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Introduction

During the last years, it has been possible to witness a steady and progressive increa-

se of energy production from renewable resources. In particular, the greatest incre-

ment has been registered for photovoltaic applications, due to the possibility to install

low power implants easily integrated in the urban ambient, the so-called domestic

photovoltaic.

Furthermore, the use of photovoltaic has been strongly encouraged by national

governments through various forms of subsidies, in order toreduce the level ofCO2

emission, as established by the Kyoto Protocol. This, combined to a decrease in the

cost for installed kW of the photovoltaic systems, has led toa real industrial boom in

that sector in the years between 2008 and 2011.

In the last two years, due to a substantial downsizing of government grants, the

growth rate has decreased, but it still continues to rise. InEurope, for instance, Ger-

many claims a total solar capacity of 34.7 GW at the end of August 2013, with 7.6

GW of implants installed only in 2012, and 7.5 GW in 2011.

Considering that for European Union the target is to cover with renewable resour-

ces the 20% of the internal energy demands by 2020, it is likely to assume that the

contribution of photovoltaic on the European energy mix is destined to rise again in

the coming years.

To support the integration of new plants at the current growth rate it is necessary

to achieve a further improving in the efficiency and a lowering for the installation

costs of the implants.

A photovoltaic system can be islanded, when the energy is extracted from the
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panels for supplying local loads, as in the case of remote agricultural areas where the

electricity mains is not present, or grid-connected, wherethe energy recovered from

the panels is directly injected into the mains.

Until now, where there was the possibility, grid-connectedsystem has been consi-

dered the easiest and most efficient solution for photovoltaic plants. In fact, it allows

extracting the maximum achievable power from the photovoltaic field in any situa-

tion, considering the mains as an infinite accumulator in which it is possible to inject,

without restriction, all the energy harvested. Conversely, an islanded system is limi-

ted by the status of the battery pack and the presence of connected loads. It could

happen that, in presence of a strong solar radiation, with the battery pack full charged

and no load connected, the system would not work at all, wasting the total producible

energy.

Following these considerations, in recent years there has been a remarkable pro-

liferation, in both academic and industrial field, of new solutions for grid-connected

inverters that were designed to maximize efficiency and reliability.

Initially, grid-connected inverters were realized employing a line frequency tran-

sformer, which, establishing a galvanic insulation between the photovoltaic source

and the grid, facilitated the design issues. Nevertheless,because of its bulky dimen-

sion, costs, and additional power losses, the use of line frequency transformers was

progressively abandoned.

A solution was represented by inverters that use a high frequency transformer,

which, keeping the advantages of galvanic insulation, partially mitigate the losses due

to the presence of the transformer. Actually, in high frequency transformer inverters

there is an increment of the power stages, since the DC electric variables from the

panels have to be modulated at high frequency and, after that, returned in output at

line frequency, increasing the total complexity of the converter.

Moreover, the necessity to eliminate all additional power losses to obtain higher

efficiency values has led to the complete abandon of the transformer, and transfor-

merless inverters have gained their share of the market. Nowadays transformerless

inverters are the most efficient grid-connected converterscommercialized and some

companies arrive to claim values of 98% of efficiency for their products.
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Nevertheless, as the penetration into the structure of the mains of distributed ener-

gy sources began to become massive, new problems have arisenabout the stability

and power quality of the mains itself.

When the number of solar inverters connected to the same low voltage area be-

comes substantial, it is no longer possible to consider the mains as independent from

the behavior of the inverters. Thus new regulations were established, and the inver-

ters are not only required to provide the highest possible power to the grid, but to

participate to the stability mechanism of the mains itself,for keeping the amplitude

and frequency of the grid voltage under safety limits set by standards.

Obviously, this opens the way to new areas of research for thecontrol of conver-

ters connected to the mains, enabling a smart management of resources, the so-called

smart grid.

In this context the development of more efficient, reliable and long-lasting tran-

sformerless grid-connected inverters is of primary importance and also represents the

topic of this work.





Chapter 1

Overview of requirements for

Photovoltaic inverters

1.1 Introduction

A photovoltaic system consists of two fundamental elements: the photovoltaic field

and the converter. Converters have to accomplish two tasks:extracting the maximum

available power from the photovoltaic panels, and interfacing with the mains, injec-

ting a sinusoidal current compliant with the norms that govern the connection to the

grid of distributed energy sources.

Several algorithms have been proposed to make the panels work at the maximum

power point of their characteristic (MPP), they are known asmaximum power point

tracking (MPPT) methods. The effectiveness and rapidity ofthese methods affect the

overall performance of the converter and are therefore object of several studies [1].
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However, the connection of the inverter to the mains represents the major issue,

in particular for transformerless topologies.

The inverters have to obey to the standards given by the utilities companies about

power quality, islanding detection, grounding, etc., thatare analysed in details in the

following.

1.2 Grid Interfacing

The requirements for the connection to the mains of low powerdistributed resources

vary depending on the country considered. In Table 1.1 threedifferent standards re-

garding grid connection were summarized: the US code IEEE 1547 [2], the German

regulation VDE0126-1 [3] and the Italian rules CEI 0-21 [4].

In term of power quality, inverters have to inject a sinusoidal current at the grid

frequency with a total harmonic distortion ratio THD less than 5% for the US code.

Otherwise, German and Italian regulations specified a maximum value for both even

and odd harmonics, in particular CEI 0-21 refers to EuropeanUnion directive IEC

61000-3-2 [5] for devices with current rating till 16 A (the case reported in table 1),

and IEC61000-3-12 [6] for current values between 16 and 75 A.

Besides harmonic distortion, the presence of a DC componentin the output cur-

rent is a major issue that must to be addressed. Considering the absence of galvanic

insulation, it is possible to inject into the grid a DC current. The DC component has

to be limited at less than 0.5% of the rated output current according to IEEE 1547.

The Italian regulation is even more severe. It considers twolimit values: when

the inverter is supplying less than 50% of its nominal power it is not allowed to inject

a DC component higher than 0.5% of the nominal output currentfor more than 1

second, however, as in VDE0126-1 code, in any case if the DC current is greater than

1 A the inverter must disconnect from the grid within 200 ms.

The DC component is particularly detrimental because it cancause the saturation

of the medium to low voltage MV/LV grid transformers. The saturation can rapidly

lead to overheating, causing degradation in the insulationlayer of the phase windings

of the transformer itself and, in the worst case, to irreversible damages. Cases of
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MV/LV transformers that ignite spontaneously, due to shortcircuits in the windings,

are commonly reported by utilities companies.

The DC current problem is exacerbated in case of cascade multilevel topologies,

where the total rejection of an offset value at the inverter output results more difficult

to achieve than in conventional architectures. However this issue was deeply investi-

gated and can be mitigated by improved measuring systems andcontrol techniques

[7].

Every standard provides regulations for the recognition ofstate of islanding ope-

ration, i.e. when the mains is not connected and the inverteris supplying only the

local loads. The inverter must be able to detect when the gridis removed on purpose,

by accident, or by damage, and take the appropriate countermeasures.

Typical case is when the mains is disconnected for maintenance work of the grid.

In this situation it is mandatory that the inverter detects the event and stops wor-

king to guarantee the safety of people and equipment. The detection of islanding

situation can be obtained through the monitoring of the gridvoltage. Limit values

and disconnection times are established for both amplitudeand frequency of the grid

voltage.

The available detection schemes are normally divided into two groups: active

and passive. The passive methods just monitor grid parameters, using a digital PLL

to control the variation of the grid frequency or line impedance estimator [8].

It could happen that in presence of resonant loads, when the mains is disconnec-

ted, the inverter continues erroneously to inject current into the grid with no variation

of the frequency and amplitude of the measured voltage. In that case the total system,

constituted by the inverter itself and the local loads, operates in a working point of

relative stability, and the islanding situation becomes very difficult to detect [9].

The active schemes introduce a disturbance into the grid andmonitor the effects.

The disturbance causes a deviation from the working point and a variation of the grid

voltage parameters that can be detected. Nevertheless, during the normal operation of

the inverter, active methods introduce undesired disturbances, with a degradation of

power quality. Moreover problems when multiple inverters are connected in parallel

to the grid are also known to exist [10], [11].
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In general passive methods are sufficient to comply to the regulations.

1.3 Active and Reactive Power Management

Initially, grid-connected inverters were required only toinject into the grid the ma-

ximum available power from the distributed sources, with unity power factor and a

clean sinusoidal waveform. The policy of injecting all the available power to the grid

is a good one, as long as distributed renewable power sourcesconstitute a small part

of the grid power capacity.

The fundamental characteristic of renewable power sources, especially photovol-

taic, is to provide a variable amount of power depending on the weather condition, wi-

th the possible occurrence of severe oscillations of the delivered power. The classical

example is the passage of clouds that reduce the solar radiation for a short period.

Until some years ago, it was thought that any random power fluctuation of the

renewable sources would be compensated by the controllers associated with the large

conventional power generators. Some of these generators would also control the ove-

rall power balance of the grid, system stability, and fault ride-through. Nevertheless,

when renewable power sources provide the majority of the grid power, this paradigm

is not valid anymore, and instability problems can arise in the mains.

For these reasons the new standards, as CEI 0-21 [4] and VDE0126-1 [3], impose

to the grid-connected inverters to collaborate at the stability of the mains, requiring

them to handle a certain amount of reactive power, and the possibility to modulate

the delivered active power in function of the grid parameters.

For better understanding the requirements imposed to grid-connected inverters, it

is worth to further analyze the mechanism involved in the process of mains balancing.

The structure of the mains was designed to deliver the power,generated in large

power stations, to loads located at long distances from the power sources. Regardless

of the type of electric central, the mains interfacing was realized with big synchronous

generators (SG). When, in a power system, a generator acts alone, or it is by far the
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strongest in an area, its frequency (i.e. the frequency of the grid), may be controlled

via generator speed to remain constant in spite of load variations.

On the contrary, when the SG is part of a large power system, and electric gene-

ration is shared by two or more SGs, the frequency (speed) cannot be controlled to

remain constant because it would forbid generation sharingbetween the SGs.

Speed droop control is the solution for generation sharing.The Automatic ge-

neration control (AGC) in Fig. 1.1 distributes the generation task between SGs and,

based on this as input, the speed control system of each SGs controls its speed with

an adequate speed droop, in order to achieve the desired power sharing.

Fig. 1.1: Generic synchronous generator control system.

The motion equation, not considering friction effects, fora synchronous generator

is:

J
dwr

dt
= Tm −Te (1.1)

whereTm is the turbine torque,Te the SG torque, andJ the inertia. Considering

small deviations:
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wr = w0+∆wr

Tm = Tm0+∆Tm

Te = Te0+∆Te

(1.2)

For a steady stateTm0 = Te0. Using the power instead of torque from (1.1) it is

possible to have:

Jw0
d∆wr

dt
= ∆Pm −∆Pe (1.3)

Moreover, considering thatPe is delivered both to frequency independent and

frequency dependent loads (such us motor loads),Pe can be expressed as

∆Pe = ∆PL +D∆wr (1.4)

leading to the general equation

Jw0
d∆wr

dt
+D∆wr = ∆Pm −∆PL (1.5)

As can be seen a variation of the load power requestPL results in a variation

of the generator speedwr and hence of the grid frequency. In presence of just one

synchronous generator, the turbine torque can be modulatedto restore the nominal

frequency. As mentioned before in a power system with more than one SGs a certain

variation ofwr have to be allowed. In Fig. 1.2 a speed droop governor is described,

where∆X is the variation of the valve position that controls the turbine torque. It is

basically a proportional speed controller withR that provide the steady-state speed

vs. load power

With two or more generators the frequency variation will be the same for all of

them, thus the load sharing depends on their speed-droop characteristics (Fig. 1.3)

∆P1 =
−∆ f
R1

∆P2 =
−∆ f
R2

(1.6)

Varying thew0 reference speed the power delivered for a synchronous generator

at a given frequency can vary as well. The task of determiningthe correct speed value
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Fig. 1.2: Speed-Droop Governor.

that guarantees the overall balancing is assigned to the AGC. This have also to ensure

the grid-frequency remains between the limits set by the legislator.

