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Abstract

To strengthen concrete or masonry, a modern technique uses adherent
strips made of Fiber Reinforced Polymer (FRP). A model problem for this
is here considered, represented by an elastic stiffener pulled at one end, in
adhesive contact with an elastic half space in generalized plane stress. An
analytical solution is developed under the hypothesis à la Baranblatt that
cohesive adhesion forces remain active between the two materials when rela-
tive slip occurs (provided this is less than a critical value), so that the stress
singularity predicted by the theory of elasticity in the case of perfect bonding
is removed. We find that the bond length beyond which no further increase of
strength could be achieved, referred to as the effective bond length, coincides
in practice with the ultimate length of the cohesive zone, i.e., its maximal
extension prior that the critical slip limit is attained. The debonding process
in a pull-out experiment is analyzed in detail. Results are in better agree-
ment with experimental data than those obtainable with traditional models,
which neglect as a rule the deformation of the substrate.
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1. Introduction

Motivation for this work is a widely-used technique that employs strips/
plates of Fiber Reinforced Polymer (FRP) to strengthen concrete and ma-
sonry structures. The performance of the bond between stringers and sub-
strate plays a key role in the effectiveness of the reinforcement, so that a wide
research has been focused on the mechanical response of the bonded joints
in the load transfer process. Experimental results have provided a wealth of
evidence that both in flexural and shear strengthening applications the most
frequent failure mode is the debonding of the FRP plate from the substrate,
triggered by high stress concentrations at the ends of the stiffener. Shear
crack propagation parallel to the FRP-concrete interface eventually leads to
the complete separation of the materials, causing the sudden decrease of both
structural stiffness and strength.

Although a mixed-mode analysis (Hutchinson and Suo, 1991; Ascione
and Mancusi, 2010; Begley et al., 2012; Williams and Hadavinia, 2002) ac-
counting for the normal stresses acting at the interface is certainly the most
accurate approach, it has been shown in Freund and Suresh (2008) that the
membrane assumption for the stiffener is perfectly acceptable when its thick-
ness is “small” with respect to the characteristic size of the system1. Under
this condition, the failure mechanism for a straight2 thin strip bonded to an
elastic substrate can be considered in pure mode II.

To better understand the phenomenon of mode II fracture propagation
in FRP-to-concrete bonded joints, attention has been paid to the analysis
of the shear-stress distribution at the interface. Experimental tests have
been conducted with different setups, including single shear tests (Taljsten,
1997; Bizindavyi and Neale, 1999; Mazzotti et al., 2008; Carrara et al., 2011;
Yao et al., 2005), double shear tests (Maeda et al., 1997; Brosens and Van
Gemert, 1997) and modified beam tests (De Lorenzis et al., 2001), for which
an extensive list of references can be found in Yao et al. (2005); Chen and

1Freund et al. (Freund and Suresh, 2008) have given a qualitative indication for the
thickness of the stiffener, which has to be at least 20 times smaller than the characteristic
size (usually the height of the substrate) to assure a membrane behavior.

2Indeed, this is true also when the substrate is moderately curved (Ascione and Man-
cusi, 2012).
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Teng (2001). In general, in pull-out tests the axial force in the stiffener is
gradually transmitted to the substrate by shear forces acting at the interface.
Such forces decay very quickly passing from the loaded end to the the free
end of the stiffener, so that they can be considered active on a certain length
only, usually referred to as the effective bond length or the effective stress
transfer length. In long stiffeners, as the load increases, debonding near
the applied load shifts the stress transfer zone to new areas farther away
from the loading point, confirming that only part of the bond is active. In
other words, the anchorage strength does not increase with an increase of
the bond length beyond its active limit. However, a longer bond length may
improve the ductility of the failure process due to the gradual translation
of the effective length, as debonding proceeds. This phenomenon has been
confirmed by many studies on steel-to-concrete (Taljsten, 1997) and FRP-
to-concrete bonded joints (Maeda et al., 1997).

To interpret this mechanism, various shear-anchorage-strength models
have been proposed, for which a review can be found in Chen and Teng
(2001). In general, these models can be classified into three categories: i) em-
pirical models based on the regression of test results (Maeda et al., 1997); ii)
engineering formulations based upon simplified assumptions and appropriate
safety factors (Brosens and Van Gemert, 1997; Chen and Teng, 2001; Mancusi
and Ascione, 2012); iii) fracture-mechanics-based models (Holzenkämpfer,
1994; Yuan et al., 2001; Neubauer and Rostasy, 1997). Despite the variety
of the reinforcing materials, of the strengths of the substrates and of the
geometry of the stiffeners, there is a general agreement on many aspects of
the failure process. Since it has been experimentally verified that increasing
the bond length beyond a certain limit does not lead to any increase of load-
carrying capacity, all models aim at defining such limit, usually referred to
as the effective bond length.

It is evident that the determination of the effective bond length is of fun-
damental importance in the characterization of the joint. To our knowledge,
the totality of the analytical anchorage-strength models neglects the elastic
deformation of the substrate and assumes a shear vs. slip interface consti-
tutive law to describe the entire phenomenon. Such models predict a fast
(usually exponential) decay of the transfer shear stress from the loaded to the
free end of the stringer that never reaches the zero value, whatever the length
of the stiffener is. Since no part of the stiffener is inactive regardless of its
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length, the definition itself of effective bond length needs an engineering in-
terpretation. For example, many researchers define the effective bond length
as the bond length over which the shear stresses offer a total resistance which
is at least 97% of the ultimate load3 of an infinite joint (Yuan et al., 2001,
2004; Wu et al., 2002; Chen et al., 2012). According to other authors, the
evaluation cannot but be purely experimental. Measuring the strain profile
in the stiffener - usually employing resistance strain gages - the effective bond
length is the length over which the strain decays from the maximum to the
zero value (Ali-Ahmad et al., 2006; Bizindavyi and Neale, 1999; Carloni and
Subramaniam, 2010; Carloni et al., 2012; Kamel et al., 2004; Subramaniam
et al., 2007).

