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Introduction

In the last three centuries we learned how to harness increasing amounts of energy to
satisfy our needs. We farm, move, light, save lives, build, communicate, do most of
everyday actions using technologies empowered by the energy we extract from our
planet. This change happened in a very short time compared to every biological cycle,
and to preserve what we know as the modern world, we must use renewable energy
sources and balance our energetical needs with the ecosystem. Traditional examples
of renewable energy are wind and water, used by windmills and watermills since a
long time. This mechanical energy comes from the Sun, which heats the atmosphere
and evaporates the water, creating winds and running the water cycle.
In 1839 Edmond Becquerel discovered the photoelectric effect and in the 1950s the
first silicon solar cell was produced with a conversion efficiency of 6%. Starting from
very expensive military and space applications, solar cells have become more and
more popular and cheap and are now competitive with fossil fuels.

Electricity is the most flexible form of energy but also the most expensive to pro-
duce. The actual scenario is very favourable to the use of energy in this form. Electri-
cal motors are light, efficient and they do not pollute when they are used. Without the
emission of harmful fumes we can move (many countries are investing into electrical
transportation), air-condition (heat pumps allow to move heat from indoor to outdoor
and vice versa) and satisfy most of our needs efficiently. The question about this evo-
lution we are living is: how can we produce electricity without creating pollution?
There are different ways to obtain clean electricity; this work studies thin-film solar
cells for the photovoltaic conversion of sunlight. This technology has a huge potential
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and relies on the most common and abundant source of energy: the Sun. Everywhere
there is life there is sunlight: even where there is no connection to the electrical grid
or where traditional methods are not convenient this technology promises to satisfy
the local energy needs.

A basic explanation of the photovoltaic effect and how it is used in solar cells is
given in Fig. 1. When a semiconductor absorbs a photon with energy greater than the
bandgap, an electron is excited from the valence band to the conduction band leaving
a hole behind. This generated electron-hole pair is free to move when an external
force is applied. In a solar cell this force is mainly due to the electric field originated
from the pn junction built-in potential. This basic principle combines with several
other mechanisms, e.g. diffusion and recombination, to determine the output of the
solar cell. The goal is to collect the photogenerated carriers efficiently using electrical
contacts and let them flow through an external circuit to obtain electrical power.

Figure 1: Photovoltaic effect.

The electricity produced using photovoltaics is classified among the "renewable
energies", meaning that we are introducing a cycle that can last for an indefinite time.
From this perspective one of the critical features of a renewable energy plant is the
ability to produce more energy than the amount spent to build it. If we consider tradi-
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tional single-crystalline silicon solar cells, five to ten years are needed to obtain back
the initial energy investment, while for thin-film technologies this energy payback
time drops to few years. While, due to overproduction and worldwide commercial
crisis, the market is still dominated by the traditional single- and poly-crystalline sili-
con, the price to produce a thin-film solar cell is lower and these technologies are very
promising under various perspectives. Only the use of a thin-film allows choosing a
large variety of substrates and growing the solar cell on many different materials, in-
cluding flexible polymers and materials used in construction like ceramics or steel.
This thesis analyses the world of thin-film solar cells focusing on two kind of tech-
nologies, the first based on copper-indium-gallium diselenide, also called CIGS, the
second one on cadmium telluride.

The aim of this work in particular is giving suggestions on how to increase the
conversion efficiency of these devices by improving knowledge and understanding of
their physical behavior.

Thin-film solar cells based on CIGS or CdTe absorbers have been studied in re-
search laboratories for at least 20 years, but only recently entered the phase of in-
dustrial production. While still lagging behind their Si-based competitors in terms
of efficiency and dollars/Watt, these technologies are poised to conquer increasing
market shares, and perhaps even market dominance. Thin-film solar cells based on
Cu(In,Ga)Se2 (CIGS) show record efficiencies among thin-film technologies, with
manufacturers introducing mass production processes yielding cells with efficiencies
in the 13-15% range [1]. Lab specimens can provide power conversion efficiency
as high as 20% [2], despite the poly-crystalline structure of the semiconductor thin
film. Several papers were published on material growth, processing and characteriza-
tion on one side, and on the performance of finished cells and modules on the other,
but there is still a gap to fill in between: some of the specific features of CIGS cells,
specifically those pertaining to the behavior of grain boundaries and hetero-junctions,
are still under debate, and a complete understanding of the relationship between ma-
terial characteristics and cell behavior is not available yet.
Thin-film solar cells based on CdTe still underperform compared with theoretical
limits and even with CIGS cells [3], and in spite of a relatively long history of re-
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search and development, there is still room and need for better understanding of the
physics underpinning the photovoltaic performance of CdTe cells and modules.

One difficulty lies in the fact that while single crystal materials used in tradi-
tional (silicon) and high efficiency tandem (GaAs-based) solar cells are well-known
and fully characterized, poly-crystalline materials used in thin-film solar cells show
widely varying characteristics depending on growth/deposition process and condi-
tions; the poly-crystalline nature of the absorber is itself an obstacle along the path to
full understanding of the cell behavior, and often the device is studied by simulating
an equivalent single-crystal solar cell where the material parameters, such as carrier
lifetimes, are modified to give a reasonable match of the experiments. This approach
has the major advantage of allowing a one-dimensional description of the cell, and
the use of efficient and widespread one-dimensional simulation tools like SCAPS [4].
However, the actual current transport mechanisms, which are necessarily affected by
the presence of grain boundaries, cannot be investigated using this approximation;
consequently, this aspect of device design and optimization is neglected.

Chapther 1 provides the basic concepts and equations of the numerical model
used in this thesis, explaining the electrical and optical problem. An overview of the
simulation suite Synopsys Sentaurus introduces the main software used to the reader.

The second chapter develops an analytical model of the photocurrent of a thin
film solar cell. This study is related to CIGS thin-film solar cell and validated for
this technology; however, its validity and significance embrace most of the thin-film
technologies. The model rewrites classical equations into the context of thin-film
solar cells, providing a detailed derivation of the equations governing each region.

Chapter 3 deals with the polycrystalline structure of CIGS. The presence of
defect-rich grain boundaries with possible band-gap modifications is a specific fea-
ture of these cells taken into account in this model. Besides studying these cells with
two-dimensional numerical simulations, this chapter develops an analytical model of
the dark I-V characteristics. While the single-crystal structure behavior will be accu-
rately described by a standard two-diode model, a four-diode model is necessary to
describe the effect of active grain boundaries. The only parameters of these two mod-
els are the diode saturation currents, leading to a two-parameter and a four-parameter
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model, respectively.
Finally, a few simulations address the topic of cell degradation under damp heat stress
conditions.

Chapter 4 examines the use of ZnMgO as a replacement of toxic CdS in the stan-
dard structure ZnO/CdS/CIGS. In this respect, ZnMgO has proven to be a suitable
replacement for CdS, due to its wide bandgap (i.e., low absorption) and convenient
band alignment with the CIGS absorber. This chapter provides theoretical indications
regarding Zn1−xMgxO bandgap (i.e., different Mg content x), thickness, and conduc-
tivity, with and without defects at the Zn1−xMgxO/CIGS interface.

Chapter 5 develops a two-dimensional numerical model of a CdTe solar cell,
considering grain boundaries and their effect on current transport. The impact of
recombination at vertical grain boundaries (GBs) as a function of CdTe grain size and
doping is analyzed as a starting point. This case considers a columnar structure for the
CdTe grains with charge-neutral grain boundaries. In a second set of simulations, the
presence of the ClTe states is considered. The model is extended to consider different
grain orientation and current transport through GBs. Change of GB resistivity under
illumination and bi-dimensional current transport are modeled and discussed in this
chapter.





Chapter 1

The numerical model

This work is based on the simulation of physics-based models created with the com-
mercial software Synopsys Sentaurus [5, 6]. The influence of material parameters on
device characteristics is explained through the solution of partial differential equa-
tions subject to specific boundary conditions and compact analytical modelling. While
numerical models provide a more accurate information, analytical models help a bet-
ter understanding. This chapter explains the basic concepts of the numerical model
and its main equations.

The electrostatics is described by the Poisson equation:

∇ · (εrε0∇Ψ) = q(p−n+ND−NA)−ρT (1.1)

where εrε0 is the dielectric constant, Ψ is the electrostatic potential, p and n are the
free carrier concentrations, ND and NA are the density of donor and acceptor doping
levels, ρT is the charge of the additional trap states.
This equation is solved together with the continuity equations, which assume the
following form in the steady-state condition:

∇ ·−→Jn =−∇ ·−→Jp = q(R−G) (1.2)



8 Capitolo 1. The numerical model

where Jn and Jp are the electron and hole current densities, R is the recombination
rate, and G is the generation rate.
The recombination through states inside the band gap of the semiconductor follows
the non-radiative Shockley-Read-Hall model:

R =
N0vn

T Hvp
T Hσnσp(np−n2

i )

vn
thσn(n+n1)+ vp

thσp(p+ p1)
(1.3)

with

n1 = ni · e
ET
kT p1 = ni · e

−ET
kT (1.4)

vn,p
T H =

√
3kT
mn,p

(1.5)

where N0 is the density of states of the considered level, vn
T H and vp

T H are the electron
and hole thermal velocities, σn and σp are the capture cross section of the trap centre
for electrons and holes, n and p are the free carrier concentrations, ni is the intrinsic
density, ET is the energy level, k is the Boltzmann constant, mn and mp are effective
masses, and T is the temperature.
The occupation probability of a state at energy E is given by the Fermi-Dirac statistic:

f (E) =
1

1+ e
E−EF

kT

(1.6)

where EF if the Fermi energy.
In low field regime the mobility µ and the diffusivity D are proportional and given
by the Einstein relation:

Dn =
kT
q

µn Dp =
kT
q

µp (1.7)
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When 1.7 holds, the current equations take the form:

−→
Jn = nµn∇EFn

−→
Jp = pµn∇EF p (1.8)

where EF p and EF p are the quasi-Fermi levels.
For a non-degenerate semiconductor they are associated to the carrier desities by

n = NC(x)e
EFn−EC

kT p = NV (x)e
EV−EF p

kT (1.9)

where NC and NV are the effective densities of states in the conduction and valence
band, EC and EV are the conduction and valence band edges.
Equations 1.9 can be written in the form:

EFn = EC + kT log
(

n
NC

)
EF p = EV − kT log

(
p

NV

)
(1.10)

The spatial derivatives of 1.10 assume the form:

dEFn

dx
=

dEC

dx
+ kT

[
1
n

dn
dx
− 1

NC

dNC

dx

]
dEF p

dx
=

dEV

dx
− kT

[
1
p

d p
dx
− 1

NV

dNV

dx

] (1.11)

The band edges EC and EV are related to the electron affinity χ , the band gap EG and
the applied voltage V by:

EC(x) = E0−χ(x)−qV (x)

EV (x) = E0−χ(x)−EG(x)−qV (x)
(1.12)

where E0 is the vacuum reference level.
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Combining Eq.1.11 with Eq.1.12 we obtain the current expressions for an hetero-
junction:

Jn(x) =−nqµn

[
d
dx

(
V +

χ(x)
q

)
− kT

qNC

dNC

dx

]
+qDn

dn
dx

Jp(x) =−pqµp

[
d
dx

(
V +

χ(x)+EG(x)
q

)
+

kT
qNV

dNV

dx

]
−qDp

d p
dx

(1.13)

In addition to carrier drift due to the electric field −dV/dx and diffusion due to the
carrier density gradient, eqs. 1.13 have terms taking into account compositional vari-
ation, spatial dependence of electron affinity, variation of band gap and density of
states in the bands.