However, when the oscillations of the active power loadPL become too large or

too abrupt they can lead the system to collapse. Cases of large areas black-out, due

to the fluctuation of the power delivered by renewable power sources were reported

by the Italian grid utility ENEL. To overcome this issue, thenew regulation CEI-021

imposed to grid-connected inverters to limit the active power delivered in presence of

a variation of the grid frequency. The behavior the inverters must ensure is described

in Fig. 1.4.

When the frequency of the grid exceeds the threshold value of50,3 Hz the inverter

output power must linearly decrease, until it reaches the 0%of its nominal value at

51,5 Hz. The trajectory cannot simply be traveled backwardsif a lower frequency

value is restored, but for avoiding troublesome frequency oscillations, the inverter

has to continue to deliver the output power at which it had limited until the frequency

was restored to its nominal value for at least 3 min. Subsequently, the inverter can

gradually return to inject into the grid all the available power from the renewable

source.

Another important task of mains stability mechanism is to take under control the

amplitude of the grid-voltage. The overshooting of the maximum grid voltage value

can damage equipment connected to the grid, whereas a low voltage value can results

in a reduction of the power supplying loads.

In a power system, as small frequency variations are used to regulate the power

sharing between the generators, the reactive power flow can be controlled through
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Fig. 1.3: Load sharing between two synchronous generators with speed-droop

governor(a), change of the speed power characteristic due to w0 variations (b).

the amplitude of the grid voltage. The loads require reactive power as well as active

power and the power system has to provide for them. Considering the power flowing

into a line at the point A of Fig. 1.5, it is possible to expressthe apparent powerS as

done in [12].

P+ jQ = S̄ = Ū1Ī∗ = Ū1(
Ū1−Ū2

Z̄ )∗ =U1(
U1−U2e jδ

Ze− jθ )

=
U2

1
Z e jθ − U1U2

Z e j(θ+δ )
(1.7)

Thus the active and reactive power flowing into the line are
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Fig. 1.4: Inverter output power variation in presence of an over-frequency condition.
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Fig. 1.5: (a) power flow through a line, (b) phasor diagram.

P =
U2

1

Z
cosθ − U1U2

Z
cos(θ +δ ) (1.8)

Q =
U2

1

Z
sinθ − U1U2

Z
sin(θ +δ ) (1.9)

expressing the impedance asZ = R+ jX , (1.8) and (1.9) can be rewritten as

P =
U1

R2+X2 [R(U1−U2cosδ )+XU2sin(δ )] (1.10)

Q =
U1

R2+X2 [X(U1−U2cosδ )−RU2sin(δ )] (1.11)

or
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U2sin(δ ) =
XP−RQ

U1
(1.12)

U1−U2cos(δ ) =
RP+XQ

U1
(1.13)

for power linesX >> R, R can be neglected and, if the power angleδ is small,

it is also possible to approximate,sinδ = δ , cosδ = 1. For this consideration (1.12)

and (1.13) become

δ =
XP

U1U2
(1.14)

U1−U2 =
XQ
U1

(1.15)

(1.14) shows that the power angleδ depends on the real power flowP, i.e. the fre-

quency dynamically controls the power angle and, thus, the real power flow, whereas

according to (1.15) the voltage difference depends predominantly on reactive power

Q, thus the amplitude voltageU1 is controllable throughQ.

However, active and reactive power controls are not totallydecoupled. From

(1.14) it is possible to note that the active power flowing into the power system affects

also the voltage amplitude. Consider the case of a low-voltage area in Fig. 1.6, where

several PV generators are presents. During summer days it could happen that, despite

a high production of active power by the inverters, the corresponding power demand

from electrical customers is low. In this situation the gridvoltage can increase over

the safety limit (red line in Fig. 1.6).

The grid voltage amplitude can be restored allowing the inverter to absorb a cer-

tain amount of reactive power. For these reasons, recent regulations provide reactive

power absorption, as well as requiring certain protection relay mechanisms from the

inverters regarding the voltage abnormal changes. In Italy, CEI 0-21, requires the

capability of the inverters to deliver power with variable power factors (PF). The re-

quested PF can assume any value values between 1 and 0.95 for nominal power plant

of 3 kW. If the plant power exceeds 6 kW, power factors variation down to 0.9 must
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Fig. 1.6: grid voltage amplitude control in case of consistent presence of distributed

power sources.

be supported. The reactive power output can be specified either as a fixed value, or as

results from the grid parameters, as detailed in a standardized characteristic.

Moreover, demanding the supply of reactive power from distributed generators

has a further advantage. Since delivering reactive power toloads results in increased

power line currents, it is advantageous to produce the reactive power as close as

possible to the place of its utilization. Therefore, grid-connected converters able to

supply reactive power can support the reduction of the overall power losses in the

power distribution structure.
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1.4 Grounding

In transformerless grid-connected converters, there is a direct galvanic connection

between the photovoltaic source and the grid, caused by the absence of the transfor-

mer.

This could lead to some problems. In fact, the neutral cable of the grid is con-

nected to ground in correspondence of the MV/LV transformerof the mains. Since

some regulations, as the US standard, or some particular type of photovoltaic panels,

as the amorphous ones, require the grounding of one pole of the panels, without any

precautions a short-circuit could occur at the source side of the converter. Specific

inverter architectures have been designed for working whenone of the two poles of

the photovoltaic source is grounded [13].

Furthermore, even the most used technologies, monocrystalline and polycrystal-

line panels, require, for safety reasons, the grounding of the metallic support sy-

stem on which they are mounted. Since the frame of photovoltaic modules is made

by electrically conductive material, it results grounded as well. For these reasons a

stray capacitance is present between the metal support frame of the modules and the

photovoltaic cells (see Fig. 1.7) [14].

Fig. 1.7: Stray capacitanceCp in PV Module structure.

The value of the capacitance depends on the geometrical structure of the PV plant

and on climatic conditions. The presence of moisture or duston the modules surface

can enlarge the dimension of one of the electrodes of the stray capacitance, thus

increasing its value.
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Hence, a photovoltaic plant can be seen as an array of stray capacitances, con-

nected in series or parallel according to the structure of the PV field. Nevertheless,

the phenomenon can be effectively described adding to the schematic of the grid-

connected inverter two concentrated capacitors, between the ground reference and

both positive and negative poles of the PV source, as depicted in Fig. 1.8.

The value of the considered stray capacitor can vary from 10-100nF for kW

installed for mono and polycristalline panels [15].

Fig. 1.8: Grid-Connected Transformerless Inverter with stray capacitanceCp.

If the voltage across the capacitors varies, according to (1.16), a ground leakage

current can flow through the path (highlighted in Fig. 1.8) constituted by the output

filter of the inverter, the grounding impedance of the MV/LV transformer and the

capacitors themselves.

ileakage =Cp
dv
dt

(1.16)

As the impedance of the capacitor decreases at high frequency, high frequency

changes of the voltage acrossCp can generate higher current value than low frequency

ones. Ideally, keeping the voltage across the capacitor constant results in no leakage

current.
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Conventional inverters normally do not achieve this goal. Considering the sche-

matic of Fig. 1.8, it is possible to describe the circuit in terms of equivalent differential-

(vd) and common-mode (vcm) components [16].

Taking as reference the mid-point of the DC-Link (marked as 0in Fig. 1.8), the

voltages at the output of the invertervA0 andvB0 can be modeled as two pulse width

voltage sources. Introducingvd andvcm as:

vcm =
vA0+ vB0

2
,vd = vA0− vB0 (1.17)

and considering also the common and differential components of the grid voltage,

the resulting equivalent circuit is reported in Fig. 1.9.

Fig. 1.9: Equivalent Common and Differential Mode circuit for a Grid-Connected

Transformerless Inverter.

It is worth to be noted that the differential components do not influence the lea-

kage current, circulating only in the differential path, asreported in Fig. 1.9. On

the contrary, the common mode components affect directly the ground leakage cur-

rent, which is therefore named also common mode current. Analyzing the equivalent

circuit only for the common mode components in Fig. 1.9, the voltage across the

capacitorCp can be expressed as in [16]

vground =−vcm − vd(L f2 −L f1)

2(L f2 +L f1)
+ vgridcm −

VDC

2
(1.18)
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where the first component of (1.18) represents the common mode voltage at the

output of the converter. The second is due to mismatching between the value of the

inductors of the inveter output filter, and the third, is the common mode component of

the grid voltage. The last term of (1.18) is because the reference point 0 in Fig. 1.8 is

atVDC/2 respect to the negative rail of the DC link. In the case the positive pole of the

DC link was considered instead, this component must appear with a positive sign. As

VDC is constant it should not contribute to the common mode current. Nevertheless,

when the inverter is working, the DC-link is affected by a voltage ripple at twice the

frequency of the mains. The amplitude of the ripple depends on the design of the

DC-Link capacitor, which is usually dimensioned in order toachieve a low value of

it.

Therefore for a more precise definition the expression ofvground should be inte-

grated as in (1.19), where also the component due to the voltage ripple is introduced.

For the positive rail of the DC-link the same conclusions arevalid, but with a positive

offset ofVDC/2.

vground =−vcm − vd(L f2 −L f1)

2(L f2 +L f1)
+ vgridcm −

VDC

2
−

vDCripple

2
(1.19)

It is worth to be noted that the second component is usually kept low in case of

good converter design, whereasvgridcm results in a sinusoidal common mode current,

but with low amplitude due to the fact thatvgridcm has half amplitude of the grid

voltage, and same frequency.

The most influential component isvcm, since, according to the modulation stra-

tegy adopted for the converter, it can have the same amplitude of the DC link vol-

tage and varies at high frequency, i.e. the switching frequency of the inverter, thus

generating very high ground leakage current.

For instance, the full-bridge topology driven by a three-level (unipolar) PWM is

the most popular solution for single-phase systems due to its simplicity and effective-

ness. However, this topology cannot be used in PV transformerless systems because

of large variations of the output common-mode voltage.

Fig. 1.10 shows the full-bridge driving signals of the unipolar modulation and the

resultingvcm, calculated considering as reference the negative pole of the DC-link. It
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presents a peak-to-peak amplitude equal to the DC-Link voltageVDC and a frequency

equals to the switching one, and thus high ground leakage current.

X Y

X Y

A

B

X

Y

cmv

DCV

DCV

Fig. 1.10: Output common-mode voltage in case of full-bridge driven by unipolar

modulation.

On the contrary, the h-bridge converter driven with bipolarPWM, where the two

diagonals of the h-bridge commutate complementary, results intrinsically free from

common-mode output voltage variations.

Through the support of Fig. 1.8 it is possible to compute the common-mode vol-

tage applied during a switching cycle in case of bipolar PWM.The switching cycle

consists of two possible configurations:

1) T1 and T4 On (T2, T3 Off):vd =VDC, vcm = 0

2) T2 and T3 On (T1, T4 Off):vd =−VDC, vcm = 0

If the turn on and turn off occur at the same time (ideal commutation), there

would be no changes on the common-mode voltage and thus no additional ground

leakage current would appear.