There are some intrinsic ambiguities related to these definitions. In the
first case, the definition is associated with an a priori defined percentage
of load, and the result strongly depends upon the model employed, i.e., the
particular bond-slip constitutive law. The second definition cannot get rid
of the experimental approximations and depends upon the sensitivity of the
gages. Moreover, it implicitly assumes that the deformation of the substrate
is negligible. Indeed, this is a general hypothesis supported by the greatest
majority of authors (see also Carrara et al. (2011); Ferracuti et al. (2007);
Mazzotti et al. (2008)), because it gives substantial simplification in the
modelling. Consequently the slip, i.e., the relative displacement between
stiffener and substrate, is evaluated by simply integrating the axial strain in
the stiffener. In any case, the hypothesis of a rigid substrate implies that the
slip is always nonzero whatever the bond length is.

The present article considers the effect of the substrate elasticity, usu-
ally neglected, by analyzing the contact of a finite elastic stiffener bonded to
the boundary of a semi-infinite plate, supposed in generalized plane stress.
This kind of problems in plane linear elasticity has been considered by differ-
ent authors (Arutiunian, 1968; Benscoter, 1949; Brown, 1957; Koiter, 1955;
Melan, 1932; Reissner, 1940), with the main purpose of evaluating the stress
concentrations near the edges of the stiffener in relation with crack initiation
and propagation in the substrate or along the interface. More recent studies
include the case of a rigid line inclusion embedded in an infinite prestressed

3Notice that tanh 2 ≃ 0.97: this is a characteristic value in the solution of the differential
equations governing the debonding process (Yuan et al., 2001).
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substrate (Dal Corso et al., 2008), to which a generic perturbation field is su-
perimposed, as well as the case of reinforced no-tension-materials (De Faveri
et al., 2012).

Following this rationale, in previous work (Franco and Royer-Carfagni,
2012) the authors have considered the case of a perfectly-adherent stiffener,
focusing the attention on the debonding process assumed to begin, and con-
tinue, as soon as the energy release rate due to an infinitesimal delamination
becomes equal to the interfacial fracture energy (Griffith balance). The main
drawback of this approach was the difficulty to give a consistent definition
of the effective anchorage length. In fact, when slip is not contemplated, the
presence of the stress singularities at both ends of the stiffener produces a
very rapid decay of the shear stress profile at the interface, which does not
agree with experiments.

This work aims at solving this inconsistency by introducing a cohesive
zone where slippage can occur. Following the approach originally proposed
by Barenblatt (Barenblatt, 1962), as suggested by other authors (Chen et al.,
2009; Shield and Kim, 1992) for similar-in-type problems, the length of the
cohesive zone for a fixed load is evaluated by imposing that the stress intensity
factor at the end of the bonded zone is null, eliminating the singularities
which are predicted by the theory of elasticity. Effective material separation
is supposed to start when the relative slip exceeds a certain threshold. If the
stiffener is sufficiently long, there is maximal reachable length of the cohesive
zone; in a strain-driven pull out test, the cohesive portion simply translates
along the stiffener as debonding proceeds, maintaining its length unchanged,
while the load remains almost constant. A strain softening phase, usually
associated with snap-back, is entered when the cohesive zone reaches the free
end of the stiffener.

We will demonstrate that there is a natural definition of effective bond
length, associated with the maximal length of the cohesive zone reached in
sufficiently long stiffeners. The model is able to interpret the debonding
process step-by-step, evidencing different-in-type responses when the bond
length is higher or lower than the effective bond length. The response is
characterized in terms of load-displacement curves, furnishing values in good
agreement with experimental data drawn by the technical literature.

5



D
RA
FT

2. The model problem: cohesive adhesion of a stiffener to a semi-
infinite plate.

As shown in Figure 1, consider an elastic stiffener of length l, thickness
ts and constant width bs, bonded to the an elastic semi-infinite plate in
generalized plane stress. At one end, the stiffener is loaded by a longitudinal
concentrated force P . If no slippage occurs between stiffener and plate, the
theory of elasticity predicts that interface shear forces have a singularity at
both ends of the stiffener (Franco and Royer-Carfagni, 2012).

Figure 1: A finite stiffener bonded to the boundary of a semi-infinite plate and pulled at
one end.

To remove this physically-inconsistent singularity, a cohesive zone is now
introduced, where slippage can take place between the two parts. This is
a free boundary problem, because the length of this zone is unknown and
must be found from condition that interface forces are finite. Indeed, this is
the same rationale followed by Barenblatt in the theory of cohesive cracks
(Barenblatt, 1962).

As indicated in Figure 2, let c denote the length of the cohesive zone. A
reference system (ξ, η) is introduced with the origin on the left-hand-side edge
of the stringer, so that the cohesive zone is 0 ≤ ξ ≤ c, while the completely
bonded part lays in the interval c ≤ ξ ≤ l .

Referring to the free-body diagram of Figure 3, equilibrium of that part
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Figure 2: A finite stiffener bonded to the boundary of a semi-infinite plate with a cohesive
zone.

of the stiffener comprised between the origin and a section ξ = x allows to
write the axial force Ns(x) in the form

Ns(x) = P −
∫ c

0

qc(ξ) dξ −
∫ x

c

q(ξ) dξ , (2.1)

where qc(ξ) is the (cohesive) tangential force per unit length acting over the
length c, while q(ξ) is the contact tangential force per unit length in the
bonded portion.

By Hooke’s law, the stiffener strain reads

εs(x) =
Ns(x)

EsAs

=
1

EsAs

[
P −

∫ c

0

qc(ξ) dξ −
∫ x

c

q(ξ) dξ

]
, (2.2)

where Es is its elastic modulus and As its cross sectional area. Besides, on
the boundary of the semi-infinite plate, the strain in the interval [0, l] due to
the cohesive stress and to the tangential contact stress may be written in the
form (Grigolyuk and Tolkachev, 1987)

εp(x) = − 2

πEpbp

[∫ c

0

qc(ξ)

ξ − x
dξ +

∫ l

c

q(ξ)

ξ − x
dξ

]
(2.3)
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diagram of a portion of the stiffener.

where Ep is the elastic modulus of the plate and bp its thickness. One obtains
the singular integro-differential equation that solves the problem by imposing
that strains are equal over the interval of contact.