1.1 Frequency domain

The simulation of frequency response breaks the steady-state condition and time
derivative appears in the continuity equation. The system describing the device physics
becomes: 

∇ · (εrε0∇Ψ)+q(p−n+ND−NA)+ρT = 0

∇ ·−→Jn −q(R−G)−q δn
δ t = 0

∇ ·−→Jp +q(R−G)+q δn
δ t = 0

(1.14)

Using the notation:
FΨ(Ψ,n, p) = ∇ · (εrε0∇Ψ)+q(p−n+ND−NA)+ρT

Fn = ∇ ·−→Jn −q(R−G); Ġn = q δn
δ t

Fp = ∇ ·−→Jp +q(R−G); Ġp = q δn
δ t

(1.15)

and using the first order terms of the Taylor’s series around the DC operating point,
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we can write the small-signal approximation of the system 1.14:
δFΨ

δΨ

∣∣∣
DC

Ψ̃+ δFΨ

δn

∣∣∣
DC

ñ+ δFΨ

δ p

∣∣∣
DC

p̃ = 0

δFn
δΨ

Ψ̃

∣∣∣
DC

+
(

δFn
δn − iω δGn

δn

)∣∣∣
DC

ñ+ δFn
δ p

∣∣∣
DC

p̃ = 0
δFp
δΨ

Ψ̃

∣∣∣
DC

+
δFp
δn

∣∣∣
DC

ñ+
(

δFp
δ p − iω δGp

δ p

)∣∣∣
DC

p̃ = 0

(1.16)

The system 1.16 is solved considering the Dirichlet boundary condition ñ = p̃ = 0
and assuming ohmic contacts.

1.2 Synopsys Sentaurus

This paragraph provides an overview of the software Synopsys Sentaurus. Fig.1.1
provides a reference for the description below regarding the connections between dif-
ferent parts of the software. The operating system on which the software is installed
is linux CentOS. The outer layer is the tool Sentaurus Workbench (swb) that is capa-
ble of automatizing the operations necessary to study a problem and scheduling the
run of the different tools in the suite.

SDE SDEVICE

_des.cmd

.par

datexcodes.txt

.scm

_msh.bnd

_msh.cmd

_msh.tdr

_msh.log

.plt

.sav

_des.log

_des.tdr

.optgen

TECPLOT_SV

INSPECT

SWB

 

OUTPUT

.sat

MATLAB

am15d.txt

_ins.cmd

Figure 1.1: Synopsys Sentaurus.

Starting from the left the first tool in the hierarchy is the Sentaurus Structure Ed-
itor (sde). With this tool physical structure, doping and materials are defined. The
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input can be given using a graphical user interface or defining a script (scm). The
second method allows more flexibility and the definition of parameters for the Work-
bench. The _msh.bnd, _msh.cmd, sat and _msh.log files are created by Structure Ed-
itor for internal use while the _msh.tdr file is the file containing the definition of the
structure to be used by the next tool.
The solution of the problem equations is discretised according to the structure de-
fined in the _msh.tdr file and is calculated by Sentaurus Device (sdevice). The ma-
terial parameters are defined in the par and datexcodes.txt files and the illumination
spectrum is referred as am15d.txt in Fig. 1.1. Internal output files for Device are sav,
optgen and _des.log; the plt file contains the electrical solution of the problem and
the _des.tdr file gives a snapshot of the chosen physical quantities calculated for the
structure defined in the _msh.tdr file for given working conditions (applied voltage,
light intensity, temperature, frequency).
The tools Tecplot and Inspect are used to generate a graphical output of the solution
and to exctract numerical data for further studies in other tools.

1.3 The discretization grid

The definition of the simulation grid requires a compromise between the accuracy
of the solution and the calculation time. Especially for problems that see rapid vari-
ation of the physical quantities in more than one direction, e.g. the simulation of
a polycristalline material, it is essential to control the distance between the mesh
points using strict rules. Between the grid nodes the variation of stucture and mate-
rial parameters is linearly interpolated [5, 6]. When solutions obtained for different
structures (and therefore different simulation grids) are compared, we must consider
the discretization error. In our grid definitions the precision has been evaluated to be
higher than 1%.

Fig. 1.2 shows the meshing strategy of the multibox method in the Structure Ed-
itor. This method allows for very high accuracy close to interfaces and to relax it
gradually as one moves away from the interface. The meshing points are placed by
the tool according to min step, max step and ratio, defined separately for each di-
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rection. The min step is the initial distance between mesh points at the edge of the
multibox, max step indicates the maximum distance between mesh points, and ratio
is the relative variation of the distance alllowed when increasing the grid step. There
can be multiple definitions for a region and the division will be made respecting all
the definitions. Considering the division in one direction the distance d between the
edges of a multibox will be covered according to eq. 1.17, where the division step is
increased from the min to the max step.

d =
N

∑
n=0

pminrn +
M

∑
N+1

pmax (1.17)

where pmin is the min step, pmax is the max step, r the ratio, M the total number of
elements, N the number of division steps to reach the maximum.

Figure 1.2: Multibox method used for meshing a square with 0.4 µm min step, 0.02
µm max step, and 1.5 ratio beetwen meshing points. The directions given to the
meshing tool are -X and -Y.
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1.4 Optics

The materials used in thin-film solar cells have a high optical absorption for photons
with energy greater than the band gap. The optical behavior can be described in one
dimension using a transfer matrix T ∈M2×2 : C2→C2. This approach is exact when
there is no scattering. This is true only for ideal interfaces and for layers with thick-
ness smaller than the optical coherence length or bigger than the penetration depth.
While interfaces can present high roughness and features with size comparable to
the wavelengths of sunlight, hence the first hypothesis never holds, the second hy-
pothesis is usually true. A different approach that can take scattering into account has
been proposed by Charalambos [7]. Another non-ideal behavior comes from the poly-
crystalline nature of the materials. To fully explain the optics a bi- or tri- dimensional
model would be necessary together with the knowledge of the local optical properties
of the material; however, this information is difficult to obtain and no data is avail-
able about the optical properties of grain boundaries. The transfer matrix method is
illustrated in Fig. 1.3, where ZΣ and Z∆ are defined according to equations 1.18 and
1.19.

 

Figure 1.3: Transfer matrix at a generic interface and inside a material for normal
incident light.

ZΣ (λ ) = Zm (λ )+Zm+1 (λ ) (1.18)

Z∆ (λ ) = Zm (λ )−Zm+1 (λ ) (1.19)
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At every point of the structure the light is described by a forward propagating wave
a(λ ) and a backward propagating wave b(λ ) related to the incident wave Iinc(λ ) by
a product of matrices. In the considered case of normal incidence the complex wave
impedance Z equals the complex refractive index ñ of the media:

Z = ñ = n+ ik (1.20)

Where the real part n is the refractive index and the imaginary part k is the extinc-
tion coefficient and accounts for absorption. Multiplying the matrix at the interface
(Fig. 1.3) by [b(λ ) a(λ )]T , the vector [a(λ ) b(λ )]T is obtained for the waves at the
left of the interface. In a similar way multiplying by [a(λ ) b(λ )]T the matrix inside
the material, the vector[b(λ ) a(λ )]T is obtained for the waves at a distance y mov-
ing to the left from the considered point in Fig.1.3; in this tranformation there could
be absorption of power if the indexes of the matrix are complex numbers (non-zero
extinction coefficient). Considering coherent light, the ligth intensity I (y,λ ) at a con-
sidered point y and for a particular wavelength λ is given by eq. 1.21. In the last layer
the backward propagating wave b is absent (the transmitted wave is absorbed by the
surrounding media, e.g. the back contact of the cell) and the wave incident on the
first layer is a known quantity. The resulting system of equations obtained from the
product of all the transfer matrices of the studied structure has two equations and two
unknowns. The complex waves at a given point of the structure can be related to the
waves at one end of the structure allowing the calculation of intensity and generation
for each point.

I (y,λ ) = n(λ ) |a(λ )+b(λ )|2Iinc (λ ) (1.21)

From the optical intensity I (eq. 1.21) the optical generation rate is calculated using
eq. 1.22, where h is the Planck constant and c is the velocity of light in the vacuum.

Gopt (y,λ ) =
4πk (λ ) I (y,λ )

hc
(1.22)
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In the case of transparent media transmission and reflection are given by the well
known Fresnel equations [8]. These are still valid for reflection if the incident media is
lossless (ñincident ∈R), and for transmission if also the last material is lossless (ñlast ∈
R) and the reflected and transmitted waves have real vector of propagationl [8]. In the
case of materials that absorb light (ñ ∈ C) the calculation through transfer matrices
is needed. The absorption can be calculated by integrating the optical generation rate
of eq. 1.22 according to eq. 1.23.

A = hc
y2

∫
y1

λ2
∫
λ1

Gopt (y,λ )
λ Iinc

dydλ (1.23)

Of particular meaning is the quantity obtained multiplying the integral of the op-
tical generation rate by the electron charge q (eq. 1.24). It has the dimension of a
current density and it is the current that would be extracted if every photon absorbed
were converted into one eletron-hole pair (unity quantum yeld) and collected with
unity quantum efficiency. This quantity gives extimation of the ideal maximum cur-
rent for a given solar cell structure.