However, in real converters, a small common-mode high-frequency filter is ne-

cessary to avoid an increase of the ground leakage current due to switching mismatch

at converter output terminals A and B [17]. Moreover, the bipolar modulation is cha-

racterized by a poor efficiency and high output current ripple and it is not widely

adopted.

A simple method to mitigate the ground leakage current was proposed in [18],

it relies on the use of a passive common mode filter where the common-mode filter
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capacitors are connected to the mid-point of the DC source, as shown in Fig. 1.11.

Fig. 1.11: Full-bridge inverter with passive common-mode filter for ground leakage

currents.

The equivalent common mode circuit is also reported in Fig. 1.12.

Fig. 1.12: Common-mode equivalent circuit of the Full-bridge inverter with passive

common-mode filter

It shows that the split common-mode capacitorsCcm and the split dc-link capa-

citorsCDC are included in the circuit. It is also possible to note the presence of an

LC low-pass passive filter introduced in the simplified CM circuit. It is constituted

by the split dc-link capacitorsCDC in series with the split CM capacitorsCcm and the

inductorsL f andLcm.
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Based on Fig. 1.12, the voltage across the stray capacitancecan be determined.

vground is obtained as:

vground(ω) =− vcm +0.5VDC

1−ω2(L f +Lcm)(2CDC//2Ccm)
+ vgridcm (1.20)

making explicit the resonant frequency of the LC componentsωr, and conside-

ring that ωr is much higher than the frequency of the DC voltage ripple, the only

significant component for the the ground voltage isvcm, therefore the solution in

(1.20) can be simplified as shown in (1.21).

vground(ω) =− vcm

1− (ω/ωr)2 (1.21)

As can be seen contribution of the common mode voltage at the inverter output

is attenuated by:

Attenvground (w) = 20log|1− (
w
wr

)2| (1.22)

This solution can determine good results in terms of power converter cost and

efficiency when the variation ofvcm (due to power converter switching) is limited.
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Table 1.1: Summary Of The Grid Connection Standards
Issue IEEE 1547 CEI 0-21 VDE0126-1

Nominal 10kW 6kW -

Power

Harmonic order(h) limit(%) order(h) limit(A) order(h) limit(A)

Content 3-9 4.0 3 2.3 3 3

11-15 2.0 5 1.14 5 1.5

17-21 1.5 7 0.77 7 1

23-33 0.6 9 0.4 9 0.7

even 11 0.33 11 0.5

harmonics 13 0.21 13 0.4

are limited 15-39 0.15 17 0.3

to 25% x15/h 19 0.25

of the odd 2 1.08 23 0.2

harmonic 4 0.43 25 0.15

litit shown 6 0.3 25-39 3.75/h

THD < 5% 8-40 0.23 even 1.5/h

x8/h >40 4.5/h

DC less than 0.5% 0.5%In,t < 1s <1A

Current of rated and<1A trip time

Injection output current trip time 0.2s 0.2s

Voltage range(%) time(s) range(%) time(s) range(%) time(s)

Deviation V < 50 0.16 V < 80 0.4 V < 85 0.2

50<V < 88 2 V > 120 0.2 V > 110 0.2

110<V < 120 1

V > 120 0.16

Frequency range(Hz) time(s) range(Hz) times) range(Hz) time(s)

Deviation 59.3< f < 60.5 0.16 47< f < 52 0.1 47.5< f < 50.2 0.2

Leakage average time(s)

Current current (mA)

30 0.3

60 0.15

100 0.04

300 (peak) 0.3





Chapter 2

State of the art of transformerless

PV Inverters

2.1 Introduction

During the last years, several classifications for transformerless inverters were pro-

posed.

In [19] Blaabjerg and Garcia identified three category for step-up transformerless

topologies:

• Two-stage topologies

• Pseudo-DC-Link Topologies

• Single-Stage Topologies
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The first are those that employ a DC/DC stage for amplifying the voltage from the PV

source, while performing the MPPT, and a DC/AC stage to inject current into the grid.

Between the two stages a dc-link capacitor ensures the powerdecoupling from the

DC source and the AC load. The dc-link capacitor is designed in order to reduce the

amplitude of the voltage ripple at twice the grid frequency thus, electrolytic capacitors

are usually employed, affecting the life span of the entire system.

The Pseudo-DC-Link Topologies consists of two power stagesas well, but in this

case the DC/DC converter generates a rectified sinusoidal current. This current is then

unfolded in phase with the grid voltage by means of a line-switched bridge.

The last category includes the converter where the functionalities of stepping-

up the voltage from the PV source, executing the MPPT algorithm, and controlling

the quality of the injected grid current are performed by a single power stage. This

solution permits to increase the overall efficiency and the reliability of the system,

simplifying the converter structure and increasing power density as well.

In [20] Blaabjerg again, with Kjaer and Pedersen, classifiedthe converters for

PV applications in transformered or transformerless. Furthermore, a more accurate

subdivision was developed on the base of the number of power stages, the position of

the power decoupling capacitor, and the types of the grid interfaced converters.

In [17] the analysis is more focused on transformerless converters that do not

need to step-up the voltage source, since they are connectedto PV strings with a

sufficient MPP voltage value to allow the inverter to erogateenergy into the grid.

Grid-connected transformerless topologies were divided into two groups: the half-

bridge and the full-bridge families.

In half-bridge converters the neutral wire is connected to the mid-supply voltage

point. They intrinsically reject the phenomenon of common-mode current described

in section 1.4, since the voltage across the parasitic capacitanceCp is constant. Ho-

wever, these topologies need a double DC bus voltage if compared to a full-bridge

one.

In Full-bridge converters avoiding the common-mode current phenomenon is not

straightforward. Many solutions were proposed to ensure nocommon-mode current

along with high efficiency levels. The purpose is achieved bymeans of additional
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switches and custom PWM modulations in order to decouple thegrid from the DC

bus during the freewheeling phases of the output current. Asnoted in [21] when the

PV source is disconnected from the load the potential of the load can be floating, for

the so-called inverters with no-clamp methods, or can be setat the mid-point of the

DC source for inverters equipped with clamp methods.

It was proved that the latter present better performances interms of common-

mode current rejection capability.

However, all these categorizations were developed focusing on the inverter point

of view.

In the last years many different technologies for the photovoltaic panels we-

re studied and marketed. They present different characteristics and require specific

concerns for the connection.

In fact, from a practical point of view, the choice of the appropriate inverter

for a PV plant is made by the designers in strict dependence onthe PV techno-

logy installed. For these reasons in this work an alternative classification for grid-

connected transformerless PV inverters is proposed, correlating the characteristic of

the converters with the needs of the different PV technologies.

Since the two arguments are tied, an overview about the majorissues of PV panels

is needed.

2.2 Major issues for PV panel technologies

Monocrystalline and polycrystalline panels dominate the PV market for years now,

nevertheless, new technologies such as thin film modules, amorphous panels, and

tandem solar cells offer high performances and in some case reduced production cost.

However, some technologies should be employed only in restricted circumstances

and taking certain precautions. The major issues for PV panel technologies are:

• Ground leakage current

• Potential induced degradation

• Transparent Conductive Oxide (TCO) corrosion
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2.2.1 Ground leakage current

As analyzed in detail in section 1.4 in transformerless grid-connected converters

the absence of galvanic insulation between the PV source andthe grid can result

in ground leakage currents. These currents are actually common-mode currents cir-

culating in the path that connects the PV cells to the ground through the parasitic

capacitance of the panelsCp. If no precautions are taken the leakage currents can

reach very high values. Ground leakage currents are particularly detrimental becau-

se, not only they can damage the PV panels, but being superimposed to an eventual

fault current make difficult to detect the presence of groundfaults. To limit ground

leakage currents the voltage across the parasitic capacitanceCp must not present high

frequency components.

2.2.2 Potential induced degradation (PID)

In several PV plants a degradation in the performances of thePV panels was noticed

after a period of operation. Where panels were connected in strings, this phenomenon

was particularly observed in the module nearest to the negative pole of the PV array.

The degradation was discovered not to be related to the natural aging of the material

but to the coulomb effect [22].

The potential of the PV modules’ positive or negative poles are biased respect to

the metal frame that is grounded for safety standards. The voltage can induce elec-

trons to pass from the silicon active layer through the glassto the grounded module

frame.

The phenomenon results in a decrease of the maximum available power from

the module. However, competing processes make the effect non-linear and history-

dependent [23].

The PID process was initially attributed only to certain types of solar cells. For

instance, SunPower company indicates as a remedy for its products to ground the

positive pole of the PV string. Nevertheless, cases where itis the negative pole to

have to be grounded are registered as well.



2.3. Transformerless Grid-Connected topologies 29

2.2.3 TCO corrosion

The Transparent Conductive Oxide layer is an electrically conductive layer employed

in thin film PV panels. It is housed on the inside surface of thecover glass. Many

studies indicate that the TCO layer is subject to corrosion [24]. The corrosion is the

result of the reaction with the sodium that is contained in the cover glass in presence

of humidity.

Corrosion depends directly on leakage currents and from thepotential of the PV

array against ground. Therefore, the damages can be prevented by connecting to the

ground the negative pole of the PV array.

2.3 Transformerless Grid-Connected topologies

As seen different PV panel technologies suffer from different types of issues, but in

the majority of cases all the problems can be attributed to the presence of a potential

difference between the PV cells and the ground.

To limit degradation of PV panels the potential of the positive and negative poles

of the PV array against the ground must be controlled.

For these considerations, an alternative classification for Transformerless grid-

connected inverters can be developed, taking in consideration the voltages, which can

be observed during the inverter operation, between the two poles of the PV source

and the ground.

Therefore, it is possible to subdivide single-stage grid-connected transformerless

inverters in:

• Full-bridge based topologies

• Half-bridge based topologies

• Doubly grounded topologies

The voltage waveforms between the positive (vp) and negative (vn) poles of the PV

source and the ground are reported in Fig. 2.1 for each of them. The full-bridge

based topologies present sinusoidal waveforms that are symmetrical respect to the
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ground potential. The oscillation at the grid frequency is due to the common-mode

component of the grid voltage that is intrinsically presents invp andvn for this family

of inverters.

In half-bridge based inverters the sinusoidal component invp and vn is totally

eliminated, since the neutral wire of the grid, which is grounded in correspondence

of the MV/LV transformer of the mains, is directly connectedto the mid-point of

the DC voltage source. Nevertheless, a symmetrical DC bias equal to half of the DC

voltage is still present.

The doubly grounded topologies are those where the negativepole of the PV

source is directly connected to the ground. Their name derives from the fact that

in transformerless applications also the output of the inverter is grounded, since the

neutral wire of the grid is connected to earth at the mains transformer. Therefore,

both input and output of the converter are clamped to the ground potential and special

architectures are required to prevent short-circuit during the inverter operation.

Fig. 2.1: Voltages respect to the ground of the positive and negative poles of

the PV source during converter operation for different families of grid-connecetd

transformerless inverters.
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2.3.1 Full-Bridge Based Topologies

According to what explained in section 1.4 thevp and vn voltages for full-bridge

based topologies can be expressed with the formula:

vn =−vcm − vd(L f2−L f1)

2(L f2+L f1)
+ vgridcm − VDC

2

vp =−vcm − vd(L f2−L f1)

2(L f2+L f1)
+ vgridcm +

VDC
2

(2.1)

It is highlighted the presence of a sinusoidal component, which is in fact the common-

mode component of the grid voltage, with amplitude equal to half of the grid volta-

ge amplitude. Thevcm term represents the common-mode output voltage generated

by the converter during the operation. Ideally, ifvcm is constant no common-mode

currents due to the contribution of the converter operationarise. The only compo-

nent of the ground leakage current would be at the grid frequency, but with a reduced

amplitude thanks to the high impedance of the parasitic capacitance at low frequency.