In the simplest case one may assume that the cohesive forces are constant,
i.e., qc(ξ) = const. = qc. Consequently, by equating (2.2) and (2.3), one finds

1

EsAs

[
(P−qcc)−

∫ x

c

q(ξ) dξ

]
= − 2

πEpbp

[
qc ln

∣∣∣∣x− c

x

∣∣∣∣+∫ l

c

q(ξ)

ξ − x
dξ

]
, ∀x ∈ (c, l) ,

(2.4)

whose solution is subjected to the equilibrium condition for the stiffener

∫ c

0

qc dξ +

∫ l

c

q(ξ) dξ = P . (2.5)

A change of variable is convenient, so that the completely bonded zone
would lay in the interval [−1, 1]. This is done provided that
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t = 2
(ξ − c)

(l − c)
− 1 ⇐⇒ ξ =

(l − c)

2
(t+ 1) + c. (2.6)

In the following, t will always denote the variable associated with the interval
[−1, 1], representing the image of the bonded length through a mapping of
the type (2.6). If f(ξ) is a generic function of the variable ξ, a new function,
say f̄(t), should be defined such that f̄(t) = f(ξ(t)) when (2.6) is applied.
However, with a little abuse of notation but without risk of confusion, we will
drop this distinction and simply write f(ξ) = f(t), with the understanding
that f(t) = f(ξ(t)).

Therefore, introducing the rigidity parameter λ, defined as

λ =
2

π

Epbp(l − c)

EsAs

. (2.7)

equation (2.4) can be written in the form

qc ln

∣∣∣∣ (l − c)(t0 + 1)

(l − c)t0 + (l + c)

∣∣∣∣+ ∫ 1

−1

q(t)

t− t0
dt = −π2λ

8

[
2(P − qcc)

l − c
−
∫ t0

−1

q(t) dt

]
,

(2.8)

while the equilibrium condition (2.5) becomes

∫ 1

−1

q(t) dt =
2(P − qcc)

l − c
. (2.9)

Solution for (2.8) can be obtained by expanding the contact force q in
term of a series of Chebyshev polynomials4 (Grigolyuk and Tolkachev, 1987),
which are orthogonal in the interval [−1, 1], in the form

4For the sake of completeness, the main properties of Chebyshev polynomials are re-
called in the Appendix.
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q(t) =
2(P − qcc)

π(l − c)
√
1− t2

n∑
s=0

XsTs(t) , (2.10)

where Xs are constants to be determined. Observe that there is a square-root
singularity in the solution at both ends of the reinforcement, which is typical
of most contact problems in linear elasticity theory. Following Bubnov’s
method (Grigolyuk and Tolkachev, 1987), with a procedure similar to that of
Franco and Royer-Carfagni (2012), substitution of (2.10) into conditions (2.9)
and (2.8) allows to obtain, with the orthogonality conditions for Chebyshev
polynomials of the first kind (see Appendix),

X0 = 1,

and the system of linear equations

Xj+
λ

4

n∑
s=1

ajsXs = −λ

4
bj−

qc(l − c)

π(P − qcc)

[
cj−dj

]
, for j = 1, 2, ..., n . (2.11)

Here

ajs = 1/s

∫ 1

−1

Uj−1(t)Us−1(t)(1− t2) dt,

bj =

∫ 1

−1

Uj−1(t)
√
1− t2 arccos t dt,

cj =

∫ 1

−1

Uj−1(t)
√
1− t2 ln |(l − c)(t+ 1)| dt,

dj =

∫ 1

−1

Uj−1(t)
√
1− t2 ln |[(l − c)t+ (l + c)]| dt,

being Uj(t) the Chebyshev polynomials of the second kind. These expressions
can be evaluated with the change of variable t = cosφ, so that Uj−1(t(φ)) =
sin jφ/ sinφ. In conclusion, one finds
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{
ajs = − 4j

[(j+s)2−1][(j−s)2−1]
, for even j − s,

ajs = 0, for odd j − s,


b1 =

π2

4
,

bj = − 4j
(j2−1)2

, for even j,

bj = 0, for odd j ̸= 1.

c1 =
π
4

[
1 + ln |((l − c)2/4)|

]
,

cj = (−1)j π
(j2−1)

, for j = 2, 3, .., n,

and
d1 =

π
4a2

[
2b2 − 2b

√
b2 − a2 − a2 + 2a2 ln(b+

√
b2 − a2)− 2a2 ln 2

]
,

dj =
π
2

[
1

j+1

(
(−b+

√
b2−a2)
a

)j+1

− 1
j−1

(
(−b+

√
b2−a2)
a

)j−1]
, for j = 2, 3, .., n,

having posed a = l − c and b = l + c.

Notice that the coefficients of the system (2.11) coincide with those de-
rived in Franco and Royer-Carfagni (2012) when the stiffener is completely
bonded to the substrate and the cohesive zone is absent. The main differ-
ence here is in the constant terms on the right-hand side of (2.11), which
depend in particular upon the length c of the cohesive zone. The parameter
c adds to the other n unknowns Xs, so that there are n + 1 unknowns for
the n equations (2.11). Another condition needs to be introduced, and this
is accomplished by imposing that in ξ = c (t = −1) the shear stress must be
finite, or, equivalently, that the mode II stress intensity factor KII is null,
that is

KII = lim
ξ→c

q(ξ)
√
2π(ξ − c) = 0. (2.12)

Substitution of the contact stress (2.10) into (2.12) gives the expression
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KII =
2(P − qc c)√
2π(l − c)

n∑
s=0

Xs(−1)s , (2.13)

which reduces to the condition

n∑
s=0

Xs(−1)s = 0 , (2.14)

under the condition that, of course, (l − c) > 0. This is the adaptation
to the contact problem of the approach originally proposed by Barenblatt
(Barenblatt, 1962) to eliminate the stress singularity predicted by the elas-
ticity theory in an opening crack, as a consequence of cohesive forces acting
at its tip. Condition (2.14) allows to evaluate the length of a zone over which
tangential slippage can occur at the interface, provided that the cohesive
stress qc is known.

