the MGM learned on clusterPG04 and the average IC50 neutralization titer against
the 20 tested HIV-1 viruses. Black continuous lines correspond to a full MGM while red and dashed
lines to a factorized (J ≡ 0) MGM.
Panel (b): Scaling of the p-value of the Pearson correlation coe�cient displayed in panel (a). The
same legend hold.
The complete MGM seems to signi�cantly explain the neutralization power measurements while
the factorized model gives correlation coe�cients lesser, that drops for increasing values of pseu-
docount.
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Figure 6.7: Left panel: Pearson correlation coe�cient between the energy of the inferred model
and the measures of neutralization power, for di�erent data sets:
1) cluster PG04; 2)cluster VJ 3)All seqs with inferred IGHV1-2 germline gene;4) Seqs with any
IGHV and IGHJ inferred germiline genes.
In red are shown the average measure and in blue the minimum.
Right panel: Logarithm of the p-value for the same cases.
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(a) π = 0.8 (b) π = 0.5

(c) π = 0.2 (d) π = 0.01

Figure 6.8: Direct Information map computed on the clusterPG04.
The internal contact map of VRC-PG04 heavy chain is shown in grey. Two residues are considered
to be in contact if at least a couple of atoms is at distance lower than 8 Å. The �rst 300 couples with
higher DI are displayed in red when they superpose to the internal contacts (true positive internal
contact predictions) and in green when they do not (false positive internal contact predictions).
Residues with a distance along the a.a. sequence greater than 4 are not considered because they
provide trivial contacts [76]. The di�erent maps correspond to di�erent values of the pseudocount
parameter, pc: a) π = 0.8; b) π = 0.5; c) π = 0.2; d) π = 0.01.
In every plot the DI is computed by learning the Gaussian model on the sequences belonging to
clusterPG04.
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(a) IGHV1-2 IGHJ2 (b) IGHV1-2

(c) all germline (d) all germline reweighted

Figure 6.9: Direct information map computed on di�erent set of sequences.
The explanation of the maps and the color legend is the same as in Figure 6.8.
Di�erent maps correspond to di�erent sets of sequences. a) Seqs with inferred IGHV1-2 and
IGHJ2 germline genes; b) Seqs with inferred IGHV1-2 and any IGHJ inferred germline genes
c) Seqs with any IGHV and IGHJ inferred germiline genes; d) Seqs with any IGHV and IGHJ
inferred germiline genes that are the result of a reweighting procedure with θ = 0.01 (see [76]).
Every map has been computed with constant pseudocount parameter π=0.5.

Figure 6.10: Sensitivity-speci�city curves: DI-ranking-based in blue and MI-ranking-based curves
in red. Speci�city is de�ned as in Section 6.1. Only couples that are at distance larger than 4
amino acid are considered.
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6.3.3 The antigen - heavy chain interaction

Since in the crystallographic structure the broadly neutralizing antibody VRC-PG04 is
resolved in complex with the gp120 we can ask if it is possible to predict some feature of
the Ab-antigen binding by analysing the population of sequences present in the sample.

The simplest analysis that can be performed is on the variability of the residues in the
columns of the alignments. A measure of it are the entropies of the empirical distribution
of residues in each column in the alignment. Then, we focus on the residues that the
resolved structure say to be in contact with gp120. The site entropies computed on
clusterPG04 have to be compared with the backround ones that encodes the average
variability of antibodies maturated from the same germline genes. As a �rst try, we
approximated this background with the clusterVJ, see �gure 6.11. As an alternative
procedure, a library of the deposited antibodies sequences with inferred IGHV1-2 allelic
origin has been constructed and assumed to represent the reference background of the
IGHV part of the sequences. Both procedures give the convergent information that the
amino acids in contact with the antigen have very di�erent behavior with respect to the
variability. Indeed some of the contact residues happens to be less variable in the mutated
cluster than in the background. This is the case for Arg71, an amino acid which is observed
to form a crucial interaction (salt bridge) with an Asp in the binding region of gp120. On
the contrary, other contact residues (most of which are in the CDR2 region) are observed
to be more variable in the mutated cluster than in the background.

The heterogeneity of the nature of the contacts between the antibody and the antigen
does not seems to permit to individuate the contact residues by simply analysing the single
site entropies of the populations of antibodies.

The structure of the correlations between di�erent columns in the MSA is another
interesting feature of the populations that can be related to the details of the binding
between the antibody and the antigen.