I = ωCp
Vgrid

2
(2.2)

Many inverters able to keep the common-mode voltage at a constant value during

the inverter operation were presented both in industry and in academia. They usually

disconnect the AC load from the PV source during the free-wheeling phases of the

output current, by means of additional power switches.

In Fig. 2.2 two additional blocks used alternatively are presented: the former is

inserted in the DC converter side and the latter in the AC converter side, both reducing

the ground leakage current [25] [26].

The use of DC or AC decoupling allows the disconnection of thegrid voltage

from the photovoltaic plant during the grid current free-wheeling phases. The AC de-

coupling block is employed in the Sunways inverter named Highly Efficient Reliable

Inverter Concept (HERIC), whereas the DC decoupling is usedin SMA H5 conver-

ter. For both cases, the output voltage is a three level one, with ripple at the switching

frequency of the converter. Therefore, in the output filter design a current ripple at

the same frequency has to be taken into account.

In [27] it was proposed a solution that embeds 6 power switches and 2 diodes.

The inverter is named H6 and, as can be seen in Fig. 2.3, in addition to the h-bridge
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Fig. 2.2: Full-bridge with AC decoupling (HERIC) and DC decoupling (H5) blocks.

structure two switches are inserted in the DC rails, while two diodes are connected

between the DC rails and the mid-point of the source voltage.

Fig. 2.3: Topology proposed in [27] and [28].

This topology is driven by a particular modulation strategy. A diagonal of the full-

bridge is kept on during a whole grid voltage half-wave (for instance T1 and T4 when

the grid voltage has positive sign), whereas the DC decoupling transistor, T5 and T6,

commutate simultaneously at the switching frequency. During the output current free-

wheeling phase, when T5 and T6 are off, all the four full-bridge switches are on; the

grid current will then split across the two paths constituted by the transistor T1 and
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the free-wheeling diode of T3, and the transistor T4 and the free-wheeling diode of

T2. The additional diodes D1 and D2 will fix the common mode voltage toVDC/2.

In [28] the same architecture was driven by a different modulation strategy. In

this case the 4 switches of the h-bridge are driven as in the case of unipolar PWM

modulation, whereas the two DC devices T5 and T6 does not commutate simulta-

neously, but switch off alternatively when the current free-wheels respectively in the

upper or lower part of the h-bridge. The additional diodes donot conduct current but

clamp the load potential atVDC/2 during the free-wheeling phases.

Differently from [27] in [28] the ripple of the output current is at twice the swit-

ching frequency. Therefore, for a given switching frequency of the converter, the size

of the filter inductor can be divided by two.

An effective solution presenting the same number of switches and diodes was

proposed in [29]. Fig. 2.4 illustrates the scheme for this inverter. The top device in

one leg and the bottom device in the other leg are switched simultaneously in the

PWM cycle and the middle device operates as a polarity selection switch in the grid

cycle. During the grid positive half cycle, for example, switch T4 remains on, whereas

T3 is off. If T1, T6, T4 are on, the converter is feeding positive voltage to the load,

when T1 and T6 turn off the current free-wheels through the diode D1. Again, the

current ripple is at the switching frequency of the converter.

Furthermore, like many other topologies in literature, thesolution in [29] was

thought for employing MOSFET devices, in order to achieve very high efficiency

values. The modulation strategy was studied in order to avoid the conduction of the

MOSFET antiparallel body diode, in fact, the free-wheelingphase is realized through

the conduction of unidirectional devices, i.e. diodes D1, D2. Thus, the converter can

operate only with unity power factor and the capacity to manage reactive power is

not addressed.

2.3.2 Half-Bridge Based Topologies

In these topologies, the neutral wire of the grid is directlyconnected to the mid-point

of the DC source, whereas the phase wire is connected throughthe output filter to the

PWM output of the converter. In this way the voltage across the parasitic capacitance
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Fig. 2.4: H6-type topology proposed in [29].

is clamped to a constant value, and, as can be observed in (2.3), only the voltage ripple

on the DC source affects the leakage currents, although its contribution is negligible.

vn =−VDC
2 − vDCripple

2

vp =
VDC

2 +
vDCripple

2

(2.3)

The best known converter in this family is the Neutral Point Clamped (NPC)

inverter. It was first proposed in [30] for a three-phase application and subsequently

employed also for single-phase solutions [31].

The topology is shown in Fig. 2.5. The DC Link is formed by two series capa-

citors that share equal voltage, withVDC =VC1+VC2. The neutral wire of the grid is

connected to the mid-point of the DC voltage source. The NPC embeds four switches

(T1-T4) and two clamping diodes (D1 and D2).

During the positive half-wave, T2 is kept on while T1 is switching at the swit-

ching frequency, whereas for the negative half-wave, T3 is kept on while T4 is swit-

ching at the switching frequency. During the free-wheelingphases the output current

circulates through the ON-state IGBT and the diode D1 or D2 depending on the si-

gn of the grid voltage. The three-level output voltage presents a ripple at the same

frequency of the PMW carrier.
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Fig. 2.5: NPC topology.

Also in this case the inverter can deliver only power with unity power factor,

for overcoming this drawback an alternative solution, employing 2 IGBTs instead of

diodes D1 D2, was proposed as well [32].

Another interesting solution was presented by SMA. It employs 4 SiC MOSFETs

as shown in Fig. 2.6.

During the positive half-wave of the grid voltage T1 and T3 commutate at the

switching frequency whereas T2 is kept on. On the contrary, during the negative half-

wave T2 and T4 switch at high frequency while T3 is kept on. This solution provides

very high efficiency since during the active stage, when the inverter output voltage is

positive or negative, only one device is conducting, whereas when the output voltage

is zero, the current is flowing through two devices. The only disadvantage respect to

[31] is that in this case the voltage the devices have to withstand when they are off is

equal to the DC voltage source, whereas in [31] it was justVDC/2. Therefore, devices

with a much higher breakdown voltage have to be used.
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Fig. 2.6: Half-Bridge topology proposed by SMA.

2.3.3 Doubly Grounded Topologies

In doubly grounded inverters the negative pole of the PV source is grounded. The

voltagevn is zero, whereasvp is equal to the DC source voltage (2.4).

vn = 0

vp =VDC + vDCripple
(2.4)

Since also the output of the converter is grounded through the neutral wire of

the grid, particular inverter configurations have to be considered for avoiding short-

circuit conditions.

The topology proposed in [13] is presented in Fig. 2.7. During the positive half-

wave, T1 and T3 are on, while T4 and T5 commutate complementary at PWM fre-

quency to synthesize the correct output voltage. The flying capacitor is connected in

parallel with the DC Link, so it is charged at the full DC source voltage. During the

negative half wave, T5 is kept on, while T1 and T3 switch synchronously and T2 in

complement to them in order to generate the negative output voltage.

In particular, when T1 and T3 are on the zero output voltage isprovided and the

flying capacitor is charged. When T2 switches on, T1 and T3 turn off, and the output

voltage is equal to the opposite of the DC voltage.

However the stresses on the devices are not balanced, in factthrough T3 flows

not only the output current but also the charging current of the flying capacitor. Since
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the size of the capacitor is large in order to effectively decouple the AC load power

from the DC source, the charging current of the flying capacitor could present high

surge, consequently increasing the power losses on the devices.

1T

2T
PV

0

A

1C

gR

pC
2C gridv3T

4T

5T

Fig. 2.7: Topology proposed in [13].

An alternative solution was proposed in [33] and depicted inFig 2.8(a). It belongs

to the category of so-called Flying inductor converter. Thebasic inverter topology is

composed of a buck-boost converter that can be shifted according to the positive and

negative output of the grid.

During the positive half-wave of the grid voltage T4 T5 are on, T3 is off while

T1 T2 switch simultaneously at high frequency. When T1 T2 areon the inductor L is

charged, otherwise when T1 T2 turn off the energy stored in the inductor is released

to the grid. During the negative half-wave the behavior is similar; T2 T3 are on, T4

and T5 are off, whereas T1 switches at high frequency.

The drawback of such solution is the discontinuous waveformof the output cur-

rent that requires large filter capacitors. To address this problem, a new circuit, as

illustrated in Fig. 2.8(b), was introduced in [34], though the increased amount of

switches negatively affects the efficiency and robustness of the total system.
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Fig. 2.8: Topology proposed in [33](a) and [34](b).

In [35] a topology derived from the basic Zeta configurationswas proposed (Fig.

2.9). During positive half-waves, it transfers the power tothe grid on the principle of

a buck-boost converter, while during negative half-waves,it uses the boost principle

to transfer the power to the grid.

This asymmetrical operation not only makes the control scheme complex, but

may also result in asymmetrical current and may inject DC component into the grid.
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Fig. 2.9: Topology proposed in [35].





Chapter 3

Active Common-Mode Filter

3.1 Introduction

In chapter 2 it was shown as various topologies were proposedin order to avoid the

presence of ground leakage currents in transformerless grid-connected converters.

Among all them the most promising and efficient are those belonging to the full-

bridge based family (section 2.3). They employ additional power switches with re-

spect to the classic full-bridge structure ensuring, ideally, a constant common-mode

voltage at the output of the converter.

This work presents a different principle to solve the problem of the ground leaka-

ge currents. Instead of adding devices that complicate the structure of the converter

and thus the control strategy, it is possible to employ a simple three-level full-bridge

inverter, followed by an additional device able to cancel the vcm variations at the

output of the converter.
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One of the main advantages of employing the standard three-level full-bridge

in grid-connected operation together with the proposed solution is the possibility

to operate with any power factor. This characteristic is very important, since new

international regulations governing the connection of power converters to the grid

require some extent of reactive power handling capability.

Active filters for common-mode voltage have already been studied in literatu-

re, although their use in transformerless grid-connected converters has not been yet

investigated. In [36, 37, 38] the authors employed linear amplifiers controlled by

feedback systems to reduce the electromagnetic interference (EMI) generated by the

power converters. Conversely, as the common-mode voltage at the inverter output

depends on the PWM strategy, if this is known in advance, a low-power switching

converter can be employed to compensate for it without a feedback system. This

feed-forward compensation was used in [39, 40] to compensate the common-mode

voltage variation of a three-phase voltage-source inverter which supplied an induction

motor.

In this work a new feed-forward common-mode voltage compensation system

was applied to single-phase grid-connected converters forPV systems.

3.2 Active Common-Mode Filter Concept

As shown in section 1.4, in transformerless full-bridge based converters the ground

leakage current is caused by two sources of common-mode voltage variation: the fir-

st, and more troublesome, can be introduced by the high-frequency switching of the

power converter, while the second is due to the grid generator and it is intrinsical-

ly present in this type of topologies. In fact, the common-mode voltage of the grid

determines a line frequency sinusoidal voltage, with half the amplitude of the grid

voltage, across the parasitic capacitance of the PV string.However, given the low

frequency of the grid, the resulting small ground leakage current is acceptable with

monocrystalline or polycrystalline PV panels.

On the contrary, the common-mode voltage variation due to the switching of the

converter has high frequency spectral content and can generate very high values of
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ground leakage current.

The full-bridge topology driven by a three-level (unipolar) PWM is the most po-

pular solution for single-phase power converters due to itssimplicity and effective-

ness, but it cannot be used in transformerless PV systems because itsvcm presents

a peak-to-peak amplitude equal to the DC Link voltageVDC at switching frequency

(see Fig. 1.10). If a device able to cancel the common-mode voltage variations at the

converter output is cascaded to the three-level converter,its application to PV tran-

sformerless systems becomes feasible. Obviously, this additional device should be

characterized by low power losses, simplicity and low cost.