JOG = q
y2

∫
y1

λ2
∫
λ1

Gopt (y,λ )dydλ (1.24)

For example, considering a CIGS solar cell composed by the stacked structure 200nm-
ZnO/50nm-CdS/3µm-CIGS and the direct AM1.5 solar spectrum, the theoretical
limit given by eq. 1.24 is 55mA/cm2, while this limit would be 75.5mA/cm2 as-
suming the total absorption of the solar spectrum.

The physical meaning of the transfer matrix method is conserved if we consider
the Poynting vector, which represents the energy flux inside the material; energy con-
servation requires its continuity in the class C0. Using the complex notation for the
optical wave this vector assumes the form:

~Pm(y) =
ℜ
{

zm[am,m+1(y)+bm,m+1(y)]
∗ [am,m+1(y)−bm,m+1(y)]

}
ℜ{z0}

(1.25)
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where z0 is the impedance of the incident media and can be assumed unitary referring
to the vacuum.





Chapter 2

Analytical models of the
photocurrent

Numerical models allow to simulate arbitrary structures using complex model equa-
tion sets, while analytical models are generally based on simplified equations. How-
ever, the latter approach often provides a good compromise between model compact-
ness and ease of integration into CAD tools on one side, and physical meaning and
accuracy on the other. In this chapter an analytical model for the short-circuit current
of a thin-film solar cell is developed with reference to a CIGS solar cell. The compact
model is validated using numerical simulations of the structure ZnO/CdS/CIGS.

2.1 Thin-film solar cell structure

In a thin-film solar cell the basic idea is to absorb the sunlight in a layer with high
optical absorption and good electrical properties. According to this idea, in the struc-
ture of Fig. 2.1 the first two layers are thinner and show high transmission, while the
third layer is thick enough to absorb most of the photons with energy larger than the
bandgap. If this last statement is true, the optical intensity in the absorber can be de-
scribed by a single exponential term according to the Lambert-Beer law. Moreover,
the optical coherence is likely to be longer than the thickness of the first two layers
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but smaller than the thickness of the absorber. For this reason and for the high optical
density of the absorber (product of thickness and absorption coefficient), interference
effects are significant only in the first two layers.

(a) (b) (c)LIGHT

Figure 2.1: Basic structure of a CIGS solar cell: (a) window (ZnO), (b) buffer (CdS),
(c) absorber (CIGS)

2.2 Contribution of the absorber

2.2.1 Quasi-neutral region

With reference to the coordinate system in Fig. 2.2, the diffusion equation for the
minority carriers assumes the form [9, 10]:

d2n
dx2 =

np−np0
L2

n
− αΦ′e−αx

Dn
(2.1)

where np− np0 is the excess concentration of electrons with respect to equilibrium,
Ln and Dn are the electron diffusion length and diffusion coefficient in the p-absorber;
α is the absorption coefficient inside the absorber and Φ′ is the photon flux entering
the quasi-neutral region.

Using the depletion approximation, in short-circuit condition the junction law
gives the first boundary condition:
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0 WB

DEPLETION 

REGION
QUASI-NEUTRAL REGION

Φ’

x

Figure 2.2: Coordinate system for the quasi-neutral region of the absorber.

np(0)−np0 = 0 (2.2)

The second condition is different depending on the thickness WB of the quasi-neutral
region and the electron diffusion length Ln. When WB is greater than Ln, (long base,
LB), the second boundary condition is eq. 2.3. When WB is lower than Ln (short base,
SB), the second boundary condition is eq. 2.4, obtained considering ohmic contact at
x =WB.

lim
x→+∞

np(x)−np0 = 0 (2.3)

np(WB)−np0 = 0 (2.4)

Therefore we have two different Cauchy problems given by eqs. 2.1, 2.2 and 2.3 and
by eqs. 2.1, 2.2 and 2.4. Their solutions are, respectively:
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nLB
p (x) = np0 +

α Φ′L2
n

Dn (α2L2
n−1)

[
e−

x
Ln − e−αx

]
(2.5)

nSB
p (x) = np0 +

α Φ′L2
n

Dn (α2L2
n−1)

sinh
(

x
Ln

)
e−αWB− sinh

(
x

Ln
− WB

Ln

)
sinh

(
WB
Ln

) − e−αx

 (2.6)

For the neutrality of charge in the quasi-neutral region, the electron current due to the
excess of carriers in the absorber is:

JSC = qDn
dn
dx

∣∣∣∣
x=0

. (2.7)

Using eqs. 2.5 and 2.6 in eq. 2.7, for the long base and the short base cases, the current
contribution of the quasi-neutral region is given by eqs. 2.8 and 2.9, respectively:

JSC,n
LB = qΦ

′ αLn

(αLn +1)
(2.8)

JSC,n
SB = qΦ

′ αLn

(α2L2
n−1)

αLn +

(
e−αWB− cosh

(
WB
Ln

))
sinh

(
WB
Ln

)
 (2.9)

Eq. 2.9 has a singularity at αLn = 1 that assumes the finite value of:

lim
α→ 1

Ln

JSC,n
SB = qΦ

′
(

1
2
− αWB

e2αWB−1

)
= qΦ

′

1
2
− WB

Ln

(
e2 WB

Ln −1
)
 (2.10)

The limit for WB that goes to infinity of eq. 2.9 is coincident with the long base case
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of eq. 2.8:

lim
WB→+∞

JSC,n
SB = JSC,n

LB = qΦ
′ αLn

(αLn +1)
(2.11)

Long base and short base equations are also very close to each other for WB > Ln

and they can be approximated as in the limit case of eq. 2.11. Based upon this con-
sideration the short base equation 2.9 can be assumed valid even if the quasi-neutral
absorber region is thicker than the electron diffusion length.
Eq. 2.9, normalized to its maximum value qΦ′, gives the portion of the current gen-
erated in the absorber quasi-neutral region reaching the contacts. This normalized
photocurrent is plotted in Fig. 2.3 as a function of the diffusion length Ln and the
depletion region width WB, for three different values of the absorption coefficient α .

Diffusion length [cm]

Figure 2.3: Collection of the current generated optically in the quasi-neutral region
of the absorber (eq. 2.9) and normalized to its maximum value qΦ′ at the interface
with the previous layer.
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2.2.2 Depletion region

0 WB

x

Xp

Φ

DEPLETION 

REGION
QUASI-NEUTRAL REGION

Figure 2.4: Coordinate system for the depletion region of the absorber.

Under short-circuit condition the junction law sets to zero the excess carrier con-
centration at the edge of the depletion region. Assuming the quasi-Fermi levels to
be constant inside the depletion region, the excess carrier concentration is null also
inside the depletion region and therefore there is no Shockley-Read-Hall recombina-
tion:

R =
Ntvn

thvp
thσnσp(np−n2

i )

vn
thσn(n+nie

Et−Ei
kT )+ vp

thσp(p+nie
Ei−Et

kT )
= 0 (2.12)

This last assumption is an approximation that results reasonable for thin film so-
lar cells (under short-circuit condition), e.g. in the CIGS case numerical simulations
show that the recombination term is at least two order of magnitude smaller than the
generation term inside the depletion region under short-circuit condition.
Assuming eq. 2.12 valid, the current due to generation in the space charge region of
the absorber is:
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Jabsorber
D = q

∫ Xp

0
αΦe−αxdx = qΦ

[
1− e−αXp

]
(2.13)

where the depletion region width in eq. 2.13 can be calculated using eq. 2.14, accord-
ing to the classical hetero-junction theory [11]:

Xp =

√
2κpκnε0NDVbi

qNA(Naκp +NDκn)
(2.14)

with

Vbi =
kT
q

log
(

NAND

ni,nni,p

)
+(χp−χn)+

EG,p−EG,n

2
− kT

2q
log
(

NV,pNC,n

NC,pNV,n

)
(2.15)

where κn, κp are the relative dielectric constants of buffer and absorber (layers (b) and
(c) in Fig. 2.1); ni,n, ni,p the intrinsic concentrations; χn, χp the electron affinities;
Eg,n, Eg,p the band gaps; NV,n NV,p the effective densities of states in the valence
bands; NC,n, NC,p the effective densities of states in the conduction bands; ND, NA

donor and acceptor doping.

2.3 Photon flux calculation

As shown in Fig. 2.5, the structure is made of the three layers, characterized by com-
plex refractive index and thickness. Together with the angle of incidence, this infor-
mation allows to compute the wave impedance for TE and TM modes. In particular,
for normal incidence the wave impedance is the complex refractive index. For non-
normal incidence the wave impedance is increased or decreased depending on the
polarization and the angle of incidence; however, the following calculation is still
valid. We denote the wave impedances of the materials in Fig. 2.5 with z1, z2 and z3,
and the incident and reflected waves at the interfaces between materials with a and b
respectively, with suffixes as defined in Fig. 2.5.
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z1 z2 z3

a01 a12 a23 a34b21

b01

b10 b32 b43

a10 b12 a21 b23 a32
b34

z0 z4

x

1 2 3

Figure 2.5: Optical waves in a three-layer structure.

The relation between waves at an interface between two materials m and m+ 1,
for normal incidence, is [7, 12]:

bm,m+1

am,m+1

=

[
zm+zm+1

2zm

zm−zm+1
2zm

zm−zm+1
2zm

zm+zm+1
2zm

]am+1,m

bm+1,m

=
[
T Mm,m+1]

am+1,m

bm+1,m

 (2.16)

with zm = nm+ ikm, where nm and km are refraction and extinction coefficients for the
material m.
The propagation in direction x inside a media m, for normal incidence, is:

am,m−1(x)

bm,m−1(x)

=

[
ei 2πzmx

λ 0

0 e−i 2πzmx
λ

]bm,m+1

am,m+1

= [T Mm,m]

bm,m+1

am,m+1

 (2.17)

where λ is the wavelength of incident light. Combining eqs. 2.16 and 2.17 we can
calculate the relation between [a b]T at a generic position x and another point in the
structure:
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am,m−1(x)

bm,m−1(x)

= [T Mm,m(x)]
[
T Mm,m+1] Q

∏
q=m+1

[T Mq,q(dq)]
[
T Mq,q+1]

aQ+1,Q

bQ+1,Q


(2.18)

where dq is the thickness of layer q. Considering the whole structure the term a0,1

is the incident power and the boundary condition of the last layer is aQ+1,Q = 0.
With these considerations eq. 2.18 with x = d1 and multiplied by T M01 on the right
provides two equations with two unknowns b0,1 and bQ+1,Q: they are the reflected and
transmitted waves. In the three-layer structure the third layer is the absorber of the
solar cell and its optical behavior can be described neglecting b34 for the wavelength
of interest. This is justified by a thickness d3 big enough to prevent the light from
reaching the back contact. Under this assumption the photon flux of wave b32 can be
described by a single exponential term and eqs. 2.9 and 2.13 are valid.