In fact, sequences belonging to clusterPG04 are peculiar for the emergence of a strong
interaction pattern among a set of sites mostly belonging to the CDR2 region. The high
DI signal in the CDR2 is more evident for high pseudocounts (see Figure 6.12).

An explanation for this observation could relay in the fact that, in the tridimensional
structure, the CDR2 loop appears to be shifted with respect to its typical position in
order to permit the exposition of Arg71VRC-PG04 that can so from the critical interaction
Arg71VRC-PG04 - Asp368gp120. So while the presence of Arg in position 71 is mandatory to
establish the interaction, as it can form a salt bridge with Asp, the residues in CDR2 do
not feel a strong constraint and are more free to mutate, provided that they evolve in a
correlated fashion preserving the exotic position of the loop.

This argument seems to be con�rmed by comparing the DI in the two clusters. The
high DI pattern of the CDR2 is characteristic of the highly mutated clusterPG04 and is
not present in clusterVJ that is more similar to the germline genes, as shown in �gure
6.13.

The above explanation of the DI structure is still under investigation and needs to
be con�rmed by bioinformatic analysis. Anyway this is probably one of the structural
characteristics of the population that are recovered by the MGM method in order to
generate the results exposed in Section 6.3.1.
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Figure 6.11: Upper panel: single site empirical entropies for clusterPG04, where are highlighted
the residues of VRC-PG04 that are in contact with the antigen.
Lower panel : di�erence of the empirical single site entropies computed on clusterPG04 and the
background, the germline cluster clusterVJ.
Vertical lines separate frameworks and complementary determining regions, following: FWR1,
CDR1, FWR2, CDR2, FWR3, CDR3.
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(a) π = 0.8 (b) π = 0.5

(c) π = 0.2 (d) π = 0.01

Figure 6.12: Direct Information map computed on the clusterPG04.
Third column: Grey lines highlight columns and raws referring to residues of the VRC-PG04
heavy chain than are in contact with the antigen (gp120). Dots represents the �rst 300 couples
with higher DI and they are colored in red if at least one of the amino acid of the couple is in
contact with the antigen and in green otherwise.
Di�erent maps correspond to di�erent values of the pseudocount parameter, pc. a) π = 0.8; b)
π = 0.5; c) π = 0.2; d) π = 0.01.
In every plot the DI is computed by learning the Gaussian model on the sequences belonging to
clusterPG04.
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(b) group 1 (c) group 2

Figure 6.13: Comparison of the DI computed on clusterPG04 and clusterVJ (see main text for
details).
Upper panel: In the scatter plot the DI computed on clusterPG04 (vertical axis) is compared with
the DI computed on clusterVJ (orizontal axis). Circled couples correspond to pair of residues for
which the DI>2.5 when computed on both clusters. Pairs for which the DI is higher when computed
on cluster PG04 are circled in green (group 1), while those for which the opposite happens are
circled in green (group 2).
Left panel: Pairs belonging to group 1 are compared with the contacts with the antigen as explained
in Figure 6.8.
Right panel: Same as in left panel but for group 2.
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6.4 Conclusions

In this part of the thesis, we have reported the preliminary results on an analysis performed
on deep sequencing data of a repertoire of antibodies through Multivariate Gaussian mod-
eling. The used data set is very promising for the study of the a�nity maturation process
as it presents immunoglobulins with many mutations with respect to the germline genes
due to the strong evolutionary pressure provided by the presence of HIV-1 gp120 as an
antigen. This cluster of antibodies (clusterPG04 ) contains highly mutated antibodies that
underwent the a�nity maturation process.

The experimental work provides, in addition to the sequencing data, the measures
of neutralization power of a set of chimeric antibodies construct from the high mutated
cluster and the crystallography study of the complex antigen with VRC-PG04 Ab, which
is a broadly neutralizing Ab similar in sequence to this cluster. These data permit to
design some strategies to test if the inferred model can be used as a proxy to study the
a�nity function on the sequences space and to extract information on structure of the
antibodies and its interaction with the antigen.

Up to now, the central result of the analysis is that, having learned a MGM on the
heavy chains of this group of highly mutated Abs, the inferred energy of the measured
Abs correlates with the neutralization titers. The result needs to be deepened but, if
con�rmed, it would allow to use Rep-Seq data to study the structure of the neutralization
power as a function of the sequence.