In fact, every transformerless inverter embeds a common-mode inductor at the

output of power converters in order to comply with electromagnetic compatibility

(EMC) standards.

By adding another winding to the common-mode choke (Fig. 3.1), it is possi-

ble to consider this new magnetic component as a common-modetransformer. If a

specific voltage is supplied to its primary winding through an additional low power

full-bridge, the secondary voltages (vs) of the transformer can be used to compensate

for the variation ofvcm. In this way the total common-mode voltage at the converter

output,vcmT , can be effectively kept constant.

The application of the active common-mode filter (composed of the additional

low power full-bridge and the common-mode transformer) to athree-level PWM

full-bridge is shown in Fig. 3.2. The total common-mode voltage can be expressed as

(3.1).

vcmT =
vA10+ vB10

2
= vcm − vs (3.1)

The common-mode voltagevcm generated by a full-bridge driven by unipolar

PWM is shown in Fig. 3.3. The gate signalsx and y are also reported. The same

figure shows the secondary voltages of the commmon-mode transformervs which

are used to compensate forvcm. Therefore,vs must have a shape equal tovcm, but

without the DC voltage component. In this wayvcmT = vcm − vs results constant, as

shown in Fig. 3.3.
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Fig. 3.1: Active common-mode filter topology.
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Fig. 3.2: Topology of the proposed solution.

In order to synthesize the desired waveform forvs, a specific voltagevp must be

fed to the primary winding of the common-mode transformer. Since the additional

low-power full-bridge is supplied with the same DC Link voltage of the main full-

bridge, fixing the turn ratio atnp/ns = 2 the PWM driving signals (z andw) can be

simply obtained from the PWM signals of the main full-bridgeasz = x andw = y.

It is important to put in evidence that the power losses of theactive common-

mode filter are very low since the primary currentip of the common-mode transfor-

mer is practically equal to its magnetizing current only. Quantitative considerations

will be presented in the following sections.

It is important to note that the proposed active common-modefilter can be adop-

ted also in other power converter topologies, but it resultseffective in term of cost

and size only if the needed compensation voltagevs (and therefore alsovp) presents

a null mean value for each PWM period. In fact, only in this case it is possible to use

a small magnetic core for the common-mode transformer, on the contrary the area
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Fig. 3.3: Compensation ofvcm variations, operated by the active common-mode filter.

of the magnetic core and/or the turns number must be very large in order to avoid

magnetic saturation [41].

3.2.1 Dead Time Compensation Strategy

A possible choice for the driving signals of the active filterfull-bridge was proposed

in previous section (z= x andw = y). Nevertheless, this solution works correctly only

in the ideal case, where power switches commutate instantaneously. Further conside-

rations are needed in order to properly control the active filter in a real system. As

widely known, the transitions between on/off states of a power switch is not instanta-

neous and, when a commutation occurs, a dead time is insertedin the complementary

driving signals controlling each leg of the full-bridge. During this dead time interval

the output voltage of the inverter is not actually controlled, and its value depends on

the characteristics of the circuit and on the sign of the output current.

For example, Fig. 3.4 reports the typical actual driving signalsx, y (with the in-

sertion of the dead time intervals), during a PWM period under conditions of positive

half-wave of the grid voltage, and positive value of the injected grid current. All the

driving signals are plotted as solid lines together with their complementaries (dotted

lines). The following considerations can be extended also to different conditions of

grid voltage and current direction.
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At first the effect of the dead time is taken into account for the determination of

thevcm waveform.

During the time intervalt1 x andy are high, the current free-wheels in the lower

part of the main full-bridge throughT4 and the anti-parallel diode ofT2 in Fig. 3.2,

andvcm is equal to 0.

When a transition occurs at the end oft1 a dead time is added and bothx andx

are forced to a low value (intervalt2). Since the anti-parallel diode ofT2 is still on,

the output voltage of the converter does not change tillx goes high at the beginning

of interval t3. At this stageT1 is switched on andvcm rises toVDC/2 (interval t3).

Similarly, wheny commutates at the end oft3 a dead time interval is added as well,

andy, y are driven low (intervalt4). In this case, the inverter output current imposes

a switch-on of the anti-parallel diode ofT3 andvcm quickly reachesVDC.

During t5 the deviceT3 is on andvcm remains atVDC. At the end oft5 another

transition occurs:y returns to a low value whereasy is maintained low for the dead

time intervalt6. Since the current is still flowing trough the anti-paralleldiode ofT 3,

the output common-mode voltage remains atVDC. Only wheny goes high at the end

of t6, vcm falls toVDC/2. Eventually, the common-mode voltage returns to 0 when, at

the end of the PWM period, even thex signal switches back to a low value.

Similar behaviors can be deduced for the transitions of the driving signals during

the negative half-wave of the grid current.

Sincevs must replicate the waveform of the common-mode voltage, also the be-

havior of the active filter full-bridge during the dead time intervals has to be taken

in to account. In order to investigate that, Fig. 3.4 shows also the waveform of the

primary current of common-mode transformer,ip, which depends on the voltage wa-

veform applied to the transformer primary and on the transformer magnetizing in-

ductanceLm. The sign ofip determines the output voltage value of the active filter

full-bridge during dead time intervals, resulting in a slight difference betweenvs and

vcm waveforms.

The driving signals of the active filter full-bridge, definedas z = x, w = y, are

reported in Fig. 3.4 during a PWM period. Whenz and w are both high (interval

t1) vs is equal to−VDC/2. At the beginning of the time intervalt2 the current of the
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active filter full-bridge has a negative value, and therefore, as soon asz goes low, the

anti-parallel diode of the switch driven by signalz turns on, andvs raises quickly to

0.

As a matter of fact the rising edge ofvs leadsvcm by a time interval equal to

the dead time. Otherwise, as can be seen in Fig. 3.4, the dead time intervalt4 is not

critical because, when the transition ofw occurs, the output current of the active filter

full-bridge turns on the anti-parallel diode of the low sidedevice controlled by the

signal w, andvs is forced to follow thevcm shape. Generally, it can observed that

the power switches of the active filter full-bridge are turned on under zero voltage

switch condition (ZVS), their anti-parallel diode is always on before their turning

on. This behavior contributes to reducing the switching losses, but it also introduces

time differences betweenvs andvcm (intervalst2 andt6 in Fig. 3.4, during the positive

half-wave of the injected grid current) that must be compensated.

In particular, during the positive half-wave of the injected grid current, the rising

edges ofw andz should lag respectively the rising edges ofy andx by a time equal

to the dead time widthtd , as depicted in Fig. 3.5. Likewise, during the negative half-

wave of the grid current, the falling edges ofw andz should lag the falling edges of

y andx by the same amount. Employing this control strategy the differences between

vs andvcm, due to the dead time intervals, are strongly reduced.

It is worth to be noted that this compensation strategy does not require any addi-

tional sensors, since the only information required is the injected grid current, that is

already acquired to implement the current control loop of the power converter.
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Fig. 3.4: Actual driving signals of the main full-bridge (x,y) and the active filter

full-bridge (w,z), without the dead time compensation strategy.
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Fig. 3.5: Driving signals of the power converter (x,y) and the active filter full-bridge

(w,z) when the dead time compensation strategy is applied.

3.3 Common-Mode Transformer Design

3.3.1 Design Considerations

The design of the common-mode transformer has the primary goal of avoiding the

magnetic core saturation. The magnetic flux is generated by the supply of the primary

winding and by the common-mode current at the converter output, which flows into

the two secondary windings of the common-mode transformer.
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Under the hypothesis of no magnetic saturation, the principle of superposition of

effects can be used to compute the total magnetic flux.

The first component of the magnetic flux density,BVC, is caused by the primary

voltage of the common-mode transformer, whose amplitude changes during a grid

voltage period. The worst-case scenario is when the supply of the primary winding

is a square wave. This happens at the grid voltage zero crossings, when the the main

full-bridge is always providing zero voltage (current freewheeling). Fig. 3.6 shows

the primary voltage of the common-mode transformer during the positive semi-period

of the grid voltage (a) and around zero-crossing grid voltage (b) with the waveform

of BVC.

vp

vp

+VDC

+VDC

-VDC

-VDC

Bvc-peak
Bvc

(a)

(b)

Fig. 3.6: Primary voltage of the common-mode transformer during the positive semi-

period (a) and around zero-crossings (b) of the grid voltagewith maximum variation

of BVC in the latter case.

Eq. (3.2) computes the peak value ofBVC which arises around grid voltage zero

crossings (fsw represents the switching frequency whileS is the effective area of the

magnetic core).
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BVC−peak =
VDC

4 fswnpS
(3.2)

The second contribution of the magnetic flux density component, namedBicm, is

due to the common-mode current at line frequency flowing in the PV system which

is not attenuated by the proposed solution, as well as in all transformerless converter

solutions based on full-bridge topologies. This componenthas a sinusoidal waveform

with amplitude equal to:Icm−peak =
√

2π fgridCpVgrid−rms.

ConsideringLcm the inductance of each secondary winding of the common-mode

transformer, (3.3) allows to calculate the peak value of this second flux density com-

ponent. In first approximation, neglecting the magnetic saturation,Lcm can be com-

puted asn2
s/Rm, whereRm indicates the reluctance of the magnetic core.

It is important to note thatLcm represents the common-mode inductance of the

magnetic component when the primary winding is disconnected and not used. In this

way the common-mode transformer becomes a simple common-mode inductor.

BIcm−peak =
LcmIcm−peak

Sns
(3.3)

Sinceicm is in quadrature with the grid voltage, the maximum variation of BVC

happens whenBicm reachesBIcm−peak, i.e. during the zero crossings of the grid volta-

ge. Therefore the sum ofBIcm−peak andBVC−peak has to be inferior to the maximum

flux density,Bmax, defined for the working conditions of the magnetic core (3.4).

BIcm−peak +BVC−peak < Bmax (3.4)

The ferrite material used for this application needs to havea high magnetic flux

density and low power losses for frequencies up to 200 kHz. Materials of this kind

present a relative magnetic permeability usually lower than 5000, determining for

typical PV system parameters aBIcm−peak strongly lower thanBVC−peak.

3.3.2 Example of Common-mode Transformer Design

The design of the common-mode transformer was realized for a2000 VA PV grid-

connected converter, the grid voltage and frequency are respectively 230 V and 50
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Hz. Considering for the secondary winding of the transformer a current density of

approximately 4 A/mm2 (in order to obtain low Joule effect power losses) the winding

section area results equal to 2.17 mm2. This represents the first design constraint.

The magnetic core was built starting from two low cost coatedtoroids placed side

by side. A null air gap was chosen for the ferrite core in orderto minimize the ma-

gnetizing current. The dimensions of each toroid are the following: outer diameter 51

mm, inner diameter 31.5 mm, effective areaS=172 mm2 and effective lengthle=125

mm. The chosen ferrite material was the low cost 3C90 produced by Ferroxcube,

used for general purpose transformers at frequencies up to 200 kHz. The maximum

magnetic flux density was fixed atBmax = 0.35 T in order to operate in absence of

magnetic saturation for working temperatures up to 70◦C. The feasibility of this

choice in terms of ferrite material and core section area wasverified as reported in

the following.

The design can be performed by choosing the switching frequency, fsw, the DC-

Link voltageVDC and the value of the panels parasitic capacitance, e.g.Cp=600 nF.