We calculate now the photon flux due to wave b32.
With the previous considerations on eq. 2.18, the normalized complex transmission
coefficient is:

t =
t01t12t23

e
2πi
λ

d2

(
e

2πi
λ

d1 + r01r12 e−
2πi
λ

d1

)
+ r23 e−

2πi
λ

d2

(
r01 e−

2πi
λ

d1 + r12 e
2πi
λ

d1

) (2.19)

where
tm,m+1 =

2zm

zm + zm+1
; rm,m+1 =

zm− zm+1

zm + zm+1

The transmission coefficient is:

T = ℜ

{
z3

z0

}
‖t‖2 (2.20)

From eq. 2.20, and being Iinc the intensity of the light incident on layer 1 from the
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left at wavelength λ , the photon flux inside layer 3 is:

Φ(x) = T
λ Iinc

hc
e
−4πℑ{z3}x

λ = T Φince−αx (2.21)

where the x axis has its origin as shown in Fig. 2.5.

2.4 Numerical validation

The model is validated by the Synopsys Sentaurus numerical simulation of a structure
with the parameters reported in Tab. 2.1 and Tab. 2.2. The concentration of traps and
doping in the CIGS absorber are varied to test the model under different conditions.

Property ZnO CdS CIGS

Type acceptor acceptor acceptor

Density [cm−3] 1016 5 ·1016 Nb

Position midgap midgap midgap

σe [cm2] 10−16 10−15 2 ·10−14

σp [cm2] 10−13 10−12 2 ·10−14

Table 2.1: Trap parameters for the validation of the analytical model of the photocur-
rent.

We consider now the approximation b34=0. Fig. 2.6 shows the optical intensity
with and without the contribute of b34. This provides a qualitative idea of the ap-
proximation we are making; a more quantitative evaluation of the approximation is
in Fig.2.7, where the optical generation rate (closely related with the current) is cal-
culated with and without b34. We do not compare the photon flux since, according
to equation 2.1, its weight on the current is not constant and depends on absorption.
From the good agreement in Fig. 2.7, we can conclude that the approximation is rea-
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Property ZnO CdS CIGS

EGAP [eV] 3.3 2.4 1.15

χ [eV] 4.6 4.6 4.6

Doping type n n p

|ND−NA| [cm−3] 1018 5 ·1017 NA

ε

ε0
9 10 13.6

me
m0

0.2 0.2 0.09

mh
m0

1.2 0.8 0.72

µe

[
cm2

V s

]
100 100 100

µh

[
cm2

V s

]
25 25 12.5

Table 2.2: Material parameters for the validation of the photocurrent analytical model.

sonable. This also demonstrates that the optical coherence length in the absorber of a
thin-film solar cell has low influence on the optical generation.

Eqs. 2.22 and 2.23 give the optical intensity and generation for a generic material
m.

Im(x) = ℜ{zm}‖am,m+1(x)+bm,m+1(x)‖2Iinc (2.22)

Gm(x) =
4πℑ{zm} Im(x)

hc
(2.23)

Since the main current contribution comes from generation in the absorber, we
first approximate the generation in the first two layers using a current offset and look
at the result given by eqs. 2.9 and 2.13. The comparison between the compact model
and the numerical simulation is in Fig. 2.8. The maximum relative difference between
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Figure 2.6: Continuous line: optical intensity calculated considering the interference
of all layers. Dashed line: optical intensity calculated neglecting the reflected wave
b34 in the absorber.
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Figure 2.7: Continuous line: optical generation rate calculated considering the inter-
ference of all layers. Dashed line: optical generation rate calculated neglecting the
reflected wave b34 in the absorber.
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the two models is 2.8 %. This difference is due partly to the discretization error of
the numerical simulation and partly to the approximations of the compact model.

20

25

30

35

40

45

50

55

1E+14 1E+15 1E+16 1E+17 1E+18

J S
C

[m
A

/c
m

2 ]

Absorber doping [cm-3]

Nb = 1E13 cm-3

Nb = 1E14 cm-3

Nb = 5E14 cm-3

Nb = 1E15 cm-3

Nb = 2E15 cm-3

Nb = 1E16 cm-3

cm-3

cm-3

cm-3

cm-3

cm-3

cm-3

Figure 2.8: Short circuit current calculated considering the absorber space charge and
quasi-neutral terms and adding a constant value of 2.2mA/cm2 to take into account
the first two layers. The result is obtained for different concentrations of deep states
Nb in the absorber as a function of doping. The symbols denote the numerical simu-
lations and the solid lines the compact model developed.

2.5 Contribution of the first layers

The first two layers of Fig. 2.9 represent general window and buffer layers. We as-
sume their thickness is small compared to the optical coherence length: this allows
to calculate the interference using the transfer matrix method. Considering also the
thickness of the two layers smaller than the useful wavelengths (solar spectrum above
the band gap), the optical intensity and generation rate can be considered to be ap-
proximately constant rather than expontial with the position. We assume therefore a
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Figure 2.9: Coordinate system for window and buffer layers. (a) Buffer depletion
region; (b) buffer quasi-neutral region; (c) window quasi-neutral region.

constant generation term to calculate the current. With reference to case (b) and case
(c) of Fig. 2.9, the Cauchy problem to solve is 2.24 for the quasi-neutral region of the
window layer, and 2.25 for the quasi-neutral region of the buffer layer.

d2 p
dx2 = pn−pn0

L2
p
− GL

Dp

pn(0)− pn0 = 0
pn(WE,a)− pn0 = 0

(2.24)


d2 p
dx2 = pn−pn0

L2
p
− GL

Dp

pn(0)− pn0 = 0
pn(WE,b)− pn0 = 0

(2.25)

Eqs. 2.24 and 2.25 are obtained with the following boundary conditions: (i) short
base: this is most likely always true for the typical thickness of these layers (Tab.
2.2); (ii) ohmic contact: this is valid for the window layer and also for the buffer layer
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since the window layer acts as ohmic contact for holes in this case: in fact, the valence
band discontinuity reduces the hole concentration in proximity of the heterojunction
as if there was an ohmic contact at x =WE,bu f f er in Fig. 2.9.
The solution of the Cauchy problems in eqs. 2.24 and 2.25 is eq. 2.26, where the
x-axis is defined in Fig. 2.9.

pn(x) = pn0 + τpGL

1−
sinh

(
WB−x

Lp

)
+ sinh

(
x

Lp

)
sinh

(
WB
Lp

)
 (2.26)

From the charge neutrality in the quasi-neutral regions, the electron current due to
the excess of carriers is the solution of eq. 2.27. From eqs. 2.26 and 2.27, the expres-
sions of current the due to the quasi-neutral region of the first two layers is given by
eqs.2.28.

JSC = qDp
d p
dx

∣∣∣∣
x=0

(2.27)

Jbu f f er
SC,p = qGL tanh

(
WE,bu f f er

2Lp

)
Jwindow

SC,p = qGL tanh
(

WE,window

2Lp

) (2.28)

If the diffusion length is large compared to the layer thickness, we can use the limit
in eq. 2.29 to calculate the current [13].

lim
Lp→∞

JSC,p =
qGLWE

2
(2.29)

For the generation in the depletion region of the buffer layer, considering a constant
generation term GL, we obtain the result of eq. 2.30.

Jbu f f er
D = q

∫ Xn

0
GLdx = qGLXn (2.30)
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The extension of the depletion width in eq. 2.30 is calculated using eq. 2.31, assuming
the doping is high enough for the buffer to be not fully depleted.

Xn =

√
2κpκn0NAVbi

qND(NDκn +NAκp)
(2.31)

The mean value of generation is obtained from the complex waves calculated using
eq. 2.18 written for the considered layer and integrated over space, according to eq.
2.32.

GLm(x) =
1

dm

dm∫
0

4πℑ{zm}ℜ{zm}‖am,m+1(x)+bm,m+1(x)‖2dx (2.32)

Eq. 2.32 becomes eq. 2.33 for the buffer layer and eq. 2.34 for the window layer.

GL2(x) =

1
d2

d2∫
0

4π k2 n2

∣∣∣r23 ei(d1 ϕ1+d2 ϕ2) + ei[d1 ϕ1+(d2+2x)ϕ2]
∣∣∣2 |t01|2 |t12|2∣∣ei[2d1 ϕ1+(2d2+x)ϕ2] + r01 r12eiϕ2(2d2+x) + r12 r23 ei(2d1ϕ1+xϕ2) + r01 r23 eiϕ2x

∣∣2 dx

(2.33)
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GL1(x)=
1
d1

d1∫
0

4π k1 n1

∣∣∣r23 eid1 ϕ1 + r12ei(d1 ϕ1+2d2ϕ2) + ei[d1 ϕ1+2(d2ϕ2+ϕ1x)] + r12 r23 ei(d1ϕ1+2ϕ1x)
∣∣∣2 |t01|2∣∣ei[2d1 ϕ1+2d2ϕ2+ϕ1x] + r01 r12ei(2d2ϕ2+ϕ1x) + r12 r23 eiϕ1(2d1+x) + r01 r23 eiϕ1x
∣∣2 dx

(2.34)

where:

ϕm =
2πzm

λ
(2.35)

The results of eqs. 2.33 and 2.34, multiplied by the thickness of the layer and the
electron charge, provide the maximum current contribution of the first two layers. In
the considered case, it is 3.71mA/cm2 for the ZnO layer and 1.76mA/cm2 for the
CdS layer.
Considering all the contributions, the maximum relative difference between the an-

alytical model and the numerical simulation is 2.1 %, due to spatial discretization
and approximations of the compact model. Fig. 2.10 shows the result of the complete
calculation: there is an improvement with respect the case of Fig. 2.8. In particular,
we can see that the effect of the absorber doping on the depletion region width xn in
the buffer layer is now modeled better for the lower absorber doping.
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Figure 2.10: Short-circuit current calculated considering all terms. The result is ob-
tained for different concentrations of deep states Nb in the absorber as a function of
doping. The symbols denote the numerical simulations and the solid lines the com-
pact model.

2.6 Summary

The good agreement between the numerical simulations and the analytical model
shows the validity of the approximations over a large range of doping and deep state
concentrations. Buffer and windows layers have a small impact on the short-circuit
current, and constant optical generation can be assumed. The current in the absorber
is obtained considering exponential generation and its contribute is increased with
decreasing doping. From the transport analysis in the quasi-neutral region we see
how increasing the diffusion length (lower trap density) the short circuit current can
also be increased. A longer diffusion length allows higher doping in the absorber
without a drastical decrease of the current, which is an advantage to obtain high open
circuit voltage.