As shown in [89], gp120 directed a�nity maturation can walk through di�erent di-
rections in the space of sequences. In fact, bnAbs with the same inferred germline and
convergent tridimensional structure but found in di�erent donors display highly divergent
sequences (∼ 50%). This fact suggests that the neutralization power in the space of se-
quence can be imagined as a multivalley landscape and that a single valley is explored
by di�erent patients. The perspective of an integration of multiple Rep-Seq experiments
performed on di�erent donors seems an interesting step forward for the understanding of
the neutralization power optimization.

On the structural level, Gaussian DCA analysis on Rep-Seq data does not seem to
produce good results for the prediction of internal native contacts. This suggests that the
evolutionary process doesn't have the possibility to explore enough the sequence space (due
probably to temporal constraint) to shows variations on the backbone of the structures,
condition needed for the success of the DCA approach.

Nevertheless, the inferred model seems to contain information on the Abs-antigen inter-
action. Despite the fact that a naïve analysis on the variability of the di�erent positions of
the residues in the MSA don't seem to represent a satisfactory tool for predicting antigen-
heavy chain contacts, functional high DI patterns appear and can be related to more
complicated structural features that can be involved in the optimization of the antigen
binding. Considering this, instead of �nding a unique mark for the detection of residues
in contacts, ongoing research attempts to develop di�erent tools to account the hetero-
geneous nature of the acquired mutations (key strong bonds, modi�cations to increase
structural stability, etc.).
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Appendix A

part I

A.1 Detailed computation of the t streaming of thermody-

namic pressure Ã

In this section we report the detailed computation necessary to get the expression of the
t streaming of the thermodynamic pressure Ã(α, β, t) report in Sec. 2.2.2 in Eq. (A.5).
When evaluating the streaming ∂tÃ, we get the sum of four terms (A,B, C,D); each
comes as a consequence of the derivation of a corresponding exponential term appearing
into Equation (2.31). In order to proceed we need to compute them explicitly:

A =
1

N
E

√
β

2
√
tN (1−θ)/2

lη ,lχ∑
i,µ

ξµi ω(σi, zµ) =
1

N
E

√
β

2
√
tN (1−θ)/2

lη ,lχ∑
i,µ

∂ξµi ω(σi, zµ)

=
1

N
E

β

2N (1−θ)

lη ,lχ∑
i,µ

[
ω(σ2

i , z
2
µ)− ω2(σ2

i , z
2
µ)
]
=

=
1

N

β

2N (1−θ)

∑
lη ,lχ

P (lη, lχ)lηlχ

[
〈z2µ〉G − 〈qlη12p

lχ
12〉G

]
=

=
1

N

β

2N (1−θ)
NL

(
1 + a

2

)[
〈z2µ〉 − 〈qlη12p

lχ
12〉
]
=

αβ

2

γ

2

[
〈z2µ〉 − 〈qlη12p

lχ
12〉
]
, (A.1)

where in the �rst passage we used integration by parts and, in the fourth, the factorization
properties of the quenched averages [30, 92, 41, 93, 94] (which should be understood in
the thermodynamic limit).

The same procedure can be used in the computation of the other terms, so to get:
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Now, the t-streaming of the pressure reads o� as
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A.2 Detailed computation of the t streaming for a generic

observable Os

In this section we report the detailed computation of the results, showed in Eq. (2.48)
(section 2.3) of the t streaming of a generic observable Os of s replicas.
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The t-streaming of 〈O〉t is then
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In the last equation eight terms contribute. Let us call them A1, B1, C1, D1, A2, B2, C2,
D2 and compute them explicitly:
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And with analogous calculations
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Therefore, merging all these terms together, the streaming is
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part II

B.1 Errors on the �tting parameters

We show in this section how to calculate the errors on the �tting parameters using standard
methods for non-linear �tting procedure. For simplicity we consider the positive cooper-
ative case, without loosing generality. To obtain the errors on the �tting parameters we
have to compute the Hessian matrix Ĥ
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(B.1)

Consider the �rst element of the matrix.
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N−2δk,j ' 2δk,j . Di�erentiating the self-consistency equation we get

the second term ∂θk
∂J :

∂m

∂J
= (1−m2)

(
J
∂m

∂J
+m

)
⇒ ∂m

∂J
=

(1−m2)m

1− J(1−m2)

Recall that θ = 1/2 +m/2, we get:

∂2S

∂J2
=
∑
k

(
(1−m2)

1− J(1−m2)

)2

The other elements of the Hessian matrix ∂2S/∂h20, ∂
2S/∂J∂h0, are computed in the same

way, considering that
∂m

∂h0
=

(1−m2)

1− (J(1−m2)

Finally the errors on the parameters are obtained by the product of the squared residuals
and the inverse of the Hessian matrix e = SDiag{(Ĥ)−1}.