Given a grid voltage of 230 V rms, the ground leakage current due to the parasitic

capacitance amounts to a peak value ofIcm−max=30 mA.

Starting from eq. (3.2),BVC−peak = 0.32 T was chosen. Withfs=30 kHz and

VDC=400 V, the turns numbernp results 30, consequentlyns =
np

2 = 15. It was verified

that these turns can be easily wound on the chosen core, obtaining a good fill factor.

The relative permeability of the core material can be considered to beµr = 2000,

consequently the inductance for the secondary windings results Lcm = n2
s/Rm = 1.6

mH. This determines aBIcm−peak = 0.0091 T that allows to validate this design since

the sum ofBVC−peak andBIcm−peak is lower than the maximum working flux density

Bmax.

The primary inductance of the common-mode transformer is approximatelyLm =

6.3 mH. The amplitude of the primary current waveform changes during the grid-

voltage period but in the worst case (during zero-crossingsand with a triangular wa-

veform) has an amplitude equal to 0.52 A. It is important to put in evidence that the

primary current of the common-mode transformer is approximately equal to the tran-

sformer magnetizing current, therefore the Joule effect power losses are practically
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referred only to the secondary windings of the common-mode transformer and result

equal to 2.3 W for an injected grid current of 8.7A.

As for any electric machine design, the design procedure is iterative up to the

achievement of a satisfactory result. A laboratory prototype was built according to

the above design.

3.4 Comparison with the state of the art

In this section the proposed topology is compared to the state of the art of transfor-

merless photovoltaic converters. The total number of powerdevices, the number of

power devices in the current path, the commutation voltage and the ground leakage

current performance are synthesized in Table 3.1. The full-bridge driven by unipolar

PWM is added as a reference, with the remark of high ground leakage current, i.e.

not applicable to transformerless applications.

The H5 and H6 transformeless topologies present a lower total number of swit-

ches than the proposed topology, but the number of devices inconduction is larger,

unlike the HERIC topology which presents the same number of devices in conduc-

tion. In order to compare also the switching power losses, Table 3.1 shows the swit-

ching voltage across the switches for every topology. It is important to put in evidence

that none of these topologies is able to manage reactive power keeping constant the

common mode voltage at the output of the converter.

For completeness, Table 3.1 reports also a photovoltaic inverter with HF DC link

[42]. This topology features a IGBT full-bridge preceded bya soft-switching DC/DC

converter with high-frequency transformer (this topologyis able to manage reacti-

ve power if the unipolar PWM is used for the DC-AC full-bridge). Each side of the

transformer is driven by a full-bridge composed of MOSFETs with very low on-state

resistance. As a matter of fact, two half-bridges with capacitor divider could be used

instead of the two full-bridges, lowering the power switches count to eight. Although

in this case the total component count would be equal to the proposed topology, it

must be noted that the devices driving the common-mode transformer are very low-

power, small-footprint ones. Solution [42] has the fundamental advantage of ensuring
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zero ground leakage current without a bulky line frequency transformer and is sui-

table for every kind of panel technology. Moreover, the DC/DC converter allows a

voltage boost at the secondary. However, the multiple conversion stages and the wide

input voltage excursion typical of a photovoltaic field, limit the maximum achieva-

ble efficiency with respect to transformerless topologies.In fact, the zero voltage

switching and/or zero current switching may not be obtainable for wide ranges of

input voltage and power. For this reason, if polycrystalline or monocrystalline silicon

panels are employed, transformerless converters are preferable.

The transformerless topologies typically employ boost converters between the PV

string and the DC/AC grid-connected converters. In Table 3.1 the additional devices

for the DC-DC converters are not considered, except for the HF DC Link topology.

Table 3.1: State of the Art Comparison

Architecture
Devices

Number

Devices

conducting

Switching

Voltage

Common-

mode

current
Full-

Bridge

Unipolar

PWM

4 2 VDC High

HERIC 6 2 VDC/2 Low

H5 5 3 VDC/2 Low

H6 6 4 VDC/2 Low

Proposed

topology

4 Rated

Power + 4

Low Power

2 VDC Low

HF DC

Link

topology

[42]

12(8) 6 VDC Absent
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3.5 Control of a grid-connected Photovoltaic Inverter

As explained in the previous sections of this chapter, the active common-mode filter

is cascaded to a three-level full-bridge inverter. It was clarified how the control si-

gnals of the h-bridge, that drives the primary of the common-mode transformer, were

obtained from the driving signals of the power converter, but the control strategy of

the power converter was not yet analyzed.

In grid-connected converters, in order to effectively harvest the energy from the

PV field and transfer it to the grid, a specific control system must be implemented.

The comprehensive control system is reported in Fig. 3.7.

The control features that the inverter has to realize are basically three, which can

be divided in relative control subsystems:

• MPPT algorithm for harvesting the maximum available powerfrom the PV

string;

• Grid Synchronization for locking the phase of the grid voltage;

• Current Control for controlling the quality of the currentinjected into the grid.

Each control subsystem will be further analyzed in the following subsections.

Moreover, it is important to further highlight that these control strategies are just

related to the power converter, since the active filter depends only on the driving

signals of the power converter and, as long as they are noted,the choice of the adopted

current controller or the MPPT method does not affect the active filter control.

3.5.1 Grid Synchronization

Grid synchronization is an important task in grid-connected converter since, as ex-

plained in section 1.2, the international regulations impose limits to the frequency

and amplitude variations of the grid voltage. Therefore, the mechanism of synchro-

nization with the grid must be very accurate. Different solutions were analyzed in

literature, they include from the simple strategy of measuring the time between con-

secutive zero-crossings of the grid voltage, to more complex solutions such as SOGI
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Fig. 3.7: Block scheme of the control of a single-stage PV inverter.

filter and different types of digital PLL. An accurate description of different grid syn-

chronization strategy is realized in [43]. In this work a transport delay PLL was em-

ployed to get information about the grid voltage frequency.In a three-phase system,

the use of the Clarke transformation allows to create a quadrature system and realize

the PLL in a synchronous reference frame (d-q PLL) with the Park transformation.

This kind of PLL is very simple to design, allows zero steady state tracking error and

very good dynamic performances. However, its application to a single-phase system

is not straightforward since the quadrature signal of the grid voltage is not present

and it must to be obtained in some way. A possibility is to generate the fictitious

quadrature signal by delaying the grid voltage by a quarter of its period. This method

permits to achieve a good frequency tracking behavior as long as the frequency of

grid remain to a fixed value, i.e. 50 Hz. As the standards allowa slight variations of

the grid frequency, when the value of the frequency is not exactly 50 Hz an error in

the quadrature signal is introduced by the fixed time delay that was originally calcu-

lated for a 50 Hz signal. Therefore, the tracking method getsno longer the correct

frequency.

This drawback was solved in [44], where a modified Park transform was em-

ployed. Basically, the trigonometric functions of the Parktransforms are not compu-

ted directly, but the cosine is obtained as a delayed versionof the computed sine of

the angle, see Fig. 3.8.Tn represents the nominal value of the grid voltage period.

Considering the grid voltagevgrid =Vg sinθi with θi = ωit +Φ0, the input of the
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Fig. 3.8: Block scheme of the transport delay PLL.

PI regulator can be written as:

Vq =−Vg sinθi sin(θ −ωiTn/4)+Vg sinθ sin(θi −ωiTn/4)

=Vg sin(ωiTn/4)(sinθi cosθ −sinθ cosθi)

=Vg sin(ωiTn/4)sin(θi −θ)
(3.5)

Equation (3.5) shows that even ifωiTn/4 6= π/2, i.e., the grid frequency varies,

the phase error is compensated. Obviously, the presence of adelay line limits the

dynamic performances. Moreover, it can be shown that this structure presents two

points of stability, one whitθ = θi and the other withθ =−θi.

This fact must be taken into account and the sign of the grid pulsation must be

checked to ensure that the PLL is locked on the stable point with ω > 0.

3.5.2 Control of the current injected into the grid

Voltage source inverters (VSI), as grid-connected converter, synthesize a sinusoidal

output waveform through PWM modulation, which introduces alarge amount of high

frequency components. In order to reduce the switching harmonics, an output filter

must be employed. The design of the output filter for grid-connected inverters is well

studied in literature [45].
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While an inductive L filter represent a simple solution, usually it cannot achieve

satisfying performance in term of harmonic reduction unless a large inductance value

is chosen. For this reason a LC or LCL filter is generally employed.

For this work an LC filter was employed. Fig. 3.9 represents the schematic of the

LC output filter. The output voltage of the converter is represented by the pulse width

generatorVout , vgrid is the grid generator, whilevPCC represents the actual voltage at

the Point of Common Coupling (PCC), where the converter is connected. Inductor

Lgrid and resistorRgrid account for the impedance of the grid, whileRL andL f are

the resistive and inductive values of the filter inductor. Inthe schematic was also

considered the equivalent series resistance ESR of the filter capacitor. It must be noted

thatR f could also represent an actual resistor connected in serieswith the capacitor

to damp the resonance of the LC circuit.

In fact, the transfer functionY (s) = igrid(s)/Vout (s) presents a marked resonance

peak atωres =
√

1
C f Leq

, whereLeq is due to the parallel ofL f andLgrid . The value

of the grid inductance is not known and it is affected by a great variability, although

it is expected to be less than the filter inductor value. For this reason the resonant

frequency of the circuit is greatly affected by the grid impedance and its value cannot

be predicted precisely. The presence of a passive damping, as R f , helps the circuit

to prevent instability of the closed-loop system, even if the frequency of resonance

may happen to be coincident with a harmonic of the synthesized output voltage of the

converter. Nevertheless, since a large value ofR f leads to an increase of power losses

also active damping methods were elaborated but they are nottaken into account for

this work.

The design of the LC filter usually starts by choosing the value of the filter induc-

tor L f in order to fulfill a first requirement for the output current ripple. The capacitor

value is limited by the amount of reactive power that it absorbs, and it is used to

further reduce the current ripple.

Depending on the rated power of the converter different filter parameters are cho-

sen in order to comply with the regulations that limit the THDof the output current.

The parameters chosen for the LC filter wereC f = 4.4µF , R f = 1Ω, L f = 1.5mH,

RL = 0.1Ω, Rg = 0.25Ω andL f = 40µH.
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The equations that describe the circuit are:







































igrid = iL − iC

iL =
Vout − vPCC

RL + sL f

iC =
sC f vPCC

1+ sR fC f

vPCC = vgrid + igrid(Rgrid + sLgrid)

(3.6)

For the control, the grid voltagevgrid represents a disturbance, while the value

vPCC is the actual voltage that is sampled by the converter. Thus,it is possible to

extrapolate the block diagram of the system, as shown in Fig.3.10, where the reported

transfer functions are:



























G1(s) = Rgrid + sLgrid

G2(s) =
sL fC f + sC f (RL +R f )+1

1+ sR fC f

G3(s) =
1

RL + sL f

(3.7)

Fig. 3.9: Model of the grid-connected converter with a LC filter.

Since thevPCC is known, and considering the behavior of the system just at low

frequencies, the block diagram can be simplified as in Fig. 3.11, where only the trans-

fer functionG3(s) is taken into account. It is worth to note that the previous simplifi-
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Fig. 3.10: Block diagram of the system.

cation was done considering the resonance frequency of the circuit far form the major

low harmonics of the fundamental 50 Hz (i.e. third, fifth, seventh harmonics). With

the chosen parameters the resonance frequencyf reqres is equal to 12.15 kHz, thus,

if the band width of the current loop is not too large, the adopted simplification is

acceptable at low frequencies.

Fig. 3.11: Simplified block diagram of the control.