3. Analysis of the debonding process. The case of FRP reinforce-
ment of concrete

The coefficients of the system (2.11) and condition (2.14) depend upon
the elastic properties of the materials in contact. Once they have been de-
fined, the model should predict the critical load and the effective anchorage
length of the stiffener in order to assure a reliable reinforcement avoiding
delamination. Moreover, it is also possible to analyze the debonding process
that occurs at the interface between substrate and stiffener, as the latter is
gradually pulled. The proposed model is now applied to the particular case of
a Fiber-Reinforced-Polymer (FRP) stringer bonded to a concrete substrate.
Other types of materials can be treated with the same procedure.

3.1. Shear-stress vs. slip constitutive relationship at the interface

In most technical standards, the typical bond-stress vs. slip (τ -s) rela-
tionship for a FRP/concrete interface is approximated by a trilateral of the
type shown in Figure 4, with a linearly ascending branch till the peak stress
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Figure 4: Shear-stress vs. slip constitutive relationship at the interface.

τf , followed by a linear softening phase until the shear stress reduces to zero
(τ = 0 and s = sf ), and a final zero-stress plateau.

On the other hand, equations (2.11) have been derived under the hypoth-
esis that the cohesive force per-unit-length qc is constant on the slip zone.
Assuming that stress is constant on the width bs of the interface, this implies
that the the shear bond stress equals τc = qc/bs. Consideration of a trilinear
constitutive relationship would lead to tremendous complications and this is
why an equivalence is sought that maintains the same delamination fracture
energy Gf and the same slip limit sf . This is achieved, as represented in Fig-
ure 4, when the value of the tangential stress τc is set equal to half the peak
stress τf of the trilinear model. Representative values are reported later on
in Table 2 with reference to experimental measurements (Ali-Ahmad et al.,
2006; Carrara et al., 2011; Mazzotti et al., 2008; Yuan et al., 2004).

As highlighted in various experimental and numerical works (Ali-Ahmad
et al., 2006; Carrara et al., 2011), the force vs. displacement response of a
bonded joint strongly depends upon the bond length l. “Short” stiffeners
show a post-peak softening while “long” stiffeners are characterized by a
plateau, usually followed by a snapback phase (Figure 5). These two cases
need to be distinguished in the analytical interpretation.

In the model of Section 2, relative slip takes place in the cohesive zone,
whereas adhesion is perfect on the remaining part of the bond length. For
any given pull out force P it is possible to calculate the length c of the
cohesive zone for which the cohesive force per unit length qc, supposed uni-
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Figure 5: Typical experimental load-slip curves for a FRP-to-concrete bonded joint.

formly distributed, can annihilate the stress singularity at the extremity of
the adherent part. From the elastic solution, it is also possible to calculate
the relative slip between stiffener and substrate; debonding starts when the
relative slip reaches the limit value sf (Figure 4). The overall response will
be different in type in the case of “long” stiffeners and “short” stiffeners.

3.2. Load-displacement curve for long stiffeners.

Suppose that in the undistorted reference configuration the stringer is
bonded over its length l (Figure 1). Then, the load P is gradually applied
at the left hand side. We consider an hypothetical strain-driven test where
we control the relative displacement of the loaded end of the stiffener with
respect to the substrate, until debonding starts. From that point on, equilib-
rium configurations are sought as the length of the debonded zone increases.

The typical load-slip curve for this case is shown on the right hand side of
Figure 6. The curve can be characterized by three branches, which represent
respectively the strain-hardening, plateau and strain-softening phases. The
graph is marked by a series of key-points that correspond to step changes in
the response.

The relative slip between stiffener and plate needs to be established at
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Figure 6: Response for long stiffeners. A) development of the cohesive zone; B) initiation
of debonding at the loaded end (δ0 = sf ); C)-D) propagation of debonded zone; E) the
cohesive zone reaches the free end; F) strain softening branch.
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various points. Hereinafter, the slip at ξ may be denoted with δ(ξ), but to
simplify we will we use the concise notation

δ(ξ)|ξ=ξ0 ≡ δξ0 . (3.1)

In general, the reference point for the force vs. slip graphs will be the loaded
end ξ = 0 (Figure 2); here the slip, according to (3.1), will be referred to as
δ0.

i) Strain hardening branch (point A).

The first, strain hardening phase, marks the development of the cohesive
zone. Using equations (2.11) with condition (2.14), each value of the load P
is associated with a unique value of the cohesive length c. Such equations
are non linear in c, so that a root-finding algorithm has to be used. Once P
and the corresponding c are known, the value of the slip δ0 at the loaded end
ξ = 0 can be calculated as

δ0 = us(0)− up(0), (3.2)

where (Figure 2) us and up are the displacements of the stiffener and of
the plate substrate, respectively, taken positive if leftwards, i.e., in opposite
direction of the ξ axis. Then, for the situation sketched in Figure 6 (A),
the relative displacement of a point x comprised in the interval [0, c] can be
written as (recall the positive verse of displacements)

us(x)− us(c) =

∫ c

x

εs(ξ) dξ =
1

EsAs

[P c− qcc
2/2] , (3.3)

up(x)− up(c) =

∫ c

x

εp(ξ) dξ = up(t0)− up(−1) =

∫ −1

t0

εp(t)
l − c

2
dt ,(3.4)

where, in (3.4), we have used the change of variables (2.6). Observing that at
ξ = c the plate and stiffener are perfectly bonded so that us(c) = up(c), the
slip δ0 can thus be calculated from the difference of the terms on the right
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hand side of (3.3) and (3.4). Referring to the expression (2.3) for the plate
strain, equation (3.4), evaluated at x = 0 (t0 = −(l + c)/(l − c)), becomes5

up(t0)− up(−1) =

− 2

πEpbp
(P − qc c)

[
X0 ln

(
−t0 +

√
t20 − 1

)
+

n∑
s=1

Xs

s

[
(−1)s −

(
t0 +

√
t20 − 1

)s]]
.

(3.5)

The load P continues to increase as the length c of the cohesive zone
increases. The debonding process does not start until the slip δ0 reaches the
limit value sf (Figure 6, point B), i.e., the value of the slip after which the
shear stress reduces to zero (Figure 4). At this point the maximum load Pu

that can be carried by the FRP stringer is attained and correspondingly, the
cohesive zone reaches the length cu.

ii) Plateau (points B-E).