The Hill number is obtained by the derivatives of the function in the half-value of
θ in α∗. Deriving the hill function, namely θH = 1/(1 + (α/α0)

−nH ), we gets:

∂θH
∂α

|α∗=
nh

4α/α0

(α/α0)
−nH

(1 + (α/α0)−nH))2
|α∗=

nh

4
(B.2)
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where we use that θ(α∗) = 1/2, α∗/α∗
0 = 1. Recalling that h = (1/2)log(α), the derivatives

in the half-curve value in our model is:

∂θ

∂α
=

1

4α/α0

1− (2θ − 1)2

1− (1− (2θ − 1)2)J
=

1

4(1− J)
(B.3)

Recall that nH = 1/(1 − J), the error on the Hill number is ∆nH = ∆J/(1 − J)2. Note
that approaching the critical point J → 1− the error on the Hill number diverges.

B.2 Calculations of the self-consistencies in the heteroge-

neous case

In this appendix we outline in details the calculations required to obtain explicit expres-
sions for 〈mA〉 and 〈mB〉, in the heterogeneous extension of the model, described in section
4.4.

As explained in the main text, we consider a bipartite system made of two subsets A
and B whose sizes are NA and NB elements, respectively, with NA +NB = N . The spin
of subset interact we the spin of the other through this coupling :

Jij = −J0
P

P∑
µ=1

(ξµi ξ
µ
j + ξ̄µi ξ̄

µ
j ), (B.4)

we denote with ξµi the µth bit of the ith string, which can assume the values 0, 1 according
to the probability distribution

P (ξµi ) =
1 + a

2
δξµi ,1 +

1− a

2
δξµi ,0, (B.5)

where a is a parameter ranging in the interval [−1, 1] and we denote with ξ̄µi = 1 − ξµi
the complement of a bit. The more the two strings ξi and ξj are similar, the more the
spins σi and σj tend to "disagree", viceversa, the smaller the string overlap, the weaker
the tendency of the spins to interact; this corresponds to a random anti-ferromagnetic
interaction.

The Hamiltonian which de�nes the model is then the sum of the energies due to the
interaction between spins and with the external �eld:

H(σ; ξ, h) =
J0
NP

∑
i∈A, j∈B

P∑
µ=1

(ξµi ξ
µ
j + ξ̄µi ξ̄

µ
j )σiσj − h

N∑
i=1

σi. (B.6)

We now introduce the pattern overlap qAµ (σ
A) and the magnetization mA(σ

A) for the
subsystem A as

qAµ (σ
A) =

1

NA

∑
i∈A

ξµi σi, mA(σ
A) =

1

NA

∑
i∈A

σi, (B.7)

which respectively measure the resemblance between a microscopic state σA and one par-
ticular pattern ξµi=1...N and the net number of active elements. Note that the quantity
qAµ (σ

A) can be also interpreted as the magnetization of a subgraph of the subsystem A

speci�ed by the non-null bits of the string ξµi . We similarly de�ne the quantities qBµ (σ
B)
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and mB(σ
B) for the subsystem B. Then we may rewrite the Hamiltonian as

H(ξ;σ, h) = J0
NANB

N

 2

P

P∑
µ=1

qAµ (σ
A)qBµ (σ

B) +mA(σ
A)mB(σ

B)

− 1

P

P∑
µ=1

qAµ (σ
A)mB(σ

B)− 1

P

P∑
µ=1

qBµ (σ
B)mA(σ

A)

− h
(
NAmA(σ

A) +NBmB(σ
B)
)
.

(B.8)

The �rst term, in square brackets, is clearly large when the magnetizations (and pattern
overlaps) of the two systems have the same sign, while the interaction with the external
�eld tends to align all the spins with the sign of h. Due to this competition, we expect
that the system goes trough di�erent phases by varying the ratio J/h: when the external
�eld is small, the leading contribution to the free energy comes from the coupling term
J , so in this case the phase of system is anti-ferromagnetic, with two di�erent values for
the magnetizations of the two subsystems. On the other hand, when the external �eld is
su�ciently strong or J small enough, we expect the two magnetizations being equal so
that the phase is paramagnetic (in a �eld), and there is a phase transition separating the
two.