For the system in Fig. 3.11 the equation is:

igrid(RL + sL f ) =Vout − vPCC (3.8)

thus the inverter voltage should be controlled as follows:

Vout = uc + vPCC (3.9)



3.5. Control of a grid-connected Photovoltaic Inverter 61

in whichuc is the signal generated by the current controller. The current loop with

the PI regulator is shown in Fig. 3.11, whereG0(s) = Kp +Ki/s, andVf f is equal to

vPCC.

The Bode diagram of the current loop is reported in Fig. 3.12.As can be seen,

the gain at 50 Hz is different from one. This it is due to the fact that the PI controller

does not present an infinite gain at the grid frequency, leading to a steady state error.
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Fig. 3.12: Bode diagram of the current loop.

This problem can be overcome by a Proportional Resonant (PR)controller, which

features infinite gain at a desired frequency, or by a PI in a reference frame synchro-

nous with the grid. In the latter case, the variables of the system at 50 Hz can be seen

as constants in the rotating reference frame, therefore a simple PI can guarantee the

absence of error in steady state.

However, implementing a synchronous control in a single-phase system required

the generation of a fictitious quadrature component, as already explained in section
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3.5.1.

Fig. 3.13 shows a possible implementation of the d-q grid current control. A delay

block is employed to generate the quadrature current signal, and a simple PI for each

axis is employed. Obviously, only one output of the Park inverse transform is chosen

as output voltageVout . Depending on the convention chosen for the PLL, the active

power axis can be either the direct or the quadrature one.

This controller exhibits excellent steady state performance and possibility to con-

trol active or reactive power. However, the presence of a delay line negatively affects

its dynamic performance.

Fig. 3.13: Block scheme of the d-q current control for a single phase VSI.

3.5.3 Maximum Power Point Tracking

In a single-stage PV inverter, the DC Link is directly connected to the photovoltaic

field. Controlling the DC-Link voltage, it means to control the operating voltage of

the PV field. The control of the DC Link voltage can be realizedthrough the choice of

a desired value of the current injected into the grid. The DC Link voltage then follows

the well-known characteristic of the photovoltaic cell, which can be derived by the

equivalent circuit of a PV cell (Fig. 3.14), where the voltage-current characteristic

can be expressed, for silicon PV cells, as:
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I = Ipv − I0
(

e
q(V+RsI)

nkT −1
)

(3.10)

In equation (3.10),Ipv represents the current due to the photoelectric effect (va-

riable with the solar irradiance), the diodeD models the p-n junction andRp and

Rs the parallel and series resistance of the cell. The current drained by the parasitic

resistance was neglected.

The series-parallel connection of multiple PV cells leads to a PV module, and the

PV system installers design the connection of multiple PV panels in order to match

the requirement of the grid-connected inverter.

For example, Fig. 3.15 represents a typical voltage-current characteristic of a 3.8

kW PV field.

pvI
pR

sR

V

I

D

Fig. 3.14: Equivalent circuit of a PV cell.

In order to maximize the energy harvested from the PV field, itis important that

the inverter makes the PV field to work at its maximum power point. Fig. 3.16 shows

the voltage-power characteristic of the PV field described by Fig. 3.15. It is obvious

that the operating point V=400 V corresponds to the maximum available power in

these operating conditions.

Therefore, the comprehensive control of a PV inverter must implement, in addi-

tion to the basic current controller, also a DC Link controller, whose set-point is ge-

nerated by a specific algorithm that tries to track the MPP in every working condition.

This was depicted in Fig. 3.7.

Different MPPT algorithms were proposed and a review of the different MPPT

techniques can be found in [1].
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Fig. 3.15: Voltage-Current characteristic of a PV field.

Among the different MPPT technique in this work thePerturb and Observe

(P&O) algorithm was adopted.

It is based on the continuous perturbation of the system operating point, in the

attempt to move the system towards the increasing power. At each step the instanta-

neous power drained from the PV field is computed and confronted with the memo-

rized value for the previous operating point of the system, then the control pushes the

system toward the direction of the positive gradient of the power. In steady-state con-

ditions the algorithm oscillates around the maximum power point, inverting the sign

of the perturbation at every sampling interval. This behavior also represents the main

drawback of this method, since in order to achieve good MPP tracking the perturba-

tion must be sufficiently high, but the higher the perturbation, the higher the oscilla-

tion around the MPP at steady state, and consequently the lower the MPP tracking

efficiency.

In order to solve this drawback the magnitude of the perturbation was not fi-

xed but variable in order to obtain good tracking performance with little steady-state

oscillation. The width of the perturbation was at its maximum initially and gradually

decreased as the gradient of the power becomes less steep.
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Fig. 3.16: Voltage-Power characteristic of a PV field.

3.6 Simulation results

The proposed solution was simulated using PLECS toolbox in aSimulink/Matlab

environment. The schematic used for the simulations is reported in Fig. 3.17. The pa-

rameters of the active common-mode transformer designed inthe last part of section

3.3.2 were used in the simulations.

A simple PI+feed forward current controller is used to inject 3 kVA of electric

power into the grid with variable power factor.

Extensive simulations were performed with the attempt to put in evidence the

performance of the proposed solution regarding common-mode voltage and ground

leakage current rejection.

The simulations were realized with a DC voltage source of 400V, a grid vol-

tage of 230VRMS@50Hz and a switching frequencyfsw= 30 kHz. The output filter

was formed by two inductorsL f = 0.75mH and a capacitorC f = 4.4µF . The parasi-

tic capacitance of the photovoltaic field was modeled with two equivalent capacitors

connected to the positive and negative poles of the DC Link, and their values were

fixed equal to 300nF . For the ground connection, a resistanceRg = 3Ω was conside-
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red. This value is within the limits (2−5Ω) recommended by IEEE standards. Two

inductorsLgrid = 40µH accounted for the distributed inductance of the grid.

Fig. 3.18 shows the common-mode voltage compensation operated by the propo-

sed solution. Fig. 3.19 and Fig. 3.20 show the grid voltage and current, the common-

mode current and the primary current of the common-mode transformer in the case

of PF = 1 andPF = 0.75. The common-mode current shown in the two figures pre-

sents only the fundamental component due to the common-modevoltage component

of the grid and put in evidence the correct behavior of the proposed solution.

Fig. 3.21 shows the common-mode current when the primary of the common-

mode transformer was not connected. In this case the common-mode transformer

operated as a simple common-mode inductor with a value of 2∗ Lcm = N2
2/Rm =

3.2mH.

The common-mode current results in this case, as known in literature, very high.

2T 4T

1T 3T

PV DCV A

B

gridv

Common-Mode
Active Filter

Common-Mode
Transformer 1A

1B

0

Lf

Lf

Lg

Lg

Rg
Cp

Cp

Fig. 3.17: Schematic of the simulation circuit.
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Fig. 3.18: Simulation results.Vcm, vs andVcmT with reference to Fig. 3.2.
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Fig. 3.19: Grid voltage and current, ground leakage currentand primary current of

the active common-mode inductor in case of PF=1, 2Cp = 600nF .
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Fig. 3.20: Grid voltage and current, ground leakage currentand primary current of

active common-mode inductor in case of PF=0.7, 2Cp = 600nF .
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Fig. 3.21: Common-mode current in case of passive common-mode inductor, PF=1,

2Cp = 600nF .
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3.7 Converter Prototype

In order to test the proposed solution, a converter prototype was built. The proto-

type was obtained rearranging the hardware used for a precedent Ph.D. thesis [43].

The prototype includes the CPU, which implements the control and the modulation

strategy, both the full-bridges, for the main and active filter converter, the sensors,

the power supply for the logic and analog circuits and the output filter. Due to the

complexity of the design and the number of components involved, three boards were

employed: the control board, the power board and the output stage board.

3.7.1 Control board

The control board embeds the digital signal controller (DSC) TMS320F28335, a

150MHz, 32bit floating-point processor by Texas Instruments. The high number of

PWM channels (12) and Analog to Digital Converter Channels (16) make it particu-

larly suitable for the proposed converter.

The control board also embeds voltage regulators, 3.3 V for the peripherals and

1.9 V for the core of the DSC, and the protection circuit for the ADC.

The complete schematic and PCB are found in Appendices A1.1 and A1.2.

3.7.2 Power board

The power board incorporates the two full-bridge invertersalong with their driving

circuits and the DC Links filter capacitors, plus additionalI/O circuits such as, Digi-

tal to Analog Converter (DAC) TLV5631, and a RS485 transceiver SN75LBC182D

(appendix A1.3).

Gate drivers

The gate driver circuit is composed of an optocoupler and an insulated power supply

for each power device, in order to have a very flexible and independent control on

each power device.
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The chosen optocoupler is the Allegro ACPL-J313. The insulated power supply

is generated by the IC MAX256 that drives a 1:2 transformer followed by a voltage

multiplier. The schematic is illustrated in Fig. 3.22.

The PWM signals generated by the DSP are multiplied through logic end gates

with the signal generated by the fault circuit. The fault circuit is a latch that, in case

of overcurrent, forces to zero its output, consequently disabling all the logic gates.

1:2

5V

L78L15
220nF

1µF

15V

5V

PWM

FAULTn

ENABLE

Fig. 3.22: Gate driver circuit with insulated power supply.

The logic gates are in open drain configuration. In this way the current absorbed

by the photodiodes is given by the 5 V power supply and not by the logic gates itself.

This, however, poses a problem in case of malfunctioning or non-uniform turn on of

the devices. In fact, if the logic gate is not powered, every photodiode is conducting

due to the pull-up resistor. For this reason, every cathode of the gate drivers is con-

nected to the collector of a BJT. Only if the BJT is polarized it is possible to turn on

the gate drivers.

The complete schematic of the gate drivers is reported in appendix A1.4.
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Power section

The power section embeds the two full-bridges, realized with discrete power devices.

Moreover, in order to prevent overvoltages, turn-off RC snubbers are present in each

controlled device.

The DC link voltage is measured by a circuit, reported in Fig.3.23, that employs

a linear optocoupler, the Avago HCNR201. The two operational amplifier acts as a

voltage to current and as current to voltage converters. Thefeedback control of the

the LED embedded in the optocoupler forces the photodiode towork in its linear

region.

LED

PD1 PD2

HCNR20115VDCV

GND
Power

GND
Analog

To ADC

Fig. 3.23: Circuit employed to measure the DC Link voltages with the optolinear

coupler.

The complete schematic of the power section is reported in appendix A1.5, and

the complete PCB of the power board is shown in appendix A1.6.

3.7.3 Output Stage Board

Power supply

In order to generate all the supply voltages needed for the converter, a flyback ba-

sed on the IC TOP257-PN was adopted. Fig. 3.24 shows an example of the general

flyback circuit. The controller incorporates an active switch used to drive the prima-
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ry of the transformer. The DC supply is obtained by a simple diode bridge rectifier,

allowing the circuit to be used with DC or AC sources.

A current feedback it used to control the 5V output voltage.

Fig. 3.24: Example circuit of the flyback converter from the TOP257-PN datasheet.

Appendix A1.7 shows the complete schematic of the realized flyback converter.

Along with the regulated 5V, additional windings for the +17V and -17 V (used

by the analog circuits) were added to the design. Even an auxiliary winding for the

operation of the TOP257-PN and an isolated +15 V are present.It is important to note

that the 5 V is the only output regulated by the flyback controller; the other outputs

can vary their voltage depending on the duty cycle variations of the IC due to varying

load. For this reason, to ensure the stability of the power supplies, the unregulated

outputs are followed by linear regulators.