Chapter 3

Polycrystalline CIGS

Thin-film solar cells based on Cu(In,Ga)Se2 (CIGS) show record efficiencies among
thin-film technologies, and are now experiencing the first phase of commercializa-
tion, with manufacturers introducing mass production processes yielding cells with
efficiencies in the 13-15% range [1]. Lab specimens can provide power conversion
efficiency as high as 20% [2], despite the poly-crystalline structure of the semicon-
ductor thin film. The structure of the most popular cells features, from top to bottom,
a ZnO transparent contact layer, an n-doped CdS buffer layer, a p-doped CIGS ab-
sorber layer, and a backside metal (Mo) contact sitting on a soda lime glass or flexible
substrate. Several papers were published on material growth, processing and charac-
terization on one side, and on the performance of finished cells and modules on the
other, but there is still a gap to fill in between: some of the specific features of CIGS
cells, specifically those pertaining to the behavior of grain boundaries and hetero-
junctions, are still under debate, and a complete understanding of the relationship be-
tween material characteristics and cell behavior is not available yet. Since data about
defects, band offsets, potential spikes, etc., at grain boundaries and interfaces are hard
to obtain experimentally, and often indirect and speculative, some researchers have
tried to bridge the gap using physical-level numerical simulations [14, 15, 16, 17].
In this chapter numerical simulations are used to investigate the specific features of
these devices, with the ultimate goal of developing physics-based compact models



38 Capitolo 3. Polycrystalline CIGS

for quick assessment of the performance of cells and modules under development at
CNR-IMEM, Parma, Italy.

3.1 CIGS solar cell numerical modeling

x

y

Figure 3.1: Structure of the simulated solar cell. g is the grain size. The region around
the GB represents Cu-poor CIGS.

The behavior of defects at grain boundaries (GBs), in the grain interior (GI), and
at hetero-interfaces is critical for the performance of CIGS solar cells. In particular
it is known that: (i) the p-doped CIGS absorber has a columnar polycrystalline struc-
ture, with grains in the micrometer range; (ii) this polycrystalline structure does not
have a disruptive effect on cell performance, probably due to charged defects and/or
band offsets preventing the GBs from acting as effective recombination centers [18];
(iii) Cu-poor regions are likely to form at GBs and at the top CIGS interface, result-
ing in localized wider band-gap and valence band offset [19]. We focus on standard
n-ZnO/n-CdS/p-Cu(In0.69Ga0.31)Se2 cells (Fig. 3.1). Symmetry and periodicity allow
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to limit the simulated area to one grain boundary, provided that the grain size is rea-
sonably uniform over the cell area. All the simulations are performed using Synopsys
Sentaurus. The cell behavior in the dark is described by the Poisson, electron and hole
continuity and drift-diffusion equations. Recombination via deep defects follows the
Shockley-Read-Hall (SRH) model. Deep traps are located in the GI (bulk acceptors)
[14], and at the GB (interface donors) [15], the Cu-poor region at the GB may feature
an increased band-gap totally localized on the valance band, ∆EV (i.e., ∆EC = 0) [19].
Fig. 3.2 shows the energy band profile along a horizontal line in the vicinity of a GB
(with ∆EV = 0.2 eV). The surface donors at the GB result in a downward bend of the
energy bands that enhances the GB of electrons and depletes it of holes; in the pres-
ence of a valence band offset due to Cu depletion, the hole concentration is further
reduced, which is beneficial to the cell in that it reduces non-radiative recombination
at the GB.
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Figure 3.2: Energy band profile along a horizontal line in the CIGS (see Fig. 3.1). The
grain boundary hosts interface donors and is characterized by a valence band offset
∆EV (0.2 eV in this example).
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The full set of material parameters used in the simulations of the baseline cell is
shown in Tab. 3.1. The cell is illuminated by the standard AM1.5D solar spectrum.

Layer ZnO CdS CIGS

EG [eV] 3.3 2.4 1.15

χ [eV] 4.6 4.6 4.6

Doping [cm−3] ND = 1018 ND = 6 ·1017 NA = 3 ·1017

ε

ε0
9 10 13.6

me
m0

0.2 0.2 0.09

mh
m0

1.2 0.8 0.72

µe

[
cm2

V s

]
100 100 100

µh

[
cm2

V s

]
25 25 12.5

Bulk traps ZnO CdS CIGS

Energy [eV] midgap midgap midgap

σe [cm2] 10−16 10−15 2 ·10−14

σh [cm2] 10−13 10−12 2 ·10−14

Density [cm−3] 1016 1016 2 ·1015

GB traps Density Energy [eV] σe = σh

Donor 2 ·1012cm−2 EV +0.88 10−15cm2

Table 3.1: Polycrystalline CIGS material parameters.

Fig. 3.3 shows the effect of the grain size g on the efficiency η (defined as the ra-
tio between the output power at the maximum power point and the incident radiation
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power), for three different values of the valence band discontinuity at the GB, ∆EV.
As previously observed, the valence band offset at the GB hinders hole collection by
the GB (see Fig. 3.2), thus reducing the recombination at GB defects; with ∆EV = 0.4
eV the GB is practically passivated. As expected, as the grain size increases, η tends
to the single-crystal value > 17%. It is interesting to notice that a grain size variation
in the 0.5-2 µm range, quite plausible for current manufacturing processes, results in
a significant difference in η unless the GB is passivated by a large ∆EV .
A similar behavior as a function of grain size and valence band discontinuity appears
on the open circuit voltage (Fig. 3.4), short circuit current (Fig. 3.5) and fill factor
(Fig. 3.6). However, the passivation for the intermediate value of valence band dis-
continuity, ∆EV = 0.2 eV, is higher for the open circuit voltage and the fill factor. In
fact, the valence band discontinuity is very effective in reducing the hole concentra-
tion at GBs, preventing them from acting as a shunting path; while from the point of
view of the short-circuit current the passitivation requires a further reduction of hole
concentration at GBs (∆EV = 0.4 eV) to make holes the limiting factor for recombi-
nation.
In the following a compact model of the cell’s behavior in the dark is developed, with
reference to the smallest grain size considered (g=0.5 µm) to model the polycrys-
talline behavior.
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Figure 3.3: Effect of CIGS grain size on the efficiency, for different values of the GB
valence-band discontinuity.
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3.2 Compact modeling of the dark i-v curve

In the absence of defect-rich grain boundaries, i.e. in the case of a syngle-crystal cell,
the dark I-V curve can be satisfactorily described by a standard two-diode model,
where a diode with ideality factor nI = 1 describes the ideal diode current component,
and a diode with nSC = 2 accounts for the space-charge recombination current (Fig.
3.7).

Figure 3.7: Compact model for single-crystal CIGS solar cells.

Fig. 3.8 shows the perfect match between numerical simulations and the two-
diode compact model for various bulk trap densities in the CIGS (NB) in the case of
syngle-crystal cell. The saturation currents of the two diodes are shown as a function
of NB in Fig. 3.9. The space-charge recombination saturation current J02 duly scales
linearly with defect density; on the other hand, the ideal diode current J01 shows the
transition between a short-base diode behavior at low NB, where the current is nearly
independent of the electron diffusion length (hence of NB), to a long-base diode be-
havior at large NB, where J01 grows with NB due to shortening of the diffusion length.

The presence of defect-rich grain boundaries alters the picture with respect to the
single-crystal case, the valence band discontinuity at the GB (∆EV ) playing a key
role. For ∆EV = 0.4 eV, the large valence band offset makes the semiconductor nearly
intrinsic at the GB, and keeps holes away from the GB, thus locally inhibiting recom-
bination via the interface defects. The conduction band dip caused by the charged in-
terface donors (see Fig. 3.2) results in some channeling of the electron current along
the GB at low bias; however, at high bias the current is almost uniformly distributed
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Figure 3.8: Dark I-V curves for the single-crystal cell (no GBs), with different bulk
defect densities NB (1012, 1013, 1014, 1015, 1016 cm−3) . The dots are numerical sim-
ulation results, the solid lines are obtained with the two-diode compact model.

along the direction orthogonal to the GB. Consequently, the dark I-V curve is only
marginally altered with respect to the single-crystal cell. Therefore, the two-diode
compact model described above is still valid. The situation is dramatically different
when ∆EV = 0. Here the band dip caused by the GB defects (Fig. 3.2) results in a
much enhanced channeling of the current along the GB, as shown in the maps of Fig.
3.10. This remarkable difference is evident in Fig. 3.11 that shows the dark current of
the cell with ∆EV = 0 (solid line), together with the electron current flowing outside
the GB just below the CdS/CIGS interface (dots), and the difference between the two
(dashed line). At moderate and high bias all of the electron current injected by the
CdS cathode flows along the GB. Due to the large injected electron concentration,
and since the GB is depleted of holes by the band dip caused by interface defects,
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high-injection conditions are reached quite early at the GB, with the dark I-V curve
showing the typical nHI = 2 ideality factor beyond VD = 0.5 V. A compact model
physically representative of the cell with ∆EV = 0 at the GB must therefore include:

1. a diode with ideality factor nI = 1 describing the ideal current flowing outside
the GB (dots in Fig. 3.11);

2. a diode with nSC = 2 describing the space-charge recombination current flowing
outside the GB (dots in Fig. 3.11);

3. a diode with ideality factor nGB = 1 describing the ideal current component
flowing along the GB (dashed line in Fig. 3.11); this diode must dominate the
GB current at low-to-moderate bias (below about 0.5 V in Fig. 3.11);

4. a diode with ideality factor nHI = 2 describing the high-injection current flow-
ing along the GB (dashed line in Fig. 3.11); this diode must dominate the GB
current at moderate-to-high bias (above about 0.5 V in Fig. 3.11).
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Figure 3.9: Two-diode compact model parameters J01 (circles) and J02 (squares) for
the fit of Fig. 3.8, as a function of bulk trap density.
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Figure 3.10: Electron and hole current density map for a cell with NI = 2·1012 cm−2

defects at the grain boundary and NB = 1014 cm−3 in the grain interior. ∆EV = 0. VD

= 0.8 V.

The implementation of this model is a parallel connection of diodes (1) and (2)
(see Fig. 3.12) with a voltage-controlled current source I3−4(VD) accounting for the
current components (3) and (4):

I3−4(VD) =
(

I3(VD)
−1 + I4(VD)

−1
)−1

. (3.1)

This amounts to a 4-parameter model, the parameters being the saturation currents of
diodes (1)-(4).