In the zero noise case, the entropic term is vanishing and we may easily evaluate the
critical �eld hc(J) for which the transition occurs. Assuming without loss of generality
NB < NA and h > 0, in the anti-ferromagnetic phase (AF) we have all the spins of the
subsystem A aligned with the �eld and all the spins belonging to subsystem B oriented
in the opposite direction, while in the paramagnetic phase (P) both the subsystems are
aligned with the �eld:

HAF = − J0
NP

∑
i∈A

∑
i∈B

∑
µ

(
ξµi ξ

µ
j + ξ̄µi ξ̄

µ
j

)
− h(NA −NB) (B.9)

HP = +
J0
NP

∑
i∈A

∑
i∈B

∑
µ

(
ξµi ξ

µ
j + ξ̄µi ξ̄

µ
j

)
− h(NA +NB). (B.10)

Equating the two and averaging over the disorder, one obtains the critical �eld at zero
noise level

hc(J0, a) = J0
NA

N

1 + a2

2
. (B.11)

To describe the system as a whole, we introduce the global pattern overlap qµ and the
global magnetization m:

qµ(σ) =
NA

N
qAµ (σ

A) +
NB

N
qBµ (σ

B), m(σ) =
NA

N
mA(σ

A) +
NB

N
mB(σ

B). (B.12)

Moreover, we need some quantities which are able to describe an antiferromagnetic phase,
so we introduce the staggered overlap pµ and staggered magnetization n:

pµ(σ) =
NA

N
qAµ (σ

A)− NB

N
qBµ (σ

B), n(σ) =
NA

N
mA(σ

A)− NB

N
mB(σ

B). (B.13)
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In terms of these quantities, the Hamiltonian is

H(σ; ξ, h) = NJ0

 1

2P

P∑
µ=1

(
q2µ(σ)− p2µ(σ)

)
+

1

4
(m2(σ)− n2(σ))

− 1

2P

P∑
µ=1

qµ(σ)m(σ)− 1

2P

P∑
µ=1

pµ(σ)n(σ)

−Nhm(σ). (B.14)

Saddle point equations for the pattern overlaps

The quenched free energy F (J0, h) and the partition function Z(ξ; J0, h) are introduced
as follows:

F (J0, h) = − lim
N→∞

1

N
E logZ(ξ; J0, h) = − lim

N→∞

1

N
E log

∑
σ

e−H(σ;ξ,h). (B.15)

Since the Hamiltonian depends on σ only through the quantities (B.12,B.13) we can
choose these as order parameters and de�ne the so-called constrained partition function
Z(q,p,m, n) as

Z =

∫
dq

∫
dp

∫
dm

∫
dn Z(q,p,m, n) (B.16)

=

∫
dq

∫
dp

∫
dm

∫
dn D(q,p,m, n) exp [−NH(~q, ~p,m, n)] (B.17)

where

H(~q, ~p,m, n) = J0

 1

2P

P∑
µ=1

(
q2µ − p2µ

)
+

1

4
(m2 − n2)− 1

2P

P∑
µ=1

qµm− 1

2P

P∑
µ=1

pµn

− hm.

(B.18)
and D(~q, ~p,m, n) is the density of states:

D(~q, ~p,m, n) =
∑
σ

δ(m−m(σ))δ(n− n(σ))
P∏

µ,ν=1

δ(qµ − qµ(σ))δ(pν − pν(σ)). (B.19)

Using the integral representation for the δ and summing over σ this can be written as

D(~q, ~p,m, n) =

(
N

2π

)2(P+1) ∫ +∞

−∞
d~x

∫ +∞

−∞
d~y

∫ +∞

−∞
dz

∫ +∞

−∞
dw exp[Ns(~q, ~p,m, n, ~x, ~y, z, w)]

(B.20)
where

s(~q, ~p,m, n, ~x, ~y, z, w) = i
[
~x·~q+~y·~p+zm+wn+

1

N

N∑
i=1

log 2 cos

 P∑
µ=1

ξµi (xµ + εiyµ + z + εiw)

].
Here εi is a function of the site which takes the value +1 if i ∈ A and −1 for i ∈ B. The
constrained entropy s(~q, ~p,m, n), i.e., the log-density of states, can be evaluated by saddle
point integration of the (B.20), taking the extremum respect to the 2(P + 1) parameters
~x, ~y, z, w. Then, �nding the minimum of the constrained free energy respect to the order
parameters ~q, ~p,m, n

f(~q, ~p,m, n) = H(~q, ~p,m, n)− s(~q, ~p,m, n), (B.21)
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one obtains the real free energy per spin of the system, in the thermodynamic limit, and
the self-consistence equations which rule the behavior of the system for a given realization
of the disorder

qµ =
1

N

∑
i

ξµi tanh θ(~q, ~p,m, n) (B.22)

pµ =
1

N

∑
i

εiξ
µ
i tanh θ(~q, ~p,m, n) (B.23)

m =
1

N

∑
i

tanh θ(~q, ~p,m, n) (B.24)

n =
1

N

∑
i

εi tanh θ(~q, ~p,m, n) (B.25)

with

θ(~q, ~p,m, n) = −J0
m− εin

2

(
1− 1

P

P∑
ν=1

ξνi

)
+

J0
P

P∑
ν=1

qν − εipν
2

(1− 2ξνi ) + h. (B.26)