If the test is strain driven, after point B, debonding propagates along the
interface (Figure 6, points C and D). Let d denote the length of the debonded
part. Given d, one can again calculate with the same procedure just outlined
the length c of the cohesive zone and the corresponding value of equilibrium
load P that annihilates the stress singularity at ξ = d+ c. The condition in
this case is that, at the point ξ = d, the slip δd equals the fracture slip sf .
Remarkably, one finds that P ≃ Pu and c ≃ cu. In other words, the cohesive
zone, once established, remains constant in practice, and moves towards the
free end of the bonded joint, leaving the load Pu unchanged.

As recalled in the Introduction, the effective bond length is usually defined
as that bond length beyond which there is no further increase of the strength
of the joint. From the former analysis, it is possible now to identify the
length cu as the effective bond length. In fact, the debonding process occurs
at constant ultimate load in the way just outlined whatever the bond length
is, provided this is higher than cu. Indeed, the shear stress in the zone that
remains completely bonded decays very fast, so that the entire load Pu is

5Note that the point t0 is external to the interval of contact, i.e. t0 < −1, so integration
has to be performed using relation (A.6) for the case |t0| > 1.
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in practice equilibrated by the shear interface-stress acting in the cohesive
portion. The part of the load that is equilibrated by the contact forces in
the perfectly bonded region is negligible (here, less than 1%) and acts in
any case in a very small (right) neighborhood of ξ = d + c. As a result, we
can consequently define “long” stiffeners those for which the bond length is
higher than cu, which permits the development of the entire stress-transfer
zone.

Of course, the displacement δ0 of the reference point ξ = 0 increases
mainly as a consequence of the strain of the debonded portion of the stringer,
not any more constrained by the substrate. This is why this phase is associ-
ated with a plateau in the P − δ0 graph. In this situation, similarly to (3.5),
the displacement of the plate at ξ = 0 (t0 = −(l + cu + d)/(l − cu − d)) can
be found from an expression of the form

up(t0)− up(−1) = − 2

πEpbp

{
qc

(
−cu ln cu + (cu + d) ln(cu + d)− d ln d

)
+ (P − qc cu)

[
X0 ln

(
−t0 +

√
t20 − 1

)
+

n∑
s=1

Xs

s

[
(−1)s −

(
t0 +

√
t20 − 1

)s]]}
.

(3.6)

Observing again that us(−1) = up(−1), the slip δ0 at the reference point
becomes

δ0 = [us(t0)−us(−1)]−[up(t0)−up(−1)] =
1

EsAs
[Pu(d+cu)−qcc

2
u/2]−[up(t0)−up(−1)] .

(3.7)

iii) Strain softening branch (point F).

When the cohesive zone reaches the free end, the strain softening branch
is attained (Figure 6, point E). From now on, the interface is purely cohesive
and the shear forces are equal to qc. If the stringer is pulled further, the
relative slip increases and debonding proceeds where the relative slip exceeds
the limit value sf of Figure 4. However, this phenomenon is associated with
a sudden decrease of the load carrying capacity and the consequent release
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of the stiffener produces in general a snap-back response (Figure 6, point
F). This cannot be revealed if the test is strain driven; therefore at this
point a new control variable must be introduced. In particular, as done in
the experimental tests of Carrara et al. (2011), the control variable can be
chosen to be the slip δl of the free end ξ = l of the stiffener.

The relative slip δ0 at the reference point ξ = 0 is then equal to

δ0 = [us(0)− us(l)]− [up(0)− up(l)] + δl , (3.8)

where

us(0)− us(l) =
qc c

EsAs

(l − c/2) , (3.9)

and

up(0)− up(l) = − 2

πEpbp

[
qc

(
−c ln c+ l ln l − (l − c) ln(l − c)

)]
. (3.10)

For any given value of δl the corresponding c is found from condition that
at ξ = d ≡ l − c the relative slip δd equals the limit value sf of Figure 4.
The resulting P − δ0 graph exhibits a snap-back response. If one neglects
the strain in the plate and the consequent displacement given by (3.10), the
snap back branch exhibits a parabolic trend. As P → 0, the slip δ0 of the
reference point ξ = 0 tends to the value sf .

3.3. Load-displacement curve for short stiffeners.

Having defined in section 3.2 the length cu as the effective bond length,
we can consequently call “short” stiffeners those for which l < cu. The
debonding process for this case is sketched in Figure 7.

i) Strain hardening branch (point A).

The first stage is characterized by a strain-hardening branch where the
cohesive zone develops. The equilibrium configuration at point A can be
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Figure 7: Response for short stiffeners. A) development of the cohesive zone; B) the
cohesive zone reaches the free end; C) plateau due to rigid slip; D) initiation of debonding
(δ0 = sf ); E) strain softening branch.
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calculated with the same procedure of Section 3.2. However, now the stringer
is too short to permit the development of the entire effective bond length cu.
Consequently, point B of Figure 7 is characterized by a full cohesive interface
with q = qc, and a relative slip δ0 of the reference point ξ = 0 such that
δ0 < sf . The ultimate load is consequently attained at Pu = qcl.

ii) Plateau (points B-D).

Augmenting the pull out displacement, the relative slip increases due to
a rigid translation of the stringer, characterized by the relative slip δl of the
free end ξ = l. The scenario is that of point C, with the load remaining
constantly to Pu.

It must be clearly remarked that the plateau attained in this case of short
stiffeners is different in type from that developing in long stiffeners, discussed
in the preceding section 3.2. In short stiffeners the plateau is due to a uniform
slip of the completely yielded interface and, consequently, its width can never
exceed the limit value sf defined in the constitutive relation of Figure 4. On
the other hand, in long stiffeners the plateau is consequent to a progressive
translation of the cohesive zone, and its extension becomes proportional to
the bond length.

Since sf is in general very small, in short stiffeners the plateau can be
hardly recognized, although for clarity of representation it has been evidenced
in the graph on the right hand side of figure 7. On the contrary, long stiffeners
exhibit a well-marked apparent yielding. This finding is in agreement with
the experimental results, qualitatively recalled in figures 5.