Fig. 3.13 shows the perfect match between the simulations and the four-diode
compact model for various bulk trap densities in the CIGS (NB). In this case the trap
density at the GB is kept constant, therefore the parameters J03 and J04 relative to
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Figure 3.11: Solid line: dark current characteristics for a cell with NI = 2·1012cm−2

defects at the grain boundary, ∆EV = 0, and NB = 1014 cm−3. Dots: electron current
flowing outside the GB just below the CdS/CIGS interface. Dashed line: electron
current flowing along the GB just below the CdS/CIGS interface.

the polycrystalline model are almost constant (J03 ∼= 3·10−8 mA/cm−2, J04 ∼= 3·10−4

mA/cm−2). According to the previous discussion, the first two parameters J01 and J02

that take into account for the different bulk trap densities in Fig. 3.13.
Fig. 3.14 shows the perfect match between the simulations and the four-diode

compact model for different values of GB trap densities in the CIGS (Nit). The poly-
crystalline parameters J03 and J04 take into account for the the different GB trap
densities in Fig. 3.14. The trend of these latter parameters is reported in Fig. 3.15 as
a function of the GB trap density Nit.
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Figure 3.12: Compact model for polycrystalline CIGS solar cells.
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Figure 3.13: Dark current characteristics for a cell with NI = 2·1012cm−2 defects at
the grain boundary; ∆EV = 0; NB = 1014, 1015, 1016 cm−3. Solid line: numerical
simulation. Dots: 4-diode compact model.
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3.3 Numerical simulation of damp heat degradation

Long-term reliability is obviously a key factor for the success of any solar cell tech-
nology. In particular, damp heat (e.g., 85 ◦C / 85% RH) is observed to be a critical
condition for the long-term cell degradation. A numerical simulation model such as
the one we developed can be usefully employed in this kind of investigation. As
an example, we consider the change of defects distribution brought about by damp
heat stress, as reported in [20] based on admittance spectroscopy measurements. Two
defect are identified in [20]: N1 is an interface defect undergoing activation energy
increase during the stress, but not observed to influence the cell degradation, while
N2 is a bulk defect whose density and energy both increase upon stressing. We simu-
lated the pre- and post-stress defect distribution of Fig. 3.16, as reported in [20], and
obtained the cell performance parameters shown in Tab. 3.2, in qualitative agreement
with published experimental observations.

Pre-stress Post-stress

VOC [V] 0.641 0.613

JSC [mA/cm2] 26.3 24.7

Fill Factor [%] 71.9 70.1

Efficiency [%] 12.1 10.6

Table 3.2: Damp heat simulation results.
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3.4 Summary

We showed results of numerical as well as compact modeling of CIGS thin-film solar
cells. The presence of defect-rich grain boundaries with possible band-gap modifi-
cations is a specific feature of these cells that must be accounted for in any physics-
based model. We have used our numerical simulations as a benchmark to develop a
simple, physics-based compact model of the behavior of the cell in the dark. While
the single-crystal structure behavior can be accurately described by a standard two-
diode model, when grain boundaries are present and active a four-diode model is
required for a good match of the numerical simulation results.
We also simulated the modification of trap distribution N2 ([20]) taking into account
for cell degradation under damp heat stress conditions.



Chapter 4

ZnMgO buffer layer

The traditional CIGS solar cell structure has, from top to bottom, a ZnO transparent
contact layer, an n-doped CdS buffer layer, a p-doped CIGS absorber layer, and a
backside metal (Mo) contact sitting on a soda lime glass or flexible substrate. The
presence of toxic Cadmium poses environmental concerns that prompted research
efforts aimed at replacing the CdS buffer with Cd-free layers [21, 22]. In this respect,
ZnMgO has proven to be a suitable replacement for CdS, due to its wide bandgap
(i.e., low absorption) and convenient band alignment with the CIGS absorber. When
designing the cell window layer, some of the factors that must be reckoned with are:

1. transparency to the solar spectrum;

2. thickness, electron concentration and mobility;

3. band alignment with the underlying buffer or absorber, also in connection with
the presence of interface defects.

While band alignment has been discussed before [21, 23], very little can be found on
factors (1) and (2), their correlation, and combined effects with (3). In particular, data
on carrier density and mobility (hence, resistivity) of ZnMgO layers are very scarce
and widely dispersed. The cell’s electrostatics is obviously a function, among other
factors, of window layer thickness and electron concentration; the thickness also in-
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fluences transparency, not only through absorption (which is generally neglected, par-
ticularly for relatively large Mg content) but due to reflection at the air/ZnMgO and
ZnMgO/CIGS interfaces, a commonly overlooked phenomenon that becomes signif-
icant when the layer thickness is reduced to limit the series resistance. The aim of
this chapter is therefore to provide theoretical indications for Cd-free CIGS solar cell
design and manufacturing by showing results of numerical simulations of cells with
varying Zn1−xMgxO bandgap (i.e., different Mg content x), thickness, and conduc-
tivity, with and without defects at the Zn1−xMgxO/CIGS interface. These indications
are meant to support the development of a novel manufacturing technology for CIGS
solar cells under way at CNR-IMEM, Parma, Italy.

4.1 Numerical model

Simulations are performed using the Synopsys Sentaurus suite. The cell behavior in
the dark is described by the Poisson, electron and hole continuity, and drift-diffusion
equations. Unlike most simulations found in the literature, our model of the illumi-
nated cell (standard AM1.5D solar spectrum) features a transfer matrix approach for
the calculation of light propagation: this approach accounts for the effects of reflec-
tion at the interfaces between adjacent layers, a commonly overlooked effect that can
significantly impact the cell efficiency. The characteristics of the CIGS absorber can
be found in chapter 3 (except that here we use a 2 µm-thick absorber); since grain
boundary effects have been treated in chapter 3 and here we focus on the window
layer design, in this work we consider for simplicity the case of a single-crystal cell.
The first design parameter to consider for the Zn1−xMgxO window layer is the Mg
concentration x, since its bandgap is linearly increasing with x [24]. Larger bandgap
means smaller absorption loss: we have calculated that with x = 0.19 less than 1%
of the AM1.5D radiation is absorbed by Zn1−xMgxO, so for x ≥ 0.19 we can confi-
dently neglect this source of efficiency loss and consider the layer transparent. The
Zn1−xMgxO bandgap on the other hand has a great impact in terms of band align-
ment and therefore of collection efficiency [21, 25, 23]. In this study we focus on two
values: x = 0.19 and x = 0.36.
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4.2 Simulation results

4.2.1 ZnMgO thickness and doping

In this subsection we consider the ZnMgO/CIGS heterointerface to be ideal, i.e.,
without traps.

The Zn1−xMgxO thickness tW impacts the external quantum efficiency due to in-
terference between waves reflected at the air/ZnMgO and ZnMgO/CIGS interfaces:
the total reflection loss is therefore dependent on tW , as shown in Fig. 4.1. This effect
is accounted for in our simulations. Together with electron density nW (and mobil-
ity µW ), tW also contributes to determining the electrostatics and current transport.
Therefore, it must be investigated which combinations of x, tW and nW result in bet-
ter cell efficiency.
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Figure 4.1: Cell reflectivity vs. window layer thickness.

Fig. 4.2 shows the equilibrium band diagram for a cell with x = 0.36, tW = 80
nm, and different values of nW : the very wide range of nW values is consistent with
what can be found in (or inferred from) the literature (compare for instance [26] and
[27]). In these simulations we use a constant electron mobility in the ZnMgO, µW =
10 cm2/(Vs). Moving from low to high nW the Zn1−xMgxO goes from full depletion
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to almost total neutrality, while the surface of the p-CIGS absorber gets depleted
more and more by the cathode charge. This obviously has a big influence on the cell
behavior, as will be shown below.
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Figure 4.2: Band diagram for the Zn1−xMgxO/CIGS interface. x = 0.36, tW = 80 nm.
The arrow indicates increasing values of nW : 1012, 1016, 1017, 1018 cm−3.

Fig. 4.3 shows that the cell’s short-circuit current JSC has opposite dependence
on tW , depending on the electron concentration, nW . Since the open-circuit voltage
VOC (Fig. 4.4) does not change much, this reflects directly on the behavior of the
cell’s efficiency in Fig. 4.5. For large values of nW (like nW = 1018 cm−3 in figs.
4.3 and 4.5) the band alignment favors electron injection into the cathode (Fig. 4.2),
and JSC and η increase with tW because of reduced reflection loss (Fig. 4.1), with
a tendency to saturate or slightly decrease beyond tW = 80 nm, possibly due to the
reflectivity increase (Fig. 4.1); on the other hand, when nW is low (nW = 1012 cm−3

in figs. 4.3 and 4.5) and the window layer is depleted (Fig. 4.2) the band alignment is
such that electrons tend to be blocked before reaching the cathode, all the more so as
the ZnMgO layer gets thicker, and both JSC and η are degraded.

The importance of the band alignment on the overall cell behavior is confirmed
by figs. 4.6 and 4.7, showing JSC and η , respectively, as a function of Zn1−xMgxO
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window layer thickness, for the case of x = 0.19. By reducing the Mg content from
36% to 19%, the bandgap of Zn1−xMgxO shrinks from 3.75 eV to 3.49 eV, while the
conduction band offset, which represents a barrier to electron flow from the absorber
to the cathode, drops from 0.22 eV to 0.04 eV. A comparison of Fig. 4.6 with Fig. 4.3,
and Fig. 4.7 with Fig. 4.5, shows that the reduced conduction band offset significantly
weakens the importance of the electron density nW and, for the lower densities, the
dependence on the thickness tW .

If we fix the Zn1−xMgxO thickness at tW = 80 nm, which yields the peak efficien-
cies (figs. 4.5 and 4.7), and vary its electron concentration nW , we observe the results
of Fig. 4.8. As noted above, for x = 0.36 low electron densities result in unfavorable
band alignment, and only for nW ≥ 1018 cm−3 does the efficiency attain satisfactory
values. On the other hand, for x = 0.19, the lower conduction band offset between
Zn1−xMgxO and CIGS makes the band alignment, shown in Fig. 4.9, more forgiving
even at low or very low electron concentrations, and η decreases much more gently
for decreasing nW . For nW ≥ 1019 cm−3, yielding degenerate Zn1−xMgxO, there is no
more dependence of η on x, due to absence of a significant barrier to electron flow.
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Figure 4.6: Short-circuit current vs. Zn1−xMgxO thickness for x = 0.19, and for two
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4.2.2 Interface states at ZnMgO/CIGS heterostructure

The presence of interface traps between the Zn1−xMgxO window layer and the CIGS
absorber quantitatively alters the picture as described so far. Tab. 4.1 summarizes the
trap parameters used in our simulations.