Then it is easy to obtain from these the self-consistence equations for the subsystem
parameters,

qAµ =
1

NA

∑
i∈A

ξµi tanh

(
−J0

NB

N
mB

∑
ν ξ̄

ν
i

P
+ J0

NB

N

∑
ν q

B
ν (1− 2ξνi )

P
+ h

)
(B.27)

mA =
1

NA

∑
i∈A

tanh

(
−J0

NB

N
mB

∑
ν ξ̄

ν
i

P
+ J0

NB

N

∑
ν q

B
ν (1− 2ξνi )

P
+ h

)
(B.28)

with the corresponding equations for ~qB and mB which are easily obtained by exchanging
A and B. Looking at equation (B.28), we notice that the magnetization is a sum of terms
which may be interpreted as the (thermal) average of the local magnetizations ω(σi), so
that

ω(σi) = tanh

(
−J0

NB

N
mB

∑
ν ξ̄

ν
i

P
+ J0

NB

N

∑
ν q

B
ν (1− 2ξνi )

P
+ h

)
(B.29)

for i ∈ A. The e�ective �eld acting on the spin, corresponding to the arguments of the
hyperbolic tangent, contain two terms, besides the external �eld. The �rst contribution is
given by the opposite magnetization of the other subsytem, weighted by a proper factor
which is proportional to the fraction of zero bits in the string associated with the spin i,
and the second term contains the correlations between the string ξi and the strings of the
interacting spins, encoded in qν .

In the particular cases in which a = 1 and a = −1 the interaction is the same (maxi-
mum) for all the couples of spins, and in fact there is no randomness. The only di�erence
is that in the �rst case the pattern overlaps correspond all to the magnetization, while in
the second they all vanish. We may then recover the mean-�eld equations for a bipartite
antiferromagnetic system:

mA = tanh

(
−J0

NB

N
mB + h

)
(B.30)

mB = tanh

(
−J0

NA

N
mA + h

)
. (B.31)
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To obtain the average pattern overlap 〈qAµ 〉 and magnetization 〈mA〉 for a generic a we �rst
observe that, being all the bits equivalent, the average pattern overlaps are all equivalent
and we may drop the index µ, so that 〈qAµ 〉 = 〈qA〉. Then, looking at the arguments of

equations (B.27, B.28) - if we approximate qBµ and mB with the averages over the disorder
of these quantities - it is clear that they only depend on the bits through the number of
non-zero bits k in each string, which has a binomial distribution:

〈qA〉 =
1 + a

2

P−1∑
k=0

(
P − 1

k

)(
1 + a

2

)k (1− a

2

)P−1−k

(B.32)

tanh

(
−J0

NB

N

P − 1− k

P
〈mB〉+ J0

NB

N

P − 2(k + 1)

P
〈qB〉+ h

)
〈mA〉 =

P−1∑
k=0

(
P

k

)(
1 + a

2

)k (1− a

2

)P−k

(B.33)

tanh

(
−J0

NB

N

P − k

P
〈mB〉+ J0

NB

N

P − 2k

P
〈qB〉+ h

)
.

If P (and P (1 + a)/2) is large enough, k behaves as a Gaussian random variable, we can
get explicitely

〈qA〉 =
1 + a

2
〈mA〉 (B.34)

〈mA〉 =

∫ +∞

−∞

dx√
2πσ2

e−
(x−x0)

2

2σ2 tanh

(
−J0

NB

N

(
1− a

2
+ az

)
〈mB〉+ h

)
(B.35)

with

z0 =
1 + a

2
, σ2 =

1− a2

2P
. (B.36)

Approximating z with its mean value one eventually obtains

〈mA〉 = tanh

(
−J0

NB

N

1 + a2

2
〈mB〉+ h

)
, (B.37)

and equivalently 〈mB〉. These two can then be averaged to get θ(α) which is the binding
isotherm.
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