Eventually, one reaches point D, characterized by condition δ0 = sf .

iii) Strain softening branch (point E).

After passing point D, it is again necessary to switch the control variable
to the relative slip δl of the free end ξ = l. Increasing this parameter,
the situation is like that of Figure 7, point E. For a given δl, one can find
the length c of the cohesive zone from the condition that relative slip δd at
ξ = d ≡ l − c is equal to sf .

At this stage, the P − δ0 graph can be found from conditions analogous
to (3.8), (3.9) and (3.10). The result is as represented on the right-hand-side
of Figure 7.
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4. Analytical results and comparison with experimental tests

Most of the experiments in the technical literature are strain driven tests,
which are not able to capture any snap-back response. An exception is the
experimental campaign recently performed in the laboratories of the Uni-
versity of Parma and recorded in Carrara et al. (2011), where a closed-loop
tensometer was used to control the force P applied at a FRP stringer glued to
concrete specimens according to the output of LVDT transducers. Two differ-
ent controls where used. At the beginning of the loading history, the control
parameter was the relative sliding of the loaded end of the stringer; succes-
sively, as the measured load tended to diminish, the control was switched to
the relative sliding of the opposite free end of the stringer. This procedure
is in agreement with the findings from the model just presented in Sections
3.2 and 3.3.

Concrete prism of 150 × 90 × 300 mm nominal size were reinforced by
Carbon-Fiber-reinforced Polymer stringers, 30 mm wide and 1.3 mm thick,
with five different lengths (30, 60, 90, 120 and 150 mm). The measured me-
chanical properties of the materials used in Carrara et al. (2011) are reported
in Table 1, together with the values corresponding to other experimental cam-
paigns (Yuan et al., 2004; Mazzotti et al., 2008) that, although not using a
closed loop control, can serve here as a significant comparison. For the same
tests, Table 2 shows the parameters that define the interface law according
to Figure 4. Following the proposed equivalency outlined in Section 3.1, we
set τc = τf/2 and qc = τc · bs, being bs the width of the stringer.

Using the data from Carrara et al. (2011), the results obtainable with the
cohesive model are analyzed for a bond length of 150 mm. Figure 8 shows
the normalized interfacial shear force distribution q/qc at various stages of
loading. For various values of the applied load, a cohesive zone length c is
calculated. Observe that at the loaded end the shear distribution tends to
the value of the maximum allowable stress qc, i.e.,

lim
ξ→c

q(ξ)

qc
= 1 . (4.1)

This is not surprising because the shear stress at the frontier between the
cohesive and the perfectly bonded zones has to be continuous. In general,
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Table 1: Mechanical properties of materials used in experimental campaigns.

Concrete FRP

Test Elastic Modulus Thickness Width Elastic Modulus Thickness Width
Ep tp bp Es ts bs

[MPa] [mm] [mm] [MPa] [mm] [mm]

Carrara et al. (2011) 28700 90 150 168500 1.3 50

Yuan et al. (2004) 28600 150 150 256000 0.165 25

Mazzotti et al. (2008) 30700 200 150 195200 1.2 50

Note: When the literature provides only the cylindrical strength fck then, as suggested in
Italian structural Code (NTC 2008, 2008), Ep has been calculated with Ep = 22000(fcm/10)0.3

MPa, being fcm = fck + 8 MPa.

Table 2: Parameters of interface law.

Test τf s1 sf
[MPa] [mm] [mm]

Carrara et al. (2011) 7.71 0.030 0.15

Mazzotti et al. (2008) 9.14 0.033 0.0971

Yuan et al. (2004) 7.20 0.034 0.16

Note: When the literature does not provide the value
for the peak stress τf , then expressions of the Italian
Code (CNR-DT/200, 2004) have been used, i.e., τf =

0.64κb

√
fckfctm with fctm = 0.30f

(2/3)
ck expressed in

MPa and κb =
√

2−bs/bp
1+bs/400[mm] ≥ 1.
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there is an approximation due to the finite number n of terms used in the
Chebyshev representation; the higher is n, the better is the approximation,
and the graphs here correspond to the value n = 100. At the other (free)
edge of the stiffener, the solution still presents the singularity predicted by
the theory of elasticity.
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P = 1 kN
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P = 10 kN

P = 15 kN

c=124.58 mmc=81.73 mmc=39.18 mmc=6.13 mm

Figure 8: Interfacial shear force distribution for different values of the applied load and
corresponding cohesive lengths c. Same materials of Carrara et al. (2011), with initial
bond length l = 150 mm.

Figure 9 represents the axial load P as a function of the slip δ0 at the
reference point ξ = 0, calculated with no consideration of debonding, i.e.,
as if the interface had infinite ductility. Table 2 indicates that for the tests
of Carrara et al. (2011) the failure slip is sf = 0.15 mm. Therefore when
δ0 = 0.15 mm debonding starts, and the corresponding load Pu = 15.09 kN
is the ultimate load. An effective bond length cu = 125.4 mm corresponds
to this case.

The example confirms that once the delamination begins and a progres-
sive debonded length d is developed, the cohesive length cu does not change
considerably. The cohesive zone, once established, moves towards the free
end of the stringer, while the applied loads remains substantially constant.
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A confirmation of this is in Figure 10, which represents the axial load P
as a function of the global slip δd, now calculated at the end of the debonded
zone ξ = d, for three different values (d = 0, d = 5 mm, d = 10 mm) such
that d + cu < l. These cases correspond to the configurations C and D of
Figure 6. For each value of d, a new cohesive length is derived from condition
(2.14) as a function of P . The three graphs in practice overlap, meaning that
the response is substantially similar in all the cases when the bond length is
greater than cu. In particular, the value of the cohesive length when δd = sf
is independent of d (cu varies in the range 125.20÷125.41), while the critical
load Pu is practically constant (Pu ≃ 15 kN).
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Figure 9: Load-slip (P − δ0) curve for the same material parameters of Carrara et al.
(2011) (Bond length l = 150 mm).