Type Density NIT Energy Capture cross-section

Donor 1011 to 1013 cm−2 CIGS midgap 10−15 cm2

Table 4.1: Zn1−xMgxO/CIGS interface trap parameters.

Figs. 4.10 to 4.13 summarize the cell performance in the presence of interface
traps with concentrations ranging from 1011 to 1013 cm−2, as a function of Zn1−xMgxO
electron density nW . We focused on the case of x = 0.19 since, as shown by Fig. 4.8,
under no doping condition does the structure with x = 0.36 offer any advantage over
that with x = 0.19, while it is markedly inferior for low to moderate Zn1−xMgxO
doping.

The structure with the lowest trap density (NIT = 1011 cm−2) does not show any
appreciable difference from the case of ideal trap-free interface. On the other hand,
NIT = 1012 cm−2 is enough to produce a marked degradation of the cell’s perfor-
mance. While the short-circuit current (Fig. 4.10) is unaffected by this trap concen-
tration, the open-circuit voltage (Fig. 4.11), as expected, is significantly degraded by
the increase of non-radiative recombination. Together with some reduction of the fill
factor (Fig. 4.12), the decrease of VOC causes significant efficiency loss (Fig. 4.13).
This trend is accentuated for NIT = 1013 cm−2. It should be noticed that for nW ≥
1018 cm−3 the presence of trap does not alter the cell’s behavior, no matter what is
the trap concentration. As shown in Fig. 4.9, with heavily doped Zn1−xMgxO layer
the band alignment is such that the interface traps (energetically located at the middle
of the CIGS bandgap) are far below the Fermi level; consequently, they are always
filled with electrons, and therefore inactive.
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4.3 Summary

In this chapter we developed numerical simulations of Cd-free CIGS solar cells, and
specifically studied the impact of thickness, Mg content and doping of the Zn1−xMgxO
buffer layer, with and without interface states at the Zn1−xMgxO/CIGS interface. We
have shown that, for the case of ideal Zn1−xMgxO/CIGS interface, large Mg concen-
tration (x = 0.36) necessitates nearly degenerate or degenerate Zn1−xMgxO to achieve
good efficiency, while at lower concentration (x = 0.19) the electron concentration in
the Zn1−xMgxO is much less critical. The thickness of the Zn1−xMgxO layer should
also be tailored based on a careful analysis of the total reflection of the incident light.
In the presence of non-ideal Zn1−xMgxO/CIGS interface, increasing interface trap
densities result, as expected, in open-circuit voltage and, consequently, efficiency
degradation. Heavy doping of the Zn1−xMgxO layer (nW ≥ 1018 cm−3) results in full
occupation, and inactivation, of the mid-gap traps.



Chapter 5

Modeling of CdTe Solar Cells

Thin-film solar cells based on CIGS or CdTe absorbers have been studied in research
laboratories for at least 20 years, but only recently entered the phase of industrial
production [1]. While still lagging behind their Si-based competitors in terms of effi-
ciency and dollars/Watt, these technologies are poised to conquer increasing market
shares, and perhaps even market dominance. However, for the time being CdTe solar
cells still underperform compared with theoretical limits and even with CIGS cells
[3], and in spite of a relatively long history of research and development, there is still
room and need for better understanding of the physics underpinning the photovoltaic
performance of CdTe cells and modules.
One difficulty lies in the fact that while single crystal materials used in traditional (sil-
icon) and high efficiency tandem (GaAs-based) solar cells are well-known and fully
characterized, poly-crystalline materials used in thin-film solar cells show widely
varying characteristics depending on growth/deposition process and conditions; the
poly-crystalline nature of the absorber is itself an obstacle along the path to full un-
derstanding of the cell behavior, and often the device is studied by simulating an
equivalent single-crystal solar cell where the material parameters, such as carrier life-
times, are modified to give a reasonable match of the experiments. This approach has
the major advantage of allowing a one-dimensional description of the cell, and the
use of efficient and widespread one-dimensional simulation tools like SCAPS [4].
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However, the actual current transport mechanisms, which are necessarily affected by
the presence of grain boundaries, cannot be investigated using this approximation;
consequently, this aspect of device design and optimization is neglected.
In this study we develop a two-dimensional numerical model of a CdTe solar cell
and specifically address the simulation of grain boundaries and their effect on current
transport and, ultimately, on the photovoltaic figures of merit.

5.1 Numerical model

Simulations are performed using the Synopsys Sentaurus suite. The electrical cell
behavior is simulated using the drift-diffusion model, with the Poisson equation de-
scribing the electrostatic problem and the occupation probability following the Fermi
statistics. Each material is optically described by its wavelength-dependent complex
refractive index, the real part of which is the refractive index and the imaginary part
is the extinction coefficient determining light absorption. Since the optical properties
of the grain boundary regions are not known, the complex refractive index of CdTe is
considered to be constant throughout the whole absorber layer. The optical problem
is therefore solved using the one-dimensional transfer matrix method, with the cell
illuminated by the global AM1.5 spectrum. This method takes into account multiple
reflections at the hetero-interfaces, and the anti-reflective properties of the first layers
can be evaluated.
The main properties of the cell materials are summarized in Tab. 5.1.

Material Bandgap Doping χ Mobility Lifetime

[eV] [cm−3] [eV] [cm2/(Vs)] [s]

CdTe 1.5 p:1014÷7·1014 4.5 e:100 e:1.5·10−9

h:25 p:3·10−9

CdS 2.4 n:1016 4.6 e:320, h:40 e:10−9, p:10−9

Table 5.1: CdTe material parameters.
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Figure 5.1: Schematic structure of the simulated CdTe solar cell. a) Model with
charged vertical and horizontal grain boundaries. b) Partial model considering only a
vertical neutral grain boundary.

Starting from the single-crystal CdTe solar cell, the model is modified to include
grain boundaries (GBs), charge trapping and grain-to-grain transport. Both vertical
and horizontal GBs are considered. At the grain boundaries we consider the presence
of localized trap states and surface recombination. Both surface and bulk recombi-
nation follow the Shockley-Read-Hall (SRH) model, as determined by the effective
carrier lifetimes in the bulk (Tab. 5.1) and by the surface recombination velocity at
the GB, assumed to be 106 cm/s as suggested by surface studies [28]. The states at
the GB are assumed to be substitutional ClTe donor defects coming from annealing in
the presence of a source of chlorine (CdCl2) [29]. This processing step is common to
all the best CdTe solar cells. The activation energy of ClTe states is 350 meV (below
the conduction band minimum) [30] and their concentration is in the range 1011 ÷ 5
· 1011 cm−2, yielding a downward band bending of 0.1 ÷ 0.8 eV and a hole-depleted
region of 100 ÷ 300 nm across the GB, as observed experimentally [31]. The ClTe
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states modify the system electrostatics based on their occupation state, but not the
GB recombination, which is set by the fixed surface recombination velocity of 106

cm/s.
Part of the modeled structure is schematically shown in Fig. 5.1. The common pro-
cess adopts a superstrate configuration, where the CdS buffer and the CdTe absorber
are deposited on TCO-coated glass. In the record cells an antireflective (MgF) coating
is also included.

5.2 Simulation results

5.2.1 Vertical grain boundaries

First we analyzed the impact of recombination at vertical GBs as a function of CdTe
grain size (g) and doping. In these simulations, no horizontal GB are considered, i.e.,
the CdTe absorber layer is columnar, and ClTe states are absent, i.e., GBs are charge-
neutral: the simulated structure, therefore, is that of Fig. 5.1b. Results are shown in
Fig. 5.2. Increasing the grain size enhances the efficiency toward the single-crystal
limit, due to reduced non-radiative recombination at the (neutral) GBs. The efficiency
also increases with increasing acceptor concentration in the absorber: higher dop-
ing concentration reduces the diode’s saturation current, hence increasing the open-
circuit voltage (VOC, Fig. 5.3). The expected decrease of the short-circuit current (JSC,
Fig. 5.4) with increasing doping is overcompensated by the improvement of VOC and
by the reduction of recombination at GBs. In fact, only for larger grain size, where
the impact of GB recombination is less significant, does the case with higher doping
show a reduction of short circuit current (see Fig. 5.4). The fill factor (Fig. 5.5) is the
result of all the effects above mentioned.
The efficiency increase is consistent with the observed improvement of the cell per-
formance after the recrystallization step, which is known to produce an increase of
the grain size [29].
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In a second set of simulations, we considered the presence of the ClTe states at
the GB. Using densities of ClTe states in the range 1011 to 5 · 1011 cm−2 simulations
show a downward band bending of 0.1÷ 0.8 eV, and a hole-depleted region of 100÷
300 nm, as illustrated by Fig. 5.7 and observed experimentally by other groups [31].
This enhances electron collection at GBs by up to five times near the metallurgical
junction [32]: Fig. 5.8 shows the vertical current density along a horizontal cut near
the CdS/CdTe metallurgical junction. Introducing low densities of traps at GBs (1011

÷ 2 · 1011 cm−2) increases recombination due to the increased concentration of mi-
nority electrons; as the trap density becomes higher, though, the positively-charged
GBs repel holes, and the recombination rate starts to decrease (Fig. 5.6). It should
also be pointed out that, since the n-type doping of the CdS buffer layer pulls the
Fermi level closer to the conduction band in the CdTe near the metallurgical junc-
tion, the ClTe donor states, located 350 meV below the conduction band minimum
[30], get filled by electrons, thus becoming neutral close to the junction.
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Figure 5.6: Surface recombination rate integrated along the grain boundary as a func-
tion of the density of ClTe states. NA = 7 · 1015 cm−3.
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5.2.2 Horizontal grain boundaries

As illustrated by Fig. 5.1a, we also simulated the presence of horizontal GBs, either
neutral or decorated by ClTe donor states. While neutral GBs can easily be crossed
by current, charged ones present a barrier to the hole current due to the spike in the
valence band profile shown in Fig. 5.7. However, the cell can operate even in the pres-
ence of trap-decorated horizontal GBs. As shown by the current density map of Fig.
5.9, drawn under illumination at the maximum power point, while holes preferen-
tially flow along the two columnar grains, the presence of the deep donor-decorated
traps at the horizontal GBs does not prevent substantial current to flow across the
horizontal GB. Under illumination, the photo-generated electrons are collected by
the positively-charged GB: this lowers the potential of the GB and makes it less re-
pulsive for holes, as shown by Fig. 5.10. The unit-area resistance of the charged GB
decreases from tens of kΩ · cm2 (at thermal equilibrium) to less than one tenth of
Ω · cm2, sufficiently low for substantial current to flow through. It can be noticed in
Fig. 5.10 that the dip in the band profiles caused by the horizontal GB at equilibrium
(a magnified picture of which is shown in Fig. 5.7) all but disappears when the cell is
illuminated. The tendency of holes to populate the GBs under illuminated conditions
is also illustrated by Figs. 5.11 and 5.12, showing hole concentrations along vertical
and horizontal GBs: when the cell is operated under illumination at the maximum
power point, the hole concentration along the GB is enhanced by several orders of
magnitude with respect to equilibrium conditions.