Output filter

The output filter includes all the devices needed for the grid-connection of the system,

along with the common-mode transformer and the sensors for the current control and

the grid synchronization. Fig. 3.25 shows the basic schematic of the output filter. A

couple of relays operate the connection and disconnection of the converter with the
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grid. Cx-Cy are the common-mode filter capacitors coupled with the common-mode

transformer, while the capacitorC f is the differential output filter capacitor. An LEM

CKSR-25NP is employed as a current transducer and a voltage transformer is used

to measure the grid voltage.

xC
yC

yC

yC

yC

fC

Converter 
side Grid side

gridi

gridv

Common-mode 
transformer

Fig. 3.25: Schematic of the output filter.

In order to comply with the regulations that supervise the grid connection of

photovoltaic inverters, the prototype embedded the so-called intrinsic safety circuit.

In other words, a hardware solution, which prevents the connection of the converter to

the mains when the grid voltage is absent, was realized. A diode bridge rectifier was

added at the output of the voltage transformer employed to sense the grid voltage.

The rectified voltage was directly connected to the base of a BJT that is in series

to the winding of the relays. If the grid voltage is absent theBJT is off, preventing

current flowing in the relays’ winding, and consequently theconnection to the grid

of the converter.

The complete schematics of the output filter are reported in appendix A1.8, and

the PCB is reported in appendix A1.9.

Fig. 3.27 presents a picture of the boards. The layout of the screws was realized

to stack the output board on the top of the power board. Fig. 3.28 shows a detail of

the common-mode transformer.



74 Chapter 3. Active Common-Mode Filter

gridv
grid

v

v

K

Relay
enable

Voltage
Transformer

Fig. 3.26: Intrinsic safety circuit.

3.8 Experimental results

A specific test bed was realized in order to test the performance of the inverter proto-

type in terms of power quality and ground leakage current. InFig. 3.29 a schematic

diagram of the test bed is shown. The converter was supplied by a DC source and

directly connected to the grid. Since an existing converterwas adapted to realize the

proposed solution, as explained in section 3.7, the common-mode transformer in this

case is located after the filter inductors, differently fromwhat it was done in simu-

lations (Fig. 3.17). Despite the difference in the schematic the results are consistent

with the simulations, as the common-mode path results not affected by the position

of the common-mode transformer.

The Texas Instruments TMS320F28335 DSP generates the PWM control signals

for both full-bridges, elaborating the current control andall the digital calculations.

The current loop operates at the switching frequency. Table3.2 lists the parameters

of the setup.

The performance of the prototype will be discussed in the following with a series

of oscilloscope captures.

Fig. 3.30 and Fig. 3.31 show the grid voltage and the injectedgrid current with the
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Fig. 3.27: Picture of the prototype with the boards separated.

active filter enabled and with different power factors. The THD of the grid current is

equal to 3.4% in case of unity power factor. The behavior is almost unaffected when

reactive power is supplied to the grid, and the THD of the gridcurrent rises to 4.6%.

Fig. 3.32 and Fig. 3.33 report the common-mode voltage at theoutput of the full-

bridge,vcm, the voltage at the secondary winding of the common-mode transformer,

vs, and the resulting total common-mode voltagevcmT respectively without and with

the dead-time compensation strategy described in section 3.2.1.

The figures refer to the positive half-wave of the grid current. It is possible to

recognize the system behavior described in Section 3.2.1. When the dead-time com-

pensation strategy is not applied (Fig. 3.32) thevcm andvs waveforms do not match

perfectly and the small differences result in the generation of pulses, with width equal

to the dead-time interval (i.e. 600 ns) in thevcmT waveform. The differences between
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Fig. 3.28: Picture of the common-mode transformer.

vcm andvs are strongly reduced when the dead-time compensation strategy is applied,

as in Fig. 3.33, allowing to mitigatevcmT variations (in this case the maximum width

of the pulses resulted equal to 20 ns, the maximum amplitude does not change and is

equal to 200 V).

Fig. 3.34 and Fig. 3.35 show the ground voltage and leakage current when a 200

nF capacitor simulates the parasitic capacitance of the photovoltaic field respectively

without and with the dead-time compensation enabled.

In the first case the resulting current isicm = 22 mA rms, while in the second case

the current is reduced toicm = 15 mA rms.

As a comparison term, Fig. 3.36 shows the same waveforms of Fig. 3.35 when

the active filter is disabled. It is important to highlight that in this experiment the

primary winding of the common-mode transformer was disconnected and therefore

the magnetic component operated as a standard common-mode inductor.

Due to unacceptable levels of ground leakage current, in this case a capacitor

of only 6.6 nF was used to simulate the parasitic capacitance. It is evident that the
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Fig. 3.29: Schematic of the test bed.

ground voltage was also heavily distorted, due to the superposition of a marked high-

frequency component. Despite the small 6.6 nF capacitor, the resulting ground lea-

kage current isicm = 169 mA rms. This value is well beyond the limits enforced by

international regulations. The quality of the injected grid current also decreased, the

THD increased to 3.9% and 5.0% respectively in case of power factor equal to 1

or 0.8. This behavior is due to the presence of several harmonic components in the

injected grid current, centered at 30 kHz, introduced by thecommon-mode current.

Fig. 3.37 and Fig. 3.38 show the common-mode transformer primary voltage and

current waveforms far from the grid voltage zero crossing, respectively at no-load

(i.e., zero grid current, open secondaries) and during normal operation. The expected

behavior of Fig. 3.4 and Fig. 3.5 can be recognized. The rms value of the primary

current over a grid voltage period isip=200 mA. The difference between no-load

and normal operation is due to the grid current flowing into the common-mode tran-

sformer secondaries. The grid current should not ideally modify the common-mode

transformer flux, but in actual applications a very small perturbation may appear due

to unavoidable asymmetries. The oscillating behavior during the commutations of
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Table 3.2: Parameters for the experimental setup
Name Description Value

VDC input DC voltage 400V

vgrid grid voltage 230VRMS

fgrid grid frequency 50Hz

fsw Switching frequency 30kHz

L f AC inductor filter 0.75mH

C f AC capacitor filter 4.4µF

Cp equivalent PV parasitic capacitances 200nF

or 6.6nF

nP primary turns common-mode transformer 30

nS secondary turns common-mode transformer 15

Lm primary inductance common-mode transformer6.3mH

L
′
cm inductance of the additional 1mH

common-mode inductor

the switches is due to the large output capacitance of the high-power devices used

to drive the common-mode transformer primary. If proper low-power devices were

used, the lower output capacitance would have resulted in limited ringing during the

commutations.

Eventually, tests of the system efficiency were performed with a power meter.

The total efficiency of the converter was measured in both cases of active common-

mode filter enabled and disabled. With the common-mode active filter disabled, the

primary winding was disconnected from the additional low power full-bridge, which

was not driven by PWM signals. Fig. 3.39 shows the efficiency as a function of the

converter output power.

The additional loss due to the active filter is equal to 4 W and it is independent

from the power supplied to the grid by the converter. For thisreason, the presence of

the active filter does not significantly affect the total system efficiency at output po-

wer values close to the rated power of the converter. It should be noted that the choice
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Fig. 3.30:vgrid 100 V/div, igrid 10 A/div. Time base 5 ms/div. Unity Power factor

operation.

Fig. 3.31:vgrid 100 V/div, igrid 10 A/div. Time base 5 ms/div. Power factor equal to

0.8.

of the same devices for the two full-bridge structures benefits the efficiency measures

with the adopted test bed. As low-power devices with limitedcurrent capability (and

higher on-state resistance) would be adopted in an actual application, the power losses

of the full-bridge driving the common-mode transformer would increase. However,

considering the very small rms value of the common-mode transformer primary cur-

rent, the increased losses should not have a significant impact on the efficiency even

considering a much higher on-state resistance of the devices.
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Fig. 3.32:vcm 200 V/div,vs 200 V/div,vcmT 200 V/div. Time base 10 µs/div.

Fig. 3.33:vcm 200 V/div,vs 200 V/div,vcmT 200 V/div. Time base 10 µs/div. Deadtime

compensation enabled.
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Fig. 3.34: vground 200 V/div, icm 100 mA/div. Time base 5 ms/div. Dead time

compensation disabled.Cp = 200nF

Fig. 3.35: vground 200 V/div, icm 100 mA/div. Time base 5 ms/div. Deadtime

compensation enabled.Cp = 200nF
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Fig. 3.36: vground 200 V/div, icm 500 mA/div. Time base 5 ms/div. Active filter

disabled.Cp = 6.6nF

Fig. 3.37:vp 200 V/div, ip 100 mA/div at no load. Time base 10 µs/div.

Fig. 3.38:vp 200 V/div, ip 100 mA/div during normal operation. Time base 10 µs/div.
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Fig. 3.39: Converter efficiency when the active filter is enabled (solid line) and

disabled (dotted line).





Chapter 4

Conclusions

In this work, the issue of ground leakage current in PV trasformerless grid-

connected converters was investigated and analyzed. The ground leakage current phe-

nomenon was proven to be due to the presence of a parasitic capacitance between the

PV cells and the metal structure of the panels. A survey of theactual solutions to avoid

the arising of ground leakage current in transformerless single-phase systems was al-

so elaborated, and a novel classification for transformerless inverters was proposed

as well.

The principal causes of ground leakage current were highlighted, and the con-

tribution to the phenomenon of the common-mode voltage generated at the output

of the grid-connected inverters during their operation wasanalyzed. As investigated,

the common-mode voltage at the output of the convertersvcm generates currents that

flow in the parasitic capacitance throughout the connectionto the ground of the neu-

tral wire of the grid at the MV/LV transformer. For this reason the ground leakage

current is also known as common-mode current.

A novel approach to cancel the common-mode voltage variations at the output
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of a transformerless grid-connected converter was proposed. This solution relies on

an active common-mode filter connected at the output of the power converter. It is

constituted by a common-mode transformer properly supplied by an additional low-

power full-bridge.

The proposed solution is applicable to both stand-alone andgrid-connected con-

verters. In particular in this work the active filter was applied to a full-bridge power

converter topology driven by the efficient 3-level (unipolar) PWM.

The feasibility of the proposed solution and the capacity tooperate with power

factor different from one was proven through extensive simulations in Simulink/Plecs

environment, and confirmed with experimental results.

On this purpose, a converter prototype was designed and built. It embeds all the

components for enabling the connection to the mains in accordance to the Italian

legislation CEI 0-21.

The experimental results were in accordance with the simulations. In particular,

in real converters slight variations in the total common-mode voltage are introduced

by the dead time intervals of the PWM modulation strategy. For this reason a dead-

time compensation strategy able to minimize thevcm variations, and therefore the

common-mode current was elaborated.

Simple design guidelines for the active common-mode filter were presented in

order to minimize the size of passive components and in particular the core of the

common-mode transformer employed.

A fair comparison with the state of the art was elaborated forthe proposed solu-

tion in terms of number of power devices employed, efficiencyand reliability.

It was highlighted that the proposed solution requires fouradditional power swit-

ches with respect to a full-bridge solar inverter, but as they need to provide only the

magnetizing current of the common-mode transformer, the additional losses resulted

to be very low. In particular, in the prototype the additional power losses introduced

by the active common-mode filter resulted equal to 4 W compared to 2000 VA of in-

jected power. It is important to put in evidence that only standard and low-cost power

switches were used in the laboratory prototype. With a more accurate choice of the

power devices, employing SiC or GaN devices, the power losses could be even lower.
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Furthermore, it is also possible to oversize, without a significant increase of co-

st, the power size of the 4 additional power switches in orderto avoid an overall

reliability reduction of the power converter due to the increased number of power

switches.
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