In general, the length of the cohesive zone c depends upon the value of
the applied load P , independently of the bond length of the stiffener. This
is also confirmed by Figure 11, which represents the value of c associated
with various values of the load P for increasing values of the bond length
l. Remarkably, c does not substantially change as l is varied, However, a
minimum value of the bond length l has to be associated to each load P .
This derives from the condition that l > P/qc, so that for a given value of
load there is a minimum length necessary to develop the cohesive zone.
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Figure 10: Load-slip curves (P − δd) for different values of the debonded length d (Exper-
imental data of Carrara et al. (2011)).

0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

120

140

Bond length, l [mm]

C
oh

es
iv

e 
zo

ne
 s

iz
e,

 c
 [

m
m

]

 

 

P= 1 kN

P= 5 kN

P= 10 kN

P= 15 kN
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It is interesting to investigate how the bond length l affects the ultimate
load Pu. Figures 12 show Pu as a function of l, for the mechanical parame-
ters reported in Tables 1 and 2 corresponding to the experimental works of
(Yuan et al., 2004; Carrara et al., 2011; Mazzotti et al., 2008). Comparison
with the experimental data, here indicated by dots, evidences that there is
a good agreement with the prediction of the model for what the ultimate
load is concerned. It is evident that Pu increases with the bond length until
a particular value is reached, after which the load remains almost constant.
The value of the bond length that marks this transition is the effective bond
length according to the classical definition, and matches very well with the
value of cu calculated through the model, also reported in Figures 12. More
precisely, all the results are summarized in Table 3, where in the “experi-
mental data” columns, the mean experimental value on the peak load has
been indicated with Pmax,e, while the approximate values of the bond length,
evaluated from the change in the trend of the experimental data, have been
referred to as le,e.

It may be useful to compare the results that derive from the model with
those obtainable with formulas suggested by technical standards. To this
respect, the recent Italian instructions CNR-DT200 (CNR-DT/200, 2004)
appear to be one of the most modern reference. The main assumption in
this model is a trilinear shear-stress vs. slip model, of the type represented
in Figure 4, while the substrate is always considered rigid. The ultimate load
is evaluated through an energetic balance leading to a formula of the type

Pmax =
√

2EsAsGfbs = bs
√

2EstsGf , (4.2)

where Gf is the fracture energy of the FRP-to-concrete interface. The effec-
tive bond length is obtained as

le =

√
Ests
2fctm

, (4.3)

being fctm the mean tensile strength of concrete (NTC 2008, 2008).

Using the data of Tables 1 and 2, the results are reported in Table 3,
together with the prediction of the model just presented. Notice that the

27



D
RA
FT

cohesive model, which is not based upon an energetic balance but simply
relies upon the stress calculated with the classical theory of elasticity, gives
values which are in excellent agreement with the standards for what the
ultimate load is concerned. On the other hand, the expression (4.3) seems to
excessively overestimate the bond length le with respect to the experimental
data, which are instead very well captured by our model.

Table 3: Results from cohesive zone model and comparison with the values predicted by
Italian standards (CNR-DT/200, 2004) and experimental tests.

Cohesive Model Italian Standards Experimental data

Test Pu cu Pmax le Pmax,e le,e
[kN] [mm] [kN] [mm] [kN] [mm]

Carrara et al. (2011) 15.09 125.40 15.10 185.00 15.11 120÷ 150

Mazzotti et al. (2008) 22.79 92.48 22.79 175.33 22.65 ∼ 100.00

Yuan et al. (2004) 5.49 60.05 5.51 91.89 5.53 ∼ 60.00

It should be remarked that, as explained in Sections 3.2 and 3.3, if there
is a part that remains completely bonded in a neighborhood of the free end of
the stiffener, here elasticity theory predicts a singularity in stress. In a more
accurate modeling, we have considered the possibility of a second cohesive
zone at the free end of the stiffener, but we have verified that the length of
this is much smaller (about 1

1000
) of the length of the cohesive zone at the

loaded end. Consequently, the shear stress profile at the interface does not
appreciably change if the singularity at the free end is removed. In other
words, the part of the applied load that is equilibrated by the singularity
is in general not important at all. In conclusion, the model just presented
provides an accurate description of the debonding mechanism, at the price
of a reasonable computational effort, which instead considerably increases
when the second cohesive zone is introduced.
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Figure 12: Ultimate load Pu as a function of the initial bond length l. (a) Tests of Carrara
et al. (2011); (b) Tests of Mazzotti et al. (2008); (c) Tests of Yuan et al. (2004).
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5. Discussion and Conclusions

An analytical model has been presented for the description of the interfa-
cial debonding process in pure mode II of an elastic stiffener from a substrate.
A practical motivation for this is the popular technique of strengthening con-
crete or masonry with stringers made of Fiber Reinforced Polymers (FRP).
The contact problem has been analyzed under the hypothesis that the sub-
strate is a linear elastic semi-infinite plate in generalized plane stress. Fol-
lowing the typical approach à la Barenblatt (Barenblatt, 1962), a shear type
cohesive zone has been introduced in order to remove the singularity of the
stress at the edge of the stiffener, imposing that the mode II stress intensity
factor KII is zero at the edge of the zone that remains completely bonded.
Compatibility conditions for the relative displacement allow to obtain an
integro-differential equation in terms of the tangential stresses (Grigolyuk
and Tolkachev, 1987). The common technique of expansion in orthogonal
polynomials is then used to obtain a set of algebraic equations, depending
upon the unknown cohesive zone length c, whose value is determined with a
root finding algorithm once the maximum allowable interface stress is given.

The major novelty of this approach is consideration of the elastic defor-
mation of the substrate, which instead is considered rigid in all the models
that we know dealing with FRP reinforcements. Indeed, if the substrate is
rigid, the whole essence of the phenomenon must be captured through a shear
stress τ vs. slip s interface law between the materials in contact, but this
simplification may give some inconsistency. For example, slip should occur
through the whole bond, regardless of its length and of the level of the pull
out load; perfect adhesion (no slip) can never be attained because it would
give rise to infinite stress that no bonding could ever withstand.