Summarizing, we have shown that neither vertical nor horizontal donor-decorated
grain boundaries hinder current conduction when the cell is illuminated.

Tab 5.2 reports some simulation results (compatible with published data [33]). If,
from the baseline (ideal) single-crystal cell (case a), we move to a poly-crystalline cell
with 1 µm grain size, no recrystallization step [34] (i.e., without ClTe donor states),
and low acceptor doping (case b), the cell’s performance degrades remarkably.

By increasing the acceptor concentration in the absorber (case c), the efficiency
is significantly improved, largely thanks to higher VOC and FF.
If we also include ClTe donor states (case d) - an effect of recrystallization in the
presence of chlorine - the efficiency gets closer to the ideal value, due to larger JSC
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and FF; the reason for the larger JSC is explained by Fig. 5.8: the positively charged
vertical GB attracts the electron current and collection efficiency is significantly im-
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Case VOC JSC [mA/cm2] FF % η %

a 0.88 26.3 77.5 17.9

b 0.67 23.3 60.4 9.5

c 0.78 24.2 68.0 12.8

d 0.80 25.7 72.7 15.8

e 0.85 26.7 75.9 17.1

f 0.86 27.3 73.0 17.1

Table 5.2: CdTe solar cell performance. a) Single-crystal, NA = 7·1015 cm−3. b)
Columnar poly-crystalline cell (vertical grain boundaries only), g = 1 µm, no ClTe

states, NA = 2·1014 cm−3. c) Columnar poly-crystalline cell (vertical grain boundaries
only), g = 1 µm, no ClTe states, NA = 7· 1015 cm−3. d) Columnar poly-crystalline cell
(vertical grain boundaries only), g = 1 µm, NGB = 5·1011 cm−2, NA = 7· 1015 cm−3.
e) Columnar polycrystalline cell (vertical grain boundaries only), g = 5 µm, no ClTe

states, NA = 7· 1015 cm−3. f) Columnar polycrystalline cell (vertical grain boundaries
only), g = 5 µm, NGB = 5·1011 cm−2, NA = 7· 1015 cm−3. g) Vertical and horizontal
GBs (structure of Fig. 5.9), NGB = 5·1011 cm−2, NA = 7 · 10 15 cm −3.

proved.
If the grain size is increased from 1 µm to 5 µm (case e), (another known effect of
the re-crystallization step), the VOC is improved significantly due to smaller impact
of GB recombination.
Including the ClTe donor states again (case f) results in a larger JSC and efficiency
exceeding 17%.

Finally, if we consider the structure of Fig. 5.9 (case g), the JSC and FF decrease
somewhat due to the presence of horizontal GBs, but thanks to the electron collection
effect mentioned above, the cell’s performance is only moderately affected.
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5.3 Summary

We have used two-dimensional numerical simulations to study the impact of vertical
as well as horizontal grain boundaries in the absorber layer of CdTe solar cells. We
considered the effect of absorber doping, grain size, and concentration of ClTe donor
traps at the grain boundaries, a known by-product of re-crystallization in the presence
of chlorine (a processing step used to increase grain size and yielding more efficient
cells). Besides being consistent with known experimental results, such as the increase
of efficiency with grain size and absorber acceptor density, our simulations indicate
that:

• in a columnar absorber (i.e., one where only vertical grain boundaries exist)
the presence of ClTe donor traps at the grain boundaries results in a dip in
the band profiles that effectively serves as electron collector, increasing short-
circuit current;

• while the same dip acts as a hole barrier and thus can be expected to block holes
from flowing through the diode when horizontal grain boundaries are present,
under illuminated conditions electron collection at the grain boundary reduces
the dip enough to allow substantial hole flow, and the cell’s performance is only
moderately affected.





Chapter 6

Conclusions

This thesis presents modeling results of thin-film CIGS and CdTe solar cells with the
goal to provide insight to the device physics and help a better understanding of the
cell behavior.
The mathematical complexity and multidimensional nature of the physics governing
these solar cells require in general that the problem be addressed numerically. In this
work both numerical and analytical models are used, combining accuracy in describ-
ing arbitrary structures and complex transport mechanisms with the compactness and
ease of integration into CAD tools of the latter. This helps bridging the gap between
experimental observation of measurable quantities, e.g. current-voltage characteris-
tic, and the knowledge of the real device physics, often difficult to understand simply
by direct observation.

An analytical model for the short-circuit current of a thin-film solar cell has been
developed. The validity of the model is proven over a large range of doping and
deep state concentrations using numerical simulations. The reference structure for
the validation is ZnO/CdS/CIGS; however, the model is valid for a wider range of
thin-film solar cells. While other models oversimplificate the optics, the use of the
complex tranfer matrix method in this model allows to account for optical behavior
of the various layers and interfaces. Buffer and window layers have a small impact on
the short circuit current, and constant optical generation can be assumed. The current
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in the absorber is obtained considering exponential generation and its contribute is
increased with decreasing doping. From the transport analysis in the quasi-neutral
region we see how increasing the diffusion length (lower trap density) the short circuit
current can also be increased. A longer diffusion length allows higher doping in the
absorber without a drastical decrease of the current, which is an advantage to obtain
high open circuit voltage.

Numerical and compact modeling of CIGS thin-film solar cells has been devel-
oped. The presence of defect-rich grain boundaries with possible band-gap modifi-
cations is a specific feature of these cells that must be accounted for in any physics-
based model. We have also used our numerical simulations as a benchmark to develop
a simple, physics-based compact model of the behavior of the cell in the dark. While
the single-crystal structure behavior can be accurately described by a standard two-
diode model, when grain boundaries are present a four-diode model is required for a
good match of the numerical simulation results.
A modification of trap distribution has been been simulated to take into account the
cell degradation under damp heat stress conditions.

Numerical simulations have also been used to consider ZnMgO as an alternative
window layer for Cd-free CIGS solar cells. The study included the impact of thick-
ness, Mg content and doping of the ZnMgO buffer layer, with and without interface
states at the ZnMgO/CIGS interface. For the case of ideal ZnMgO/CIGS interface,
large Mg concentration (x = 0.36) necessitates nearly degenerate or degenerate Zn-
MgO to achieve good efficiency, while at lower Mg concentration (x = 0.19) the
electron concentration in the ZnMgO is much less critical. The thickness of the Zn-
MgO layer should also be tailored based on a careful analysis of the total reflection
of the incident light. In the presence of non-ideal ZnMgO/CIGS interface, increasing
interface trap densities result, as expected, in open-circuit voltage and, consequently,
efficiency degradation. Heavy doping of the ZnMgO layer (nW ≥ 1018 cm−3) results
in full occupation, and inactivation, of the mid-gap traps.

Two-dimensional numerical simulations have finally been used to study the im-
pact of vertical as well as horizontal grain boundaries in the absorber layer of CdTe
solar cells. The study considered the effect of absorber doping, grain size, and con-
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centration of ClTe donor traps at the grain boundaries, a known by-product of re-
crystallization in the presence of chlorine (a processing step used to increase grain
size and yielding more efficient cells). Besides being consistent with known experi-
mental results, such as the increase of efficiency with grain size and absorber acceptor
density, our simulations indicate that: i) in a columnar absorber (i.e., one where only
vertical grain boundaries exist) the presence of ClTe donor traps at the grain bound-
aries results in a dip in the band profiles that effectively serves as electron collector,
increasing short-circuit current; ii) while the same dip acts as a hole barrier and thus
can be expected to block holes from flowing through the diode when horizontal grain
boundaries are present, under illuminated conditions electron collection at the grain
boundary reduces the dip enough to allow substantial hole flow, and the cell’s perfor-
mance is only moderately affected.

In summary, this thesis studied thin-film CIGS and CdTe solar cells using numer-
ical and analytical models with the aim to bring additional knowledge and speed up
the progress of thin-film photovoltaics.

This work has been carried out in collaboration with the CNR-IMEM of Parma
(Italy), the Physics Department of the University of Parma (Italy), the University of
Western Australia and the University of Illinois at Chicago.





Appendix A

Acronyms

AM1.5 Air Mass 1.5
CIGS Cu(In,Ga)Se2

CNR Consglio Nazionale delle Ricerche
FF Fill Factor
GB Grain Boundary
GI Grain Interior
IMEM Istituto dei Materiali per l’Elettronica ed il Magnetismo
SRH Shockley-Read-Hall (recombination)
TCO Transparent Conductive Oxide
VBO Valence Band Offset
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Appendix B

List of symbols

χ electron affinity
EG energy gap
ND donor doping concetration
NA acceptor doping concentration
me electron mass
mh hole mass
mO vacuum electron mass
µe electron mobility
µh hole mobility
ε permittivity
ε0 vacuum pemittivity
JSC short circuit current density
VOC open circuit voltage
η conversion efficiency
DC direct current
R recombination
G optical generation
vT H thermal velocity
EF Fermi energy
Ψ electrostatic potential
Φ photon flux
EC conduction band energy
EV valence band energy



Appendix C

Physical constants

Symbolo Value Measurement unit Name
c 299792458

[m
s

]
light speed

h 6.62606896 ·10−34 [Js] Planck’s constant
π 3.14159265 [1] pi
k 1.3806503 ·10−23

[ J
K

]
Boltzmann’s constant

q 1.60217733 ·10−19 [C] electron charge
me 9.1093897 ·10−31 [kg] electron mass
mp 1.6726231 ·10−27 [kg] proton mass
µ0 4π ·10−7

[H
m

]
vacuum permeability

ε0 8.85418781762 ·10−12
[F

m

]
vacuum permittivity

eV 1.60217733 ·10−19 [J] electronvolt
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