On the other hand the proposed approach, just assuming a very simple
stepwise τ − s interface law, naturally predicts the formation of a cohesive
zone that annihilates the stress singularity in that part where perfect bonding
is preserved. The cohesive length c depends upon the maximum allowable
cohesive shear-force qc at the interface between stringer and substrate and
it results to be a function of the applied load. Remarkably, c does not
appreciably change if the bond length is increased.

If the stringer is sufficiently long, there is a maximal length cu of the co-
hesive zone. This is attained when the slip at the loaded end of the stiffener
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reaches the fracture slip sf , representing a characteristic parameter of the
interface constitutive model. Debonding initiates at this stage at a critical
value Pu of the load. The length cu does not change as delamination propa-
gates along the interface, but simply translates as the debonding increases,
until it reaches the opposite free end of the stringer. Therefore, cu depends
upon the mechanical properties of the materials in contact, but not on the
bond length l of the stringer (of course, provided l > cu). During this process
the load P remains almost constant and equal to Pu because the majority
by far of the applied load is equilibrated by the cohesive forces acting in the
cohesive zone. Therefore, the length cu can be identified as the effective bond
length, that is, the length that is necessary to assure the transfer of the load
from the stiffener to the substrate; increase of the bond length beyond its
effective value does not increse the load bearing capacity. This definition
solves some ambiguities that are usually associated with the rigid-substrate
hypothesis.

In general, the ultimate load Pu is independent of the bond length l,
provided that this is higher than the effective bond length cu. When l <
cu, the cohesive zone invades the whole bond length and the load bearing
capacity of the joint is the product of l and the maximum allowable cohesive
shear-force qc. Therefore, a basic distinction has to be made between long
stringers, characterized by l > cu and short stringers, for which l < cu.
Long stringers exhibit a first strain-hardening branch in the load vs. slip
graph, followed by a plateau associated with stable debonding (translation
of the cohesive zone). The higher the bond length, the more marked is the
plateau and, consequently, the higher the ductility of the joint. When the
cohesive zone reaches the free end, a strain softening phase begins, usually
characterized by a snap-back caused by the release of strain energy stored
by the detached part of the FRP plate. Short stiffeners present a strain
hardening branch, but the plateau phase is almost negligible, because there
is no translation of the cohesive zone. In fact, the extension of the plateau,
which is associated with a rigid translation of a fully yielded joint, can never
exceed the fracture slip sf . Obviously, the ultimate load and the apparent
ductility for short stiffeners are always less than for long stiffeners.

The ultimate loads obtained through the model matches with represen-
tative experimental results present in the literature, and with the relevant
formulas proposed in technical standards. For what the effective bond length
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is concerned, our analytical prediction are in very good agreement with ex-
periments (at least with those that have been considered here). On the other
hand, we must observe that the corresponding formulas suggested by techni-
cal standards give excessively overestimated values (about twice) with respect
to test results. To this respect, our formulation seems to be an improvement
of what proposed so far.

The model can be considered minimal, because it considers linear elastic
materials and the simplest stepwise shear-stress vs. slip law for the interface.
The latter assumption predicts a strain-softening snap-back branch which is
parabolic in type, whereas the experimental results usually present a linear
trend. Consideration of more elaborated interface laws could improve the
performance of the model, but we may infer, albeit tentatively, that the
formulation just presented is able to capture the essence of the debonding
phenomenon before the snap-back phase occurs, the maximum load and the
extension of the effective bond length. A numerical implementation of the
model that uses the trilinear interface law commonly accepted in the technical
literature will be the subject of further work.
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Appendix A. Appendix: Chebyshev Polynomials

The Chebyshev polynomials are usually defined introducing the variables

t = cos(φ) , φ = arccos(t) . (A.1)

The polynomials of the first kind take the form (Abramowitz and Stegun,
1964)

Ts(t) = cos(sφ(t)) = cos(s arccos(t)) , (A.2)

while the polynomials of the second kind are defined as
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Us(t) =
sin(s+ 1)φ(t)

sin(φ(t))
. (A.3)

Both Ts and Us form a sequence of orthogonal polynomials. The polyno-
mials of the first kind are orthogonal with respect to the weight 1/

√
1− t2

on the interval [−1, 1], that is,

∫ 1

−1

Ts(t)Tm(t)√
1− t2

dt =


0 , for m ̸= s ,
π
2
, for m = s ̸= 0 ,

π , for m = s = 0 .

(A.4)

Similarly, the polynomials of the second kind are orthogonal with respect to
the weight

√
1− t2 on the interval [−1, 1], i.e.,

∫ 1

−1

Us(t)Um(t)
√
1− t2dt =

{
0 , for m ̸= s ,
π
2
, for m = s .

(A.5)

The following properties are useful:

∫ 1

−1

Ts(t)√
1− t2(t− t0)

dt =


0 , for s = 0 and |t0| < 1 ,

πUs−1(t0) , for s > 0 and |t0| < 1 ,

−π
(t0− |t0|

t0

√
t20−1)s

|t0|
t0

√
t20−1

, for s ≥ 0 and |t0| > 1 .

(A.6)
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∫ 1

−1

Us−1(t)
√
1− t2 ln |t− t0|dt

=



−π
2
(t20 + ln 2), for s = 1 and |t0| < 1,

π
2

[
Ts+1(t0)

s+1
− Ts−1(t0)

s−1

]
, for s > 1 and |t0| < 1,

π
4

[(√
t20 −

√
t20 − 1

)2

+ 2 ln

∣∣∣∣ t0+ |t0|
t0

√
t20−1

2

∣∣∣∣] , for s = 1 and |t0| > 1,

π
2

(
− |t0|

t0

)s−1
[(√

t20−1−
√

t20

)s+1

s+1
−

(√
t20−1−

√
t20

)s−1

s−1

]
, for s > 1 and |t0| > 1.

(A.7)

Another property of the Chebyshev polynomials is that, in the interval
−1 ≤ t ≤ 1, they attain the maximum and minimum values at the endpoints,
given by


Ts(1) = 1 ,

Ts(−1) = (−1)s ,

Us(1) = s+ 1 ,

Us(−1) = (s+ 1)(−1)s .

(A.8)

These relationships are of help while estimating qualitative properties of the
solution.
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